
On the Tractability of Restricted Disjunctive Temporal Problems

T. K. Satish Kumar
Knowledge Systems Laboratory

Stanford University
tksk@ksl.stanford.edu

Abstract

In this paper, we provide a polynomial-timedeterministical-
gorithm, and an even simplerrandomizedalgorithm, for solv-
ing a restricted (but very expressive) class of disjunctivetem-
poral problems (DTPs). The general form of a DTP is as fol-
lows. We are given a set of eventsX = {X0, X1 . . . XN}
(X0 is the “beginning of the world” node and is set to0
by convention), and a set of constraintsC. A constraint
ci ∈ C is a disjunction of the forms(i,1) ∨ s(i,2) . . . s(i,Ti).
Here, s(i,j) (1 ≤ j ≤ Ti) is a simple temporal con-
straint of the formL(i,j) ≤ Xb(i,j)

− Xa(i,j)
≤ U(i,j) for

0 ≤ a(i,j), b(i,j) ≤ N . We will first provide a pseudo-
polynomial-timerandomizedalgorithm for solving the fol-
lowing restricted class of DTPs (which we will refer to as
RDTPs (restricted DTPs)): Anyci ∈ C is of one of the fol-
lowing types: (Type 1)(L ≤ Xb − Xa ≤ U), (Type 2)
(L1 ≤ Xa ≤ U1) ∨ (L2 ≤ Xa ≤ U2) . . . (LTi

≤ Xa ≤
UTi

), (Type 3)(L1 ≤ Xa ≤ U1) ∨ (L2 ≤ Xb ≤ U2). We
will then provide a strongly polynomial-timedeterministical-
gorithm for solving the same problem, and extend the ideas
further to provide an even simplerrandomizedalgorithm—
the expected running time of which is much less than that of
thedeterministicalgorithm. Our polynomial-time algorithms
for solving RDTPs bear important implications on not only
being able to handle limited (but very useful) forms of dis-
junctions in metric temporal reasoning (that would otherwise
require an exponential search space), but also in pruning large
parts of the search spaces associated with general DTPs.

Introduction
Expressive and efficient temporal reasoning is central to
many areas of Artificial Intelligence (AI). Several tasks in
planning and scheduling, for example, involve reasoning
about temporal constraints between actions and propositions
in partial plans (see (Nguyen and Kambhampati 2001) and
(Smith et al. 2000)). These tasks may include threat reso-
lution between actions in partial order planning, analyzing
resource consumption envelopes to guide the search for a
good plan (see (Kumar 2003)), etc. Among the important
formalisms used for reasoning with metric time are simple
temporal problems (STPs) and disjunctive temporal prob-
lems (DTPs) (see (Oddi and Cesta 2000) and (Stergiou and

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Koubarakis 1998)). Unlike DTPs, STPs can be solved in
polynomial time, but are not as expressive as DTPs.

An STP is characterized by a graphG = 〈X , E〉, where
X = {X0, X1 . . . XN} is a set of events (X0 is the “be-
ginning of the world” node and is set to0 by conven-
tion), ande = 〈Xi, Xj〉 ∈ E , annotated with the bounds
[LB(e), UB(e)], is a simple temporal constraint between
Xi andXj indicating thatXj must be scheduled between
LB(e) andUB(e) seconds afterXi is scheduled (LB(e) ≤
UB(e)). Figure 1(A) shows an example of an STP which
(like all other instances of the class) can be solved in poly-
nomial time using shortest paths (see (Dechteret al. 1991)).

DTPs are significantly more expressive than STPs, and
allow for disjunctive constraints. The general form of a
DTP is as follows. We are given a set of eventsX =
{X0, X1 . . .XN} (X0 is the “beginning of the world” node
and is set to0 by convention), and a set of constraintsC.
A constraintci ∈ C is a disjunction of the forms(i,1) ∨
s(i,2) . . . s(i,Ti). Here,s(i,j) (1 ≤ j ≤ Ti) is a simple tempo-
ral constraint of the formL(i,j) ≤ Xb(i,j)

−Xa(i,j)
≤ U(i,j)

for 0 ≤ a(i,j), b(i,j) ≤ N . Figure 1(B) shows an example of
a DTP which expresses disjunctive constraints.

Although DTPs are expressive enough to capture many
tasks in planning and scheduling (like threat resolution and
plan merging), they require an exponential search space.
The principal approach taken to solve DTPs has been to
convert the original problem to one of selecting a disjunct
from each constraint, and then checking that the set of se-
lected disjuncts forms a consistent STP. Checking the con-
sistency of, and finding a solution to an STP can be per-
formed in polynomial time using shortest path computations
(see (Dechteret al. 1991)). The computational complex-
ity of solving a DTP comes from the fact that there are an
exponentially large number of disjunct combinations possi-
ble. The “disjunct selection problem” can also be cast as a
constraint satisfaction problem (CSP) (see (Oddi and Cesta
2000) and (Stergiou and Koubarakis 1998)), or a satisfiabil-
ity problem (SAT) (see (Armandoet al. 1999)) and solved
using standard search techniques applicable for them. Epili-
tis is a systems that efficiently solves DTPs using CSP search
techniques likeconflict-directed backjumpingand nogood
recording(see (Tsamardinos and Pollack 2003)).

In this paper, we will first provide a pseudo-polynomial-
time randomizedalgorithm for solving the following re-

[1,2]

[−14,−12] [5,7]

[3,4]

[1,2]

[1,2]

X0

X1 X2

X3

X4X9

X8

X7 X6

X5

[7,8]

[9,10]

[2,3]

[4,6]

[1,2]

[−14,−12] [5,7]

[3,4]

[1,2]

[1,2]

X0

X1 X2

X3

X4X9

X8

X7 X6

X5

[2,3]

[2,3][2,3] [2,3]

[12,14]

X9 = Time of Coming Back Home
X8 = Time of Leaving Town D
X7 = Time of Reaching Town D
X6 = Time of Leaving Town C
X5 = Time of Reaching Town C
X4 = Time of Leaving Town B
X3 = Time of Reaching Town B
X2 = Time of Leaving Town A
X1 = Time of Reaching Town A
X0 = Starting from Home Town

3 <= X1 <= 5

15 <= X5 <=16

[7,10] or [14,17]

[2,4] or [5,7] or [9.11]

or

[4,6] or [7,9]

or

or

(X6−X5 = 3)

[2,3]

[4,6]

[−14,−12] [5,7]

[3,4]

[1,2]

[1,2]

X0

X1 X2

X3

X4X9

X8

X7 X6

X5

[1,2]

[1,2]

(X8−X7 = 4)

[4,6]

(C)

(B)(A)

(D)

[2,3]

[2,3][2,3]

Figure 1: Shows an example to illustrate the kinds of reasoning possible in (A) STPs, (B) DTPs, and (C) RDTPs. The example
is about an agent who should plan her visit to5 towns (starting and ending at her home town) respecting various temporal
constraints. In (A), only simple temporal constraints are specified. An edge fromX3 to X7 annotated with[12, 14], for
example, means that she should reach town D within12 and14 days of reaching town B. In (B),3 disjunctive constraints are
specified (enclosed by boxes). One of these, for example, says that eitherX3 − X2 ∈ [1, 2] or X1 − X4 ∈ [1, 2]. Such a
constraint may arise when the agent has no preference visiting town A before or after town B, but only knows that she can drive
between the2 towns within1 and2 days. Similarly, the constraint(X8 − X7 = 4) ∨ (X6 − X5 = 3) may arise out of her
preference to stay in at least one of the2 towns C and D for as long as possible. In (C), all the disjunctions are of Type 2 or Type
3 (enclosed by boxes). The constraintX7 − X0 ∈ [7, 10] ∪ [14, 17], for example, is a Type 2 disjunction, and may arise out
of the agent’s requirement to attend a social gathering in town D, which takes place only on certain days of a week. Similarly,
the constraint(X1 ∈ [3, 5]) ∨ (X5 ∈ [15, 16]) is a Type 3 disjunction, and may arise out of the agent’s need to meet at least
one of two friends who are respectively available in towns A and C on specific days. (D) gives an annotation of the time points
X0, X1 . . .X9 used in (A), (B) and (C).

stricted class of DTPs (which we will refer to as RDTPs
(restricted DTPs)): Anyci ∈ C is of one of the following
types: (Type 1)(L ≤ Xb−Xa ≤ U), (Type 2)(L1 ≤ Xa ≤
U1) ∨ (L2 ≤ Xa ≤ U2) . . . (LTi

≤ Xa ≤ UTi
), (Type 3)

(L1 ≤ Xa ≤ U1) ∨ (L2 ≤ Xb ≤ U2). We will then provide
a strongly polynomial-timedeterministicalgorithm for solv-
ing the same problem, and extend the ideas further to pro-
vide an even simplerrandomizedalgorithm—the expected
running time of which is much less than that of thedetermin-
istic algorithm. Our polynomial-time algorithms for solving
RDTPs bear important implications on not only being able
to handle limited (but very useful) forms of disjunctions in
metric temporal reasoning (that would otherwise require an
exponential search space), but also in pruning large parts of
the search spaces associated with general DTPs. Figure 1(C)
shows an example of an RDTP.

Random Walks and Expected Arrival Times
In this section, we will provide a quick overview of random
walks, and the theoretical properties attached with them.
Figure 2(A) shows an undirected graph with weights on

edges. Arandom walkon such a graph involves starting
at a particular node, and at any stage, randomly moving to
one of the neighboring positions of the current position. The
probability with which we move to a specific neighbor of
the current node is proportional to theweighton the edge
that leads to that neighbor. One of the properties associ-
ated with such random walks on undirected graphs is that
if we denote the expected time of arrival at some node (say
L) starting at a particular node (say R) byT (R, L), then
T (R, L) + T (L, R) is O(mH(L, R)). Here,m is the num-
ber of edges, andH(L, R) is the “resistance” between L and
R, when the weights on edges are interpreted as electrical
resistance values (see (Doyle and Snell 1984)).

Figure 2(B) shows a particular case of the one in Figure
2(A), in which the nodes in the graph are connected in a
linear fashion, and the edges are unweighted—i.e. the prob-
abilities of moving to the left or to the right from a particular
node are equal (except at the end-points). In this scenario,
it is easy to note that by symmetry,T (L, R) = T (R, L).
Further, using the property of random walks stated above,
if there aren nodes in the graph, then bothT (L, R) and

R
2

(A)

5

2

p <= 0.5

L R

Rq => 0.5L

(B)

(C)

L

2

3

1 1

4

Figure 2: Shows three scenarios in which random walks are performed. In an undirected graph (weighted as in (A), or un-
weighted as in (B)), for any two nodes L and R,T (R, L) + T (L, R) is related to the “resistance” between them. In case (C)
(whenp ≤ q at every node),T (R, L) is less than that in (B) because of an increased “attraction”towards L at every node.

T (R, L) areO(n2).
Figure 2(C) shows a slightly modified version of that in

Figure 2(B), where the graph is directed, although it is still
linear. Moreover, there are weights associated with edges
which are interpreted as probabilities in the random walk;
and the weight on〈s, sleft〉 is, in general, not equal to that
on 〈s, sright〉. Here,s is some node in the graph, andsleft

andsright are respectively the nodes occurring immediately
to the left and right of it. However, we are guaranteed that
the probability of moving to the left at any node is greater
than that of moving to the right (i.e.p ≤ q). Given this
scenario, it is easy to see that the expected time of arrival at
the left end point (L), starting at the right end point (R), is
alsoO(n2) (if there aren nodes in all). Informally, this is
because at every node, there is an increased “attraction” to
the left compared to that in Figure 2(B); and the expected
arrival time can only be less than that in the latter.

Simple Temporal Problems Revisited
In this section, we will provide two different kinds of algo-
rithms for solving STPs. The first algorithm (which we will
only briefly review) is based on the computation of shortest
paths (as shown in (Dechteret al. 1991)). The second algo-
rithm is based on the properties ofrandom walksondirected
graphs. We will then compare the strengths and weaknesses
of these two algorithms, and eventually (in the next section),
combine the intuitions behind the working of these two dif-
ferent algorithms to develop strongly polynomial-time algo-
rithms for solving RDTPs.

Figure 3 provides a simpledeterministicprocedure for
solving STPs based on the computation of shortest paths.
Central to this algorithm is the notion of adistance graph
D(G) associated with an STPG = 〈X , E〉 (see step (1) of
Figure 3). An edge〈Xi, Xj〉 in the distance graphis an-
notated with a real numberw (instead of temporal bounds),
and encodes the constraintXj −Xi ≤ w. Therefore, every
edge in the STP is compiled to2 edges in thedistance graph.
The following Lemma then characterizes the consistency of
an STP.
Lemma 1: A consistent schedule exists forX0, X1 . . . XN

in G = 〈X , E〉 if and only if thedistance graphD(G) does
not contain any negative cycles.
Proof: (see (Dechteret al. 1991)).

The running time of the algorithm in Figure 3 is similar
to that of the Bellman-Ford algorithm for computing single-

source shortest paths (in the presence of negative weights on
edges), and is equal toO(N |E|).1

Figure 4 presents a pseudo-polynomial-timerandomized
algorithm for solving STPs. Central to this algorithm is the
relationship between simple temporal constraints andran-
dom walksondirectedgraphs. Temporarily, we will assume
that all the specified bounds in the STP are integers with ab-
solute value≤ B.

The idea is to start with any integer assignment to all the
events, and use the violated constraints in every iterationto
guide the search for the true assignmentA∗ (if it exists).
In particular, in every iteration, a violated constraint ischo-
sen, and the assignment of one of the two participating vari-
ables is either increased or decreased by1 unit. Since we
know that the true assignmentA∗ satisfies all constraints,
and therefore the chosen one too,randomlymoving along
one of the axes (in the direction of the feasible region), will
reduce theL1-distance between the current assignmentA
andA∗ with a probability≥ 0.5.2 The geometry of a vio-
lated constraint is shown in Figure 3. Much like therandom
walk in Figure 2(C), therefore, we can bound the conver-
gence time toA∗ by a quantity that is only quadratic in the
maximumL1-distance between any two complete assign-
ments.
Lemma 2: If all the numbers are integers with absolute val-
ues≤ B, then there exists a solutionA∗ having integer time
schedules for all the events.
Proof: From the previous Lemma, we know that if there ex-
ists a solution, one of them is given by assigning to eachXi

(1 ≤ i ≤ N), the length of the shortest path fromX0 to
Xi. Since all the numbers are integers, so are the lengths of
the shortest paths fromX0 to all Xi, hence establishing the
truth of the Lemma.
Lemma 3: The L1-distance between any two integer as-
signmentsA = 〈X1 = x1, X2 = x2 . . .XN = xn〉 and
A′ = 〈X1 = x′

1, X2 = x′

2 . . . XN = x′

n〉 (in the above con-
text) is at most2N2B, and0 if and only if A = A′.
Proof: Consider theL1-distance |x1 − x′

1| + |x2 −
x′

2| . . . |xN − x′

N |. Because the absolute value of all the
bounds≤ B, and at mostN numbers can contribute to the

1Any negative cycle (inconsistency in the simple temporal con-
straints) is detected by the Bellman-Ford algorithm.

2The L1-distance between two assignmentsA = 〈X1 =
x1, X2 = x2 . . . XN = xn〉 and A′ = 〈X1 = x′

1, X2 =
x′

2 . . . XN = x′
n〉 is equal to|x1 −x′

1|+ |x2 −x′
2| . . . |xN −x′

N |.

ALGORITHM: SOLVE-STP-DETR
INPUT: An STPG = 〈X , E〉.
OUTPUT: A solutions (if it exists).
(1) Construct thedistance graphD(G) on the nodes ofG as
follows:

(a) For every edgee = 〈Xi, Xj〉 ∈ E :
(A) Add the edge〈Xi, Xj〉 annotated withUB(e).
(B) Add the edge〈Xj , Xi〉 annotated with−LB(e).

(2) For everyXi:
(a) Computedist(X0, Xi) (shortest path length) fromX0

to Xi in D(G).
(3) RETURN:s = {Xi ← dist(X0, Xi)}.
END ALGORITHM

Xa − Xb <= L

Xb

Xa

A

A*

Figure 3: The left side of the figure shows adeterministicalgorithm for solving STPs based on shortest path computations.
The right side of the figure illustrates the geometry of a violated simple temporal constraint (Xa −Xb ≤ L). A is the current
assignment, andA∗ is the required (integral) solution.

ALGORITHM: SOLVE-STP-RAND
INPUT: An STPG = 〈X , E〉 with all the specified bounds
being integers of absolute value≤ B.
OUTPUT: A solutions (if it exists).
(1) Fori = 1 to N :

(a) SetXi to a random integer in[−B, B].
(2) While there exists a violated constraint of the form
(L ≤ Xb −Xa ≤ U):

(a) If Xb −Xa < L:

(A) Do one of the following with equal probabilities:
(ONE)Xb = Xb + 1.
(TWO) Xa = Xa − 1.

(b) If Xb −Xa > U :
(A) Do one of the following with equal probabilities:

(ONE)Xb = Xb − 1.
(TWO) Xa = Xa + 1.

(3) RETURN:s = the current assignment to all variables.
END ALGORITHM

Figure 4: Shows a pseudo-polynomial-timerandomizedalgorithm for solving STPs.

length of any shortest path in thedistance graph, all the
terms are≤ 2NB. This means that theL1-distance is al-
ways≤ N(2NB) ≤ 2N2B. Further, since all the terms are
≥ 0, theL1-distance can be0 only when all the individual
terms are0—which in turn, happens only whenA andA′

are identical.
Lemma 4: For any violated constraint, step (2) in Figure
4 reduces theL1-distance betweenA (current assignment)
andA∗ (integral solution) with a probability≥ 0.5.
Proof: When there exists a violated constraint, some in-
equality of the form(Xa − Xb ≤ L) is not satisfied. We
know thatA∗ is placed within the feasible region of this
constraint, and the current assignmentA is in the other half-
plane (see Figure 3). In step (2), werandomlymove towards
the feasible region of the constraint (by1 unit) along one
of the two axes (Xa or Xb). For any point in the feasible
region, at least one of these moves reduces theL1-distance
to it. Further, since the initial assignmentI is integral, and
the step size is1 unit, the current assignmentA, in any it-
eration, is guaranteed to be integral. Finally, sinceA∗ is
integral, and the step size is equal to the smallest possible
integer increment (decrement), theL1-distance betweenA
andA∗ is decreased by at least1 with a probability≥ 0.5,
and increased by at most1 with a probability≤ 0.5.
Lemma 5: The expectednumber of iterations of the algo-

rithm ‘SOLVE-STP-RAND’ isO(N4B2).
Proof: From Lemma 3, we know that the maximumL1-
distance between the initial random assignmentI, and the
true satisfying assignmentA∗, is O(N2B). Further, in ev-
ery iteration, we perform arandom walkexactly analogous
to that in Figure 2(C)—with the left end-point beingA∗, I
being only as far as the other end-point, and a maximum of
O(N2B) nodes in between. The truth of the Lemma then
follows from the properties ofrandom walkson directed
graphs.

From Lemma 5, we have that theexpectedrunning time of
‘SOLVE-STP-RAND’ isO(N4|E|B2) (since checking for a
violated constraint in every iteration takesO(|E|) time).3

One clear advantage of the first algorithm is that its run-
ning time is strongly polynomial. However, the second al-
gorithm has the advantage that it can be extended to handle
other types of constraints too (which the first one cannot).
In particular, it can handle the kinds of disjunctive tempo-
ral constraints as shown in Figure 5. (A) and (B) are re-
spectively the Type 2 and Type 3 disjunctions allowed in

3Even whenrandomizedalgorithms are analyzed only in terms
of their expectedrunning time, Markov’s inequality yields that the
probability that we do not terminate even afterk (say100) times
theexpectednumber of time steps is≤ 1/k (≤ 1/100).

U2U1

A

(A)

U4L3

A*

U1L1

L2

U2 A*

A

(B)

Xa

Xb

L1 L4L2

Xa

U3

Figure 5: Shows two other kinds of constraints that can be handled by random walkstrategies. (A) and (B) respectively
correspond to Type 2 and Type 3 disjunctions allowed by RDTPs. In both cases, there exist two directions at all infeasible
points such that moving along at least one of them (by1 unit) decreases theL1-distance to the solution (A∗), no matter where
it is placed in the feasible region of the constraints.

ALGORITHM: SOLVE-RDTP
INPUT: An RDTP with all the specified constants and
bounds being integers of absolute value≤ B.
OUTPUT: A solutions (if it exists).
(1) Fori = 1 to N :

(a) SetXi to a random integer in[−B, B].
(2) While there exists a violated constraint:

(a) If it is of the form(L ≤ Xb −Xa):
(A) Do one of the following with equal probabilities:

(ONE)Xb = Xb + 1.
(TWO) Xa = Xa − 1.

(b) If it is of the form

(L1 ≤ Xa ≤ U1) ∨ . . . (Lk ≤ Xa ≤ Uk):
(A) Do one of the following with equal probabilities:

(ONE)Xa = Xa + 1.
(TWO) Xa = Xa − 1.

(c) If it is of the form(L1 ≤ Xa ≤ U1)∨(L2 ≤ Xb ≤ U2):
(A) Do one of the following with equal probabilities:

(ONE)Xa = Xa + 1 if (Xa < L1), and
Xa = Xa − 1 otherwise.
(TWO) Xb = Xb + 1 if (Xb < L2), and
Xb = Xb − 1 otherwise.

(3) RETURN:s = the current assignment to all the variables.
END ALGORITHM

Figure 6: Shows a pseudo-polynomial-timerandomizedalgorithm for solving RDTPs.

RDTPs. It is easy to see that in both these cases, no matter
whereA∗ lies within the feasible region of the constraint,
there exist two directions at every infeasible point such that
moving along at least one of them reduces theL1-distance
betweenA (the current infeasible assignment), andA∗. Fig-
ure 5 shows these required pairs of directions with respect to
(violated) Type 2 and Type 3 constraints. We note again that
if all the numbers are integers with absolute value≤ B, and
the step size is1, A andA∗ (one of the solutions) are guaran-
teed to be integral. Figure 6 provides a pseudo-polynomial-
timerandomizedalgorithm for solving RDTPs, and is a sim-
ple extension of that in Figure 4.

Strongly Polynomial-time Algorithms for
RDTPs

In this section, we will design strongly polynomial-time al-
gorithms for solving RDTPs by pulling together ideas drawn
from both the above presented algorithms for solving STPs.
We will first present a strongly polynomial-timedeterminis-

tic algorithm, and then provide an extremely simplerandom-
izedalgorithm—the time and space complexity of which is
much less than that of thedeterministicalgorithm.

In both these algorithms, we will cast an RDTP as a “dis-
junct selection problem” (see (Oddi and Cesta 2000) and
(Stergiou and Koubarakis 1998)), and therefore model it as a
meta-CSP. In particular, we will associate the meta-variables
Y = {Y1, Y2 . . . YQ} with the Type 2 constraints, and the
meta-variablesZ = {Z1, Z2 . . . ZR} with the Type 3 con-
straints. That is, if(L1 ≤ Xa ≤ U1) ∨ (L2 ≤ Xa ≤
U2) . . . (LT ≤ Xa ≤ UT) is a Type 2 constraint with the
variable Yj associated with it, then the domain ofYj is
DYj

= {(L1 ≤ Xa ≤ U1), (L2 ≤ Xa ≤ U2) . . . (LT ≤
Xa ≤ UT)}. Similarly, if (L1 ≤ Xa ≤ U1) ∨ (L2 ≤ Xb ≤
U2) is a Type 3 constraint with the variableZj associated
with it, then the domain ofZj is DZj

= {(L1 ≤ Xa ≤
U1), (L2 ≤ Xb ≤ U2)}. The goal is now to find an in-
stantiation of the variables inY ∪Z such that, together with
the Type 1 constraints, the induced set of simple temporal

constraints is consistent.
For notational convenience, we will refer to the disjunct

(L1 ≤ Xa ≤ U1) as Xa ∈ [L1, U1]. For any interval
I = [L, U], we will denote its left end-point (viz.L) by
L(I), and its right end-point (viz.U) byR(I). We will also
assume that for Type 2 constraints, the disjuncts are arranged
in ascending order of the end points of their corresponding
intervals.4 We will refer to these natural orderings on the
domains of variables inY as theirnominalorderings, and
show that it plays a crucial role in the working of both the
strongly polynomial-time algorithms that follow. For a Type
2 constraint(Xa ∈ [L1, U1]) ∨ (Xa ∈ [L2, U2]) . . . (Xa ∈
[LT , UT]) with the attached meta-variableYi ∈ Y, we will
useVYi

to denote the variable occurring in the disjunction—
namely,Xa. Also, we will use a constraint interchange-
ably with its (0, 1)-matrix representation. Abinary con-
straint between variablesW1 andW2 using particular order-
ings on their domains, is represented as a 2D(0, 1)-matrix
with the ‘1’s and ‘0’s respectively indicating theallowed
and thedisallowedtuples. Finally, we will use the nota-
tion dist(Xi, Xj) to indicate the distance fromXi to Xj in
thedistance graphresulting from compiling only the Type 1
constraints.

A Strongly Polynomial-time Deterministic
Algorithm
In this subsection, we will provide a strongly polynomial-
time deterministicalgorithm for solving RDTPs (see Fig-
ure 7). Central to the algorithm is the notion ofbounded
minimal conflicts, and the relationship between the resulting
binary constraints andCRC (connected row-convex)con-
straints (see (Devilleet al. 1999)). The following Lemmas
rigorously establish this relationship, and prove the correct-
ness of the algorithm in Figure 7.
Lemma 6: An instantiation of the variableW ∈ Y ∪ Z
to the disjunctXa ∈ I requires us to successfully add the
edges〈X0, Xa〉 annotated withR(I), and〈Xa, X0〉 anno-
tated with−L(I) to thedistance graph(resulting from the
Type 1 constraints) without creating a negative cycle.
Proof: If we have to ensure that the variableXa is in the
interval I, we have to make sure thatXa − X0 ≤ R(I),
andXa − X0 ≥ L(I). Retaining the semantics of thedis-
tance graph—where the constraintXj−Xi ≤ w is specified
by the edge〈Xi, Xj〉 annotated withw—this corresponds
to the addition of the edges〈X0, Xa〉 annotated withR(I),
and〈Xa, X0〉 annotated with−L(I), to thedistance graph
without creating an inconsistency (which, by Lemma 1, is
characterized by the presence of a negative cycle).
Definition 1 (conflicts and minimal conflicts): A conflictis
an instantiation of a set of variables inY ∪ Z that results
in an inconsistency with the Type 1 constraints. Aminimal
conflict is aconflictno proper subset of which is also acon-
flict.
Lemma 7: An instantiation of a set of variables inY ∪ Z is

4For example, the Type 2 constraint(X1 ∈ [7, 9]) ∨ (X1 ∈
[4, 6]) ∨ (X1 ∈ [1, 2]) ∨ (X1 ∈ [3, 5]) would first be reduced to
(X1 ∈ [7, 9])∨(X1 ∈ [1, 2])∨(X1 ∈ [3, 6]), and then be rewritten
as(X1 ∈ [1, 2]) ∨ (X1 ∈ [3, 6]) ∨ (X1 ∈ [7, 9]).

consistent if and only if there is no subset of them that con-
stitutes aminimal conflict.
Proof: By definition of aconflict, an instantiation of a set of
variables inY∪Z is consistent if and only if there is no sub-
set of them that constitutes aconflict. Further, the truth of
the Lemma follows from the fact that a set of events consti-
tutes aconflictif and only if some subset of them constitutes
aminimal conflict.
Lemma 8: The size of everyminimal conflictis≤ 2.
Proof: Suppose we try to instantiate a set of variables
W1, W2 . . .Wh in Y ∪ Z. Since instantiating any meta-
variableWi ∈ Y ∪ Z requires committing to some vari-
ableXWi

to be within some intervalIWi
, we would have to

add the following edges to thedistance graph: 〈X0, XWp
〉

annotated withR(IWp
), and 〈XWp

, X0〉 annotated with
−L(IWp

) (for all 1 ≤ p ≤ h). We will refer to these edges
as “special” edges. Knowing that thedistance graphinitially
does not contain any negative cycles (because any inconsis-
tency in the Type 1 constraints can be caught right away), if
a negative cycle is newly created, it must involve one of the
“special” edges. Since all “special” edges haveX0 as an end
point, the negative cycle must containX0. Further, since a
fundamental cycle can have any node repeated at most once,
at most2 “special” edges can be present in a newly created
negative cycle. Finally, since “special” edges correspondto
the instantiation of variables inY ∪Z, the size of aminimal
conflictis≤ 2.
Lemma 9: RDTPs constitute abinary CSP over the meta-
variablesY ∪ Z.
Proof: From the previous Lemma, we know that the size
of a minimal conflictis ≤ 2. This means that either the
conflictsare of size 1 or of size 2. The enumeration of all
size-2conflictsresults in abinary CSP. Further, the size-1
conflictsneed not be enumerated explicitly because they are
just reflected as domain values not consistent with any in-
stantiation of any other variable. Hence, step (2) in Figure7
is justified—establishing the truth of the Lemma.
Lemma 10: Consider thebinaryconstraint betweenYi ∈ Y
andYj ∈ Y. Under thenominaldomain orderings forYi

andYj , the ‘1’s in any row or column appear consecutively
(see Figure 8(A)).
Proof: We will only prove this Lemma for rows (assuming
that the domain values ofYi constitute the rows, and those of
Yj constitute the columns). Proving the Lemma for columns
is exactly symmetric. Suppose there is some row where a ‘0’
appears in between two ‘1’s. That is, supposeVYi

∈ I(i,h)

conflicts withVYj
∈ I(j,k2), but does not conflict withVYj

∈
I(j,k1) andVYj

∈ I(j,k3) (for someh andk1 < k2 < k3).
The fact thatVYi

∈ I(i,h) does not conflict withVYj
∈ I(j,k1)

implies thatR(I(j,k1)) + dist(VYj
, VYi

) − L(I(i,h)) ≥ 0
andR(I(i,h)) + dist(VYi

, VYj
) − L(I(j,k1)) ≥ 0. Sim-

ilarly, R(I(j,k3)) + dist(VYj
, VYi

) − L(I(i,h)) ≥ 0 and
R(I(i,h)) + dist(VYi

, VYj
) − L(I(j,k3)) ≥ 0. A con-

flict betweenVYi
∈ I(i,h) andVYj

∈ I(j,k2) implies that
R(I(i,h))+ dist(VYi

, VYj
)−L(I(j,k2)) < 0 orR(I(j,k2))+

dist(VYj
, VYi

) − L(I(i,h)) < 0. The former cannot be true
becauseR(I(i,h)) + dist(VYi

, VYj
) − L(I(j,k3)) ≥ 0 and

L(I(j,k3)) > L(I(j,k2)). Similarly, the latter cannot be true

ALGORITHM: SOLVE-RDTP-DETR
INPUT: An RDTP over the events{X1, X2 . . .XN}.
OUTPUT: A solutions (if it exists).
(1) Cast RDTP as a disjunct selection problem using meta-
variablesY = {Y1, Y2 . . . YQ} andZ = {Z1, Z2 . . . ZR} for
Type 2 and Type 3 constraints respectively.
(2) For everyW1 andW2 in Y ∪ Z:

(a) Build abinaryconstraint as follows:

(A) An instantiation of disjuncts toW1 andW2 is
disallowed, if and only if, together with Type 1
constraints, they introduce a negative cycle in the
underlyingdistance graph.

(3) Solve thesebinary constraints using the procedure for
solving CRC (connected row-convex) constraints.
(4) RETURN:s = SOLVE-STP-DETR (induced STP).
END ALGORITHM

Figure 7: Shows a strongly polynomial-timedeterministicalgorithm for solving RDTPs.

(D)

Zj

Zi

(C)

Zi

Yj

(B)

Yj

Yi

(A)

Yj

Yi

I(i,h)

I(j,k3)I(j,k2)I(j,k1)

1

I(j,k2) I(j,k3)I(j,k1)

I(i,h+1)

I(i,h)

0 0

10

1

0

0

0

1

1

0

11

1

10

0

0

110 1

Figure 8: Shows a few diagrams to support and illustrate someof the arguments made in the proofs of Lemmas 10 to 13.

becauseR(I(j,k1)) + dist(VYj
, VYi

) − L(I(i,h)) ≥ 0 and
R(I(j,k2)) > R(I(j,k1)). By contradiction, therefore, the
truth of the Lemma is established.
Lemma 11: Consider abinary constraint betweenW1 ∈
Y ∪ Z andW2 ∈ Y ∪ Z. Under thenominaldomain or-
derings for variables inY, and any domain orderings for
variables inZ, the ‘1’s in any row or column appear con-
secutively.
Proof: From the previous Lemma, we know that this is true
whenW1, W2 ∈ Y. WhenW1 ∈ Z andW2 ∈ Y, a simple
rewriting of the proof of the previous Lemma shows that all
the ‘1’s appear consecutively in any row (column) if the do-
main values ofW2 constitute the columns (rows). Further,
since the domain size ofW1 is 2, no matter how many ‘1’s
appear in every column (row), they always appear consec-
utively (see Figure 8(C)). Finally, whenW1, W2 ∈ Z, the
statement is trivially true for any2 × 2 matrix (see Figure
8(D)).
Lemma 12: Consider thebinaryconstraint betweenYi ∈ Y
andYj ∈ Y. Under thenominaldomain orderings forYi

andYj , and for someh andk1 < k2 < k3, if (a) VYi
∈ I(i,h)

does not conflict withVYj
∈ I(j,k1), (b) VYi

∈ I(i,h) con-
flicts with VYj

∈ I(j,k2), (c) VYi
∈ I(i,h+1) conflicts with

VYj
∈ I(j,k2), and (d)VYi

∈ I(i,h+1) does not conflict with
VYj
∈ I(j,k3), then the columnVYj

∈ I(j,k2) does not con-
tain any ‘1’s (see Figure 8(B)).
Proof: SinceVYi

∈ I(i,h) does not conflict withVYj
∈

I(j,k1), we have (1)R(I(i,h))+dist(VYi
, VYj

)−L(I(j,k1)) ≥
0 and (2)R(I(j,k1)) + dist(VYj

, VYi
) − L(I(i,h)) ≥ 0.

Since VYi
∈ I(i,h) conflicts with VYj

∈ I(j,k2), we
have (3)R(I(i,h)) + dist(VYi

, VYj
) − L(I(j,k2)) < 0

or R(I(j,k2)) + dist(VYj
, VYi

) − L(I(i,h)) < 0. Since
VYi

∈ I(i,h+1) conflicts with VYj
∈ I(j,k2), we have

(4) R(I(i,h+1)) + dist(VYi
, VYj

) − L(I(j,k2)) < 0 or
R(I(j,k2)) + dist(VYj

, VYi
) − L(I(i,h+1)) < 0. Since

VYi
∈ I(i,h+1) does not conflict withVYj

∈ I(j,k3), we

have (5)R(I(i,h+1)) + dist(VYi
, VYj

) − L(I(j,k3)) ≥ 0
and (6)R(I(j,k3)) + dist(VYj

, VYi
) − L(I(i,h+1)) ≥ 0.

Consider the disjunction in (3). From (2), it reduces to
(7) R(I(i,h)) + dist(VYi

, VYj
) − L(I(j,k2)) < 0 (because

R(I(j,k2)) > R(I(j,k1))). Consider the disjunction in (4).
From (5), it reduces to (8)R(I(j,k2)) + dist(VYj

, VYi
) −

L(I(i,h+1)) < 0 (becauseL(I(j,k2)) < L(I(j,k3))). Now
consider any entry in the column ofVYj

∈ I(j,k2). From
(7), we have thatVYj

∈ I(j,k2) conflicts withI(i,e) for any
e < h (becauseR(I(i,e)) < R(I(i,h))). Similarly, from
(8), we have thatVYj

∈ I(j,k2) conflicts withI(i,e) for any
e > h + 1 (becauseL(I(i,e)) > L(I(i,h+1))). Putting these
together, the truth of the Lemma is established.
Lemma 13: Consider abinary constraint betweenW1 ∈
Y ∪ Z andW2 ∈ Y ∪ Z. Under thenominaldomain order-
ings for variables inY, and any domain orderings for vari-
ables inZ, the positions of ‘1’s in two consecutive rows
(columns) intersect, or touch each other (after removing
empty rows and columns).
Proof: From the previous Lemma, we know that this is true
whenW1, W2 ∈ Y. From Lemma 11, it is also easily seen
to be true whenW1 ∈ Z andW2 ∈ Y (because the do-
main size ofW1 is only 2 (see Figure 8(C))). Finally, when
W1, W2 ∈ Z, the statement is trivially true for any2 × 2
matrix (see Figure 8(D)).

The above Lemmas establish that all the resulting meta-
level binary constraints are CRC. Abinary constraint is
CRC if, after removing empty rows and columns (rows or
columns that do not contain any ‘1’s), the ‘1’s appear con-
secutively in every row and column (see Lemma 11), and
the positions of the ‘1’s in any two consecutive rows or
columns intersect, or touch each other (see Lemma 13). Un-
like row-convex constraints, CRC constraints are closed un-
der composition, intersectionand transposition(the three
basic operations of algorithms that enforcepath-consistency
in a binary constraint network)—hence establishing that

dj1 dj3 dj5 dj6 dj7dj4

di1

di2

di3

di4

di5

di6

1

(B)

Yi

Yj

dj2

(A)

1 1

11

1

1

1

1

1

1

Figure 9: Illustrates the geometry of a CRC constraint. (A)
shows the matrix representation of a CRC constraint with
the required pair of directions marked against each ‘0’ (not
shown explicitly for clarity). (B) illustrates the generalpat-
tern of the required pair of directions for ‘0’s in a CRC con-
straint (shaded areas indicate feasible regions).

path-consistency over CRC constraints is sufficient to en-
sure global consistency. An instantiation of the generic path-
consistency algorithm that further exploits the structureof
CRC constraints has a running time complexity ofO((Q +
R)3d2

max), and a space complexity ofO((Q + R)2dmax)
(see (Devilleet al. 1999)). Here,Q = |Y|, R = |Z|,
anddmax is the maximum number of disjuncts in any con-
straint. The total running time of the algorithm is therefore
O((Q+R)3d2

max+(Q+R)2(N |E|+d2
max)). The first term

measures the cost of solving the CRC constraints, and the
second term measures the cost of building thebinary con-
straints in the first place (by computing the pair-wise short-
est paths in thedistance graph).

A Strongly Polynomial-time Randomized
Algorithm
Figure 10 presents an extremely simplerandomizedalgo-
rithm for solving CRC constraints. Central to this algo-
rithm is the observation that in the matrix representation
of a CRC constraint, the following is true: “At every ‘0’,
there existtwo directions such that with respect to every
other ‘1’, moving alongat least oneof these directionsde-
creasesthemanhattan distanceto it” (see Figure 9). From
the theory ofrandom walksondirectedgraphs, we know that
theexpectednumber of iterations of ‘SOLVE-CRC-RAND’
is only O(N2K2) (whereK is the size of the largest do-
main). Theexpectedrunning time of the algorithm, how-
ever, isO(N2K2M) (the factorM arises due to the inner
loop of the procedure, where we are required to repeatedly
check for the presence of a violated constraint).

We will now show how we can significantly reduce the
above factorM by employing appropriate data structures.
We exploit the fact that it is sufficient for us to consider
any violated constraint in every iteration. This is because
every violated constraint is CRC, and gives us a chance to
move closer to the solution with a probability≥ 0.5. Figure
11 presents a diagrammatic illustration of the required data
structures. A series of doubly linked lists are maintained.
The list ‘All’ contains all the constraints, and for every vari-
ableXi, a list Li is maintained.Li contains exactly those
constraints that variableXi participates in. Further, a list
of satisfied constraints (‘Sat’), and a list of unsatisfied con-

straints (‘Unsat’) are also maintained. These lists are up-
dated incrementally in every iteration, and in the beginning,
are built in accordance with the initial assignmentI. Addi-
tions to ‘Sat’ or ‘ Unsat’ are always made at the beginning of
the lists, and therefore take constant time. Similarly, dele-
tion from ‘Sat’ or ‘ Unsat’ (given a pointer to the element to
be deleted) takes constant time (because the lists are doubly
linked, and deletion can be realized by linking together the
neighbors of the element to be deleted).

In every iteration, the first constraint in ‘Unsat’ is chosen,
and the assignment of one of the two variables participating
in it is changed. The only constraints that can be affected
by this are the ones in which this variable appears. Walk-
ing through the corresponding list of all such constraints,
we check each one of them for being satisfied or not. If a
constraint under consideration was originally satisfied and
is now unsatisfied (or vice-versa), we perform the appropri-
ate addition and deletion operations on the ‘Sat’ and ‘Unsat’
lists. Both these operations can be done in constant time, and
the complexity of the update procedure is therefore equal to
the number of elements in the list (that contains all the con-
straints the chosen variable participates in).

If the maximum number of constraints any variable par-
ticipates in isd (corresponds to the degree of the constraint
network), the running time of therandomizedalgorithm
for solving CRC constraints can be reduced toO(N2K2d).
This is less than that of thedeterministicalgorithm for solv-
ing CRC constraints (see (Devilleet al. 1999)). In the
worst case too,d is only as large asN , and the running
time isO(N3K2)—equaling that of thedeterministicalgo-
rithm, but with a much lesser space complexity. These ar-
guments, in turn, suggest an extremely simplerandomized
algorithm for solving RDTPs—the time and space complex-
ity of which is less than that of thedeterministicalgorithm.
We also note that therandomizedalgorithm circumvents the
use of complex data structures otherwise required for opti-
mally implementing path-consistency subroutines, etc.

Figure 12 presents an algorithm for solving RDTPs with-
out explicitly building the CRC constraints. The following
Lemma establishes the correctness of the algorithm (implic-
itly also establishing the truth of the above quoted property
of CRC constraints).
Lemma 14: For any violated constraint, step (5) in Figure
12 reduces themanhattan distancebetween the current as-
signmentA, and the true (satisfying) assignmentA∗, with a
probability≥ 0.5. (Note thatA andA∗ are complete assign-
ments to all the variables inY ∪ Z.)
Proof: From Lemma 9, we know that all the meta-level
constraints arebinary. A violated constraint is therefore
one between some2 variablesW1, W2 ∈ Y ∪ Z. If
W1, W2 ∈ Y, then one of them (sayW1) contributes the in-
coming edge toX0—annotated with−L(Ik2), and the other
(W2) contributes the outgoing edge fromX0—annotated
with R(Ik1). Certainly, increasing the rank of the value as-
signed toW1, and decreasing that ofW2, will only decrease
the weight of the negative cycle. Therefore, at least one of
decreasing the rank of the value assigned toW1, or increas-
ing the rank of the value assigned toW2, will decrease the
manhattan distanceto A∗. Similarly, if W1, W2 ∈ Z, ran-

ALGORITHM: SOLVE-CRC-RAND
INPUT: A CSP overN variables{X1, X2 . . . XN}, andM CRC
constraints{C1, C2 . . . CM}.
OUTPUT: A solution to the CSP.
(1) Let the ordered domain of the variableXi be Di

viz. 〈d(i,1), d(i,2) . . . d(i,|Di|)〉.
(2) Start with an initial random assignmentI to all the variables.
(3) While the current assignmentA violates some CRC constraint
C(Xi, Xj): (with the domain values ofXi constituting the rows,
and the domain values ofXj constituting the columns)

(a) Letd(i,k1) andd(j,k2) be the current assignments to the
variablesXi andXj respectively.
(b) Let{e1, e2} be the direction pair associated with the entry
〈Xi, Xj〉 = 〈d(i,k1), d(j,k2)〉 in C(Xi, Xj).
(c) Choosep uniformly at random from{e1, e2}.
(d) If p = LF : setXj to d(j,k2−1).
(e) If p = RT : setXj to d(j,k2+1).
(f) If p = DN : setXi to d(i,k1+1).
(g) If p = UP : setXi to d(i,k1−1).

END ALGORITHM

Figure 10: A simplerandomizedalgorithm for solving CRC constraints. The symbolsLF , RT , DN andUP indicate the
directionsleft (decrease the rank of the assignment toXj), right (increase the rank of the assignment toXj), down(increase
the rank of the assignment toXi) andup (decrease the rank of the assignment toXi) respectively.

[X1−X5]

[X2−X4]

[X2−X3]

[X3−X4]

[X3−X5]

NULL

Unsat Sat

[X1−X2]

[X1−X4]

[X1−X5]

[X2−X4]

[X2−X3]

[X3−X4]

[X3−X5]

NULL

Unsat

[X1−X4]

(1)

X1

X3

X5X2 X4

[X1−X2]

Sat Sat

[X1−X2]

[X1−X4]

[X1−X5]

[X2−X4]

[X2−X3]

[X3−X4]

[X3−X5]

NULL

Unsat Sat

(A) (B) (C) (D) (E)

L4 Unsat

[X1−X2]

[X1−X4]

[X1−X5]

[X2−X4]

[X2−X3]

[X3−X4]

[X3−X5]

NULL

All

[X1−X2]

[X1−X4]

[X1−X5]

[X2−X4]

[X2−X3]

[X3−X4]

[X3−X5]

NULL

Figure 11: Illustrates the data structures (and the operations performed on them) to reduce the running time of therandomized
algorithm for solving CRC constraints. (1) shows the constraint network of an examplebinary CSP on5 variables. (A) shows
two doubly linked lists, ‘All’ and ‘L4’. The pointers in ‘L4’ are distinguished from those of ‘All’ by using a small horizontal
mark on them. (B) shows the two doubly linked lists, ‘Sat’ and ‘Unsat’. The pointers in ‘Unsat’ are distinguished from
those of ‘Sat’ by using a small horizontal mark on them. (C) shows how the lists ‘Sat’ and ‘Unsat’ are updated when the first
unsatisfied constraint in (B) (viz.C(X1, X4))) is chosen, and the variableX4 happens to be reassigned, possibly now satisfying
C(X1, X4). (D) shows what happens whenC(X2, X4) remains unsatisfied, butC(X3, X4) changes from being satisfied to
being unsatisfied. (E) shows the final lists of satisfied and unsatisfied constraints. Note that the ordering of the constraints is
inconsequential in all the lists.

domlyreassigningW1 or W2 to the other disjunct achieves
the same effect. If, however,W1 ∈ Y andW2 ∈ Z, then
either the correct assignment forW2 is the other disjunct,
or the correct assignment forW1 is the one that can poten-
tially increase the weight of the negative cycle (depending
on whether it contributes the incoming edge or the outgoing
edge). Therefore,randomlydoing one of these will decrease
themanhattan distanceto A∗ by 1 with a probability≥ 0.5.
It is now easy to see that all these cases are compactly rep-
resented and taken care of in step (5) of Figure 12.

Applications to General DTPs

The above algorithms for solving RDTPs can also be useful
in the context of solving general DTPs. In particular, large
parts of the search space can be pruned easily when partial
instantiations to some of the variables induce sub-problems
that look like RDTPs. Figure 13 shows an example of a DTP,

the search space of which can be pruned significantly when
sub-problems resemble RDTPs.

Conclusions and Future Work

We described a class of metric temporal problems, which we
referred to as RDTPs, that formed a middle ground between
STPs and DTPs. We showed that RDTPs could be solved
in polynomial time, and could encode limited, but very use-
ful, forms of temporal disjunctions that would otherwise re-
quire an exponential search space. We provided bothdeter-
ministic and randomizedalgorithms for efficiently solving
RDTPs—with the latter having much better time and space
complexities compared to the former. The expressive power
of RDTPs, along with their tractability, makes them a suit-
able model for many real-life applications that involve met-
ric temporal reasoning. As part of our future work, we are
trying to incorporate and reason with preferences attachedto

ALGORITHM: SOLVE-RDTP-RAND
INPUT: An RDTP over the events{X1, X2 . . .XN}.
OUTPUT: A solutions (if it exists).
(1) Cast RDTP as a disjunct selection problem using meta-
variablesY = {Y1, Y2 . . . YQ} andZ = {Z1, Z2 . . . ZR} for
Type 2 and Type 3 constraints respectively.
(2) LetH be the set of all variables that participate in any of
the Type 2 or Type 3 constraints.
(3) For allXa andXb in H:

(a) Computedist(Xa, Xb) in thedistance graphinduced
by the Type 1 constraints.

(4) Start with an initial random assignmentI to all the vari-
ables inY ∪ Z.
(5) While∃ a negative cycle in the induceddistance graph:

(a) If the negative cycle is of the form
R(Ik1) + dist(Xa, Xb)− L(Ik2) < 0:

(A) Do one of the following with equal probabilities:
(ONE) [work on the outgoing edge fromX0]

— If Xa ∈ Ik1 came from assigning some
variableYi ∈ Y, increase therankof the
assignment toYi.
— If Xa ∈ Ik1 came from assigning some
variableZi ∈ Z, assign the other disjunct toZi.

(TWO) [work on the incoming edge toX0]
— If Xb ∈ Ik2 came from assigning some
variableYj ∈ Y, decrease therankof the
assignment toYj .
— If Xb ∈ Ik2 came from assigning some
variableZj ∈ Z, assign the other disjunct toZj.

(6) RETURN:s = SOLVE-STP-DETR (induced STP under
the current assignment of values to variables inY ∪ Z).
END ALGORITHM

Figure 12: Shows an extremely simplerandomizedalgorithm for solving RDTPs.

X5 = 5X3

X9

X10

X4

X6X5

[3, 5]

X2

X1

X0

X7

X8

X5 = 4 (X9 <= −L + 4) or (X9 >= L + 4)
(X7 <= −L + 4) or (X7 >= L + 4)
(X3 <= −L + 4) or (X3 >= L + 4)
(X1 <= −L + 4) or (X1 >= L + 4)

(X9 − X5 <= −L) or (X5 − X9 <= −L)
(X7 − X5 <= −L) or (X5 − X7 <= −L)
(X3 − X5 <= −L) or (X5 − X3 <= −L)
(X1 − X5 <= −L) or (X5 − X1 <= −L)X5 = 3

(c)(b)(a)

After Instantiating X5 to 4

(Simple Temporal Constraints)

Original Problem

(Simple Temporal Constraints)

Figure 13: Illustrates how polynomial-time procedures forsolving RDTPs can be exploited in pruning the search space for
solving general DTPs. (a) shows5 actions (indicated by dark lines), each of a fixed lengthL. The simple temporal constraints
between them are indicated by lighter lines, and for clarity, the bounds on them are not shown explicitly (although for this
example, we assume them to be integers). If the action〈X5, X6〉 competes for (different) resources with each of the other
actions, the resulting DTP has a search space of size16. On the other hand, if the search problem is cast as one of finding
integer schedules for all the events (because all the temporal bounds are integers),X5 should be assigned one of3, 4 or 5.
Instantiating it with any of these values induces an RDTP—hence resulting in a search space of size only3 (see (b) and (c)).

temporal constraints. (Kumar 2004) presents a few relevant
results—providing a polynomial-time algorithm for solving
a restricted class of such problems.

References
Armando A., Castellini C. and Giunchiglia E. SAT-based
Procedures for Temporal Reasoning.ECP 1999.

Dechter R., Meiri I. and Pearl J. Temporal Constraint Net-
works. Artificial Intelligence, Vol. 49, 1991, pp. 61-95.

Deville Y., Barette O. and Van Hentenryck P. Constraint
Satisfaction over Connected Row-Convex Constraints.Ar-
tificial Intelligence, 109(1-2):243-271, 1999.

Doyle P. G. and Snell E. J. Random Walks and Electri-
cal Networks.Carus Math. Monographs 22, Math. Assoc.
Amer., Washington, D. C. 1984.

Kumar T. K. S. Incremental Computation of Resource-
Envelopes in Producer-Consumer Models.CP 2003.

Kumar T. K. S. A Polynomial-time Algorithm for Simple
Temporal Problems with Piecewise Constant Domain Pref-
erence Functions.AAAI 2004.
Nguyen X. and Kambhampati S. Reviving Partial Order
Planning.IJCAI 2001.
Oddi A. and Cesta A. Incremental Forward Checking for
the Disjunctive Temporal Problem.ECAI 2000.
Smith D., Frank J. and Jonsson A. Bridging the Gap Be-
tween Planning and Scheduling.Knowledge Engineering
Review 15:1, 2000.
Stergiou K. and Koubarakis M. Backtracking Algorithms
for Disjunctions of Temporal Constraints.In the 15th Na-
tional Conference on Artificial Intelligence, 1998.
Tsamardinos I. and Pollack M. E. Efficient Solution Tech-
niques for Disjunctive Temporal Reasoning Problems.Ar-
tificial Intelligence, 151(1-2):43-90, 2003.

