
Robust and Parallel Solving of a NetworkDesign ProblemClaude Le Pape, Laurent Perron, Jean-Charles R�egin, and Paul ShawILOG SA9 rue de VerdunF-94253 Gentilly Cedexfclepape,lperron,jcregin,pshawg@ilog.frAbstract. Industrial optimization applications must be \robust," i.e.,must provide good solutions to problem instances of di�erent size and nu-merical characteristics, and continue to work well when side constraintsare added. This paper presents a case study in which this requirementand its consequences on the applicability of di�erent optimization tech-niques have been addressed. An extensive benchmark suite, built on realnetwork design data provided by France Telecom R&D, has been usedto test multiple algorithms for robustness against variations in problemsize, numerical characteristics, and side constraints. The experimental re-sults illustrate the performance discrepancies that have occurred and howsome have been corrected. In the end, the results suggest that we shallremain very humble when assessing the adequacy of a given algorithmfor a given problem, and that a new generation of public optimizationbenchmark suites is needed for the academic community to attack theissue of algorithm robustness as it is encountered in industrial settings.1 IntroductionIn the design and development of industrial optimization applications, one ma-jor concern is that the optimization algorithm must be robust. By \robust," wemean not only that the algorithm must provide \good" solutions to probleminstances of di�erent size and numerical characteristics, but also that the algo-rithm must continue to work well when constraints are added or removed. Thisexpectation is heightened in constraint programming as the inherent 
exibilityof constraint programming is often put forward as its main advantage over otheroptimization techniques. Yet this requirement for robustness is rarely recognizedas the top priority when the application is designed. Similarly, the benchmarkproblem suites that are used by the academic community generally do not re
ectthis requirement. In practice, it has important e�ects on the reinforcement ofproblem formulation, search management, the advantages of parallel search, theapplicability of di�erent optimization techniques including hybrid combinations,etc.This paper presents a speci�c case study in which such questions have beenaddressed.



An extensive benchmark suite, presented in Section 2, has been built onthe basis of real network design data provided by France Telecom R&D [?].The suite includes three series of problem instances corresponding to di�erentcharacteristics of the numerical data. In each series, seven instances of di�erentsize are provided. In addition, six potential side constraints are de�ned, leadingto 64 versions of each instance. The goal is to design an algorithmwhich providesthe best results on average when launched on each of the 3�7�64 = 1344 instanceswith a CPU time limit of 10 minutes. In practice, the di�erences between the 1344instances make it hard to design an algorithm that performs well on all instances.Notice that in the context of the current application, both the introductionof new technologies and the evolution of network usage can have an impacton problem size, numerical characteristics, and side constraints. It is believedthat an optimization technique which applies well to all of the 1344 probleminstances is more likely to remain applicable in the future than an optimizationtechnique which performs particularly well on some instances, but fails to providereasonable solutions on some others.Three rounds of design, implementation, and experimentation have been per-formed while the benchmark was in construction. The aim of the �rst round(Section 3) was to select a few basic optimization techniques for the problem.This round was focused on the easiest versions of rather small instances. Thisenabled a detailed examination of the behavior of several algorithms and ledto a better understanding of the complex nature of the base problem. The sec-ond round (Section 4) extended the study to middle-size instances with di�erentnumeric characteristics and side constraints. We selected, improved, and com-pared three basic algorithms, based on constraint programming, mixed integerprogramming, and column generation. At the end of this round, the constraintprogramming algorithm appeared as the most robust (which does not meanthat the other algorithms can no longer be improved). Finally, the third round(Section 5) aimed at improving this algorithm. The algorithm which currentlyperforms best on the overall benchmark combines constraint programming andlocal search.2 The Network Design BenchmarkThe benchmark problem consists in dimensioning the arcs of a telecommunica-tions network, so that a number of commodities can be simultaneously routedover the network without exceeding the chosen arc capacities. The capacity tobe installed on an arc must be chosen in a discrete set and the cost of each arcdepends on the chosen capacity. The objective is to minimize the total cost ofthe network.In practice, two main variants of the problem can be considered. In the\mono-routing" variant, each commodity must be routed along a unique path,while in the \multi-
ow" variant, each commodity can be split and routed alongmany paths. We have focused on the mono-routing variant which has been lessstudied in the literature. Rothlauf, Goldberg, and Heinzl [?] have worked on a



similar problem (data from Deutsche Telekom) but require the resulting net-work to be a tree, which makes mono-routing equivalent to multi-
ow. Gabrel,Knippel, and Minoux [?] have developed an exact method for network designproblems with a discrete set of possible arc capacities and multi-
ow routing. Toour knowledge, these studies are the closest to the one we report in this paper.Given are a set of n nodes and a set of m arcs (i; j) between these nodes. Aset of d demands (commodities) is also de�ned. Each demand associates to a pairof nodes (p; q) an integer quantity Dempq of 
ow to be routed along a uniquepath from p to q. In principle, there could be several demands for the same pair(p; q), in which case each demand can be routed along a di�erent path. Yet, tocondense notation and keep the problem description easy to read, we will use atriple (p; q;Dempq) to represent such a demand.For each arc (i; j), Kij possible capacities Capakij, 1 � k � Kij , are given, towhich we add the null capacity Capa0ij = 0. One and only one of these Kij + 1capacities must be chosen. However, it is permitted to multiply this capacity byan integer between a given minimal value Wminkij and a given maximal valueWmaxkij. Hence, the problem consists in selecting for each arc (i; j) a capacityCapakij and an integer coe�cient wkij in [Wminkij;Wmaxkij]. The choices madefor the arcs (i; j) and (j; i) are linked. If capacity Capakij is retained for arc (i; j)with a non-null coe�cient wkij, then capacity Capakji must be retained for arc(j; i) with the same coe�cient wkji = wkij, and the overall cost for both (i; j) and(j; i) is wkij �Costkij .Six classes of side constraints are de�ned. Each of them is optional, leadingto 64 variants of each problem instance, identi�ed by a six-bits vector. For ex-ample, \011000" indicates that only the second constraint nomult and the thirdconstraint symdem, as de�ned below, are active.{ The security (sec) constraint states that some demands must be secured.For each node i, an indicator Riski states whether the node is considered\risky" or \secured." Similarly, for each arc (i; j) and each k, 1 � k � Kij , anindicator Riskkij states whether the arc (i; j) in con�guration k is consideredrisky or secured. When a demand must be secured, it is forbidden to routethis demand through a node or an arc which is not secured.{ The no capacity multiplier (nomult) constraint forbids the use of capacitymultipliers. For each arc (i; j), two cases must be considered: if there is a kwith Wminkij � 1, the choice of Capakij with multiplier wkij = Wminkij isimposed; otherwise, the choice of Capakij is free, but wkij � 1 is imposed.{ The symmetric routing of symmetric demands (symdem) constraint statesthat for each demand from p to q, if there exists a demand from q to p,then the paths used to route these demands must be symmetric. (Similarly,if there are several demands between the same nodes p and q, these demandsmust be routed on the same path.) In practice, this constraint reduces (inmost cases divides by 2) the number of routes to be constructed for the givendemands.



{ The maximalnumber of bounds (bmax) constraint associates to each demand(p; q;Dempq) a limit Bmaxpq on the number of bounds (also called \hops")used to route the demand, i.e., on the number of arcs in the path followedby the demand. In particular, if Bmaxpq = 1, the demand must be routeddirectly on the arc (p; q).{ The maximal number of ports (pmax) constraint associates to each node i amaximal number of incoming ports Pini and a maximal number of outgoingports Pouti. For each node i, the constraint imposesPj;kwkij � Pouti andPj;k wkji � Pini.{ The maximal tra�c (tmax) constraint associates to each node i a limitTmaxi on the total tra�c managed by i. This includes the tra�c that startsfrom i (Pq 6=iDemiq ), the tra�c that ends at i (Pp 6=i Dempi), and the traf-�c that goes through i (the sum of the demands Dempq , p 6= i, q 6= i, forwhich the chosen path goes through i). Notice that it is possible to trans-form this constraint into a limit on the tra�c that enters i (which must besmaller than or equal to Tmaxi�Pq 6=iDemiq ) or, equivalently, into a limiton the tra�c that leaves from i (which must be smaller than or equal toTmaxi �Pp 6=iDempi).Twenty-one data �les, organized in three series, are available. Each data �leis identi�ed by its series (A, B, or C) and an integer which indicates the numberof nodes of the considered network. Series A includes the smallest instances, from4 to 10 nodes. The optimal solutions to the 64 variants of A04, A05, A06, andA07, are known. At this point, proved optimal solutions are available for only44 variants of A08, one variant of A09, and one variant of A10. Series B and Cinclude larger instances with 10, 11, 12, 15, 16, 20, and 25 nodes. Proved optimalsolutions are available only for 12 variants of C10. The instances of series B havemore choices of capacities than the instances of series A, which have more choicesof capacities than the instances of series C. So, in practice, instances of series Btend to be harder because the search space is larger, while instances of series Ctend to be harder because each mistake has a higher relative cost.3 Application of Multiple Optimization Techniques tothe Base ProblemIn the �rst round, �ve algorithms were developed and tested on the simplest in-stances of the problem: series A with only the nomult and symdem constraintsactive. Focusing on simple instances enabled us to compute the optimal solu-tions of these instances and trace the behavior of algorithms on the base problem,without noise due to side constraints. The drawback is that focusing on simpleinstances does not allow for the anticipation of the e�ect of side constraints. Thesame remark holds for problem size: it is easier to understand what algorithmi-cally happens on small problems, but some algorithmic behaviors show up onlarge problems which are not observable on smaller problems. Five algorithmswere tested:



{ CP: a \pure" constraint programmingalgorithmdeveloped by France T�el�ecomR&D.{ CP-PATH: an hybrid algorithm using ILOG Solver[?] which combines clas-sical constraint programming with a shortest path algorithm.{ MIP: the CPLEX[?] mixed integer programming algorithm, with the em-phasis on �nding feasible solutions, applied to a natural MIP formulation ofthe problem.{ CG: a column generation algorithm, which consists in progressively generat-ing possible paths for each demand and possible capacities for each arc. Ateach iteration, a linear programming solver is used to select paths and capac-ities and guide the generation of new paths and new capacities. In addition,a mixed integer version of the linear program is regularly used to generatelegal solutions.{ GA: an ad-hoc genetic algorithm.Attempts to use local search to improve the solutions found by the CP-PATHalgorithm were also made, with two distinct neighborhoods: (1) reroute onedemand, (2) decrease the capacity of an arc, allow the capacity of another arc toincrease, reroute all demands with CP-PATH. In practice, these combinationsof CP-PATH and local search did not provide better solutions than CP-PATHalone.Optimal solutions were found using the CPLEX algorithm, version 7.5, withno CPU time limit. For the A10 instance, however, the CPLEX team at ILOGsuggested a di�erent parameterization of the CPLEX MIP (emphasis on op-timality, strong branching) which resulted in many less nodes being explored.With this parameterization, the �rst integer solution was found in more thanthree hours, far above the time limit of 10 minutes. The optimal solution wasfound in more than six days. Further work, with intermediate (beta) versions ofCPLEX, showed that this could be reduced to a few hours. Yet at this point wedo not believe the problem can be exactly solved in 10 minutes or less.Table 1 provides, for each instance, the optimal solution and the value ofthe best solution found by each algorithm within the CPU time limit. The lastcolumn provides the mean relative error (MRE) of each algorithm: for eachalgorithm, we compute for each instance the relative distance (c� o)=o betweenthe cost c of the proposed solution and the optimal cost o, and report the averagevalue of (c� o)=o over the 7 instances.A04 A05 A06 A07 A08 A09 A10 MREOptimum 22267 30744 37716 47728 56576 70885 82306CP 22267 30744 37716 49812 74127 97386 104316 14.2%CP-PATH 22267 30744 37716 47728 56576 70885 83446 0.2%MIP 22267 30744 37716 47728 56576 73180 99438 3.4%CG 22267 30744 37716 47728 57185 72133 87148 1.2%GA 22267 30744 37716 48716 60631 75527 88650 3.4%Table 1. Initial results on series A, parameter 011000



4 Extensions and Tests with Side ConstraintsIn the second round, the study was extended to the mid-size instances (10 to 12nodes) and, most importantly, to the six side constraints. We decided to focusmostly on three algorithms, CP-PATH, CG, and MIP. Indeed, given the previousresults, CP-PATH and CG appeared as the most promising. The MIP algorithmwas a priori less promising, but di�erent ideas for improving it had emergedduring the �rst round, and it had also provided us with optimal solutions, al-though with much longer CPU time. This section describes the main di�cultieswe encountered in extending these algorithms to the six side constraints of thebenchmark.4.1 Column GenerationThe six side constraints are integrated in very di�erent ways within the columngeneration algorithm:{ The symdem constraint halves the number of routes that need to be built.Therefore, the presence of this constraint simpli�es the problem.{ The bmax constraint is directly integrated in the column generation sub-problem. For each demand Dempq , only paths with at most Bmaxpq arcsmust be considered.{ Similarly, the nomult constraint is used to limit the number of capacity levelsto consider for each arc.{ The pmax and tmax constraints are directly integrated in the master lin-ear program. They cause no particular di�culty for the column generationmethod per se, but make it harder to generate integer solutions.{ The sec constraint is the hardest to integrate. Constraints linking the choiceof a path for a given demand and the choice of a capacity level for a given arccan be added to the master linear program when the relevant columns areadded. But, before that, the impact of these constraints on the signi�canceof a path cannot be evaluated, which means that many paths which arenot really interesting can be generated. This slows down the overall columngeneration process. Also, just as for pmax and tmax, the addition of the secconstraint makes integer solutions harder to generate.The �rst results were very bad. In most cases, no solution was obtainedwithin the 10 minutes. This was improved by calling the mixed integer versionof the master linear program at each iteration, each time with a CPU time limitevolving quadratically with the number of performed iterations. This enabledthe generation of more solutions, but sometimes resulted in a degradation of thequality of the generated solutions (MRE of 2:1% in place of 1:2% for the seveninstances used in the �rst round). Also, the current version of the algorithm isstill unable to �nd a solution to A10 with parameter \100011" in less than 10minutes. This is precisely the parameter for which the sec, pmax, and tmaxconstraints are active, while the nomult, symdem, and bmax constraints, which



tend to help column generation, are not active. Over B10, B11, B12, C10, C11and C12, 128 such failures occur. The pmax constraint is active in 126 of thesecases. In the others, both sec and tmax are active.4.2 Mixed Integer ProgrammingVarious di�culties emerged with the �rst tests of the MIP algorithm. First,no solution was found in 10 minutes on A10 with parameters \010111" and\110111," i.e., when nomult, bmax, pmax, and tmax are active, and symdem(which divides the problem size by 2) is not. On the A series, the results alsoshow a degradation of performance when bmax and tmax are active.Numerous attemps were made to improve the situation. First, we tried toadd \cuts," i.e., redundant constraints that might help the MIP algorithm:{ For each demand and each node, at most one arc entering (or leaving) thenode can be used.{ For each node, the sum of the capacities of the arcs entering (or leaving)the node must be greater than or equal to the sum of the demands arrivingat (or starting from) the node plus the sum of the demands traversing thenode.{ For each demand and each arc, the routing of the demand through the arcexcludes, for this arc, the capacity levels strictly inferior to the demand.In general, these cuts resulted in an improvement of the lower bounds, but didnot allow the generation of better solutions within the time limit of 10 minutes.We eventually removed them.A cumulative formulation of arc capacity levels was also tested. Rather thanusing a 0-1 variable yk for each level k, this formulation uses a 0-1 variable �k torepresent the decision to go from a capacity level to the next, i.e., �k = yk+1�yk .As for the cuts, the main e�ect of this change was an improvement of lowerbounds.We also tried to program a search strategy inspired by the one used in theCP-PATH algorithm. This allowed the program to generate solutions more oftenin less than 10 minutes, but the solutions were of a poor quality.Hence, the results are globally not satisfactory. However, the MIP algorithmsometimes �nds better solutions than the CP-PATH algorithm. For example, onC11, there are only 31 variants out of 64 on which the MIP algorithm (with thecumulative formulation) generates solutions in 10 minutes, but out of these 31variants, there are 18 for which the solution is better than the solution obtainedby CP-PATH. It might be worthwhile applying both algorithms and keeping thebest overall solution.4.3 Constraint Programming with Shortest PathsA Graph Extension to Constraint Programming To simplify the imple-mentation, we basically introduced a new type of variable representing a path



from a given node p to a given node q of a graph. More precisely, a path isrepresented by two set variables, representing the set of nodes and the set ofarcs of the path, and constraints between these two variables.{ If an arc belongs to the path, its two extremities belong to the path.{ One and only one arc leaving p must belong to the path.{ One and only one arc entering q must belong to the path.{ If a node i, i 6= p; i 6= q, belongs to the path, then one and only one arcentering i and one and only one arc leaving i must belong to the path.Several global constraints have been implemented on such path variables todetermine nodes and arcs that must belong to a given path (i.e., for connexityreasons), to eliminate nodes and arcs that cannot belong to a given path, andto relate the path variables to other variables of the problem, representing thecapacities and security levels of each arc.Solving the Network Design Problem with Graph Library At each stepof the CP-PATH algorithm, we chose an uninstantiated path for which the de-mand Dempq was greatest. We then determined the shortest path to route thisdemand (to this end, we solved a constrained shortest path problem). A choicepoint was then created. In the left branch, we constrained the demand to gothrough the last uninstantiated arc of this shortest path. In case of backtrack,we disallowed this same arc for this demand. Once a demand was completelyinstantiated, we switched to the next one. A new solution was obtained when alldemands were routed. The optimization process then continued in Discrepancy-Bounded Depth-First Search (DBDFS[?]) with a new upper-bound on the ob-jective.First experiments exhibited the following di�culties:1. Performances deteriorated when the tmax constraint was active.2. For 3 sets of parameters on the A10 instance, the algorithm was unable to�nd a feasible solution in less than 10 minutes. In fact, it turned out thatthe combination of the maximal number of ports constraint (pmax) and themaximal tra�c constraint (tmax) made the problem quite di�cult.3. Bad results on B10 stemmed from a quite asymmetric tra�c. For instance,between the �rst two nodes of the B10 instance, the tra�c was equal to 186in one direction and 14 in the other.4. Performance was unsatisfactory in the presence of the maximal number ofbounds constraint (bmax).Several modi�cations of the program were thus made necessary. First, a\scalar product"-like constraint was implemented. This constraint directly linksthe tra�c at each node with the paths used for the routing. This constraintpropagates directly from the variable representing the tra�c at each node tothe variables representing the demands, and vice-versa, without the intermedi-ate use of the tra�c on each arc. This allowed more constraint propagation to



take place and solved di�culties (1) and (2), even though the combination ofthe pmax and tmax constraints remains \di�cult."The third di�culty (3) was partly resolved by modifying the order in whichthe various demands are routed. In the initial algorithm, the biggest demandwas routed �rst. Given a network with 6 nodes and the demands Dem01 = 1800,Dem10 = 950, Dem23 = 1000, Dem32 = 1000, Dem45 = 1900 and Dem54 = 50,the previous heuristic behaved as follows:{ In the case of symmetrical routing, (symdem = true), the demands arerouted in the following order: Dem01 and Dem10, then Dem23 and Dem32,then Dem45 and Dem54 .{ In the case of nonsymmetrical routing, (symdem = false), the order isDem45, Dem01, Dem23, Dem32, Dem10, Dem54.In the case of symmetrical routing, it is a pity to wait so long before routingDem45, since a large capacity will be needed to route this demand.Likewise, in the case of nonsymmetrical routing, we can wonder if it would beworthwhile to route Dem10 before Dem23 and Dem32, given that their routinghas surely created a path which is probably more advantageous to use (in theother direction for Dem10 than for Dem23 and Dem32).The heuristic was therefore modi�ed:{ In the case of symmetrical routing, the weight of each demand is the sum oftwice the biggest demand plus the smallest demand. The demands are thenordered by decreasing weight. This results in the following order: Dem01 andDem10, then Dem45 and Dem54, and �nally Dem23 and Dem32.{ In the case of nonsymmetrical routing, the weight of each demand is the sumof twice the considered demand plus the reverse demand. This results in thefollowing order: Dem01, Dem45, Dem10, Dem23, Dem32, Dem54.The average gain of the various sets of parameters on the B10 instance is 3%.On the C instances, however, this change deteriorated performances by roughly1%. The new heuristic was therefore kept, although it was not a complete answerto the previous problem.The last di�culty was solved by strengthening constraint propagation on thelength of each path. The following algorithm was used in order to identify thenodes and the arcs through which a demand from p to q needs to be routed:{ We use the Ford algorithm (as described in [?]) to identify the shortestadmissible path between p and each node of the graph, and between eachnode of the graph and q.{ We use this information to eliminate nodes through which no demand canpass and that have a path of length less than Bmaxpq arcs.{ We use the path lengths computed in this way to mark nodes such that ademand can be routed around by a path of length less than Bmaxpq arcs.{ We use the Ford algorithm again on each unmarked node to determine ifthere exists a path from p to q with less than Bmaxpq arcs not going throughthe node.



Using this algorithmwas �nally worthwhile, although its worst case complex-ity is O(nmBmaxpq), O(n4). The most spectacular improvement was of 1:73%on the 64 variations of the B12 problem, meaning an improvement of 3:46% onthe 32 variations where bmax is active. On average, this modi�cation also im-proved the results on the C series. Nevertheless, on the C12 problem, the resultswere worse by a factor of 0:4%.4.4 Experimental ResultsTables 2 and 3 summarize the results on series A and on the instances with 10, 11,and 12 nodes of series B and C. There are four lines per algorithm. The \Proofs"line indicates the number of parameter values for which the algorithm found theoptimal solution and made the proof of optimality. The \Best" line indicatesthe number of parameter values for which the algorithm found the best solutionknown to date. The \Sum" line provides the sum of the costs of the solutionsfound for the 64 values of the parameter. A \Fail" in this line signi�es that forf values of the parameter, the algorithm was not able to generate any solutionwithin the 10 minutes. The number of failures f is denoted within parentheses.Finally, the \MRE" line provides the mean relative error between the solutionsfound by the algorithm and the best solutions known to date. Notice that theMRE is given relative to the best solutions known to date, found either by oneof the four algorithms in the table or by other algorithms, in some cases withmore CPU time. These reference solutions may not be optimal, so all the fouralgorithms might in fact be farther from the optimal solutions. Note also thateach algorithm is the result of a few modi�cations of the algorithm initiallyapplied to the instances of series A with parameter \011000." Similar e�ortshave been made for each of them. Yet it is obvious that further work on each ofthem might lead to further improvements.The di�erences with the results of Section 3 are worth noticing: a large degra-dation of performance with the introduction of side constraints and with anincrease in problem size; and important variations with the numerical charac-teristics of the problem as shown by the di�erences between A10, B10, and C10.Algorithm A04 A05 A06 A07 A08 A09 A10 TotalCP-PATHS Proofs 64 64 64 33 7 0 0 232Best 64 64 64 62 43 23 25 345Sum 1782558 2351778 2708264 3290940 4076785 5027246 5934297 25171868MRE 0.00% 0.00% 0.00% 0.01% 0.69% 1.25% 1.57% 0.50%MIP Proofs 64 64 64 27 1 0 0 220Best 64 64 64 27 13 2 0 234Sum 1782558 2351778 2708264 3318572 4219647 5640421 Fail (2) Fail (2)MRE 0.00% 0.00% 0.00% 0.88% 4.20% 13.62% 33.11% 7.29%CUMULATIVE MIP Proofs 64 64 64 7 0 0 0 199Best 64 64 64 31 4 0 0 227Sum 1782558 2351778 2708264 3337284 4417611 5934187 Fail (3) Fail (3)MRE 0.00% 0.00% 0.00% 1.42% 9.06% 19.44% 29.02% 8.28%CG Proofs 64 64 36 20 0 0 0 184Best 64 64 64 45 12 2 1 252Sum 1782558 2351778 2708264 3310007 4263830 5621264 Fail (1) Fail (1)MRE 0.00% 0.00% 0.00% 0.60% 5.11% 12.85% 22.09% 5.77%Table 2. Solutions found in 10 minutes, series A, for 64 parameter values



Algorithm B10 B11 B12 C10 C11 C12CP-PATH Proofs 0 0 0 10 0 0Best 4 1 2 20 0 0Sum 1626006 3080608 2571936 1110966 2008833 2825499MRE 7.96% 10.67% 8.71% 5.77% 11.60% 14.95%MIP Proofs 0 0 0 0 0 0Best 3 6 1 6 0 0Sum Fail (16) Fail (20) Fail (39) Fail (10) Fail (24) Fail (63)MRE 23.68% 22.28% 19.24% 12.82% 51.20% 17.42%CUMULATIVE MIP Proofs 0 0 0 0 0 0Best 3 1 0 1 1 0Sum Fail (14) Fail (26) Fail (29) Fail (15) Fail (33) Fail (42)MRE 14.16% 14.05% 20.27% 10.92% 12.83% 26.61%CG Proofs 0 0 0 0 0 0Best 0 0 0 1 0 1Sum Fail (26) Fail (24) Fail (19) Fail (32) Fail (10) Fail (17)MRE 27.27% 35.49% 47.67% 28.75% 79.42% 27.49%Table 3. Solutions found in 10 minutes, series B and C, for 64 parameter values5 ScalingThe results of the second stage have shown that the constraint programmingalgorithm which calculates the shortest paths is the strongest. As already men-tioned, it is obvious that all algorithms can be improved. Yet we decided to focusmostly on improving the CP-PATH algorithm.5.1 Analysis of Previous ResultsTwo important elements were acknowledged. First, an analysis of the exploredsearch trees showed that during the search almost all the improving solutions(especially in the B series) questioned one of the �rst routing decisions thathad been taken in order to build the previous solution. This suggested, on theone hand, the construction of a parallel search on a multiprocessor, and, onthe other hand, the questioning of the decisions made in the upper part of thetree �rst. Besides, an analysis of the �rst found solution demonstrated thatthe algorithm had a tendency to build networks having a large number of low-capacity arcs. This turned out to be quite unfortunate as better solutions couldbe constructed quite easily from them using a smaller number of arcs, but withgreater capacities. In the case of bigger instances with homogeneous demands,such mistakes were common and took quite some time to be corrected as theabsence of big demands does not help the propagation of the constraints involvedin this benchmark. This suggested a postoptimization phase implemented usinglocal search. This was the most natural way of correcting these mistakes as itwas lightweight both in term of code and performances. Any other tentativecorrection of these mistakes through the modi�cation of the heuristics resultedin deteriorated overall quality as specializing the heuristic for one particularinstance of the problem had the tendency to make it less robust on the average.5.2 Extending and Re�ning the Previous FrameworkExploiting Parallel Computing ILOG Parallel Solver is a parallel extensionof ILOG Solver [?]. It was �rst described in [?]. It implements or-parallelism



on shared memory multi-processor computers. ILOG Parallel Solver providesservices to share a single search tree among workers, ensuring that no workerstarves when there are still parts of the search tree to explore and that eachworker is synchronized at the end of the search.First experiments with ILOG Parallel Solver were actually performed dur-ing the �rst and second round. These experiments are described in [?] and [?].Switching from the sequential version to the parallel version required a minimalcode change of a few lines, and so we were immediately able to experiment withparallel methods.It should also be noted that the parallel version uses four times more pro-cessing power than the sequential on the machine we used.Changing the Search Tree Traversal CP-PATH uses the DBDFS[?] searchprocedure to explore the search tree. As described in [?], open nodes of the searchtree are evaluated and stored in a priority queue according to their evaluation.The DBDFS strategy evaluates nodes by counting the number of right movesfrom the root of the search tree to the current position in the search tree. Twovariations have been implemented to change this evaluation and to add weightsto discrepancies (cf. [?]). Both variations rely on the depth of the search tree.The �rst one tries a �xed weight schema, while the second adapts the weightmechanism to focus even more on the top of the search tree in case of a deepsearch tree.Adding Local Search The analysis of the second round suggested that thesearch procedure should be split in three. The �rst part consists of a search fora feasible solution where the search would be penalized if it took the decision toopen a new arc (by doubling the cost of the arc).The second phase consists of a postoptimization of this �rst solution basedon local search. This local search phase is implemented on top of the ILOGSolver Local Search framework[?,?]. This framework is built upon the essentialprinciples of local search: those of a current solution, a neighborhood structure,ways of exploring this neighborhood structure, move acceptance criteria, andmetaheuristics. Each of these concepts translates into one or more Solver ob-jects which can be naturally instantiated for the problem at hand. Like ILOGSolver's other fundamental objects such as constraints and goals, new local searchobjects, such as neighborhoods, can be de�ned or re�ned by users, resulting ina close match between the solving methods and the problem structure. Impor-tantly, local moves are made in ILOG Solver by the application of search goals,in the same manner as for complete search. This facilitates combinations of localand tree-based search, which is in fact what we used here.In our case we created a neighborhood which had as neighbors the removalof each arc from the graph. Such a destructive move requires some rerouting tomaintain feasibility of the solution. As local and tree-based search mechanismscan be combined in Solver, at each such move we used traditional tree-based



search to reroute paths in order to attempt to maintain feasibility. The neigh-borhood and tree searches are naturally combined in the same search goal.The local search process we employed was entirely greedy. At each stage, weremoved the arc from the graph which decreased the cost by the greatest amount(after rerouting), stopping when there was no arc we could remove without beingable to legally reroute the tra�c.This whole mechanism was coded in less than �fty lines of code.The last phase would then be the original optimization tree-based search,but with an improved upper bound.5.3 ResultsTable 4 gives the results of the four new algorithms, compared to CP-PATH, onthe instances of size 10, 11, and 12 of the B and C series. It also provides theresults of CP-PATH + LS executed in parallel with four processors. Globally,the best improvement comes from parallelism, closely followed by local search.The two search procedures (variations 1 and 2) which were promising on eightvariants of the problems as described in [?] turned out to be not robust enough.They improved the results on the B series but worsened them on the C series.Algorithm B10 B11 B12 C10 C11 C12CP-PATH Best 4 1 2 20 0 0Sum 1626006 3080608 2571936 1110966 2008833 2825499MRE 7.96% 10.67% 8.71% 5.77% 11.60% 14.95%CP-PATH Parallel Best 6 1 1 36 0 0Sum 1597793 3009386 2548122 1084577 2002557 2794864MRE 5.98% 8.00% 7.73% 3.28% 11.13% 13.65%CP-PATH + Variation 1 Best 1 0 4 10 0 0Sum 1608752 3015921 2563522 1133098 2024920 2862054MRE 6.80% 8.28% 8.32% 7.80% 12.43% 16.42%CP-PATH + Variation 2 Best 2 2 3 10 0 0Sum 1601555 3018046 2547425 1123779 2034917 2838541MRE 6.27% 8.32% 7.66% 6.87% 12.99% 15.44%CP-PATH + LS Best 4 3 2 20 0 0Sum 1610770 3023086 2555469 1110966 2003101 2801849MRE 6.91% 8.39% 7.81% 5.77% 11.30% 13.97%CP-PATH + LS Parallel Best 4 4 0 34 0 0Sum 1592778 2967717 2535516 1085266 2005714 2777129MRE 5.55% 6.53% 7.12% 3.36% 11.29% 12.91%Table 4. Solutions found in 10 minutes, series B and C, for 64 parameters valuesWe applied the CP-PATH + LS algorithm to the A series and the results wereexactly identical to those of CP-PATH, i.e., local search brought no improvementon this series. We also applied CP-PATH and CP-PATH + LS on the largerinstances with 15 to 25 nodes. The MRE ranges from 6.24% (on C16) to 38.03%(on B25) for CP-PATH and from 2.71% (on B15) to 7.63% (on C25) for CP-PATH + LS. We believe that these �gures underestimate the deviation fromthe optimal solutions as fewer algorithms provided reasonably good solutions onthe larger instances. It is interesting to notice that local search had a signi�cantimpact mostly on series B, when the number of possible capacity levels for eacharc is the highest.



B10 B11 B12 C10 C11 C12sec = 0 5.52% 10.50% 9.43% 2.04% 10.39% 14.94%sec = 1 5.58% 2.57% 4.81% 4.67% 12.20% 10.88%nomult = 0 6.75% 8.91% 8.13% 3.26% 11.97% 13.54%nomult = 1 4.35% 4.16% 6.12% 3.45% 10.61% 12.29%symdem= 0 7.72% 7.91% 9.58% 4.74% 12.23% 12.50%symdem= 1 3.38% 5.16% 4.67% 1.97% 10.35% 13.32%bmax = 0 5.38% 6.23% 6.38% 3.87% 10.71% 15.76%bmax = 1 5.72% 6.84% 7.86% 2.84% 11.87% 10.06%pmax = 0 5.88% 7.48% 6.65% 6.69% 12.79% 12.85%pmax = 1 5.21% 5.59% 7.60% 0.03% 9.79% 12.97%tmax = 0 4.14% 6.87% 7.48% 2.32% 7.22% 13.03%tmax = 1 6.95% 6.20% 6.76% 4.40% 15.36% 12.80%Table 5. E�ect of each constraint on the MRETable 5 shows the e�ect of the presence of each constraint on the results. Foreach optional constraint, it provides the MRE obtained with CP-PATH + LSin Parallel when the constraint is inactive (parameter set to 0) and when theparameter is active (parameter set to 1). Hence, each percentage in the table isthe average of 32 numbers. Once again, these �gures should be taken with careas the MRE is computed with respect to best known solutions. However, whenthe MRE is signi�cantly greater when a parameter is set to 1 than when it isset to 0, it indicates that the performance of the algorithm is a�ected by thepresence of the constraint. This occurs with tmax on B10, C10 and C11, and toa lesser extent with sec. On the other hand, nomult and symdem tend to makethe problem easier to solve.6 ConclusionIn this paper, we have presented a case study based on a benchmark aimedat evaluating and improving the robustness of algorithms. The results do notsuggest that we have found the ultimate algorithm for this benchmark. On thecontrary, we believe that all the algorithms we tried can still be improved, andthat there are many other algorithms to design and test on this benchmark.Our aim in this paper was to show the type of performance discrepanciesthat can occur when industrial optimization applications are developed andsome types of corrections that can be applied: (1) put more or less emphasison the generation of admissible solutions; (2) strengthen problem formulation;(3) strengthen constraint propagation; (4) adapt variable selection heuristics tosymmetries or asymmetries in the problem; (5) use or-parallelism; (6) adapt thetree search traversal strategy to the characteristics of the problem; (7) use localsearch to improve the �rst solution(s) found by a tree search algorithm.One of the most important aspects of this study has been the ability toimplement and test such corrections with minimal development e�ort.The results, and our everyday industrial practice, compel us to be modestwhen stating that an algorithm is appropriate for a given problem. The dif-ferences between our initial results on A10 and the results obtained even oninstances of the same size like B10 and C10 show that we ought to be cautious.



As mentioned, the benchmark suite we used is public. We believe other bench-mark suites of a similar kind are needed for the academic community to attackthe issue of algorithm robustness as it is encountered in industrial settings, wheredata are neither random nor uniform and where the presence of side constraintscan necessitate signi�cant adaptations of the basic models and problem-solvingtechniques found in the literature.7 AcknowledgmentsThis work has been partially �nanced by the French MENRT, as part of RNRTproject ROCOCO. We wish to thank our partners in this project, particu-larly Jacques Chambon and Rapha�el Bernhard from France T�el�ecom R&D, Do-minique Barth from the PRiSM laboratory, and Claude Lemar�echal from INRIARhône-Alpes. The very �rst CP program was developed by Olivier Schmeltzer,the very �rst CG program by Alain Chabrier, and the very �rst MIP program byPhilippe R�efalo. We thank Alain and Philippe and the CPLEX team for manyenlightening discussions over the course of the ROCOCO project.


