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Abstract

In this paper, we provide a polynomial-tindeterministical-
gorithm, and an even simpleandomizedlgorithm, for solv-
ing a restricted (but very expressive) class of disjundtm-
poral problems (DTPs). The general form of a DTP is as fol-
lows. We are given a set of evemts = {Xo, X1 ... Xn}

(Xo is the “beginning of the world” node and is set @o
by convention), and a set of constrairds A constraint

¢ € Cis adisjunction of the form; 1y V 53 2) . .. (;,13)-
Here, s; ;) (1 < j < T;) is a simple temporal con-
straint of the formL; ;) < Xoi iy — Xagy < Ul for

0 < aqyj),bu,;) < N. We will first provide a pseudo-
polynomial-timerandomizedalgorithm for solving the fol-
lowing restricted class of DTPs (which we will refer to as
RDTPs (restricted DTPs)): Any; € C is of one of the fol-
lowing types: (Type 1YL < X, — X, < U), (Type 2)
(L1 £ X SU1)V (L2 £ Xq <U2)...(L1; < Xa <
UTi,)’ (Type 3)(L1 < X, < U1) V (L2 < X, < UQ) We
will then provide a strongly polynomial-timgeterministical-
gorithm for solving the same problem, and extend the ideas
further to provide an even simpleandomizedalgorithm—
the expected running time of which is much less than that of
thedeterministicalgorithm. Our polynomial-time algorithms
for solving RDTPs bear important implications on not only
being able to handle limited (but very useful) forms of dis-
junctions in metric temporal reasoning (that would otheewi
require an exponential search space), but also in prunigg la
parts of the search spaces associated with general DTPs.

Introduction

Expressive and efficient temporal reasoning is central to
many areas of Artificial Intelligence (Al). Several tasks in
planning and scheduling, for example, involve reasoning
about temporal constraints between actions and propositio
in partial plans (see (Nguyen and Kambhampati 2001) and
(Smithet al. 2000)). These tasks may include threat reso-
lution between actions in partial order planning, analgzin

resource consumption envelopes to guide the search for a

good plan (see (Kumar 2003)), etc. Among the important
formalisms used for reasoning with metric time are simple
temporal problems (STPs) and disjunctive temporal prob-

lems (DTPSs) (see (Oddi and Cesta 2000) and (Stergiou and
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Koubarakis 1998)). Unlike DTPs, STPs can be solved in
polynomial time, but are not as expressive as DTPs.

An STP is characterized by a gragh= (X, &), where
X = {Xo,X1...Xn} is a set of eventsX is the “be-
ginning of the world” node and is set © by conven-
tion), ande = (X;, X;) € &, annotated with the bounds
[LB(e),UB(e)], is a simple temporal constraint between
X; and X indicating thatX; must be scheduled between
LB(e) andU B(e) seconds afteX; is scheduled B(e) <
UB(e)). Figure 1(A) shows an example of an STP which
(like all other instances of the class) can be solved in poly-
nomial time using shortest paths (see (Dechteal. 1991)).

DTPs are significantly more expressive than STPs, and
allow for disjunctive constraints. The general form of a
DTP is as follows. We are given a set of everfs =
{Xo, X1 ... Xn} (Xo is the “beginning of the world” node
and is set td) by convention), and a set of constraiigts
A constraintc; € C is a disjunction of the forms; ;) v
S(i,2) - - - 5(i,1y)- Here,s( 5 (1 <j < T;)isasimple tempo-
ral constraint of the fornd(; ;) < Xy, ;) — Xa(, ;) < Ugj)
for0 < a(; j),ba,5) < N. Figure 1(B) shows an example of
a DTP which expresses disjunctive constraints.

Although DTPs are expressive enough to capture many
tasks in planning and scheduling (like threat resolutioth an
plan merging), they require an exponential search space.
The principal approach taken to solve DTPs has been to
convert the original problem to one of selecting a disjunct
from each constraint, and then checking that the set of se-
lected disjuncts forms a consistent STP. Checking the con-
sistency of, and finding a solution to an STP can be per-
formed in polynomial time using shortest path computations
(see (Dechteet al. 1991)). The computational complex-
ity of solving a DTP comes from the fact that there are an
exponentially large number of disjunct combinations possi
ble. The “disjunct selection problem” can also be cast as a
constraint satisfaction problem (CSP) (see (Oddi and Cesta
2000) and (Stergiou and Koubarakis 1998)), or a satisfiabil-
ity problem (SAT) (see (Armandet al. 1999)) and solved
using standard search techniques applicable for themi- Epil
tisis a systems that efficiently solves DTPs using CSP search
techniques likeconflict-directed backjumpingnd nogood
recording(see (Tsamardinos and Pollack 2003)).

In this paper, we will first provide a pseudo-polynomial-
time randomizedalgorithm for solving the following re-
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X0 = Starting from Home Town

X0 14,61 (121 X3 X1 = Time of Reaching Town A
X2 = Time of Leaving Town A

[-14,-12] ‘ [2,4] or [5,7] or [9~11]‘ [5,71 X3 = Time of Reaching Town B
3<=X1<=5 X4 = Time of Leaving Town B

X9 or /X4 X5 = Time of Reaching Town C
15 <= X5 <=16 X6 = Time of Leaving Town C

[2,3] [2,3] X7 = Time of Reaching Town D
/‘ X8 = Time of Leaving Town D

X8 [34] 2l 23 X5 X9 = Time of Coming Back Home
X7 X6
(@) (D)

Figure 1: Shows an example to illustrate the kinds of reagppossible in (A) STPs, (B) DTPs, and (C) RDTPs. The example
is about an agent who should plan her visitsttowns (starting and ending at her home town) respectinguariemporal
constraints. In (A), only simple temporal constraints gpecified. An edge fromX; to X; annotated with12, 14], for
example, means that she should reach town D witBiand14 days of reaching town B. In (B} disjunctive constraints are
specified (enclosed by boxes). One of these, for exampls, thay eitherX; — X5 € [1,2] or X; — X, € [1,2]. Such a
constraint may arise when the agent has no preferencengisitin A before or after town B, but only knows that she cawmedri
between the towns within1 and2 days. Similarly, the constrairitXs — X7 = 4) vV (Xg — X5 = 3) may arise out of her
preference to stay in at least one of th®wns C and D for as long as possible. In (C), all the disjumgiare of Type 2 or Type

3 (enclosed by boxes). The constraltt — X, € [7,10] U [14, 17], for example, is a Type 2 disjunction, and may arise out
of the agent’s requirement to attend a social gatheringimtd, which takes place only on certain days of a week. Sitgilar
the constraintX; € [3,5]) V (X5 € [15,16]) is a Type 3 disjunction, and may arise out of the agent’s needeet at least
one of two friends who are respectively available in townd & on specific days. (D) gives an annotation of the time goint
Xo,X1...Xg usedin (A), (B) and (C).

stricted class of DTPs (which we will refer to as RDTPs edges. Arandom walkon such a graph involves starting

(restricted DTPs)): Any:; < C is of one of the following at a particular node, and at any stage, randomly moving to

types: (Type 1)L < X,— X, <U), (Type 2)(L1 < X, < one of the neighboring positions of the current positione Th

U)V(Ly < X, <Us)...(Ly, < X, <Urp), (Type 3) probability with which we move to a specific neighbor of

(L1 < X, <U1)V (L2 < X, < Us). We will then provide the current node is proportional to teeighton the edge

a strongly polynomial-timdeterministicalgorithm for solv- that leads to that neighbor. One of the properties associ-

ing the same problem, and extend the ideas further to pro- ated with such random walks on undirected graphs is that

vide an even simplerandomizedalgorithm—the expected if we denote the expected time of arrival at some node (say

running time of which is much less than that of thetermin- L) starting at a particular node (say R) GBY(R, L), then

istic algorithm. Our polynomial-time algorithms for solving  T'(R, L) + T'(L, R) is O(mH (L, R)). Here,m is the num-

RDTPs bear important implications on not only being able ber of edges, an#{ (L, R) is the “resistance” between L and

to handle limited (but very useful) forms of disjunctions in R, when the weights on edges are interpreted as electrical

metric temporal reasoning (that would otherwise require an resistance values (see (Doyle and Snell 1984)).

exponential search space), but also in pruning large parts o

the search spaces associated with general DTPs. Figure 1(C) Figure 2(B) shows a particular case of the one in Figure

shows an example of an RDTP. 2(A), in which the nodes in the graph are connected in a
linear fashion, and the edges are unweighted—i.e. the prob-

Random Walks and Expected Arrival Times abilities of moving to the left or to the right froma partiaul _

node are equal (except at the end-points). In this scenario,

In this section, we will provide a quick overview of random it is easy to note that by symmett¥;(L, R) = T(R, L).

walks, and the theoretical properties attached with them. Further, using the property of random walks stated above,

Figure 2(A) shows an undirected graph with weights on if there aren nodes in the graph, then bo#fi L, R) and
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Figure 2: Shows three scenarios in which random walks arfempeed. In an undirected graph (weighted as in (A), or un-
weighted as in (B)), for any two nodes L andR(R, L) + T'(L, R) is related to the “resistance” between them. In case (C)
(whenp < ¢ at every node)'(R, L) is less than that in (B) because of an increased “attractmmérds L at every node.

T(R,L)areO(n?). source shortest paths (in the presence of negative weights o
Figure 2(C) shows a slightly modified version of that in  edges), and is equal @(N|€|).
Figure 2(B), where the graph is directed, although it id stil Figure 4 presents a pseudo-polynomial-timedomized

linear. Moreover, there are weights associated with edges algorithm for solving STPs. Central to this algorithm is the
which are interpreted as probabilities in the random walk; relationship between simple temporal constraints kamd

and the weight ors, sicf;) is, in general, not equal to that  dom walkon directedgraphs. Temporarily, we will assume
on (s, srignt). Here,s is some node in the graph, asd; that all the specified bounds in the STP are integers with ab-
ands,;4n¢ are respectively the nodes occurring immediately solute value< B.

to the left and right of it. However, we are guaranteed that  The idea is to start with any integer assignment to all the
the probability of moving to the left at any node is greater events, and use the violated constraints in every iteration
than that of moving to the right (i.ep < ¢). Given this guide the search for the true assignméirit (if it exists).
scenario, it is easy to see that the expected time of arrival a In particular, in every iteration, a violated constrainti®-

the left end point (L), starting at the right end point (R), is  sen, and the assignment of one of the two participating vari-
alsoO(n?) (if there aren nodes in all). Informally, this is ables is either increased or decreased lynit. Since we
because at every node, there is an increased “attraction” to know that the true assignment* satisfies all constraints,
the left compared to that in Figure 2(B); and the expected and therefore the chosen one teandomlymoving along

arrival time can only be less than that in the latter. one of the axes (in the direction of the feasible region)l, wil
reduce thelL;-distance between the current assignmént
Simple Temporal Problems Revisited and A* with a probability> 0.5.2 The geometry of a vio-

lated constraint is shown in Figure 3. Much like tamdom
walk in Figure 2(C), therefore, we can bound the conver-
¢ gence time tod* by a quantity that is only quadratic in the
maximum L, -distance between any two complete assign-
ments.
Lemma 2: If all the numbers are integers with absolute val-
ues< B, then there exists a solutiofi* having integer time
schedules for all the events.
Proof: From the previous Lemma, we know that if there ex-
ists a solution, one of them is given by assigning to ed¢ch
(1 < i < N), the length of the shortest path froiy to
X;. Since all the numbers are integers, so are the lengths of
the shortest paths froi, to all X;, hence establishing the
truth of the Lemma.
Lemma 3: The L;-distance between any two integer as-
signmentsd = (X; = z1,Xs = 22... Xy = z,,) and
A =(X; =2}, X =12,...Xxy = 2 (in the above con-
text) is at mosE N2 B, and0 if and only if A = A’.
Proof: Consider theL;-distance |z; — z)| + |z —
xh|...lzny — a'y|. Because the absolute value of all the
bounds< B, and at mosiV numbers can contribute to the

In this section, we will provide two different kinds of algo-
rithms for solving STPs. The first algorithm (which we will
only briefly review) is based on the computation of shortes
paths (as shown in (Dechtet al. 1991)). The second algo-
rithm is based on the propertiesrahdom walkndirected
graphs. We will then compare the strengths and weaknesses
of these two algorithms, and eventually (in the next segtion
combine the intuitions behind the working of these two dif-
ferent algorithms to develop strongly polynomial-timealg
rithms for solving RDTPs.

Figure 3 provides a simpldeterministicprocedure for
solving STPs based on the computation of shortest paths.
Central to this algorithm is the notion ofdistance graph
D(G) associated with an ST@ = (X, &) (see step (1) of
Figure 3). An edg€X;, X;) in the distance graphs an-
notated with a real number (instead of temporal bounds),
and encodes the constrailit — X; < w. Therefore, every
edge in the STP is compiled 2redges in thelistance graph
The following Lemma then characterizes the consistency of
an STP.

Lemma 1: A consistent schedule exists faiy, X; ... Xy

in G = (X, &) if and only if thedistance graphD(G) does Any negative cycle (inconsistency in the simple temporak-co

not contain any negative cycles. straints) is detected by the Bellman-Ford algorithm.
Proof: (see (Dechteetal. 1991)). S 2The L,-distance between two assignmemts = (X; =
The running time of the algorithm in Figure 3 is similar 2, X, = z,... Xy = z,) and 4’ = (X; = z{,Xo =

to that of the Bellman-Ford algorithm for computing single- z5... Xx = z),) isequal tdz1 — 2|+ |22 — 25| . . . |z~v — 2y |-



ALGORITHM: SOLVE-STP-DETR
INPUT: An STPG = (X, &).
OUTPUT: A solutions (if it exists).
(1) Construct thalistance graphD(G) on the nodes of as
follows:
(a) For every edge = (X, X;) € &:
(A) Add the edg€ X;, X ;) annotated wittU B(e).
(B) Add the edge X ;, X;) annotated with-LB/(e).
(2) For everyX;:
(a) Computelist(Xy, X;) (shortest path length) frod¥,
to X, in D(G).
(3) RETURN:s = {X; « dist(Xo, X)}.
END ALGORITHM

““““ Xa=Xb<=L..

Figure 3: The left side of the figure showslaterministicalgorithm for solving STPs based on shortest path comjounsti
The right side of the figure illustrates the geometry of aatiedl simple temporal constraintf — X, < L). A is the current

assignment, and* is the required (integral) solution.

ALGORITHM: SOLVE-STP-RAND
INPUT: An STPG = (X, &) with all the specified bounds
being integers of absolute valge B.
OUTPUT: A solutions (if it exists).
(1) Fori =1to N:
(a) SetX; to a random integer if- B, B].
(2) While there exists a violated constraint of the form
(L<Xy—X,<U):
@IfX,— X, <L:

(3) RETURN:s = the current assignment to all variables.
END ALGORITHM

(A) Do one of the following with equal probabilities:
(ONE) X, = X3 + 1.
(TWO) X, = X, — 1.
(b) If Xp — X, > U:
(A) Do one of the following with equal probabilities:
(ONE) X, = X, — 1.
(TWO) X, = X, + 1.

Figure 4: Shows a pseudo-polynomial-timadomizedalgorithm for solving STPs.

length of any shortest path in thdistance graphall the
terms are< 2N B. This means that thé-distance is al-
ways< N (2N B) < 2N?B. Further, since all the terms are
> 0, the L;-distance can bé only when all the individual
terms are0—which in turn, happens only wheaA and A’
are identical.

Lemma 4: For any violated constraint, step (2) in Figure
4 reduces thd.;-distance betweer (current assignment)
and A* (integral solution) with a probability 0.5.

Proof: When there exists a violated constraint, some in-
equality of the form(X, — X, < L) is not satisfied. We
know that A* is placed within the feasible region of this
constraint, and the current assignmdiris in the other half-
plane (see Figure 3). In step (2), wvandomlymove towards
the feasible region of the constraint (lhyunit) along one
of the two axes X, or X;). For any point in the feasible
region, at least one of these moves reduced thdistance
to it. Further, since the initial assignmehts integral, and
the step size ig unit, the current assignment, in any it-
eration, is guaranteed to be integral. Finally, sinteis
integral, and the step size is equal to the smallest possible
integer increment (decrement), tiig-distance between
and A* is decreased by at leastwith a probability> 0.5,
and increased by at mokwith a probability< 0.5.

Lemma 5: The expectechumber of iterations of the algo-

rithm ‘SOLVE-STP-RAND’ isO(N* B?).

Proof: From Lemma 3, we know that the maximum -
distance between the initial random assignmgrand the
true satisfying assignment*, is O(N2B). Further, in ev-
ery iteration, we perform eandom walkexactly analogous

to that in Figure 2(C)—with the left end-point beintf, I
being only as far as the other end-point, and a maximum of
O(N?B) nodes in between. The truth of the Lemma then
follows from the properties ofandom walkson directed
graphs.

From Lemma 5, we have that tegpectedunning time of
‘SOLVE-STP-RAND’isO(N*|€| B?) (since checking for a
violated constraint in every iteration takeg|€|) time) 3

One clear advantage of the first algorithm is that its run-
ning time is strongly polynomial. However, the second al-
gorithm has the advantage that it can be extended to handle
other types of constraints too (which the first one cannot).
In particular, it can handle the kinds of disjunctive tempo-
ral constraints as shown in Figure 5. (A) and (B) are re-
spectively the Type 2 and Type 3 disjunctions allowed in

3Even wherrandomizedalgorithms are analyzed only in terms
of their expectedunning time, Markov’s inequality yields that the
probability that we do not terminate even afte(say 100) times
theexpectechumber of time steps is 1/k (< 1/100).
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Figure 5: Shows two other kinds of constraints that can belleainby random walkstrategies. (A) and (B) respectively
correspond to Type 2 and Type 3 disjunctions allowed by RDTIR$oth cases, there exist two directions at all infeasible
points such that moving along at least one of them](loyit) decreases thg, -distance to the solutior4(*), no matter where

it is placed in the feasible region of the constraints.

ALGORITHM: SOLVE-RDTP
INPUT: An RDTP with all the specified constants and
bounds being integers of absolute vatue3.
OUTPUT: A solutions (if it exists).
(1) Fori =1to N:
(a) SetX; to a random integer if- B, BJ.
(2) While there exists a violated constraint:
(@) Ifitis of the form(L < X, — X,,):
(A) Do one of the following with equal probabilities:
(ONE) X, = X, + 1.
(TWO) X, = X, — 1.
(b) If it is of the form

(3) RETURN:s = the current assignment to all the variabl
END ALGORITHM

(L1 < X, <Uy) V... (L < X, < Uy):
(A) Do one of the following with equal probabilities:
(ONE) X, = X, + 1.
(TWO) X, = X, — 1.
(c) Ifitis oftheform(L, < X, < Uq)V(Le < X}, < Us):
(A) Do one of the following with equal probabilities:
(ONE) X, = X, +1if (X, < Ly),and
X, = X, — 1 otherwise.
(TWO) Xp = Xp + 11if (X < L2), and
X, = X, — 1 otherwise.

1%
n

Figure 6: Shows a pseudo-polynomial-tilm@domizedalgorithm for solving RDTPs.

RDTPs. Itis easy to see that in both these cases, no mattertic algorithm, and then provide an extremely sim@edom-

where A* lies within the feasible region of the constraint,
there exist two directions at every infeasible point suctt th
moving along at least one of them reduces fhedistance
betweenA (the current infeasible assignment), afrd Fig-

izedalgorithm—the time and space complexity of which is
much less than that of thieterministicalgorithm.

In both these algorithms, we will cast an RDTP as a “dis-

ure 5 shows these required pairs of directions with respectt Junct selection problem” (see (Oddi and Cesta 2000) and

(violated) Type 2 and Type 3 constraints. We note again that
if all the numbers are integers with absolute vatués, and

the step size i$, A andA* (one of the solutions) are guaran-
teed to be integral. Figure 6 provides a pseudo-polynomial-
timerandomizedalgorithm for solving RDTPs, and is a sim-
ple extension of that in Figure 4.

Strongly Polynomial-time Algorithms for
RDTPs

In this section, we will design strongly polynomial-time al
gorithms for solving RDTPs by pulling together ideas drawn
from both the above presented algorithms for solving STPs.
We will first present a strongly polynomial-tingeterminis-

(Stergiou and Koubarakis 1998)), and therefore model it as a
meta-CSP. In particular, we will associate the meta-végtb

Y = {11,Y2...Yy} with the Type 2 constraints, and the
meta-variables€ = {7, Z, ... Zg} with the Type 3 con-
straints. Thatis, iflL; < X, < Uy)V (Ly < X, <
Us)...(Lt < X, < Ur) is a Type 2 constraint with the
variableY; associated with it, then the domain &f is

Dy, = {(L1 £ X, < U1),(L2 £ Xo < U3)...(Lr <

X, < UT)} Slmllarly, if (Ll <X, < Ul) V (L2 < Xp <

Us,) is a Type 3 constraint with the variablg; associated
with it, then the domain ofZ; is Dz, = {(L1 < X, <
U1),(Ly < X, < Us)}. The goal is now to find an in-
stantiation of the variables (il U Z such that, together with
the Type 1 constraints, the induced set of simple temporal



constraints is consistent.

For notational convenience, we will refer to the disjunct
(Ly < X, < Uh) asX, € [L1,U;7]. For any interval
I = [L,U], we will denote its left end-point (vizL) by
L(I), and its right end-point (viZJ) by R(I). We will also
assume that for Type 2 constraints, the disjuncts are agthng
in ascending order of the end points of their corresponding
intervals? We will refer to these natural orderings on the
domains of variables iy’ as theirnominalorderings, and
show that it plays a crucial role in the working of both the
strongly polynomial-time algorithms that follow. For a B/p
2 constrain{ X, € [L1,U1]) V (X4 € [L2,U3])... (X, €
[Lr,Ur]) with the attached meta-variable € ), we will
useVy, to denote the variable occurring in the disjunction—
namely, X,. Also, we will use a constraint interchange-
ably with its (0, 1)-matrix representation. Ainary con-
straint between variablé®; andWW, using particular order-
ings on their domains, is represented as a(@0)-matrix
with the ‘1’s and ‘O’s respectively indicating thedlowed
and thedisallowedtuples. Finally, we will use the nota-
tion dist(X;, X;) to indicate the distance frod; to X in
thedistance graphesulting from compiling only the Type 1
constraints.

A Strongly Polynomial-time Deterministic
Algorithm

In this subsection, we will provide a strongly polynomial-
time deterministicalgorithm for solving RDTPs (see Fig-
ure 7). Central to the algorithm is the notion lmdunded
minimal conflictsand the relationship between the resulting
binary constraints andCRC (connected row-convegpn-
straints (see (Devillet al. 1999)). The following Lemmas
rigorously establish this relationship, and prove the ectrr
ness of the algorithm in Figure 7.

Lemma 6: An instantiation of the variabléy ¢ Y U Z

to the disjunctX, € I requires us to successfully add the
edges(Xy, X,) annotated withR(7), and(X,, X,) anno-
tated with—L(T) to thedistance graphresulting from the
Type 1 constraints) without creating a negative cycle.
Proof: If we have to ensure that the variablg, is in the
interval I, we have to make sure thaf, — X, < R(I),
and X, — Xy > L(I). Retaining the semantics of tloks-
tance graph—where the constraint ; — X; < wis specified
by the edge(X;, X;) annotated withw—this corresponds
to the addition of the edgdsXy, X,) annotated wittR (1),
and(X,, X,) annotated with-£(I), to thedistance graph
without creating an inconsistency (which, by Lemma 1, is
characterized by the presence of a negative cycle).
Definition 1 (conflicts and minimal conflicty: A conflictis

an instantiation of a set of variables JaU Z that results
in an inconsistency with the Type 1 constraintsn¥nimal
conflictis aconflictno proper subset of which is alsaan-
flict.

Lemma 7: An instantiation of a set of variables WU Z is

“For example, the Type 2 constraifiX; € [7,9]) V (X1 €
[4,6]) vV (X1 € [1,2]) V (X1 € [3,5]) would first be reduced to
(X1 € [7,9) V(X1 € [1,2]) V(X1 € [3,6]), and then be rewritten
as(Xy € [1,2)) vV (X1 € [3,6]) v (X1 € [7,9]).

consistent if and only if there is no subset of them that con-
stitutes aminimal conflict

Proof: By definition of aconflict an instantiation of a set of
variables iy U Z is consistent if and only if there is no sub-
set of them that constitutescanflict Further, the truth of
the Lemma follows from the fact that a set of events consti-
tutes aconflictif and only if some subset of them constitutes
aminimal conflict

Lemma 8: The size of everyninimal conflictis < 2.

Proof: Suppose we try to instantiate a set of variables
Wi, Wy ... Wy in Y U Z. Since instantiating any meta-
variableW; € Y U Z requires committing to some vari-
able Xy, to be within some intervalyy,, we would have to
add the following edges to thdistance graph (Xo, Xw, )
annotated withR(Iw, ), and (Xw,, Xo) annotated with
—L(Iw,) (forall 1 < p < h). We will refer to these edges
as “special” edges. Knowing that thestance graplnitially

does not contain any negative cycles (because any inconsis-
tency in the Type 1 constraints can be caught right away), if
a negative cycle is newly created, it must involve one of the
“special” edges. Since all “special” edges h&igas an end
point, the negative cycle must contalfy. Further, since a
fundamental cycle can have any node repeated at most once,
at most2 “special” edges can be present in a newly created
negative cycle. Finally, since “special’ edges correspond
the instantiation of variables # U Z, the size of aninimal
conflictis < 2.

Lemma 9: RDTPs constitute dinary CSP over the meta-
variablesy U Z.

Proof: From the previous Lemma, we know that the size
of a minimal conflictis < 2. This means that either the
conflictsare of size 1 or of size 2. The enumeration of all
size-2conflictsresults in abinary CSP. Further, the size-1
conflictsneed not be enumerated explicitly because they are
just reflected as domain values not consistent with any in-
stantiation of any other variable. Hence, step (2) in Figure
is justified—establishing the truth of the Lemma.

Lemma 10: Consider théinary constraint betweel; €
andY; € Y. Under thenominaldomain orderings fol;
andY;, the ‘1’s in any row or column appear consecutively
(see Figure 8(A)).

Proof: We will only prove this Lemma for rows (assuming
that the domain values af constitute the rows, and those of
Y; constitute the columns). Proving the Lemma for columns
is exactly symmetric. Suppose there is some row where a ‘0’
appears in between two ‘1's. Thatis, suppdse € I; »)
conflicts withVy,, € I(; x,), but does not conflict withy, €
I,y andVy, € I ,) (for someh andk; < ka2 < k3).
Thefactthal’y, € I; 5 does not conflict witty, € I; )
implies thatR(I(;x,)) + dist(Vy;, Vy;,) — L(I,n)) > 0

and R(I(l-_’h)) + dZ'St(Vyi,Vyj) — K(I(j,kl)) > 0. Sim-
ilarly, R(I(;r,)) + dist(Vy,;,Vy;) — L(I,5)) > 0 and
'R(I(iyh)) + dZ'St(Vyi,Vyj) — K(I(j,kg)) > 0. A con-
flict betweenVy, € I(; ) andVy, € I(;,) implies that
R(I(i7h)) + dist(VYi, Vyj) — ‘E(I(j,klz)) <0 OI’R(I(]-’;CZ)) +
dist(Vy;, Vy;) — L(I;,»)) < 0. The former cannot be true
becauseR(1(; 1)) + dist(Vy,, Vy,;) — L(I(jk,)) > 0 and
L(I(ry)) > L(I;k,)). Similarly, the latter cannot be true



ALGORITHM: SOLVE-RDTP-DETR
INPUT: An RDTP over the eventsX;, X5 ... Xy }.
OUTPUT: A solutions (if it exists).

variablesy = {Y1,Y,... Yo} andZ = {Z1,Z;... Zg} for
Type 2 and Type 3 constraints respectively.
(2) For everyiW; andWs in Y U Z:

(a) Build abinary constraint as follows: E

(1) Cast RDTP as a disjunct selection problem using meta- underlyingdistance graph

(3) Solve thesebinary constraints using the procedure f
solving CRC (connected row-convex) constraints.

(4) RETURN:s = SOLVE-STP-DETR (induced STP).

(A) An instantiation of disjuncts té1’; andWs is
disallowed, if and only if, together with Type 1
constraints, they introduce a negative cycle in the

ND ALGORITHM

Figure 7: Shows a strongly polynomial-tirdeterministicalgorithm for solving RDTPs.
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Figure 8: Shows a few diagrams to support and illustrate safittee arguments made in the proofs of Lemmas 10 to 13.

becauseR (1(; ,)) + dist(Vy,,Vy,) — L)) > 0 and
R(I(j k) > R(I k). By contradiction, therefore, the
truth of the Lemma is established.

Lemma 11: Consider abinary constraint betweeml’; €
YU Z andW,y € Y U Z. Under thenominaldomain or-
derings for variables ir)), and any domain orderings for
variables inZ, the ‘1’s in any row or column appear con-
secutively.

Proof: From the previous Lemma, we know that this is true
whenWy, Wy € Y. WhenW; € Z andW, € ), a simple
rewriting of the proof of the previous Lemma shows that all
the ‘1's appear consecutively in any row (column) if the do-
main values ofi¥, constitute the columns (rows). Further,
since the domain size d¥ is 2, no matter how many ‘1’s
appear in every column (row), they always appear consec-
utively (see Figure 8(C)). Finally, whely, Wy € Z, the
statement is trivially true for ang x 2 matrix (see Figure
8(D)).

Lemma 12: Consider thévinary constraint betweel; €
andY; € Y. Under thenominaldomain orderings fol;
andY;, and for somé andk; < kg < k3, if (@) Vy, € I(; )
does not conflict with’y, € I(; ), (b) Vv, € I(; ) con-
flicts with Vy, € I(; 1., (€) Vv, € (5 41y confﬁicts with
Vy; € I(jry), and (d)Vy, € I; 41y does not conflict with
Vy,; € I(j k), then the columiy, € I;,,) does not con-
tain any ‘1's (see Figure 8(B)).

Proof: SinceVy, € I; ;) does not conflict withly, €
I(j,kl)i we have (1R(I(i,h))+dist(‘/yi, Vyj )_E(I(j,kl)) >

0 and (Z)R(I(jykl)) + diSt(Vyj,VYi) — AC(I(i_’h)) > 0.
Since Vy, € Iy conflicts with Vy, € I(;,), we
have (3) R(I(i7h)) + dist(VYi,VYj) — E(I(j,kz)) < 0

or R(I(j,kz)) + dist(Vyj,VYi) — ﬁ(l(l}h)) < 0. Since
Wy, € I nery conflicts with Vy, € I 1,), we have
(4) R(Lin+1)) + dist(Vy,, Vy,) — L xy)) < 0 or
R(I(j,kz)) + dist(Vyj,VYi) — ‘C(I(i,hﬁ-l)) < 0. Since
Vy, € I(;n+1) does not conflict withly, € I ,), we

have (S)R(I(i7h+1)) + dist(VYi,Vyj) — K(I(j,kg)) >0
and (6)73,(](3-7]63)) + dist(VYj,VYi) - K(I(i7h+1)) > 0.
Consider the disjunction in (3). From (2), it reduces to
(7 R(I(i,h)) + dist(Vy,, Vyj) — E(I(j,kz)) < 0 (because
R(I(j k) > R r,)))- Consider the disjunction in (4).
From (5), it reduces to (8R(I(; x,)) + dist(Vy,,Vy;) —
LI ny1y) < 0 (becausel(I(;i,)) < L(I(jk,)))- Now
consider any entry in the column &k, € [(;,). From
(7), we have thaty, € I 1,) conflicts with/(; ., for any

e < h (becauseR(I(; ) < R(I(ny)). Similarly, from
(8), we have thaty, € I(;,) conflicts with [(; ., for any

e > h+ 1 (because(I(;.y) > L(I;n+1))) Putting these
together, the truth of the Lemma is established.

Lemma 13: Consider abinary constraint betweefl; €
YU ZandW, € Y U Z. Under thenominaldomain order-
ings for variables iny, and any domain orderings for vari-
ables inZ, the positions of ‘1's in two consecutive rows
(columns) intersect, or touch each other (after removing
empty rows and columns).

Proof: From the previous Lemma, we know that this is true
whenWy, Wy € . From Lemma 11, it is also easily seen
to be true wherd¥; € Z andW, € )Y (because the do-
main size ofit; is only 2 (see Figure 8(C))). Finally, when
Wi, Wy € Z, the statement is trivially true for ar/ x 2
matrix (see Figure 8(D)).

The above Lemmas establish that all the resulting meta-
level binary constraints are CRC. Ainary constraint is
CRC if, after removing empty rows and columns (rows or
columns that do not contain any ‘1’s), the ‘1’s appear con-
secutively in every row and column (see Lemma 11), and
the positions of the ‘l’'s in any two consecutive rows or
columns intersect, or touch each other (see Lemma 13). Un-
like row-convex constraints, CRC constraints are closed un
der composition intersectionand transposition(the three
basic operations of algorithms that enfopah-consistency
in a binary constraint network)—hence establishing that
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Figure 9: lllustrates the geometry of a CRC constraint. (A)
shows the matrix representation of a CRC constraint with
the required pair of directions marked against each ‘0’ (not
shown explicitly for clarity). (B) illustrates the generzt-
tern of the required pair of directions for ‘O’s in a CRC con-
straint (shaded areas indicate feasible regions).

path-consistency over CRC constraints is sufficient to en-
sure global consistency. An instantiation of the generibpa
consistency algorithm that further exploits the structofe
CRC constraints has a running time complexitydf @ +
R)3d2,,.), and a space complexity @((Q + R)*dmnaz)
(see (Devilleet al. 1999)). Here,Q = |Y|, R = |Z|,
andd, ... is the maximum number of disjuncts in any con-
straint. The total running time of the algorithm is therefor

O((Q+R)*d?%,,,+(Q+R)*(NI|E|+d2,,,))- Thefirstterm

straints (Unsat) are also maintained. These lists are up-
dated incrementally in every iteration, and in the begignin
are built in accordance with the initial assignméntAddi-
tions to ‘Sat or * Unsat are always made at the beginning of
the lists, and therefore take constant time. Similarlygédel
tion from ‘Sat or * Unsat (given a pointer to the element to
be deleted) takes constant time (because the lists areydoubl
linked, and deletion can be realized by linking together the
neighbors of the element to be deleted).

In every iteration, the first constraint ikhsat is chosen,
and the assignment of one of the two variables participating
in it is changed. The only constraints that can be affected
by this are the ones in which this variable appears. Walk-
ing through the corresponding list of all such constraints,
we check each one of them for being satisfied or not. If a
constraint under consideration was originally satisfied an
is now unsatisfied (or vice-versa), we perform the appropri-
ate addition and deletion operations on tBat and ‘Unsat
lists. Both these operations can be done in constant tinge, an
the complexity of the update procedure is therefore equal to
the number of elements in the list (that contains all the con-
straints the chosen variable participates in).

If the maximum number of constraints any variable par-
ticipates in isd (corresponds to the degree of the constraint
network), the running time of theandomizedalgorithm
for solving CRC constraints can be reducedXaV? K ?2d).

measures the cost of solving the CRC constraints, and the Ths js less than that of thgeterministicalgorithm for solv-

second term measures the cost of building lthreary con-
straints in the first place (by computing the pair-wise short
est paths in thdistance graph

A Strongly Polynomial-time Randomized
Algorithm

Figure 10 presents an extremely simpéadomizedalgo-
rithm for solving CRC constraints. Central to this algo-
rithm is the observation that in the matrix representation
of a CRC constraint, the following is true: “At every ‘0’,
there existtwo directions such that with respect to every
other ‘1’, moving alongat least oneof these directionsle-
creaseghe manhattan distanct it” (see Figure 9). From
the theory ofandom walk®ndirectedgraphs, we know that
theexpectedhumber of iterations of ‘'SOLVE-CRC-RAND’
is only O(N2K?) (where K is the size of the largest do-
main). Theexpectedunning time of the algorithm, how-
ever, isO(N2K2M) (the factorM arises due to the inner

ing CRC constraints (see (Devillet al. 1999)). In the
worst case tood is only as large asV, and the running
time is O(N3 K?)—equaling that of theleterministicalgo-
rithm, but with a much lesser space complexity. These ar-
guments, in turn, suggest an extremely simaledomized
algorithm for solving RDTPs—the time and space complex-
ity of which is less than that of theéeterministicalgorithm.
We also note that thendomizedalgorithm circumvents the
use of complex data structures otherwise required for opti-
mally implementing path-consistency subroutines, etc.
Figure 12 presents an algorithm for solving RDTPs with-
out explicitly building the CRC constraints. The following
Lemma establishes the correctness of the algorithm (implic
itly also establishing the truth of the above quoted prgopert
of CRC constraints).
Lemma 14: For any violated constraint, step (5) in Figure
12 reduces thenanhattan distancbetween the current as-
signmentA, and the true (satisfying) assignmetit, with a

loop of the procedure, where we are required to repeatedly probability> 0.5. (Note thatd and A* are complete assign-

check for the presence of a violated constraint).

We will now show how we can significantly reduce the
above factorM by employing appropriate data structures.
We exploit the fact that it is sufficient for us to consider
any violated constraint in every iteration. This is because
every violated constraint is CRC, and gives us a chance to
move closer to the solution with a probability0.5. Figure
11 presents a diagrammatic illustration of the required dat
structures. A series of doubly linked lists are maintained.
The list ‘All’ contains all the constraints, and for every vari-
able X;, a list L; is maintained.L; contains exactly those
constraints that variabl&’; participates in. Further, a list
of satisfied constraints$at), and a list of unsatisfied con-

ments to all the variables i U Z.)

Proof: From Lemma 9, we know that all the meta-level
constraints arédinary. A violated constraint is therefore
one between some variablesW,, W, € Y U Z. If
W1, Wy € Y, then one of them (saly/;) contributes the in-
coming edge to¥,—annotated with- £ (I, ), and the other
(W3) contributes the outgoing edge frofi,—annotated
with R (I, ). Certainly, increasing the rank of the value as-
signed tall/;, and decreasing that &F;, will only decrease
the weight of the negative cycle. Therefore, at least one of
decreasing the rank of the value assignetdiq or increas-
ing the rank of the value assignedid,, will decrease the
manhattan distanct A*. Similarly, if W1, Wy € Z, ran-



ALGORITHM: SOLVE-CRC-RAND (a) Letd(; x,) andd;,,) be the current assignments to the
INPUT: A CSP overN variables{X;, X>...Xn}, andM CRC variablesX; and X; respectively.

constraints{C1,Cs ... Cas}. (b) Let{e1, e2} be the direction pair associated with the entry
OUTPUT: A solution to the CSP. <Xi, Xj) = <d(i,k1)7 d(j,k2)> in C(X“ XJ)

(1) Let the ordered domain of the variabl&; be D; (c) Choosep uniformly at random fron{e1, e2}.

viz. <d(i71), d(i,Q) e d(i-,\Di\)>' (d) If p= LF: setX]- to d(j_’szl).

(2) Start with an initial random assignmehto all the variables. (e)Ifp=RT: setX; tod; p,+1)-

(3) While the current assignmerit violates some CRC constraint  (f) If p = DN setX; to d(; ky +1)-
C(Xi, X;): (with the domain values oK; constituting the rows, (@) If p = UP: setX; tod; i, —1)-
and the domain values d&{; constituting the columns) END ALGORITHM

Figure 10: A simplerandomizedalgorithm for solving CRC constraints. The symbdlg, R7, DN andU/P indicate the
directionsleft (decrease the rank of the assignmenktp, right (increase the rank of the assignmentXg), down(increase
the rank of the assignment £6;) andup (decrease the rank of the assignmenktd respectively.
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Figure 11: lllustrates the data structures (and the omeraperformed on them) to reduce the running time ofémelomized
algorithm for solving CRC constraints. (1) shows the caistrnetwork of an exampleinary CSP ons variables. (A) shows
two doubly linked lists, All’ and ‘L,’. The pointers in L,’ are distinguished from those oAll’ by using a small horizontal
mark on them. (B) shows the two doubly linked list§at and ‘Unsat. The pointers in Unsat are distinguished from
those of Sat by using a small horizontal mark on them. (C) shows how thtsliSat and ‘Unsat are updated when the first
unsatisfied constraintin (B) (vi£Z (X1, X4))) is chosen, and the variah#, happens to be reassigned, possibly now satisfying
C(X1,X4). (D) shows what happens whéi X5, X,) remains unsatisfied, bt (X3, X;) changes from being satisfied to
being unsatisfied. (E) shows the final lists of satisfied arshtisfied constraints. Note that the ordering of the comg#rés
inconsequential in all the lists.

domlyreassigningV; or W to the other disjunct achieves  the search space of which can be pruned significantly when
the same effect. If, howeveW/; € Y andW, € Z, then sub-problems resemble RDTPs.

either the correct assignment fr; is the other disjunct,

or the_ correct assignment fov, is the one that can poten- Conclusions and Future Work
tially increase the weight of the negative cycle (depending

on whether it contributes the incoming edge or the outgoing We described a class of metric temporal problems, which we
edge). Thereforeandomlydoing one of these will decrease  referred to as RDTPs, that formed a middle ground between

themanhattan distance A* by 1 with a probability> 0.5. STPs and DTPs. We showed that RDTPs could be solved
It is now easy to see that all these cases are compactly rep-in polynomial time, and could encode limited, but very use-
resented and taken care of in step (5) of Figure 12. ful, forms of temporal disjunctions that would otherwise re
quire an exponential search space. We provided detér-
Applications to General DTPs ministic and randomizedalgorithms for efficiently solving

RDTPs—uwith the latter having much better time and space
The above algorithms for solving RDTPs can also be useful complexities compared to the former. The expressive power
in the context of solving general DTPs. In particular, large of RDTPs, along with their tractability, makes them a suit-
parts of the search space can be pruned easily when partialable model for many real-life applications that involve met
instantiations to some of the variables induce sub-problem ric temporal reasoning. As part of our future work, we are
that look like RDTPs. Figure 13 shows an example of a DTP, trying to incorporate and reason with preferences attatthed



ALGORITHM: SOLVE-RDTP-RAND
INPUT: An RDTP over the event&X;, X ...
OUTPUT: A solutions (if it exists).
(1) Cast RDTP as a disjunct selection problem using meta-
variablesy = {Y1,Y,... Yo} andZ = {Z1,Z;... Zg} for
Type 2 and Type 3 constraints respectively.
(2) Let’H be the set of all variables that participate in any of
the Type 2 or Type 3 constraints.
(3) For all X, and X, in H:
(a) Computelist(X,, X}) in thedistance graptinduced
by the Type 1 constraints.
(4) Start with an initial random assignmehto all the vari-
ablesiny u Z.
(5) While 3 a negative cycle in the inducelistance graph
(a) If the negative cycle is of the form
R(Ik,) + dist(Xa, Xp) — L(I1,) < O:

(A) Do one of the following with equal probabilities:
(ONE) [work on the outgoing edge frork]
— If X, € I, came from assigning some
variableY; € Y, increase theank of the
assignment td’;.
— If X, € I, came from assigning some
variableZ; € Z, assign the other disjunct t5;.
(TWO) [work on the incoming edge t&]
— If X, € Iy, came from assigning some
variableY; € ), decrease thenkof the
assignment t@’;.
— If X € I, came from assigning some
variableZ; € Z, assign the other disjunct {g;.
(6) RETURN:s = SOLVE-STP-DETR (induced STP und
the current assignment of values to variable¥io Z).
END ALGORITHM

Xnl.

11

Figure 12: Shows an extremely simpéndomizedilgorithm for solving RDTPs.

[3 5] & <
X9

(a)

Original Problem

(Simple Temporal Constraints)
(X1 -X5<=-L) or (X5 - X1 <=-L)
(X3 = X5 <= -L) or (X5 - X3 <= -L)
(X7 = X5 <= -L) or (X5 - X7 <= -L)
(X9 — X5 <=-L) or (X5 - X9 <=-L)

X5=5

O
X5=4
(b)

After Instantiating X5 to 4

(Simple Temporal Constraints)
(X1 <=-L+4)or(X1>=L+4)
(X3 <=-L+4)or(X3>=L+4)
X7 <=-L+4) or(X7>=L+4)
(X9 <=-L+4)or(X9>=L +4)

(c)

Figure 13: lllustrates how polynomial-time proceduresdolving RDTPs can be exploited in pruning the search space fo
solving general DTPs. (a) showsactions (indicated by dark lines), each of a fixed lenftiThe simple temporal constraints
between them are indicated by lighter lines, and for clatitg¢ bounds on them are not shown explicitly (although fis th
example, we assume them to be integers). If the agtion Xs) competes for (different) resources with each of the other
actions, the resulting DTP has a search space of1€izeéOn the other hand, if the search problem is cast as one ohfindi
integer schedules for all the events (because all the teahpounds are integersXs should be assigned one &f 4 or 5.
Instantiating it with any of these values induces an RDTPreheesulting in a search space of size dh(gee (b) and (c)).

temporal constraints. (Kumar 2004) presents a few relevant Kumar T. K. S. A Polynomial-time Algorithm for Simple

results—providing a polynomial-time algorithm for solgin
a restricted class of such problems.
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