Robust and Parallel Solving of a Network
Design Problem

Claude Le Pape, Laurent Perron, Jean-Charles Régin, and Paul Shaw

ILOG SA
9 rue de Verdun
F-94253 Gentilly Cedex

{clepape,lperron,jcregin,pshaw }@ilog.fr

Abstract. Industrial optimization applications must be “robust,” i.e.,
must provide good solutions to problem instances of different size and nu-
merical characteristics, and continue to work well when side constraints
are added. This paper presents a case study in which this requirement
and its consequences on the applicability of different optimization tech-
niques have been addressed. An extensive benchmark suite, built on real
network design data provided by France Telecom R&D, has been used
to test multiple algorithms for robustness against variations in problem
size, numerical characteristics, and side constraints. The experimental re-
sults illustrate the performance discrepancies that have occurred and how
some have been corrected. In the end, the results suggest that we shall
remain very humble when assessing the adequacy of a given algorithm
for a given problem, and that a new generation of public optimization
benchmark suites is needed for the academic community to attack the
issue of algorithm robustness as it is encountered in industrial settings.

1 Introduction

In the design and development of industrial optimization applications, one ma-
jor concern is that the optimization algorithm must be robust. By “robust,” we
mean not only that the algorithm must provide “good” solutions to problem
instances of different size and numerical characteristics, but also that the algo-
rithm must continue to work well when constraints are added or removed. This
expectation is heightened in constraint programming as the inherent flexibility
of constraint programming is often put forward as its main advantage over other
optimization techniques. Yet this requirement for robustness is rarely recognized
as the top priority when the application is designed. Similarly, the benchmark
problem suites that are used by the academic community generally do not reflect
this requirement. In practice, it has important effects on the reinforcement of
problem formulation, search management, the advantages of parallel search, the
applicability of different optimization techniques including hybrid combinations,
etc.

This paper presents a specific case study in which such questions have been

addressed.

An extensive benchmark suite, presented in Section 2, has been built on
the basis of real network design data provided by France Telecom R&D [?].
The suite includes three series of problem instances corresponding to different
characteristics of the numerical data. In each series, seven instances of different
size are provided. In addition, six potential side constraints are defined, leading
to 64 versions of each instance. The goal is to design an algorithm which provides
the best results on average when launched on each of the 3x7+x64 = 1344 instances
with a CPU time limit of 10 minutes. In practice, the differences between the 1344
instances make it hard to design an algorithm that performs well on all instances.
Notice that in the context of the current application, both the introduction
of new technologies and the evolution of network usage can have an impact
on problem size, numerical characteristics, and side constraints. It is believed
that an optimization technique which applies well to all of the 1344 problem
instances is more likely to remain applicable in the future than an optimization
technique which performs particularly well on some instances, but fails to provide
reasonable solutions on some others.

Three rounds of design, implementation, and experimentation have been per-
formed while the benchmark was in construction. The aim of the first round
(Section 3) was to select a few basic optimization techniques for the problem.
This round was focused on the easiest versions of rather small instances. This
enabled a detailed examination of the behavior of several algorithms and led
to a better understanding of the complex nature of the base problem. The sec-
ond round (Section 4) extended the study to middle-size instances with different
numeric characteristics and side constraints. We selected, improved, and com-
pared three basic algorithms, based on constraint programming, mixed integer
programming, and column generation. At the end of this round, the constraint
programming algorithm appeared as the most robust (which does not mean
that the other algorithms can no longer be improved). Finally, the third round
(Section 5) aimed at improving this algorithm. The algorithm which currently
performs best on the overall benchmark combines constraint programming and
local search.

2 The Network Design Benchmark

The benchmark problem consists in dimensioning the arcs of a telecommunica-
tions network, so that a number of commodities can be simultaneously routed
over the network without exceeding the chosen arc capacities. The capacity to
be installed on an arc must be chosen in a discrete set and the cost of each arc
depends on the chosen capacity. The objective is to minimize the total cost of
the network.

In practice, two main variants of the problem can be considered. In the
“mono-routing” variant, each commodity must be routed along a unique path,
while in the “multi-flow” variant, each commodity can be split and routed along
many paths. We have focused on the mono-routing variant which has been less
studied in the literature. Rothlauf, Goldberg, and Heinzl [?] have worked on a

similar problem (data from Deutsche Telekom) but require the resulting net-
work to be a tree, which makes mono-routing equivalent to multi-flow. Gabrel,
Knippel, and Minoux [?] have developed an exact method for network design
problems with a discrete set of possible arc capacities and multi-flow routing. To
our knowledge, these studies are the closest to the one we report in this paper.

Given are a set of n nodes and a set of m arcs (4, j) between these nodes. A
set of d demands (commodities) is also defined. Each demand associates to a pair
of nodes (p, ¢) an integer quantity Dem,, of flow to be routed along a unique
path from p to ¢. In principle, there could be several demands for the same pair
(p,q), in which case each demand can be routed along a different path. Yet, to
condense notation and keep the problem description easy to read, we will use a
triple (p, ¢, Demyg) to represent such a demand.

For each arc (7, j), K;; possible capacities Capat., 1 < k < K;j;, are given, to

Z] bl
which we add the null capacity C’apa” = 0. One and only one of these K;; + 1
capacities must be chosen. However, 1t 1s permitted to multiply this capacity by
an integer between a given mlmmal value Wmm and a given maximal value
Wmax . Hence, the problem consists in selectmg for each arc (7,) a capacity

C'apal and an integer coefficient w n [Wmin¥, Wmaz? ;]. The choices made

i
for the arcs (4, j) and (j,) are hnked If capacity JC'apa is retamed for arc (1, §)
with a non-null coefficient w”, then capac1ty C'apa must be retained for arc
(4,4) with the same coefficient wﬂ and the overall cost for both (4, j) and
(4,4) is w ok C’ostk

Six classes of s1de constraints are defined. Each of them is optional, leading
to 64 variants of each problem instance, identified by a six-bits vector. For ex-
ample, “011000” indicates that only the second constraint nomult and the third
constraint symdem, as defined below, are active.

zy’

— The security (sec) constraint states that some demands must be secured.
For each node i, an indicator Risk; states whether the node is considered
“risky” or “secured.” Similarly, for each arc (4, j) and each k,1 < k < Kj;, an
indicator Riskfj states whether the arc (4, j) in configuration k is considered
risky or secured. When a demand must be secured, it is forbidden to route
this demand through a node or an arc which is not secured.

— The no capacity multiplier (nomult) constraint forbids the use of capacity
multipliers. For each arc (4, j), two cases must be considered if there 1s a k
with Wmm > 1, the choice of C'apa with multlpher w Wmm is
imposed; othervvlse, the choice of C’apa”» is free, but wij < 1 is 1mposed.

— The symmetric routing of symmetric demands (symdem) constraint states
that for each demand from p to ¢, if there exists a demand from ¢ to p,
then the paths used to route these demands must be symmetric. (Similarly,
if there are several demands between the same nodes p and ¢, these demands
must be routed on the same path.) In practice, this constraint reduces (in
most cases divides by 2) the number of routes to be constructed for the given
demands.

— The maximal number of bounds (bmaz) constraint associates to each demand
(p, g, Demypg) a limit Bmaa,, on the number of bounds (also called “hops”)
used to route the demand, i.e., on the number of arcs in the path followed
by the demand. In particular, if Bmax,, = 1, the demand must be routed
directly on the arc (p, ¢).

— The maximal number of ports (pmaz) constraint associates to each node i a
maximal number of incoming ports Pin; and a maximal number of outgoing
ports Pout;. For each node ¢, the constraint imposes ijk wfj < Pout; and
Dok wfl» < Pin;.

— The maximal traffic (tmaz) constraint associates to each node ¢ a limit
Tmazx; on the total traffic managed by i. This includes the traffic that starts
from i (3_,; Demig), the traffic that ends at ¢ (3_,.; Demy;), and the traf-
fic that goes through ¢ (the sum of the demands Demyq, p # 4, ¢ # ¢, for
which the chosen path goes through). Notice that it is possible to trans-
form this constraint into a limit on the traffic that enters ¢ (which must be
smaller than or equal to T'max; — Zq;ﬂ Dem;q) or, equivalently, into a limit
on the traffic that leaves from ¢ (which must be smaller than or equal to
Tmaz; — Zp;ﬂ Demy;).

Twenty-one data files, organized in three series, are available. Each data file
is identified by its series (A, B, or C) and an integer which indicates the number
of nodes of the considered network. Series A includes the smallest instances, from
4 to 10 nodes. The optimal solutions to the 64 variants of A04, A05, A06, and
A07, are known. At this point, proved optimal solutions are available for only
44 variants of A08, one variant of A09, and one variant of A10. Series B and C
include larger instances with 10, 11, 12, 15, 16, 20, and 25 nodes. Proved optimal
solutions are available only for 12 variants of C10. The instances of series B have
more choices of capacities than the instances of series A, which have more choices
of capacities than the instances of series C. So, in practice, instances of series B
tend to be harder because the search space is larger, while instances of series C
tend to be harder because each mistake has a higher relative cost.

3 Application of Multiple Optimization Techniques to
the Base Problem

In the first round, five algorithms were developed and tested on the simplest in-
stances of the problem: series A with only the nomult and symdem constraints
active. Focusing on simple instances enabled us to compute the optimal solu-
tions of these instances and trace the behavior of algorithms on the base problem,
without noise due to side constraints. The drawback is that focusing on simple
instances does not allow for the anticipation of the effect of side constraints. The
same remark holds for problem size: it is easier to understand what algorithmi-
cally happens on small problems, but some algorithmic behaviors show up on
large problems which are not observable on smaller problems. Five algorithms
were tested:

— CP: a “pure” constraint programming algorithm developed by France Télécom
R&D.

— CP-PATH: an hybrid algorithm using ILOG Solver[?] which combines clas-
sical constraint programming with a shortest path algorithm.

— MIP: the CPLEX][?] mixed integer programming algorithm, with the em-
phasis on finding feasible solutions, applied to a natural MIP formulation of
the problem.

— CG: a column generation algorithm, which consists in progressively generat-
ing possible paths for each demand and possible capacities for each arc. At
each iteration, a linear programming solver is used to select paths and capac-
ities and guide the generation of new paths and new capacities. In addition,
a mixed integer version of the linear program is regularly used to generate
legal solutions.

— GA: an ad-hoc genetic algorithm.

Attempts to use local search to improve the solutions found by the CP-PATH
algorithm were also made, with two distinct neighborhoods: (1) reroute one
demand, (2) decrease the capacity of an arc, allow the capacity of another arc to
increase, reroute all demands with CP-PATH. In practice, these combinations
of CP-PATH and local search did not provide better solutions than CP-PATH
alone.

Optimal solutions were found using the CPLEX algorithm, version 7.5, with
no CPU time limit. For the A10 instance, however, the CPLEX team at ILOG
suggested a different parameterization of the CPLEX MIP (emphasis on op-
timality, strong branching) which resulted in many less nodes being explored.
With this parameterization, the first integer solution was found in more than
three hours, far above the time limit of 10 minutes. The optimal solution was
found in more than six days. Further work, with intermediate (beta) versions of
CPLEX, showed that this could be reduced to a few hours. Yet at this point we
do not believe the problem can be exactly solved in 10 minutes or less.

Table 1 provides, for each instance, the optimal solution and the value of
the best solution found by each algorithm within the CPU time limit. The last
column provides the mean relative error (MRE) of each algorithm: for each
algorithm, we compute for each instance the relative distance (¢ — 0)/o between
the cost ¢ of the proposed solution and the optimal cost o, and report the average
value of (¢ — 0)/o over the 7 instances.

A04 | A05 | A06 | A07 | A0O8 | A09 | Al0 ||MRE
Optimum |[22267[30744(37716({47728|56576|70885| 82306
CP 22267[30744|37716]/49812|74127|97386(104316(|14.2%
CP-PATH||22267|30744(37716({47728|56576|70885| 83446 || 0.2%
MIP 22267[30744]|37716[47728]56576(73180| 99438 [| 3.4%
cG 22267[30744]|37716[47728]57185(72133| 87148 [[1.2%
GA 22267[30744]|37716]48716]60631[75527| 88650 || 3.4%

Table 1. Initial results on series A, parameter 011000

4 Extensions and Tests with Side Constraints

In the second round, the study was extended to the mid-size instances (10 to 12
nodes) and, most importantly, to the six side constraints. We decided to focus
mostly on three algorithms, CP-PATH, CG, and MIP. Indeed, given the previous
results, CP-PATH and CG appeared as the most promising. The MIP algorithm
was a priori less promising, but different ideas for improving it had emerged
during the first round, and it had also provided us with optimal solutions, al-
though with much longer CPU time. This section describes the main difficulties
we encountered in extending these algorithms to the six side constraints of the
benchmark.

4.1 Column Generation

The six side constraints are integrated in very different ways within the column
generation algorithm:

— The symdem constraint halves the number of routes that need to be built.
Therefore, the presence of this constraint simplifies the problem.

— The bmax constraint is directly integrated in the column generation sub-
problem. For each demand Demy,, only paths with at most Bmax,, arcs
must be considered.

— Similarly, the nomult constraint is used to limit the number of capacity levels
to consider for each arc.

— The pmaxz and tmaz constraints are directly integrated in the master lin-
ear program. They cause no particular difficulty for the column generation
method per se, but make it harder to generate integer solutions.

— The sec constraint is the hardest to integrate. Constraints linking the choice
of a path for a given demand and the choice of a capacity level for a given arc
can be added to the master linear program when the relevant columns are
added. But, before that, the impact of these constraints on the significance
of a path cannot be evaluated, which means that many paths which are
not really interesting can be generated. This slows down the overall column
generation process. Also, just as for pmaxz and tmax, the addition of the sec
constraint makes integer solutions harder to generate.

The first results were very bad. In most cases, no solution was obtained
within the 10 minutes. This was improved by calling the mixed integer version
of the master linear program at each iteration, each time with a CPU time limit
evolving quadratically with the number of performed iterations. This enabled
the generation of more solutions, but sometimes resulted in a degradation of the
quality of the generated solutions (MRE of 2.1% in place of 1.2% for the seven
instances used in the first round). Also, the current version of the algorithm is
still unable to find a solution to A10 with parameter “100011” in less than 10
minutes. This is precisely the parameter for which the sec, pmaz, and tmax
constraints are active, while the nomult, symdem, and bmax constraints, which

tend to help column generation, are not active. Over B10, B11, B12, C10, C11
and C12, 128 such failures occur. The pmaz constraint is active in 126 of these
cases. In the others, both sec and tmax are active.

4.2 Mixed Integer Programming

Various difficulties emerged with the first tests of the MIP algorithm. First,
no solution was found in 10 minutes on A10 with parameters “010111” and
“110111,” i.e., when nomult, bmaz, pmaz, and tmax are active, and symdem
(which divides the problem size by 2) is not. On the A series, the results also
show a degradation of performance when bmaxz and tmax are active.
Numerous attemps were made to improve the situation. First, we tried to
add “cuts,” i.e., redundant constraints that might help the MIP algorithm:

— For each demand and each node, at most one arc entering (or leaving) the
node can be used.

— For each node, the sum of the capacities of the arcs entering (or leaving)
the node must be greater than or equal to the sum of the demands arriving
at (or starting from) the node plus the sum of the demands traversing the
node.

— For each demand and each arc, the routing of the demand through the arc
excludes, for this arc, the capacity levels strictly inferior to the demand.

In general, these cuts resulted in an improvement of the lower bounds, but did
not allow the generation of better solutions within the time limit of 10 minutes.
We eventually removed them.

A cumulative formulation of arc capacity levels was also tested. Rather than
using a 0-1 variable y* for each level k, this formulation uses a 0-1 variable 6% to
represent the decision to go from a capacity level to the next, i.e., §¥ = y*+1 —¢/*.
As for the cuts, the main effect of this change was an improvement of lower
bounds.

We also tried to program a search strategy inspired by the one used in the
CP-PATH algorithm. This allowed the program to generate solutions more often
in less than 10 minutes, but the solutions were of a poor quality.

Hence, the results are globally not satisfactory. However, the MIP algorithm
sometimes finds better solutions than the CP-PATH algorithm. For example, on
C11, there are only 31 variants out of 64 on which the MIP algorithm (with the
cumulative formulation) generates solutions in 10 minutes, but out of these 31
variants, there are 18 for which the solution is better than the solution obtained
by CP-PATH. It might be worthwhile applying both algorithms and keeping the
best overall solution.

4.3 Constraint Programming with Shortest Paths

A Graph Extension to Constraint Programming To simplify the imple-
mentation, we basically introduced a new type of variable representing a path

from a given node p to a given node ¢ of a graph. More precisely, a path is
represented by two set variables, representing the set of nodes and the set of
arcs of the path, and constraints between these two variables.

— If an arc belongs to the path, its two extremities belong to the path.

— One and only one arc leaving p must belong to the path.

— One and only one arc entering ¢ must belong to the path.

— If a node 4, i # p,i # q, belongs to the path, then one and only one arc
entering ¢ and one and only one arc leaving ¢ must belong to the path.

Several global constraints have been implemented on such path variables to
determine nodes and arcs that must belong to a given path (i.e., for connexity
reasons), to eliminate nodes and arcs that cannot belong to a given path, and
to relate the path variables to other variables of the problem, representing the
capacities and security levels of each arc.

Solving the Network Design Problem with Graph Library At each step
of the CP-PATH algorithm, we chose an uninstantiated path for which the de-
mand Dem,, was greatest. We then determined the shortest path to route this
demand (to this end, we solved a constrained shortest path problem). A choice
point was then created. In the left branch, we constrained the demand to go
through the last uninstantiated arc of this shortest path. In case of backtrack,
we disallowed this same arc for this demand. Once a demand was completely
instantiated, we switched to the next one. A new solution was obtained when all
demands were routed. The optimization process then continued in Discrepancy-
Bounded Depth-First Search (DBDFS[?]) with a new upper-bound on the ob-
jective.
First experiments exhibited the following difficulties:

1. Performances deteriorated when the ¢max constraint was active.

2. For 3 sets of parameters on the A10 instance, the algorithm was unable to
find a feasible solution in less than 10 minutes. In fact, it turned out that
the combination of the maximal number of ports constraint (pmaz) and the
maximal traffic constraint (¢/max) made the problem quite difficult.

3. Bad results on B10 stemmed from a quite asymmetric traffic. For instance,
between the first two nodes of the B10 instance, the traffic was equal to 186
in one direction and 14 in the other.

4. Performance was unsatisfactory in the presence of the maximal number of
bounds constraint (bmaz).

Several modifications of the program were thus made necessary. First, a
“scalar product”-like constraint was implemented. This constraint directly links
the traffic at each node with the paths used for the routing. This constraint
propagates directly from the variable representing the traffic at each node to
the variables representing the demands, and vice-versa, without the intermedi-
ate use of the traffic on each arc. This allowed more constraint propagation to

take place and solved difficulties (1) and (2), even though the combination of
the pmaz and tmax constraints remains “difficult.”

The third difficulty (3) was partly resolved by modifying the order in which
the various demands are routed. In the initial algorithm, the biggest demand
was routed first. Given a network with 6 nodes and the demands Demg; = 1800,
Demyg = 950, Demss = 1000, Demss = 1000, Demys = 1900 and Demsy = 50,

the previous heuristic behaved as follows:

— In the case of symmetrical routing, (symdem = true), the demands are
routed in the following order: Demg; and Demag, then Demss and Demsgs,
then Demys and Demsy .

— In the case of nonsymmetrical routing, (symdem = false), the order is
Dem45, Dem01, Deng, D6m32, Demlo, Dem54.

In the case of symmetrical routing, it is a pity to wait so long before routing
Demys, since a large capacity will be needed to route this demand.

Likewise, in the case of nonsymmetrical routing, we can wonder if it would be
worthwhile to route Demyy before Demsys and Demgs, given that their routing
has surely created a path which is probably more advantageous to use (in the
other direction for Demyg than for Demss and Demga).

The heuristic was therefore modified:

— In the case of symmetrical routing, the weight of each demand is the sum of
twice the biggest demand plus the smallest demand. The demands are then
ordered by decreasing weight. This results in the following order: Demg;, and
Demyg, then Demys and Demsy, and finally Demss and Demsgs.

— In the case of nonsymmetrical routing, the weight of each demand is the sum
of twice the considered demand plus the reverse demand. This results in the
following order: Demgy, Demas, Demyg, Demas, Demss, Demsa.

The average gain of the various sets of parameters on the B10 instance is 3%.
On the C instances, however, this change deteriorated performances by roughly
1%. The new heuristic was therefore kept, although it was not a complete answer
to the previous problem.

The last difficulty was solved by strengthening constraint propagation on the
length of each path. The following algorithm was used in order to identify the
nodes and the arcs through which a demand from p to ¢ needs to be routed:

— We use the Ford algorithm (as described in [?]) to identify the shortest
admissible path between p and each node of the graph, and between each
node of the graph and g¢.

— We use this information to eliminate nodes through which no demand can
pass and that have a path of length less than Bmax,, arcs.

— We use the path lengths computed in this way to mark nodes such that a
demand can be routed around by a path of length less than Bmaz,, arcs.

— We use the Ford algorithm again on each unmarked node to determine if
there exists a path from p to ¢ with less than Bmax,, arcs not going through
the node.

Using this algorithm was finally worthwhile, although its worst case complex-
ity is O(nmBmaw,,), O(n?). The most spectacular improvement was of 1.73%
on the 64 variations of the B12 problem, meaning an improvement of 3.46% on
the 32 variations where bmax is active. On average, this modification also im-
proved the results on the C series. Nevertheless, on the C12 problem, the results
were worse by a factor of 0.4%.

4.4 Experimental Results

Tables 2 and 3 summarize the results on series A and on the instances with 10, 11,
and 12 nodes of series B and C. There are four lines per algorithm. The “Proofs”
line indicates the number of parameter values for which the algorithm found the
optimal solution and made the proof of optimality. The “Best” line indicates
the number of parameter values for which the algorithm found the best solution
known to date. The “Sum” line provides the sum of the costs of the solutions
found for the 64 values of the parameter. A “Fail” in this line signifies that for
f values of the parameter; the algorithm was not able to generate any solution
within the 10 minutes. The number of failures f is denoted within parentheses.
Finally, the “MRE” line provides the mean relative error between the solutions
found by the algorithm and the best solutions known to date. Notice that the
MRE is given relative to the best solutions known to date, found either by one
of the four algorithms in the table or by other algorithms, in some cases with
more CPU time. These reference solutions may not be optimal, so all the four
algorithms might in fact be farther from the optimal solutions. Note also that
each algorithm is the result of a few modifications of the algorithm initially
applied to the instances of series A with parameter “011000.” Similar efforts
have been made for each of them. Yet it is obvious that further work on each of
them might lead to further improvements.

The differences with the results of Section 3 are worth noticing: a large degra-
dation of performance with the introduction of side constraints and with an
increase in problem size; and important variations with the numerical charac-
teristics of the problem as shown by the differences between A10, B10, and C10.

Algorithm A04 A05 A06 AO07 A08 A09 Al0 Total
CP-PATHS Proofs 64 64 64 33 7 o o 232
Best 64 64 64 62 43 23 25 345

Sum |[1782558|2351778 (2708264 (3290940(|4076785|5027246 5934297 |(25171868
MRE || 0.00% | 0.00% | 0.00% | 0.01% | 0.69% | 1.25% | 1.57% 0.50%
MIP Proofs 64 64 64 27 T 0 0 220
Best 64 64 64 27 13 2 0 234
Sum ||1782558|2351778 (2708264 (3318572(|4219647 |5640421 | Fail (2) || Fail (2)
MRE || 0.00% | 0.00% | 0.00% | 0.88% | 4.20% |13.62% |33.11% || 7.29%
CUMULATIVE MIP||[Proofs 64 64 64 7 0 0 0 199
Best 64 64 64 31 4 0 0 227

Sum ||1782558|2351778 (2708264 (3337284|4417611 5934187 | Fail (3) || Fail (3)
MRE || 0.00% | 0.00% | 0.00% | 1.42% | 9.06% |19.44% | 29.02% || 8.28%
CG Proofs 64 64 36 20 0 0 0 184
Best 64 64 64 45 12 2 1 252
Sum ||1782558|2351778 (2708264 (3310007 4263830 (5621264 | Fail (1) || Fail (1)
MRE || 0.00% | 0.00% | 0.00% | 0.60% | 5.11% |12.85% | 22.09% || 5.77%

Table 2. Solutions found in 10 minutes, series A, for 64 parameter values

Algorithm B10 B1l1 B12 C10 C11 C12

CP-PATH Proofs [§] [§] [§] 10 [§] [§]
Best 4 1 2 20 o o
Sum 1626006 | 3080608 | 2571936 || 1110966 | 2008833 | 2825499
MRE 7.96% 10.67% 8.71% 5.77% 11.60% 14.95%

MIP Proofs o o o o o o
Best 3 6 1

6 0 0
Sum ||Fail (16)|Fail (20)|Fail (39)||Fail (10)|Fail (24)|Fail (63)
MRE 23.68% 22.28% 19.24% 12.82% 51.20% 17.42%
CUMULATIVE MIP||Proofs 0 0 0 0 0 0
Best 3 1 0 1 1 0
Sum ||Fail (14)|Fail (26)|Fail (29)||Fail (15)|Fail (33)|Fail (42)

MRE 14.16% 14.05% 20.27% 10.92% 12.83% 26.61%
cG Proofs 0 0 0 0 0 0
Best 0 0 0 1 0 1
Sum ||Fail (26)|Fail (24)|Fail (19)||Fail (32)|Fail (10)|Fail (17)
MRE 27.27% 35.49% 47.67% 28.75% 79.42% 27.49%

Table 3. Solutions found in 10 minutes, series B and C, for 64 parameter values

5 Scaling

The results of the second stage have shown that the constraint programming
algorithm which calculates the shortest paths is the strongest. As already men-
tioned, it 1s obvious that all algorithms can be improved. Yet we decided to focus
mostly on improving the CP-PATH algorithm.

5.1 Analysis of Previous Results

Two important elements were acknowledged. First, an analysis of the explored
search trees showed that during the search almost all the improving solutions
(especially in the B series) questioned one of the first routing decisions that
had been taken in order to build the previous solution. This suggested, on the
one hand, the construction of a parallel search on a multiprocessor, and, on
the other hand, the questioning of the decisions made in the upper part of the
tree first. Besides, an analysis of the first found solution demonstrated that
the algorithm had a tendency to build networks having a large number of low-
capacity arcs. This turned out to be quite unfortunate as better solutions could
be constructed quite easily from them using a smaller number of arcs, but with
greater capacities. In the case of bigger instances with homogeneous demands,
such mistakes were common and took quite some time to be corrected as the
absence of big demands does not help the propagation of the constraints involved
in this benchmark. This suggested a postoptimization phase implemented using
local search. This was the most natural way of correcting these mistakes as it
was lightweight both in term of code and performances. Any other tentative
correction of these mistakes through the modification of the heuristics resulted
in deteriorated overall quality as specializing the heuristic for one particular
instance of the problem had the tendency to make it less robust on the average.

5.2 Extending and Refining the Previous Framework

Exploiting Parallel Computing ILOG Parallel Solver is a parallel extension
of ILOG Solver [?]. It was first described in [?]. Tt implements or-parallelism

on shared memory multi-processor computers. ILOG Parallel Solver provides
services to share a single search tree among workers, ensuring that no worker
starves when there are still parts of the search tree to explore and that each
worker 1s synchronized at the end of the search.

First experiments with ILOG Parallel Solver were actually performed dur-
ing the first and second round. These experiments are described in [?] and [?].
Switching from the sequential version to the parallel version required a minimal
code change of a few lines, and so we were immediately able to experiment with
parallel methods.

It should also be noted that the parallel version uses four times more pro-
cessing power than the sequential on the machine we used.

Changing the Search Tree Traversal CP-PATH uses the DBDFS[?] search
procedure to explore the search tree. As described in [?], open nodes of the search
tree are evaluated and stored in a priority queue according to their evaluation.
The DBDFS strategy evaluates nodes by counting the number of right moves
from the root of the search tree to the current position in the search tree. Two
variations have been implemented to change this evaluation and to add weights
to discrepancies (cf. [?]). Both variations rely on the depth of the search tree.
The first one tries a fixed weight schema, while the second adapts the weight
mechanism to focus even more on the top of the search tree in case of a deep
search tree.

Adding Local Search The analysis of the second round suggested that the
search procedure should be split in three. The first part consists of a search for
a feasible solution where the search would be penalized if it took the decision to
open a new arc (by doubling the cost of the arc).

The second phase consists of a postoptimization of this first solution based
on local search. This local search phase 1s implemented on top of the ILOG
Solver Local Search framework[?,?]. This framework is built upon the essential
principles of local search: those of a current solution, a neighborhood structure,
ways of exploring this neighborhood structure, move acceptance criteria, and
metaheuristics. Each of these concepts translates into one or more Solver ob-
jects which can be naturally instantiated for the problem at hand. Like ILOG
Solver’s other fundamental objects such as constraints and goals, new local search
objects, such as neighborhoods, can be defined or refined by users, resulting in
a close match between the solving methods and the problem structure. Impor-
tantly, local moves are made in ILOG Solver by the application of search goals,
in the same manner as for complete search. This facilitates combinations of local
and tree-based search, which is in fact what we used here.

In our case we created a neighborhood which had as neighbors the removal
of each arc from the graph. Such a destructive move requires some rerouting to
maintain feasibility of the solution. As local and tree-based search mechanisms
can be combined in Solver, at each such move we used traditional tree-based

search to reroute paths in order to attempt to maintain feasibility. The neigh-
borhood and tree searches are naturally combined in the same search goal.

The local search process we employed was entirely greedy. At each stage, we
removed the arc from the graph which decreased the cost by the greatest amount
(after rerouting), stopping when there was no arc we could remove without being
able to legally reroute the traffic.

This whole mechanism was coded in less than fifty lines of code.

The last phase would then be the original optimization tree-based search,
but with an improved upper bound.

5.3 Results

Table 4 gives the results of the four new algorithms, compared to CP-PATH, on
the instances of size 10, 11, and 12 of the B and C series. It also provides the
results of CP-PATH + LS executed in parallel with four processors. Globally,
the best improvement comes from parallelism, closely followed by local search.
The two search procedures (variations 1 and 2) which were promising on eight
variants of the problems as described in [?] turned out to be not robust enough.
They improved the results on the B series but worsened them on the C series.

Algorithm B10 Bl1 B12 C10 C11 C12
CP-PATH Best 4 1 2 20 o o
Sum |1626006|3080608|2571936(|1110966|2008833 (2825499
MRE| 7.96% 10.67% | 8.71% 5.77% 11.60% | 14.95%
CP-PATH Parallel Best 6 1 1 36 [§] [§]
Sum |1597793|3009386|2548122||1084577|2002557 (2794864
MRE| 5.98% 8.00% 7.73% 3.28% 11.13% | 13.65%
CP-PATH + Variation 1(|Best 1 o 4 10 o o
Sum |1608752|3015921|2563522(|1133098|2024920(2862054
MRE| 6.80% 8.28% 8.32% 7.80% 12.43% | 16.42%
CP-PATH + Variation 2(|Best 2 2 3 10 o o
Sum |1601555|3018046(2547425(|1123779|2034917 (2838541
MRE| 6.27% 8.32% 7.66% 6.87% 12.99% | 15.44%
CP-PATH + LS Best 4 3 2 20 [§] [§]
Sum |1610770|3023086|2555469(|1110966|2003101 (2801849
MRE| 6.91% 8.39% 7.81% 5.77% 11.30% | 13.97%
CP-PATH + LS Parallel [|Best 4 4 [§] 34 [§] [§]
Sum |1592778|2967717|2535516||1085266|2005714 (2777129
MRE| 5.55% 6.53% 7.12% 3.36% 11.29% | 12.91%

Table 4. Solutions found in 10 minutes, series B and C, for 64 parameters values

We applied the CP-PATH + LS algorithm to the A series and the results were
exactly identical to those of CP-PATH, :.e., local search brought no improvement
on this series. We also applied CP-PATH and CP-PATH + LS on the larger
instances with 15 to 25 nodes. The MRE ranges from 6.24% (on C16) to 38.03%
(on B25) for CP-PATH and from 2.71% (on B15) to 7.63% (on C25) for CP-
PATH + LS. We believe that these figures underestimate the deviation from
the optimal solutions as fewer algorithms provided reasonably good solutions on
the larger instances. It is interesting to notice that local search had a significant
impact mostly on series B, when the number of possible capacity levels for each
arc 1s the highest.

Blo | Bil | B12 [Ci0 | ©11 Ci2

sec = 0 5.52%|10.50%9.45%]|2.04% |10.59% | 14.94%
sec =1 5.58%| 2.57% [4.81%(|4.67%[12.20%[10.88%
nomult = 0 ||6.75%| 8.91% |8.13%||3.26% |11.97%|13.54%
nomult = 1 [[4.35%] 4.16% [6.12%|[3.45% [10.61%[12.20%
symdem = 0||7.72%| 7.91% |9.56%||4.74% |12.23%|12.50%
symdem = 1[[3.38%| 5.16% [4.67%|[1.97% [10.35%[13.32%
bmax = 0 5.38%| 6.23% |6.36%](3.67% |10.71%|15.76%
5.72%| 6.84% [7.86%|2.84%|11.87%|10.06%
5.86%| 7.48% |6.65%](|6.69% |12.79%|12.85%
5.21%| 5.59% [7.60%[0.03%| 9.79% [12.97%

bmax
pmax
pmax
tmax = 0 4.14% [6.87% [7.48%([2.32% | 7.22% [13.03%
tmax = 1 6.95%| 6.20% [6.76%[[4.40% [15.36%[12.80%

1
= o|r

Table 5. Effect of each constraint on the MRE

Table b shows the effect of the presence of each constraint on the results. For
each optional constraint, it provides the MRE obtained with CP-PATH + LS
in Parallel when the constraint is inactive (parameter set to 0) and when the
parameter is active (parameter set to 1). Hence, each percentage in the table is
the average of 32 numbers. Once again, these figures should be taken with care
as the MRE is computed with respect to best known solutions. However, when
the MRE is significantly greater when a parameter is set to 1 than when it is
set to 0, 1t indicates that the performance of the algorithm is affected by the
presence of the constraint. This occurs with tmaz on B10, C10 and C11, and to
a lesser extent with sec. On the other hand, nomult and symdem tend to make
the problem easier to solve.

6 Conclusion

In this paper, we have presented a case study based on a benchmark aimed
at evaluating and improving the robustness of algorithms. The results do not
suggest that we have found the ultimate algorithm for this benchmark. On the
contrary, we believe that all the algorithms we tried can still be improved, and
that there are many other algorithms to design and test on this benchmark.

Our aim in this paper was to show the type of performance discrepancies
that can occur when industrial optimization applications are developed and
some types of corrections that can be applied: (1) put more or less emphasis
on the generation of admissible solutions; (2) strengthen problem formulation;
(3) strengthen constraint propagation; (4) adapt variable selection heuristics to
symmetries or asymmetries in the problem; (5) use or-parallelism; (6) adapt the
tree search traversal strategy to the characteristics of the problem; (7) use local
search to improve the first solution(s) found by a tree search algorithm.

One of the most important aspects of this study has been the ability to
implement and test such corrections with minimal development effort.

The results, and our everyday industrial practice, compel us to be modest
when stating that an algorithm is appropriate for a given problem. The dif-
ferences between our initial results on A10 and the results obtained even on
instances of the same size like B10 and C10 show that we ought to be cautious.

As mentioned, the benchmark suite we used is public. We believe other bench-
mark suites of a similar kind are needed for the academic community to attack
the issue of algorithm robustness as it is encountered in industrial settings, where
data are neither random nor uniform and where the presence of side constraints
can necessitate significant adaptations of the basic models and problem-solving
techniques found in the literature.

7 Acknowledgments

This work has been partially financed by the French MENRT, as part of RNRT
project ROCOCO. We wish to thank our partners in this project, particu-
larly Jacques Chambon and Raphaél Bernhard from France Télécom R&D, Do-
minique Barth from the PRiSM laboratory, and Claude Lemaréchal from INRIA
Rhone-Alpes. The very first CP program was developed by Olivier Schmeltzer,
the very first CG program by Alain Chabrier, and the very first MIP program by
Philippe Réfalo. We thank Alain and Philippe and the CPLEX team for many
enlightening discussions over the course of the ROCOCO project.

