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A NEW METHOD FOR SOLVING
CONSTRAINT SATISFACTION PROBLEMS

Raimund Seidel

Department of Computer Science
University of British Columbia

ABSTRACT

This paper deals with the combinatorial search
problem of finding values for a set of variables
subject to a set of constraints. This problem is
referred to as a constraint satisfaction problem,

We present an algorithm for finding all the
solutions of a constraint satisfaction problem with
worst case time bound O(m*kf*l) and space bound
o(m*kf*l), where n is the number of variables in
the problem, m the number of constraints, k the
cardinality of the domain of the variables, and f<n
an integer depending only on a graph which is
associated with the problem, Tt will be shown that
for planar graphs and graphs of fixed genus this f
is o(v/;'\.) .

I. INTRODUCTION
Many problems in diverse fields of computer
science can be formulated as constraint
satisfaction problems: a number of variables
(sametimes called units) are to be assigned values
(labels), such that certain given constraints on
subsets of these variables are satisfied.
Instances of constraint satisfaction problems range
from graph theory and automata thecory problems,
like graph colouring and automata homomorphism, to

problems in AI such as scene analysis and
cambinatorial puzzles. For representative examples
See [41. Problems involving more general

constraints are treated in [6].

Algorithms to solve these problems usually
rely on backtracking and/or on some forms of
relaxation methods or look-ahead operators ([1},
{31, (123, (10), (21, (4}, I51, (91). ALl these
algorithms seem to work well most of the time, But
they can behave badly in some cases and do mot
allos a tight worst case analysis. This is not
surprising as Montanari [11] showed that the
general constraint satisfaction problem is

NP-complete,

One of the reasons why backtrack algorithms
have a potentially bad behaviour is the fact that
they use a minimal amount of space. Observe for
instance, that a simple exhaustive backtrack search
has an exponential running time but uses onlv a
linear amount of space. One can view the
relaxation methods and look-ahead operators
proposed in the literature as attempts to invest in
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space in order to save time.

In the following sections we develop an
algorithm which invests in space heavily. Usina
the terminology of backtrack search and search
trees one can say that the saving in time is
achieved by identifying initial segments of a
search tree which are effectively identical, that
is, they differ only on variables which do not
constrain the remaining uninstantiated variables.
However, we found it advantageous to formulate our
algorithm mot in terms of backtrack search but
using the concept of dynamic programming. Thus in
contrast to other methods, our algorithm permits
easy analysis of its time and space complexity.

II. THE PROBLEM

A constraint satisfaction problem (CSP) can be
defined as follows: given is a set of variables
Xy,...,X, and associated with each variable X; a
damain D; of values, Furthermore, on some subsets
of the variables constraints are given, limiting
possible value tuples for those variables, A

solutien of a CSP is an n-tuple of values
(@p,.capay) € X...xD,, which simultaneously
satisfies all given constraints, The lete set

of solutions of a CSP is the subset of D1x...xDy,
comprising exactly all the solutions. A CSP is
called unsatisfiable if its complete set of
solutions 1s empty.

For our purposes all domains are finite. We
also assume that the domains of all n variables are
of equal cardinality, [Dijj=k for i=1,...,n. We
shall see later on, that this assumption is just a
convenience for the sake of analysis and by no
means vital to the algorithm to be proposed.

Furthermore we will restrict our attention to
CSPs involving only binary constraints. This
restriction seems more critical. But it will be
seen that the method to be presented can be applied
to general CSPs without much modification.

Montanari [11] pointed out that a CSP only
involving binary constraints can be represented by
a graph. Let us call it the constraint gra
Each of its vertices corresponds to a variable.
Two vertices are adjacent iff there is a constraint
between the corresponding two variables. In the
following we will feel free to call a vertex a



variable or vice versa, or to identify edges with
constraints.

III. A SIMPLE EXAMPLE

ILet us look at the following example. Let us
assume we have a CSP involving 10 variables and 19
binary oonstraints, and it can be represented by
the constraint graph given in figure 1. Let Cij be
the constraint between variables X; and X;.

Figure 1

We can find out whether such a CSP is satisfiable
in the following way:

Create a ternary constraint relation Cy,3 for X ,
X, , and X3 which comprises all value triples for
those wvariables allowed by Cy; and Cy3. Next,
using Cj,3 construct a ternary constraint relation
C,4, which comprises all value triples for X; ,X3 ,
an% X, which permit a value for X; , such that
Cy12 » C13 + C14 24 o, and Cyy are satisfied. Note
that, as indicated in figure2 by the shaded lines,

Figure 2
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X, ,X3 , and X, "cut” the constraint graph and thus
all of the influence of X; on the CSP is subsumed

by Cy34 and therefore Xj , C14 , C24 , C34 , and
Cy23 are of no importance any more. (This is
indicated by the dashed lines in figure 2.) Also

note that if C23[‘
unsatisfiable.

is empty the CSP must be

In the same manner, we construct using Cp34 a
ternary relation C345 for X3 , X4 , and X5 , which
comprises all value triples allowed by C3; ard
C45 , and permits values for X; and X;. Again, if
C345 is empty the CSP must be unsatisfiable and we
can stop. Otherwise we continue in the same way
and oonstruct ternary relations Cus¢ , Cse7 o
Cg7s + C7g9 and Cgg1g - If any of those relations
is empty, the CSP is unsatisfiable. If Cggig is
nonempty we can generate a general solution for the
CSP by using the created ternary constraints and
instantiating the variables in the reverse order to
the order in which they were discarded.

If each of the variables X; can assume Kk
different values, then any of the ternary relations
above can have at most k3 elements. Therefore only
k4 combinations of value triples and values need to
be considered for the construction of a new ternary
relation. Hence a CSP representable by such a
graph can be decided in O(k%) steps. Note that
this worst case complexity is completely
independent of the specific instances of the
constraint relations Cyj.

IV. THE INVASION PROCEDURE

In order to describe, how the method outlined
above can be generalized so that it can be applied
to an arbitrary constraint graph, we need a few
definitions.

Given an n-vertex graph G, call a sequence
{G;}, 1i=1,...,n, of induced subgraphs of G, where
the number of vertices in G; is i and G is a
subgraph of Gj+1, an invasion of G. We call the
set F; of vertices of G; which are adjacent to
vertices mot in Gj the front of G;. Vertices in
G;-F; are called oconquered vertices. The front
length f; of Gj is the number of vertices in Fj.
The front length of an invasion is the max imum
front length of the subgraphs Gj; involved. An
invasion of a graph G is called optimal if its
front length is not greater than the front length
of any other invasion of G.

Given an invasion {G;}, i=1l,...,n, of a
constraint graph G, we claim that satisfiability of
a corresponding CSP can be decided by the procedure
outlined below:

For i=1 to n inductively find all value tuples
for the front vertices F; of G; which are
consistent with one of the allowed value tuples
of Fj_1. If there are no such tuples, stop and
report the CSP unsatisfiable.

The ocorrectness of this algorithm follows by
induction using two observations:

|
|
|



Let <X1,...,X1>
Gj arranged in a way such that X,. <o e Xy
vertices in Fy.

i) The conquered vertices Xfi+1,...,Xi are not
involved in constraints with variables not in
Gi.

<Al y...,af> is made a valid labeling tuple
for the vertices in Fj if and only if there
are values a; {41re-0r34 for the oonquered
vertices Xf1+1, .,Xl such that <a1,...,a1>1s a
valid 1labeling for the vertices in G, i.e,
<al,...,aj> satisfies all constraints within
Gi.

be the i-tuple of the vertices in
are the

ii)

We

the
V.

HOW TO CONSTRUCT ALL SOLUTIONS OF A CSP

X3

Figure 3

are now ready to state an improved version of
invasion procedure which constructs the

solution graph of a CSP with respect to a given

invasion.

Given an imvasion {G;}, i=l,...,n, for the
constraint graph of a CSP, the above procedure just

answers the <question whether the CSP is qr
satisfiable, But it can be improved to render a
graph which represents the oomplete set of

solutions of the CSP, Call this graph the solution
graph of a CSP with respect to invasion {G;T. This
solution graph is a circuit-free directed
multigraph with labeled arcs. (To avoid confusion

let us use the terms node and arc for the solution

graph, and the terms vertex and edge for the
constraint graph.) It has two distinguished nodes
suwch that the set of directed paths between these

two nodes corresponds one to one with the complete
set of solutions of the CSP.

Consider the following simple example: four
variables X;,...,X; are given; each variable is to
be assigned an integer between 1 and 3 such that
the constraints Xj<X; , X <X3 , X<X, and  Xj<X,
hold. Figure 3 shows the constramt graph G for
this CSP, Figure 4 shows the solution graph with
respect to the invasion {G;| G; is the subgraph of
G induced by the vertices , ki) The labels
along the directed paths fram s, to sy represent

Gg be the empty set and
vertex of G;—G;_
Furthermore let
of nodes of the solution graph.
S{ shall be named by labeling tuples of the front
vertices F;
only one labeling tuple for
variables.
most one element, let us call it sjy.

Assume a CSP with n wvariables involving only
binary constraints is given.

For its constraint
aph an invasion {G;}, i=1,...,n, is given. Let
let X; be the single
1

S; , i=1,...,n, be disjoint sets
The elements of

{By convention let there be
an empty set of
is empty, S; contains at
)

of Gi'

Thus, if Fi

Initially S; is empty for i=1,...,n.

Sg is set to {sg}.

For i=1 to n do:

For each value tuple a in S;_; and for each
value c of X; whose cambination satisfies all

constraints between the vertices in F;_; and
Xl do:
Let b be the resulting value tuple for the

vertices in Fy.
Set S; to the union of S5 and {b}.
Construct an arc from b to a and label it

all the solutions for this CSp. with c.
possible possible possible possible
labelings labelings labelings labelings
for the front for the front for the front for the front
of Gl <xl> of G2 <x1,x of G3 <x2,x3> of gt ©
2 2
<1>€e——————<1,2> <2,2>. %
3 3
<2,3>
<2> <1, 3> /4
<3,2> /
3
3
3
<3> <2, e—— <3, 3>
possible possible possible possible
values for X values for X values for X values for X

2
Figure 4

1
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Llaim:

1. The above procedure vyields a circuit-free
directed multigraph.

2. The tuple <aj,...,a,> is a solution of the CSP
if and only if there is a directed path from 5, to
sy whose arc label sequence is ag,...,aj.

Proof :

1. The solution graph is circuit-free because for
all i and j, i#3Jj, S; and SJ- are disjoint and
there are only arcs from nodes in'S; to nodes in
Si_1- It is possible to have more than one arc
between a node in S; and a node in S;_; in the case
that X; is not a front vertex of Gj.

2. This statement follows fram the inductive
argument that the set of paths between a node
<81 yenapdf > in §; and s; represents exactly all
the solutions of the CSP restricted to G; which
have 8)re..sap; as instantiation of the front
vertices of G;.

Q.E.D.

It is now natural to ask about the complexity
of this procedure. The following theorem gives an
answer to this guestion. It is assumed that it
takes constant time to determine whether two
variables satisfy a common constraint.

Theorem:

Given 1is a CSP involving m binary constraints on n
variables. Each of the variables can take on k
different values. For the constraint graph of the
CSP an invasion {G;}, i=1,...,n, with front length
f is given.

The above algorithms produces a solution graph of
the CSP in time at most O(m*kf+l) and uses space at
most O(n*kf+1),

proof: )

S;_; can not have more than kfi-l < k! elements,
This at most kf+] combinations are possible between
elements of S;_; and values of X;. Therefore there
can not be more than kf*l arcs from nodes in §; to
nodes  in §;_ ;. So the algorithm uses space
o(n+ki+ly,

For each i at most f binary constraints need to be
checked for each of the at most kf*! combinations
between elements in S;.; and values of Xj.
Therefore there are not more than n*f*k{?l checks.
But overall there exist only m constraints., Thus
only m*kf+l checks are necessary, and the algorithm
uses time O(m*kf+ly,

Q.E.D.

Implementation of this procedure should be
straightforward. But one should carefully select
the data structure to represent the sets S; so that
set insertion and set enumeration can be done
quickly, but no excessive amount of space is used.
The actual usefulness of this procedure will of
course depend heavily on the front length of the
invasion used, and on the actual sizes of the sets

S; to be constructed.
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VI. THE GENERAL CSP

So far we have looked only at CSPs involving
binary constraints, Can our procedure also handle
general CSPs with constraints involving more than
two variables? The changes and generalisations
necessary to answer this question positively should
be obvious: we only need to generalize the notion
of a oonstraint graph; variables correspond again
to vertices, and two vertices are adjacent if the
corresponding two variables are involved in some
common constraint. With this definition of a
constraint graph only a few modifications in
bookkeeping are required so that the invasion
procedure can be applied to general CSPs.

VII. FINDING A GOOD INVASION

In order to make efficient use of the
algorithm of the last section, one needs "good"
invasions, that is invasions with samall front
length., But good invasions do not exist for all
graphs. Consider a complete n-vertex graph: each
of its invasions has front length n-1. Furthermore
there are n! invasions for an n-vertex graph, but
no good algorithm is known to select an optimal or
almost optimal invasion. But if we restrict our
attention to the class of planar graphs, we can
exhibit an algorithm which oomputes an invasion
with front length O(/n). Similar algorithms exist
for the classes of graphs of fixed genus. But we
will concentrate on planar graphs. The importance
of this class is illustrated by the fact that for
instance most CSPs arising in A.I, vision involve
planar constraint graphs.

In the oonstruction of the invasion of a
planar graph we will make use of a planar separator
theorem by Lipton and Tarjan [7]:

Let G be an n-vertex planar graph. The vertices
of G can be partitioned into three sets A, B, C,
such that nmo edge joins a vertex in A with a
vertex in B , neither A nor B contains more than
2n/3 vertices, and C contains no more than v8n
vertices.

Lipton and Tarjan also exhibit an algorithm which
finds such a partition in O(n) time. 1In [8) they
show how this theorem can be extended to graphs of
arbitrary genus.

In the previous section we formally defined an
invasion of a graph as a sequence of induced
subgraphs., It should be clear that each invasion
of a graph G induces a numbering on the vertices of
G, and vice versa. Thus if the vertices of G are
numbered Xj,...,X,, then {G;| G; is the subgraph of
G induced by the vertices X;, with i<i}, i=1,...,n,
is clearly an invasion 3 6. “so finding an
invasion for a graph is equivalent to finding the
corresponding numbering of its vertices. :

In the following we specify a divide and
conquer type procedure INVADE-PLANAR-GRAPH which
numbers the vertices of a planar graph. We shall
mean by "invade § starting with i", where S is a




subset of the n wvertices of a graph and 1 an
integer, 1<i¢n, that each integer between i and
i+|8|-1 is assigned to one of the vertices in S.

INVADE-PLANAR-GRAPH (G,1)
where INVADE-PLANAR-GRAPH (G,i) is:
If there are no more than 4 vertices
invade them starting with i.
Otherwise, using Lipton's and Tarjan's method,
partition the vertices of G into three sets
A, B, C, such that there are no edges between
vertices in A and vertices in B.
Invade C starting with i.
INVADE-PLANAR~-GRAPH (GA,i+|C ).
INVADE-PLANAR-GRAPH (Gg,i+|C|+]Al).
(G4 and Gy are the subgraphs induced by A and
B respectively.)

in G,

Claim:

Given a planar n-vertex graph G, the above
procedure yields an invasion for G whose front
length f is smaller than 16*/n.

Proof :

Let G4}, i=1,...,n, be the invasion induced by the
nurbering of the vertices achieved by the above
procedure. Let f; denote the front length of Gji
for all i. Let A, B, C be the three sets into
which the vertices of G are partitioned.

For all i < |C|, f; must be less than |C| < /&n.
For all i, |C| < i < |C|+|A|, f1 must be less than
!C|+fA, where f, denotes the front length of the
invasion of the subgraph induced by A.

For all i, |C|+|A] < i< n, f; mst be less than
|Cl+£, (with f; defined as f,), ause there are
no es between vertices in A and B and thus all
the vertices in A must be conquered.

Thus the following inequality holds:

f < Y8n + max (£, ,fp)

Using the fact that neither A nor B contains more
than 2n/3 vertices, we can derive the following
recursive relation for the front length:

£(n) =n for n< 4

£(n) < v8n + f{|2n/3]) otherwise
It can easily be shown that f(n) is bounded fram
above by o'n, where ¢ is not greater than 16. Thus
the front length f is smaller that 16*/n. Q.E.D.

This result leads immediately to the following
Corollary:

A CSP with n variables, m constraints, k values for
each variable, and a planar constraint graph can be
solved in time O(m*k1+16T) and space O(n*kl+167M),

VIII. CONCLUSION

We have described new algorithms to decide
satisfiability, or to compute the complete set of
solutions of a given CSP, The worst case
complexities of the algorithms depend heavily on
the structure of the constraint graph of the CSp,
so we do not claim that our method will be
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efficient for all CSPs. But we could show that

for CSPs with planar constraint graphs this
algorithm leads to a considerable improvement in
the asymptotic worst case oomplexity of the
problem, It remains to be seen how the proposed
algorithms will behave in practical applications.
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