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Abstract 

Many real-life Constraint Satisfaction Problems 
(CSPs) involve some constraints similar to the alld- 
ifferent constraints. These constraints are called con- 
straints of difference. They are defined on a subset of 
variables by a set of tuples for which the values oc- 
curing in the same tuple are all different. In this pa- 
per, a new filtering algorithm for these constraints is 
presented. It achieves the generalized arc-consistency 
condition for these non-binary constraints. It is based 
on matching theory and its complexity is low. In fact, 
for a constraint defined on a subset of p variables hav- 
ing domains of cardinality at most d, its space com- 
plexity is OCpd) and its time complexity is O(p2d2). 
This filtering algorithm has been successfully used in 
the system RESYN (Vismara et al. 1992), to solve the 
subgraph isomorphism problem. 

Introduction 
The constraint satisfaction problems (CSPs) form a 
simple formal frame to represent and solve some prob- 
lems in artificial intelligence. The problem of the ex- 
istence of solutions in a CSP is NP-complete. There- 
fore, some methods have been developed to simplify 
the CSP before or during the search for solutions. 
The consistency techniques are the most frequently 
used. Several algorithms achieving arc-consistency 
have been proposed for binary CSPs (Mackworth 1977; 
Mohr & Henderson 1986; Bessiere & Cordier 1993; 
Bessiere 1994) and for nary CSPs (Mohr & Masini 
1988a). Only limited works have been carried out on 
the semantics of contraints : (Mohr & Masini 1988b) 
have described an improvement of the algorithm AC-4 
for special constraints introduced by a vision problem, 
(Van Hentenryck, Deville, & Teng 1992) have studied 
monotonic and functional binary constraints. In this 
work, we are interested in a special case of n-ary con- 
straints : the constraints of difference, for which we 
propose a filtering algorithm. 

A constraint is called constraint of diflerence if it 
is defined on a subset of variables by a set of tuples 
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for which the values occuring in the same tuple are all 
different. They are present in many real-life problems. 

These constraints can be represented as n-ary con- 
straints and filtered by the generalized arc-consistency 
algorithm GAC4 (Mohr & Masini 1988a). This filter- 
ing efficiently reduces the domains but its complexity 
can be expensive. In fact, it depends on the length and 
the number of all admissible tuples. Let us consider a 
constraint of difference defined on p variables, which 
take their values in a set of cardinality d. Thus, the 
number of admissible tuples corresponds to the number 
of permutations of p elements selected from d elements 
without repetition : dPP = &. Therefore some 
constraint resolution systems, like CHIP (Van Henten- 
ryck 1989), represent these n-ary constraints by sets of 
binary constraints. In this case, a binary constraint of 
difference is built for each pair of variables belonging 
to the same constraint of difference. But the pruning 
performance of arc-consistency, for these constraints is 
poor. In fact, for a binary alldifferent constraint be- 
tween two variables i and j, arc-consistency removes a 
value from domain of i only when the domain of j is 
reduced to a single value. Let us suppose we have a 
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Figure 1. 

CSP with 3 variables ~1, x2, x3 and one constraint of 
difference between these variables (see figure 1). The 
domains of variables are D1 = {a, b}, 02 = {a, 13) 
and 03 = {a, b, c}. The GAC4 filtering with the con- 
straint of difference represented by a 3-ary constraint, 
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removes the values b and c from the domain of x3, 
while arc-consistency with the constraint of difference 
represented by binary constraints of difference, does 
not delete any value. 

In this paper we present an efficient way of imple- 
menting the generalized arc-consistency condition for 
the constraints of difference, in order to benefit from 
its pruning performances. Its space complexity is in 
O(pd) and its time complexity is in O(p2d2). 

The rest of the paper is organized as follows. Sec- 
tion 2 gives some preliminaries on constraint satisfac- 
tion problems and matching, and proposes a restricted 
definition of arc-consistency, which concerns only the 
constraints of difference : the diff-arc-consistency. Sec- 
tion 3 presents a new condition to ensure the diff-arc- 
consistency in CSPs having constraints of difference. 
In section 4 we propose an efficient implementation to 
achieve this condition and analyse its complexity. In 
section 5, we show its performance and its interest with 
an example. A conclusion is given in section 6. 

Preliminaries 
A finite CSP (Constraint Satisfaction Problem) P = 
(X, D,C) is defined as a set of n variables X = 
{Xl, "', x~), a set of finite domains V = (01, . . . . Dn) 
where Di is the set of possible values for variable 
i and a set of constraints between variables C = 
{G,C2, '", Cm}. A constraint Ci is defined on a set 
of variables (zil, . . . . xii) by a subset of the Cartesian 
product Di, x . . . x Dij . A solution is an assignment of 
value to all variables which satisfies all the constraints. 
We will denote by : 

D (X’) the union of domains of variables of X’ C 
X (i.e D(X’) = UiExt Di). 

XC the set of variables on which a constraint C 
is difined. 

a p the arity of a constraint C : p = IXc I. 
. d the maximal cardinality of domains. 

A value ai in the domain of a variable xi is consis- 
tent with a given n-ary constraint if there exists values 
for all the other variables in the constraint such that 
these values with ai together simultaneously satisfy the 
constraint. More generally, arc-consistency for n-ary 
CSPs or the generalized arc-consistency is defined as 
follows (Mohr & Masini 1988a): 

Definition 1 A CSP P = (X, V,C) is arc- 
consistent ifl : VX~ E X,Vai E Di,vC E C con- 
straining Xi, VXj, . . . . xk E Xc, %j, . . . . ak such that 
C(dj, . . . . ai, . . . . ak) holds. 

Definition 2 Given a CSP P = (X, 2>, C), a con- 
straint C is called constraint of difference if it is 
defined on a subset of variables Xc = {xii, . . ..xik} 
by a set of tuples, denoted by tuples(C) such that : 
tuples(C) s Di, X . . . X Di, \ {(dl, . . . . dk) E Di, X . . . X 
Di, s-t. 3 U, v 1 d, = d,} 

From the previous definition, we propose a special arc- 
consistency which concerns only the constraints of dif- 
ference : 
Definition 3 A CSP P = (X, 27, C) is diff-arc- 
consistent ifl all of its constraints of difference are 
arc-consistent. 

Definition 4 Given a constraint of difference C, the 
bipartite graph GV(C) = (XC, D(Xc), E) where 
(xi, a) E E iff a E Di is culled value graph of C. 

Figure 2 gives an example of a constraint of difference 
and its value graph. 

X=(x1,x2,x3,x4,x5,x6} 
Dxl={ 1,2} 
Dx2={2,3} 
Dx3={ 1,3} 
Dx4={2,4} 
Dx5={3,4,5,6} 
Dx6={6,7} 

Figure 2: A constraint of difference defined on a set X 
and its value graph. 

Definition 5 A subset of edges in a graph G is called 
matching if no two edges have a vertex in common. 
A matching of maximum cardinality is called a max- 
imum matching. A matching it4 covers a set X 
if eve y vertex in X is an endpoint of an edge in M. 
Note that a matching which covers X in a bipartite 
graph G = (X, Y, E) is a maximum matching. 

From the definition of a matching and the value 
graph we present, in the next section, a new necessary 
condition to ensure the diff-arc-consistency in CSPs 
having constraints of difference. 

A new condition for CSPs having 
constraints of difference 

The following theorem establishes a link between the 
diff-arc-consistency and the matching notion in the 
value graph of the constraints of difference. 
The&m 1 Given a CSP P = (X, 2), C). P is diff- 
arc-consistent ifl for each constraint of diflerence C of 
C every edge in GV(C) belongs to a matching which 
covers XC in GV( C) . 
proof 
+ : Let us consider a constraint of difference C and 
GV(C) its value graph. From each admissible tuple 
of C, a set of pairs can be built. A pair consists of a 
variable and its assigned value in the tuple. The set 
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of pairs contains a pair for each variable. This set cor- 
responds to a set of edges, denoted by A in GV(C). 
Since P is diff-arc-consistent, the values in each tuple 
are all different. Thus, two edges of A cannot have a 
vertex in common and A is a matching with covers Xc. 
Moreover, each value of each variable in the constraint 
belongs to at least one tuple. So, each edge of GV(C) 
belongs to a matching which covers XC. 
-e : Let us consider a variable xi and a value a of 
its domain. For each constraint of difference C, the 
pair (xi, a) belongs to a matching which covers Xc in 
GV(C) . Since in a matching no two edges have a ver- 
tex in common, there exists values for all the other 
variables in the constraint such that these values to- 
gether simultaneously satisfy the constraint. So P is 
diff-arc-consistent. •I 

The use of matching theory is interesting because 
(Hopcroft & Karp 1973) have shown how to compute 
a matching which covers X in a bipartite graph G = 
(X, Y, E), with m edges, ’ in time 0( mm). 

This theorem gives us an efficient way to represent 
the constraint of difference in a CSP. In fact, a con- 
straint of difference can be represent only by its value 
graph, with a space complexity in O(pd). It also allows 
us to define a basic algorithm (algorithm 1) to filter 
the domains of variables of the set on which one con- 
straint of difference is defined. This algorithm builds 
the value graph of the constraint of difference and com- 
putes a matching which covers XC in order to delete 
every edge which belongs to no matching covering XC. 
Figure 3 gives an application of this filtering. 

Algorithm 1: DIFF-INITIALIZATION(~) 
% returns false if there is no solution, otherwise true 
% the function COMPUTEMAXIMUMMATCHING(G) com- 
putes a maximum matching in the graph G 
begin 

1 Build G = (Xc, ww, El 
2 M(G) e COMPUTEMAXIMUMMATCHING(G) 

if lAd( < IXcj then return false 
3 REMOVEEDGESFROMG(G,M(G)) 

return true 
end 

The complexity of step 1 is O(dlXcI + IXcl + 
ID(Xc Step 2 costs O(dlXcldm). And we now 
show that it is possible to compute step 3 in linear time. 
So the complexity for one constraint of difference will 
be O(dlX&/~). 

Deletion of every edge which belongs to 
no matching which covers X 

In order to simplify the notation, we consider a bi- 
partite graph G = (X, Y, E) rather than the bipartite 

’ (Alt et al. 1991) give an implementation of 
Hopcroft and Karp’s algorithm which runs in time 
0(1X1’-“,/m). F or d ense graph this is an improve- 
ment by a factor of dm. 
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graph G = (XC, D(Xc), E), and a matching M which 
covers X in G. In order to understand how we can 

Figure 3: A value graph before and after the filtering. 

delete every edge which belongs to no matching, we 
present a few definitions about matching theory. For 
more information the reader can consult (Berge 1970) 
or (Lovasz & Plummer 1986). 
Definition 6 Let M be a matching, an edge in M is 
a matching edge; every edge not in M is free. A 
vertex is matched if it is incident to a matching edge 
and free otherwise. An alternating path or cycle 
is a simple path or cycle whose edges are alternately 
matching and free. The length of an alternating path 
or cycle is the number of edges it contains. An edge 
which belongs to every maximum matching is vital. 
Figure 3 gives an example of a matching which covers 
X in a bipartite graph. The bold edges are the match- 
ing edges. Vertex 7 is free. The path (7, x6,6, x5,5) is 
an alternating path which begins at a free vertex. The 
cycle (1, x3,3, x2,2, xl, 1) is an alternative cycle. The 
edge (x4,4) is a vital. 
Property 1 (Berge 1970) An edge belongs to some 
of but not all maximum matchings, iff, for an arbitrary 
maximum matching M, it belongs to either an even 

begins at a free vertex, or an alternating path 
even alternating 

which 
cycle. 

From this property we can find for an arbitrary match- 
ing M which covers X, every edge which belongs to no 
matching covering X. There are the edges which be- 
long to neither M (there are not vital), nor an even 
alternating path which begins at a free vertex, nor an 
even alternating cycle. 
Proposition 1 Given a bipartite graph G = (X, Y, E) 
with a matching M which covers X and the graph 
Go = (X, Y, Succ), o bt ained from G by orienting edges 
with the function : 

Vx;~X:Succ(x)={y~Y/(x,y)~M} 
V~EY:S~~~(~)={~EX/(~,~)EE-M} 

we have the two following properties : 
1) Every directed cycle of Go corresponds to an 

even alternating cycle of G, and conversely. 



2) Every directed simple path of Go, which begins 
at a free vertex corresponds to an even alternating path 
of G which begins at a free vertex, and conversely. 
proof 
If we ignore the parity, it is obvious that the propo- 
sition is true. In the first case, since G is bipartite 
it does not have any odd cycle. In the second case, 
we must show every directed simple path of Go which 
begins at a free vertex to corresponds to an even alter- 
nating path of G which begins at a free vertex. M is 
a matching which covers X, so there is no free vertex 
in X. Since G is bipartite and since every path begins 
at a free vertex, in Y, every odd directed simple path 
ends with a vertex in X. From this vertex, we can al- 
ways find a vertex in Y which does not belong to the 
path, because every vertex in X has one successor and 
because a vertex in Y has one predecessor. Therefore 
from an odd directed simple path we can always build 
an even directed simple path.0 

From this proposition we produce a linear algorithm 
(algorithm 2), that deletes every edge which does not 
belong to any matching which covers X. 

Algorithm 2: REMOVEEDGESFROMG(G,M(G)) 
% RE is the set of edges removed from G. 
% M(G) is a matching of G which covers X 
% The function returns RE 

egin 
Mark all directed edges in Go as “unused”. 
Set RE to 0. 
Look for all directed edges that belong to 
a directed simple path which begins at a free 
vertex by a breadth-fist search starting from 
free vertices, and mark them as “used”. 
Compute the strongly connected components of Go. 
Mark as “used” any directed edge that joins two 
vertices in the same strongly connected component. 
for each directed edge de marked as “unused” do 

I 

set e to the corresponding edge of de 
if e E M(G) then mark e as “vital” 
else 

1 
REtREU{e) 
remove e from G 

return RE 

Step 2 corresponds to the point 2 of the proposition 
1. Step 13 computes the strongly connected component 
of Go, because an edge joining two vertices in the same 
strongly connected component belongs to a directed 
cycle and conversely. These edges belong to an even 
alternating cycle of G (cf point 1 of proposition 1). Af- 
ter this step the set A of all edges belonging to some 
but not all matchings covering X are known. The set 
RE of edges to remove from G is: RE = E - (A U M). 
This is done by step 4. The algorithm complexity is 
the same as the search for strongly connected compo- 
nents(Tarjan 1972) , i.e O(m + n) for a graph with m 
edges and n vertices. 

We have shown how for one constraint of difference 
C every edge which belongs to no matching which cov- 
ers XC can be deleted. But a variable can be con- 
strained by several constraints and it is necessary to 
propagate the deletions. In fact, let us consider xi a 
variable of XC, xi can be constrained by several con- 
straints. Thus, a value of Di can be deleted for rea- 
sons independant from C. This deletion involves the 
removal of one edge from GV(C). So, it is necessary 
to study the consequences of this modification of the 
GV(C) structure. 

Propagation of deletions 
The deletion of values for one constraint of differ- 
ence can involve some modifications for the other con- 
straints. And for the other constraints of difference we 
can do better than repeat the first algorithm by us- 
ing the fact that before the deletion, a matching which 
covers X is known. 

The propagation algorithm we propose has two sets 
as parameters. The first one represents the set of 
edges to remove from the bipartite graph, and the sec- 
ond the set of edges that will be deleted by the fil- 
tering. The algorithm needs a function, denoted by 
MATCHINGCOVERINGX(G, Ml, Mz), which computes 
a matching M2, which covers X, from a matching Ml 
which is not maximum. It returns true if Mz exists 
and false otherwise. The new filtering is represented 
by algorithm 3. 

Algorithm 3: DIFF-PROPAGATION(G,M(G),ER,RE) 
% the function returns false if there is no solution 
% G is a value graph 
% M(G) is a matching which covers XC 
% ER is the set of edges to remove from G 
% RE is the set of edges that will be deleted by the 
filtering 
1 

1 

2 

3 

gin 
ComputeMatching t false 
for each e E ER do 

1 

if e E M(G) then 

1 

M(G) +- W3 - kl 
if e is marked as “vital” then return false 
else ComputeMatching t true 

remove e from G 
if computeMatching then 

1 

if -, MATCHINGCOVERINGX(G,M(G),M’) then 
1 return false 

else 
L M(G) c M’ 

RE c REMOVEEDGESFROMG(G,M(G)) 
return true 

end 

It is divided into three parts. First, it removes edges 
from the bipartite graph. Second, it eventually com- 
putes a new matching which covers XC. Third, it 
deletes the edges which does not belongs to any match- 
ing covering XC. The algorithm returns false if ER 
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contains a vital edge or if there does not exist a match- 
ing which covers XC. 

Now, let us compute its complexity. Let m be the 
number of edges of G, and n be the number of ver- 
tices. Let us suppose that we must remove Ic edges 
from G (IERI = TG). The complexity of 1 is in O(k). 
Step 2 involves, in the worst case, the computation of a 
matching covering XC from a matching of cardinality 
1 M - rCl. This computation has cost 0(&m) (see the- 
orem 3 of (Hopcroft & Karp 1973)). The complexity 
of step 3 is in O(m). 
In the worst case, the edges of G can be deleted one by 
one. Then the previous function will be called m times. 
So the global complexity is in O(m2). If p = IXcl and 
d is the maximum cardinality of domains of variables 
of XC, then the complexity is in O(p2d2) for one con- 
straint of difference. 

An example : 
1. There are five houses, each of a different color and 
inhabited by men of different nationalities, with differ- 
ents pets, drinks and cigarettes. 
2. The Englishman lives in the red house. 
3. The Spaniard owns a dog. 
4. Coffee is drunk in the green house. 
5. The Ukrainian drinks tea. 
6. The green house is immediately to the right of the 
ivoiry house. 
7. The Old-Gold smoker owns snails. 
8. Kools are being smoked in the yellow house. 
9. Milk is drunk in the middle house. 
10. The Norwegian lives in the first house on the left. 
11. The Chesterfield smoker lives next to the fox 
owner. 
12. Kools are smoked in the house next to the house 
where the horse is kept. 
13. The Lucky-Strike smoker drinks orange juice. 
14. The Japanese smokes Parliament. 
15. The Norwegian lives next to the blue house. 
The query is : Who drinks water and who owns the 
zebra ? 

This problem can be represented as a constraint net- 
work involving 25 variables, one for each of the five 
colors, drinks, nationalities, cigarettes and pets : 

Cl red I31 coffee NI Englishman Tl Old-Gold AI dog 
CZ. green I32 tea NZ Spaniard TZ Chesterfield A2 snails 
C3 ivoiry I33 milk N3 Ukranian T3 Kools A3 fox 
C4 yellow B4 orange N4 Norwegian T4 Lucky-Strike A4 horse 
C5 blue Bg water N5 Japanese T5 Parliament A5 zebra 

Each of the variables has domain values { 1,2,3,4,5}, 
each number corresponding to a house position (e.g. 
assigning the value 2 to the variable horse means that 
the horse owner lives in the second house) (Dechter 
1990). The assertions 2 to 15 are translated into unary 
and binary constraints. In addition, there are three 
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ways of representing the first assertion which means 
that the variables in the same cluster must take differ- 
ent values : 

1. A binary constraint is built between any pair of vari- 
ables of the same cluster ensuring that they are not 
assigned the same value. In this case we have a bi- 
nary CSP. 

2. Five 5-ary constraints of difference are built (one for 
each of the clusters). And the CSP is not binary. 

3. The five 5-ary constraints of difference are repre- 
sented by their value graphs. The space complexity 
of one constraint is in O(pd). 

The first representation is generally used to solve 
the problem (Dechter 1990; Bessiere & Cordier 1993). 
From these three representations we can study the dif- 
ferent results obtained from arc-consistency. They are 
given in figures 4 and 5. The constraints corresponding 
to the assertions 2 to 15 are represented in extension. 
The constraints of difference among the variables of 
each cluster are omitted for clarity. 

For the first representation, the result of the filtering 
by arc-consistency is given in figure 4. 

Figure 4. 

For the second representation, the filtering algorithm 
employed is the generalized arc-consistency. Figure 5 
shows the new results. It has pruned more values that 
the previous one. 

For the third representation, the filtering algorithm 
employed is arc-consistency for the binary constraints 
combined with the new filtering for the constraints of 
difference. The obtained results are the same as with 
the second method. 

Let us denote by a the number of binary constraints 
corresponding to the assertions 2 to 15, p the size of 
a cluster, c the number of clusters, d the number of 
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values in a domain and O(ed2) the complexity for arc- 
consistency2 in binary CSPs. Let us compute the com- 
plexity for the three methods : 
1. For the first representation, the number of binary 

constraints of difference added is in O(cp2). So, the 
filtering complexity is 0( (a + cp2)d2). 

2. In the second case, we can consider that the com- 
plexity is the sum of the lengths of all admissible tu- 
ples for the five 5-ary constraints. It is in 0(&p). 

3. For the third method arc-consistency is in O(ud2) 
and the filtering for the constraints of difference is 
in O(cp2d2). The total complexity is in O(ucZ2) + 
O(cp2d2). It is equivalent to the first one. 

The second filtering eliminates more values than the 
first one. But its complexity is higher. The represen- 
tation and the algorithm proposed in this paper give 
pruning results equivalent to the second approach with 
the same complexity as the first one. So we can con- 
clude that the new filtering is good for problems look- 
ing like the zebra problem. 

Conclusion 
In this paper we have presented a filtering algorithm 
for constraints of difference in CSPs. This algorithm 
can be viewed as an efficient way of implementing the 
generalized arc-consistency condition for a special type 
of constraint : the constraints of difference. It allows us 
to benefit from the pruning performance of the previ- 
ous condition with a low complexity. In fact, its space 
complexity is in O(pd) and its time complexity is in 
O(p2d2) for one constraint defined on a subset of p 
variables having domains of cardinality at most d. It 
has been shown to be very efficient for the zebra prob- 
lem. And it has been successfully used to solve the 
subgraph isomorphism problem in the system RESYN 
(Vismara et al. 1992)) a computer-aided design of com- 
plex organic synthesis plan. 
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