
A filtering algorithm for eonstrai

Jean-Charles R&XV

GDR 1093 CNRS
LIRMM UMR 9928 Universite Montpellier II / CNRS

161, rue Ada - 34392 Montpellier Cedex 5 - France
e-mail : regin@lirmm.fr

Abstract

Many real-life Constraint Satisfaction Problems
(CSPs) involve some constraints similar to the alld-
ifferent constraints. These constraints are called con-
straints of difference. They are defined on a subset of
variables by a set of tuples for which the values oc-
curing in the same tuple are all different. In this pa-
per, a new filtering algorithm for these constraints is
presented. It achieves the generalized arc-consistency
condition for these non-binary constraints. It is based
on matching theory and its complexity is low. In fact,
for a constraint defined on a subset of p variables hav-
ing domains of cardinality at most d, its space com-
plexity is OCpd) and its time complexity is O(p2d2).
This filtering algorithm has been successfully used in
the system RESYN (Vismara et al. 1992), to solve the
subgraph isomorphism problem.

Introduction
The constraint satisfaction problems (CSPs) form a
simple formal frame to represent and solve some prob-
lems in artificial intelligence. The problem of the ex-
istence of solutions in a CSP is NP-complete. There-
fore, some methods have been developed to simplify
the CSP before or during the search for solutions.
The consistency techniques are the most frequently
used. Several algorithms achieving arc-consistency
have been proposed for binary CSPs (Mackworth 1977;
Mohr & Henderson 1986; Bessiere & Cordier 1993;
Bessiere 1994) and for nary CSPs (Mohr & Masini
1988a). Only limited works have been carried out on
the semantics of contraints : (Mohr & Masini 1988b)
have described an improvement of the algorithm AC-4
for special constraints introduced by a vision problem,
(Van Hentenryck, Deville, & Teng 1992) have studied
monotonic and functional binary constraints. In this
work, we are interested in a special case of n-ary con-
straints : the constraints of difference, for which we
propose a filtering algorithm.

A constraint is called constraint of diflerence if it
is defined on a subset of variables by a set of tuples

*This work was supported by SANOFI-CHIMIE

for which the values occuring in the same tuple are all
different. They are present in many real-life problems.

These constraints can be represented as n-ary con-
straints and filtered by the generalized arc-consistency
algorithm GAC4 (Mohr & Masini 1988a). This filter-
ing efficiently reduces the domains but its complexity
can be expensive. In fact, it depends on the length and
the number of all admissible tuples. Let us consider a
constraint of difference defined on p variables, which
take their values in a set of cardinality d. Thus, the
number of admissible tuples corresponds to the number
of permutations of p elements selected from d elements
without repetition : dPP = &. Therefore some
constraint resolution systems, like CHIP (Van Henten-
ryck 1989), represent these n-ary constraints by sets of
binary constraints. In this case, a binary constraint of
difference is built for each pair of variables belonging
to the same constraint of difference. But the pruning
performance of arc-consistency, for these constraints is
poor. In fact, for a binary alldifferent constraint be-
tween two variables i and j, arc-consistency removes a
value from domain of i only when the domain of j is
reduced to a single value. Let us suppose we have a

~llabl

Representation by
3-ary constraint

Representation by
binary constraints
of difference

Figure 1.

CSP with 3 variables ~1, x2, x3 and one constraint of
difference between these variables (see figure 1). The
domains of variables are D1 = {a, b}, 02 = {a, 13)
and 03 = {a, b, c}. The GAC4 filtering with the con-
straint of difference represented by a 3-ary constraint,

362 Constraint Satisfaction

removes the values b and c from the domain of x3,
while arc-consistency with the constraint of difference
represented by binary constraints of difference, does
not delete any value.

In this paper we present an efficient way of imple-
menting the generalized arc-consistency condition for
the constraints of difference, in order to benefit from
its pruning performances. Its space complexity is in
O(pd) and its time complexity is in O(p2d2).

The rest of the paper is organized as follows. Sec-
tion 2 gives some preliminaries on constraint satisfac-
tion problems and matching, and proposes a restricted
definition of arc-consistency, which concerns only the
constraints of difference : the diff-arc-consistency. Sec-
tion 3 presents a new condition to ensure the diff-arc-
consistency in CSPs having constraints of difference.
In section 4 we propose an efficient implementation to
achieve this condition and analyse its complexity. In
section 5, we show its performance and its interest with
an example. A conclusion is given in section 6.

Preliminaries
A finite CSP (Constraint Satisfaction Problem) P =
(X, D,C) is defined as a set of n variables X =
{Xl, "', x~), a set of finite domains V = (01, Dn)
where Di is the set of possible values for variable
i and a set of constraints between variables C =
{G,C2, '", Cm}. A constraint Ci is defined on a set
of variables (zil, xii) by a subset of the Cartesian
product Di, x . . . x Dij . A solution is an assignment of
value to all variables which satisfies all the constraints.
We will denote by :

D (X’) the union of domains of variables of X’ C
X (i.e D(X’) = UiExt Di).

XC the set of variables on which a constraint C
is difined.

a p the arity of a constraint C : p = IXc I.
. d the maximal cardinality of domains.

A value ai in the domain of a variable xi is consis-
tent with a given n-ary constraint if there exists values
for all the other variables in the constraint such that
these values with ai together simultaneously satisfy the
constraint. More generally, arc-consistency for n-ary
CSPs or the generalized arc-consistency is defined as
follows (Mohr & Masini 1988a):

Definition 1 A CSP P = (X, V,C) is arc-
consistent ifl : VX~ E X,Vai E Di,vC E C con-
straining Xi, VXj, xk E Xc, %j, ak such that
C(dj, ai, ak) holds.

Definition 2 Given a CSP P = (X, 2>, C), a con-
straint C is called constraint of difference if it is
defined on a subset of variables Xc = {xii,xik}
by a set of tuples, denoted by tuples(C) such that :
tuples(C) s Di, X . . . X Di, \ {(dl, dk) E Di, X . . . X
Di, s-t. 3 U, v 1 d, = d,}

From the previous definition, we propose a special arc-
consistency which concerns only the constraints of dif-
ference :
Definition 3 A CSP P = (X, 27, C) is diff-arc-
consistent ifl all of its constraints of difference are
arc-consistent.

Definition 4 Given a constraint of difference C, the
bipartite graph GV(C) = (XC, D(Xc), E) where
(xi, a) E E iff a E Di is culled value graph of C.

Figure 2 gives an example of a constraint of difference
and its value graph.

X=(x1,x2,x3,x4,x5,x6}
Dxl={ 1,2}
Dx2={2,3}
Dx3={ 1,3}
Dx4={2,4}
Dx5={3,4,5,6}
Dx6={6,7}

Figure 2: A constraint of difference defined on a set X
and its value graph.

Definition 5 A subset of edges in a graph G is called
matching if no two edges have a vertex in common.
A matching of maximum cardinality is called a max-
imum matching. A matching it4 covers a set X
if eve y vertex in X is an endpoint of an edge in M.
Note that a matching which covers X in a bipartite
graph G = (X, Y, E) is a maximum matching.

From the definition of a matching and the value
graph we present, in the next section, a new necessary
condition to ensure the diff-arc-consistency in CSPs
having constraints of difference.

A new condition for CSPs having
constraints of difference

The following theorem establishes a link between the
diff-arc-consistency and the matching notion in the
value graph of the constraints of difference.
The&m 1 Given a CSP P = (X, 2), C). P is diff-
arc-consistent ifl for each constraint of diflerence C of
C every edge in GV(C) belongs to a matching which
covers XC in GV(C) .
proof
+ : Let us consider a constraint of difference C and
GV(C) its value graph. From each admissible tuple
of C, a set of pairs can be built. A pair consists of a
variable and its assigned value in the tuple. The set

Tractable Problems 363

of pairs contains a pair for each variable. This set cor-
responds to a set of edges, denoted by A in GV(C).
Since P is diff-arc-consistent, the values in each tuple
are all different. Thus, two edges of A cannot have a
vertex in common and A is a matching with covers Xc.
Moreover, each value of each variable in the constraint
belongs to at least one tuple. So, each edge of GV(C)
belongs to a matching which covers XC.
-e : Let us consider a variable xi and a value a of
its domain. For each constraint of difference C, the
pair (xi, a) belongs to a matching which covers Xc in
GV(C) . Since in a matching no two edges have a ver-
tex in common, there exists values for all the other
variables in the constraint such that these values to-
gether simultaneously satisfy the constraint. So P is
diff-arc-consistent. •I

The use of matching theory is interesting because
(Hopcroft & Karp 1973) have shown how to compute
a matching which covers X in a bipartite graph G =
(X, Y, E), with m edges, ’ in time 0(mm).

This theorem gives us an efficient way to represent
the constraint of difference in a CSP. In fact, a con-
straint of difference can be represent only by its value
graph, with a space complexity in O(pd). It also allows
us to define a basic algorithm (algorithm 1) to filter
the domains of variables of the set on which one con-
straint of difference is defined. This algorithm builds
the value graph of the constraint of difference and com-
putes a matching which covers XC in order to delete
every edge which belongs to no matching covering XC.
Figure 3 gives an application of this filtering.

Algorithm 1: DIFF-INITIALIZATION(~)
% returns false if there is no solution, otherwise true
% the function COMPUTEMAXIMUMMATCHING(G) com-
putes a maximum matching in the graph G
begin

1 Build G = (Xc, ww, El
2 M(G) e COMPUTEMAXIMUMMATCHING(G)

if lAd(< IXcj then return false
3 REMOVEEDGESFROMG(G,M(G))

return true
end

The complexity of step 1 is O(dlXcI + IXcl +
ID(Xc Step 2 costs O(dlXcldm). And we now
show that it is possible to compute step 3 in linear time.
So the complexity for one constraint of difference will
be O(dlX&/~).

Deletion of every edge which belongs to
no matching which covers X

In order to simplify the notation, we consider a bi-
partite graph G = (X, Y, E) rather than the bipartite

’ (Alt et al. 1991) give an implementation of
Hopcroft and Karp’s algorithm which runs in time
0(1X1’-“,/m). F or d ense graph this is an improve-
ment by a factor of dm.

364 Constraint Satisfaction

graph G = (XC, D(Xc), E), and a matching M which
covers X in G. In order to understand how we can

Figure 3: A value graph before and after the filtering.

delete every edge which belongs to no matching, we
present a few definitions about matching theory. For
more information the reader can consult (Berge 1970)
or (Lovasz & Plummer 1986).
Definition 6 Let M be a matching, an edge in M is
a matching edge; every edge not in M is free. A
vertex is matched if it is incident to a matching edge
and free otherwise. An alternating path or cycle
is a simple path or cycle whose edges are alternately
matching and free. The length of an alternating path
or cycle is the number of edges it contains. An edge
which belongs to every maximum matching is vital.
Figure 3 gives an example of a matching which covers
X in a bipartite graph. The bold edges are the match-
ing edges. Vertex 7 is free. The path (7, x6,6, x5,5) is
an alternating path which begins at a free vertex. The
cycle (1, x3,3, x2,2, xl, 1) is an alternative cycle. The
edge (x4,4) is a vital.
Property 1 (Berge 1970) An edge belongs to some
of but not all maximum matchings, iff, for an arbitrary
maximum matching M, it belongs to either an even

begins at a free vertex, or an alternating path
even alternating

which
cycle.

From this property we can find for an arbitrary match-
ing M which covers X, every edge which belongs to no
matching covering X. There are the edges which be-
long to neither M (there are not vital), nor an even
alternating path which begins at a free vertex, nor an
even alternating cycle.
Proposition 1 Given a bipartite graph G = (X, Y, E)
with a matching M which covers X and the graph
Go = (X, Y, Succ), o bt ained from G by orienting edges
with the function :

Vx;~X:Succ(x)={y~Y/(x,y)~M}
V~EY:S~~~(~)={~EX/(~,~)EE-M}

we have the two following properties :
1) Every directed cycle of Go corresponds to an

even alternating cycle of G, and conversely.

2) Every directed simple path of Go, which begins
at a free vertex corresponds to an even alternating path
of G which begins at a free vertex, and conversely.
proof
If we ignore the parity, it is obvious that the propo-
sition is true. In the first case, since G is bipartite
it does not have any odd cycle. In the second case,
we must show every directed simple path of Go which
begins at a free vertex to corresponds to an even alter-
nating path of G which begins at a free vertex. M is
a matching which covers X, so there is no free vertex
in X. Since G is bipartite and since every path begins
at a free vertex, in Y, every odd directed simple path
ends with a vertex in X. From this vertex, we can al-
ways find a vertex in Y which does not belong to the
path, because every vertex in X has one successor and
because a vertex in Y has one predecessor. Therefore
from an odd directed simple path we can always build
an even directed simple path.0

From this proposition we produce a linear algorithm
(algorithm 2), that deletes every edge which does not
belong to any matching which covers X.

Algorithm 2: REMOVEEDGESFROMG(G,M(G))
% RE is the set of edges removed from G.
% M(G) is a matching of G which covers X
% The function returns RE

egin
Mark all directed edges in Go as “unused”.
Set RE to 0.
Look for all directed edges that belong to
a directed simple path which begins at a free
vertex by a breadth-fist search starting from
free vertices, and mark them as “used”.
Compute the strongly connected components of Go.
Mark as “used” any directed edge that joins two
vertices in the same strongly connected component.
for each directed edge de marked as “unused” do

I

set e to the corresponding edge of de
if e E M(G) then mark e as “vital”
else

1
REtREU{e)
remove e from G

return RE

Step 2 corresponds to the point 2 of the proposition
1. Step 13 computes the strongly connected component
of Go, because an edge joining two vertices in the same
strongly connected component belongs to a directed
cycle and conversely. These edges belong to an even
alternating cycle of G (cf point 1 of proposition 1). Af-
ter this step the set A of all edges belonging to some
but not all matchings covering X are known. The set
RE of edges to remove from G is: RE = E - (A U M).
This is done by step 4. The algorithm complexity is
the same as the search for strongly connected compo-
nents(Tarjan 1972) , i.e O(m + n) for a graph with m
edges and n vertices.

We have shown how for one constraint of difference
C every edge which belongs to no matching which cov-
ers XC can be deleted. But a variable can be con-
strained by several constraints and it is necessary to
propagate the deletions. In fact, let us consider xi a
variable of XC, xi can be constrained by several con-
straints. Thus, a value of Di can be deleted for rea-
sons independant from C. This deletion involves the
removal of one edge from GV(C). So, it is necessary
to study the consequences of this modification of the
GV(C) structure.

Propagation of deletions
The deletion of values for one constraint of differ-
ence can involve some modifications for the other con-
straints. And for the other constraints of difference we
can do better than repeat the first algorithm by us-
ing the fact that before the deletion, a matching which
covers X is known.

The propagation algorithm we propose has two sets
as parameters. The first one represents the set of
edges to remove from the bipartite graph, and the sec-
ond the set of edges that will be deleted by the fil-
tering. The algorithm needs a function, denoted by
MATCHINGCOVERINGX(G, Ml, Mz), which computes
a matching M2, which covers X, from a matching Ml
which is not maximum. It returns true if Mz exists
and false otherwise. The new filtering is represented
by algorithm 3.

Algorithm 3: DIFF-PROPAGATION(G,M(G),ER,RE)
% the function returns false if there is no solution
% G is a value graph
% M(G) is a matching which covers XC
% ER is the set of edges to remove from G
% RE is the set of edges that will be deleted by the
filtering
1

1

2

3

gin
ComputeMatching t false
for each e E ER do

1

if e E M(G) then

1

M(G) +- W3 - kl
if e is marked as “vital” then return false
else ComputeMatching t true

remove e from G
if computeMatching then

1

if -, MATCHINGCOVERINGX(G,M(G),M’) then
1 return false

else
L M(G) c M’

RE c REMOVEEDGESFROMG(G,M(G))
return true

end

It is divided into three parts. First, it removes edges
from the bipartite graph. Second, it eventually com-
putes a new matching which covers XC. Third, it
deletes the edges which does not belongs to any match-
ing covering XC. The algorithm returns false if ER

Tractable Problems 365

contains a vital edge or if there does not exist a match-
ing which covers XC.

Now, let us compute its complexity. Let m be the
number of edges of G, and n be the number of ver-
tices. Let us suppose that we must remove Ic edges
from G (IERI = TG). The complexity of 1 is in O(k).
Step 2 involves, in the worst case, the computation of a
matching covering XC from a matching of cardinality
1 M - rCl. This computation has cost 0(&m) (see the-
orem 3 of (Hopcroft & Karp 1973)). The complexity
of step 3 is in O(m).
In the worst case, the edges of G can be deleted one by
one. Then the previous function will be called m times.
So the global complexity is in O(m2). If p = IXcl and
d is the maximum cardinality of domains of variables
of XC, then the complexity is in O(p2d2) for one con-
straint of difference.

An example :
1. There are five houses, each of a different color and
inhabited by men of different nationalities, with differ-
ents pets, drinks and cigarettes.
2. The Englishman lives in the red house.
3. The Spaniard owns a dog.
4. Coffee is drunk in the green house.
5. The Ukrainian drinks tea.
6. The green house is immediately to the right of the
ivoiry house.
7. The Old-Gold smoker owns snails.
8. Kools are being smoked in the yellow house.
9. Milk is drunk in the middle house.
10. The Norwegian lives in the first house on the left.
11. The Chesterfield smoker lives next to the fox
owner.
12. Kools are smoked in the house next to the house
where the horse is kept.
13. The Lucky-Strike smoker drinks orange juice.
14. The Japanese smokes Parliament.
15. The Norwegian lives next to the blue house.
The query is : Who drinks water and who owns the
zebra ?

This problem can be represented as a constraint net-
work involving 25 variables, one for each of the five
colors, drinks, nationalities, cigarettes and pets :

Cl red I31 coffee NI Englishman Tl Old-Gold AI dog
CZ. green I32 tea NZ Spaniard TZ Chesterfield A2 snails
C3 ivoiry I33 milk N3 Ukranian T3 Kools A3 fox
C4 yellow B4 orange N4 Norwegian T4 Lucky-Strike A4 horse
C5 blue Bg water N5 Japanese T5 Parliament A5 zebra

Each of the variables has domain values { 1,2,3,4,5},
each number corresponding to a house position (e.g.
assigning the value 2 to the variable horse means that
the horse owner lives in the second house) (Dechter
1990). The assertions 2 to 15 are translated into unary
and binary constraints. In addition, there are three

366 C.onstraint Satisfaction

ways of representing the first assertion which means
that the variables in the same cluster must take differ-
ent values :

1. A binary constraint is built between any pair of vari-
ables of the same cluster ensuring that they are not
assigned the same value. In this case we have a bi-
nary CSP.

2. Five 5-ary constraints of difference are built (one for
each of the clusters). And the CSP is not binary.

3. The five 5-ary constraints of difference are repre-
sented by their value graphs. The space complexity
of one constraint is in O(pd).

The first representation is generally used to solve
the problem (Dechter 1990; Bessiere & Cordier 1993).
From these three representations we can study the dif-
ferent results obtained from arc-consistency. They are
given in figures 4 and 5. The constraints corresponding
to the assertions 2 to 15 are represented in extension.
The constraints of difference among the variables of
each cluster are omitted for clarity.

For the first representation, the result of the filtering
by arc-consistency is given in figure 4.

Figure 4.

For the second representation, the filtering algorithm
employed is the generalized arc-consistency. Figure 5
shows the new results. It has pruned more values that
the previous one.

For the third representation, the filtering algorithm
employed is arc-consistency for the binary constraints
combined with the new filtering for the constraints of
difference. The obtained results are the same as with
the second method.

Let us denote by a the number of binary constraints
corresponding to the assertions 2 to 15, p the size of
a cluster, c the number of clusters, d the number of

12 fl EM 2” 1”

13 =

?!I 2’ 2”
4 4
5 5

14 =

2” 2” Tl 3 3
4 4
5 5

l5 l5 ” H
3
4
5

Figure 5.

values in a domain and O(ed2) the complexity for arc-
consistency2 in binary CSPs. Let us compute the com-
plexity for the three methods :
1. For the first representation, the number of binary

constraints of difference added is in O(cp2). So, the
filtering complexity is 0((a + cp2)d2).

2. In the second case, we can consider that the com-
plexity is the sum of the lengths of all admissible tu-
ples for the five 5-ary constraints. It is in 0(&p).

3. For the third method arc-consistency is in O(ud2)
and the filtering for the constraints of difference is
in O(cp2d2). The total complexity is in O(ucZ2) +
O(cp2d2). It is equivalent to the first one.

The second filtering eliminates more values than the
first one. But its complexity is higher. The represen-
tation and the algorithm proposed in this paper give
pruning results equivalent to the second approach with
the same complexity as the first one. So we can con-
clude that the new filtering is good for problems look-
ing like the zebra problem.

Conclusion
In this paper we have presented a filtering algorithm
for constraints of difference in CSPs. This algorithm
can be viewed as an efficient way of implementing the
generalized arc-consistency condition for a special type
of constraint : the constraints of difference. It allows us
to benefit from the pruning performance of the previ-
ous condition with a low complexity. In fact, its space
complexity is in O(pd) and its time complexity is in
O(p2d2) for one constraint defined on a subset of p
variables having domains of cardinality at most d. It
has been shown to be very efficient for the zebra prob-
lem. And it has been successfully used to solve the
subgraph isomorphism problem in the system RESYN
(Vismara et al. 1992)) a computer-aided design of com-
plex organic synthesis plan.

Acknowledgments
We would like to thank particularly Christian Bessiere
and also Marie-Catherine Vilarem, Tibor Kijkkny and
the anonymous reviewers for their comments which
helped improve this paper.

eferences
Alt, H.; Blum, N.; Melhorn, K.; and Paul, M. 1991.
Computing a maximum cardinality matching in a bi-
partite graph in time o(n1v5 Jm7iog;E>. Information
Processing Letters 37:237-240.
Berge, C. 1970. Graphe et Hypergraphes. Paris:
Dunod.
Bessiere, C., and Cordier, M. 1993. Arc-consistency
and arc-consistency again. In Proceedings AAAI, 10%
113.
Bessiere, C. 1994. Arc-consistency and arc-
consistency again. Artificial Intelligence 65(1):179-
190.
Dechter, R. 1990. Enhencement schemes for con-
straint processing : Backjumping, learning, and cut-
set decomposition. Artificial Intelligence 41:273-312.
Hopcroft, J., and Karp, R. 1973. n5i2 algorithm
for maximum matchings in bipartite graphs. SIAM
Journal of Computing 21225-231.
Lovasz, L., and Plummer, M. 1986. Matching Theory.
North Holland mathematics studies 121.
Mackworth, A. 1977. Consistency in networks of
relations. Artificial Intelligence 899-118.
Mohr, R., and Henderson, T. 1986. Arc and path
consistency revisited. Artificial Intelligence 28:225-
233.
Mohr, R., and Masini, G. 1988a. Good old discrete
relaxation. In Proceedings ECAI, 651-656.
Mohr, R., and Masini, G. 1988b. Running effi-
ciently arc consistency. Syntactic and Structural Pat-
tern Recognition F45:217-231.
Tarjan, R. 1972. Depth-first search and linear graph
algorithms. SIAM Journal of Computing 1:146-160.
Van Hentenryck, P.; Deville, Y.; and Teng, C. 1992.
A generic arc-consistency algorithm and its special-
izations. Artificial Intelligence 57:291-321.
Van Hentenryck, P. 1989. Constraint Satisfaction in
Logic Programming. M.I.T. Press.
Vismara, P.; Regin, J.-C.; Quinqueton, J.; Py, M.;
Laurenco, C.; and Lapied, L. 1992. RESYN : Un
systeme d’aide a la conception de plans de synthese en
chimie organique. In Proceedings 12th International
Conference Avignon’92, volume 1, 305-318. Avignon:
EC2.

2(Mohr & Masini 198813) reduce this complexity to
O(ed) for the binary alldifferent constraints

Tractable Problems 367

