
Constraint Programming in OPLP. Van Hentenryck1, L. Michel2, L. Perron2, and J.-C. R�egin21 UCL, Place Sainte-Barbe, 2, B-1348 Louvain-La-Neuve, Belgium2 Ilog SA, 9 rue de Verdun, F-94253 Gentilly Cedex, FranceAbstract. OPL is a modeling language for mathematical programmingand combinatorial optimization problems. It is the �rst modeling lan-guage to combine high-level algebraic and set notations from model-ing languages with a rich constraint language and the ability to specifysearch procedures and strategies that is the essence of constraint pro-gramming. In addition, OPL models can be controlled and composedusing OPLSCRIPT, a script language that simpli�es the development of ap-plications that solve sequences of models, several instances of the samemodel, or a combination of both as in column-generation applications.This paper illustrates some of the functionalities of OPL for constraintprogramming using frequency allocation, sport-scheduling, and job-shopscheduling applications. It also illustrates how OPL models can be com-posed using OPLSCRIPT on a simple con�guration example.1 IntroductionCombinatorial optimization problems are ubiquitous in many practical appli-cations, including scheduling, resource allocation, planning, and con�gurationproblems. These problems are computationally di�cult (i.e., they are NP-hard)and require considerable expertise in optimization, software engineering, and theapplication domain.The last two decades have witnessed substantial development in tools to sim-plify the design and implementation of combinatorial optimization problems.Their goal is to decrease development time substantially while preserving mostof the e�ciency of specialized programs. Most tools can be classi�ed in twocategories: mathematical modeling languages and constraint programming lan-guages. Mathematical modeling languages such as AMPL [4] and GAMS [1]provides very high-level algebraic and set notations to express concisely math-ematical problems that can then be solved using state-of-the-art solvers. Thesemodeling languages do not require speci�c programming skills and can be usedby a wide audience. Constraint programming languages such as CHIP [3], Pro-log III and its successors [2], OZ [12], and Ilog Solver [11] have orthogonalstrenghts. Their constraint languages, and their underlying solvers, go beyondtraditional linear and nonlinear constraints and support logical, high-order, andglobal constraints. They also make it possible to program search procedures tospecify how to explore the search space. However, these languages are mostlyaimed at computer scientists and often have weaker abstractions for algebraicand set manipulation.

The work described in this paper originated as an attempt to unify model-ing and constraint programming languages and their underlying implementationtechnologies. It led to the development of the optimization programming lan-guage OPL [13], its associated script language OPLSCRIPT [?], and its developmentenvironment OPL STUDIO.
OPL is a modeling sharing high-level algebraic and set notations with tradi-tional modeling languages. It also contains some novel functionalities to exploitsparsity in large-scale applications, such as the ability to index arrays with arbi-trary data structures. OPL shares with constraint programming languages theirrich constraint languages, their support for scheduling and resource allocationproblems, and the ability to specify search procedures and strategies. OPL alsomakes it easy to combine di�erent solver technologies for the same application.
OPLSCRIPT is a script language for composing and controlling OPL models.Its motivation comes from the many applications that require solving severalinstances of the same problem (e.g., sensibility analysis), sequences of models, ora combination of both as in column-generation applications. OPLSCRIPT supportsa variety of abstractions to simplify these applications, such as OPL models as�rst-class objects, extensible data structures, and linear programming bases toname only a few.
OPL STUDIO is the development environment of OPL and OPLSCRIPT. Beyond sup-port for the traditional "edit, execute, and debug" cycle, it provides automaticvisualizations of the results (e.g., Gantt charts for scheduling applications), vi-sual tools for debugging and monitoring OPL models (e.g., visualizations of thesearch space), and C++ code generation to integrate an OPL model in a largerapplication. The code generation produces a class for each model objects andmakes it possible to add/remove constraints dynamically and to overwrite thesearch procedure.The purpose of this paper is to illustrate some of the constraint programmingfeatures of OPL through a number of models. Section 2 describes a model for afrequency allocation application that illustrates how to use high-level algebraicand set manipulation, how to exploit sparsity, and how to implement searchprocedures in OPL. Section 3 describes a model for a sport-scheduling applica-tions that illustrates the use of global constraints in OPL. Section 4 describesan application that illustrates the support for scheduling applications and forsearch strategies in OPL. Section 5 shows how OPL models can be combined using

OPLSCRIPT on a con�guration application. All these applications can be run onILOG OPL Studio 2.1.2 Frequency AllocationThe frequency-allocation problem [11] illustrates a number of interesting featuresof OPL: the use of complex quanti�ers, and the use of a multi-criterion orderingto choose which variable to assign next. It also features an interesting datarepresentation that is useful in large-scale linear models.

The frequency-allocation problem consists of allocating frequencies to a num-ber of transmitters so that there is no interference between transmitters and thenumber of allocated frequencies is minimized. The problem described here is anactual cellular phone problem where the network is divided into cells, each cellcontaining a number of transmitters whose locations are speci�ed. The interfer-ence constraints are speci�ed as follows:{ The distance between two transmitter frequencies within a cell must not besmaller than 16.{ The distances between two transmitter frequencies from di�erent cells varyaccording to their geographical situation and are described in a matrix.The problem of course consists of assigning frequencies to transmitters to avoidinterference and, if possible, to minimize the number of frequencies. The rest ofthis section focuses on �nding a solution using a heuristic to reduce the numberof allocated frequencies.int nbCells = ...;int nbFreqs = ...;range Cells 1..nbCells;range Freqs 1..nbFreqs;int nbTrans[Cells] = ...;int distance[Cells,Cells] = ...;struct TransmitterType f Cells c; int t; g;fTransmitterTypeg Transmits = f <c,t> | c in Cells & t in 1..nbTrans[c] g;var Freqs freq[Transmits];solve fforall(c in Cells & ordered t1, t2 in 1..nbTrans[c])abs(freq[<c,t1>] - freq[<c,t2>]) >= 16;forall(ordered c1, c2 in Cells : distance[c1,c2] > 0)forall(t1 in 1..nbTrans[c1] & t2 in 1..nbTrans[c2])abs(freq[<c1,t1>] - freq[<c2,t2>]) >= distance[c1,c2];g;search fforall(t in Transmits ordered by increasing <dsize(freq[t]),nbTrans[t.c]>)tryall(f in Freqs ordered by decreasing nbOccur(f,freq))freq[t] = f;g; Fig. 1. The Frequency-Allocation Problem (alloc.mod).

Statement 1 shows an OPL statement for the frequency-allocation problemand Statement 2 describes the instance data. Note the separation between modelsand data which is an interesting feature of OPL. The model data �rst speci�esthe number of cells (25 in the instance), the number of available frequencies (256in the instance), and their associated ranges. The next declarations specify thenumber of transmitters needed for each cell and the distance between cells. Forexample, in the instance, cell 1 requires eight transmitters while cell 3 requiressix transmitters. The distance between cell 1 and cell 2 is 1.The �rst interesting feature of the model is how variables are declared:struct TransmitterType f Cells c; int t; g;fTransmitterTypeg Transmits = f <c,t> | c in Cells & t in 1..nbTrans[c] g;var Freqs freq[Transmits];As is clear from the problem statement, transmitters are contained within cells.The above declarations preserve this structure, which will be useful when statingconstraints. A transmitter is simply described as a record containing a cell num-ber and a transmitter number inside the cell. The set of transmitters is computedautomatically from the data usingfTransmitterTypeg Transmits = f <c,t> | c in Cells & t in 1..nbTrans[c] g;which considers each cell and each transmitter in the cell. OPL supports a richlanguage to compute with sets of data structures and this instruction illustratessome of this functionality. The model then declares an array of variablesvar Freqs freq[Transmits];indexed by the set of transmitters; the values of these variables are of coursethe frequencies associated with the transmitters. This declaration illlustrates afundamental aspect of OPL: arrays can be indexed by arbitrary data. In this appli-cation, the arrays of variables freq is indexed by the elements of transmittersthat are records. This functionality is of primary importance to exploit spar-sity in large-scale models and to simplify the statement of many combinatorialoptimization problems.There are two main groups of constraints in this model. The �rst set ofconstraints handles the distance constraints between transmitters inside a cell.The instructionforall(c in Cells & ordered t1, t2 in 1..nbTrans[c])abs(freq[<c,t1>] - freq[<c,t2>]) >= 16;enforces the constraint that the distance between two transmitters inside a cellis at least 16. The instruction is compact mainly because we can quantify sev-eral variables in forall statements and because of the keyword ordered thatmakes sure that the statement considers triples <c,t1,t2> where t1 < t2. Ofparticular interest are the expressions freq[<c,t1>] and freq[<c,t2>] illus-trating that the indices of array freq are records of the form <c,t>, where c isa cell and t is a transmitter. Note also that the distance is computed using the

nbCells = 25;nbFreqs = 256;nbTrans = [8 6 6 1 4 4 8 8 8 8 4 9 8 4 4 10 8 9 8 4 5 4 8 1 1];distance = [[16 1 1 0 0 0 0 0 1 1 1 1 1 2 2 1 1 0 0 0 2 2 1 1 1][1 16 2 0 0 0 0 0 2 2 1 1 1 2 2 1 1 0 0 0 0 0 0 0 0][1 2 16 0 0 0 0 0 2 2 1 1 1 2 2 1 1 0 0 0 0 0 0 0 0][0 0 0 16 2 2 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1][0 0 0 2 16 2 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1][0 0 0 2 2 16 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1][0 0 0 0 0 0 16 2 0 0 1 1 1 0 0 1 1 1 1 2 0 0 0 1 1][0 0 0 0 0 0 2 16 0 0 1 1 1 0 0 1 1 1 1 2 0 0 0 1 1][1 2 2 0 0 0 0 0 16 2 2 2 2 2 2 1 1 1 1 1 1 1 0 1 1][1 2 2 0 0 0 0 0 2 16 2 2 2 2 2 1 1 1 1 1 1 1 0 1 1][1 1 1 0 0 0 1 1 2 2 16 2 2 2 2 2 2 1 1 2 1 1 0 1 1][1 1 1 0 0 0 1 1 2 2 2 16 2 2 2 2 2 1 1 2 1 1 0 1 1][1 1 1 0 0 0 1 1 2 2 2 2 16 2 2 2 2 1 1 2 1 1 0 1 1][2 2 2 0 0 0 0 0 2 2 2 2 2 16 2 1 1 1 1 1 1 1 1 1 1][2 2 2 0 0 0 0 0 2 2 2 2 2 2 16 1 1 1 1 1 1 1 1 1 1][1 1 1 0 0 0 1 1 1 1 2 2 2 1 1 16 2 2 2 1 2 2 1 2 2][1 1 1 0 0 0 1 1 1 1 2 2 2 1 1 2 16 2 2 1 2 2 1 2 2][0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 16 2 2 1 1 0 2 2][0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 16 2 1 1 0 2 2][0 0 0 1 1 1 2 2 1 1 2 2 2 1 1 1 1 2 2 16 1 1 0 1 1][2 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 1 1 1 16 2 1 2 2][2 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 1 1 1 2 16 1 2 2][1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 16 1 1][1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 16 2][1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 2 16]];g; Fig. 2. Instance Data for the Frequency-Allocation Problem (alloc.dat).

function abs, which computes the absolute value of its argument (which may bean arbitrary integer expression).The second set of constraints handles the distance constraints between trans-mitters from di�erent cells. The instructionforall(ordered c1, c2 in Cells : distance[c1,c2] > 0)forall(t1 in 1..nbTrans[c1] & t2 in 1..nbTrans[c2])abs(freq[<c1,t1>] - freq[<c2,t2>]) >= distance[c1,c2];considers each pair of distinct cells whose distance must be greater than zeroand each two transmitters in these cells, and states that the distance betweenthe frequencies of these transmitters must be at least the distance speci�ed inthe matrix distance.Another interesting part of this model is the search strategy. The basic struc-ture is not surprising: OPL considers each transmitter and chooses a frequencynondeterministically. The interesting feature of the model is the heuristic. OPLchooses to generate a value for the transmitter with the smallest domain and, incase of ties, for the transmitter whose cell size is as small as possible. This multi-criterion heuristic is expressed using a tuple <dsize(freq[t]),nbTrans[t.c]>to obtainforall(t in Transmits ordered by increasing <dsize(freq[t]),nbTrans[t.c]>)Each transmitter is associated with a tuple < s; c >, where s is the number ofits possible frequencies and c is the number of transmitters in the cell to whichthe transmitter belongs. A transmitter with tuple < s1; c1 > is preferred over atransmitter with tuple < s2; c2 > if s1 < s2 or if s1 = s2 and c1 < c2.Once a transmitter has been selected, OPL generates a frequency for it ina nondeterministic manner. Once again, the model speci�es a heuristic for theordering in which the frequencies must be tried. To reduce the number of fre-quencies, the model says to try �rst those values that were used most oftenin previous assignments. This heuristic is implemented using a nondetermin-istic tryall instruction with the order speci�ed using the nbOccur function(nbOccur(i,a) denotes the number of occurrences of i in array a at a givenstep of the execution):forall(t in Transmits ordered by increasing <dsize(freq[t]),nbTrans[t.c]>)tryall(f in Freqs ordered by decreasing nbOccur(f,freq))freq[t] = f;This search procedure is typical of many constraint satisfaction problems andconsists of using a �rst heuristic to dynamically choose which variable to in-stantiate next (variable choice) and a second heuristic to choose which value toassign nondeterministically to the selected variable (value choice). The forallinstruction is of course deterministic, while the tryall instruction is nondeter-ministic: potentially all possible values are chosen for the selected variable. Notethat, on the instance depicted in Statement 2, OPL returns a solution with 95frequencies in about 3 seconds.

3 Sport SchedulingThis section considers the sport-scheduling problem described in [7, 10]. Theproblem consists of scheduling games between n teams over n � 1 weeks. Inaddition, each week is divided into n=2 periods. The goal is to schedule a gamefor each period of every week so that the following constraints are satis�ed:1. Every team plays against every other team;2. A team plays exactly once a week;3. A team plays at most twice in the same period over the course of the season.A solution to this problem for 8 teams is shown in Figure 3. In fact, the problemcan be made more uniform by adding a "dummy" �nal week and requesting thatall teams play exactly twice in each period. The rest of this section considersthis equivalent problem for simplicity.Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3Fig. 3. A Solution to the Sport-Scheduling Application with 8 TeamsThe sport-scheduling problem is an interesting application for constraint pro-gramming. On the one hand, it is a standard benchmark (submitted by BobDaniel) to the well-known MIP library and it is claimed in [7] that state-of-the-art MIP solvers cannot �nd a solution for 14 teams. The OPL models pre-sented in this section are computationally much more e�cient. On the otherhand, the sport-scheduling application demonstrates fundamental features ofconstraint programming including global and symbolic constraints. In particu-lar, the model makes heavy use of arc-consistency [6], a fundamental constraintsatisfaction techniques from arti�cial intelligence.The rest of this section is organized as follows. Section 3.1 presents an OPLmodel that solves the 14-teams problem in about 44 seconds. Section 3.2 showhow to specialize it further to �nd a solution for 14 to 30 teams quickly. Bothmodels are based on the constraint programs presented in [10].3.1 A Simple OPL modelThe simple model is depicted in Statement 4. Its input is the number of teamsnbTeams. A number of ranges are de�ned from the input: the teams Teams, theweeks Weeks, and the extended weeks EWeeks, i.e., the weeks plus the dummyweek. The model also declares an enumerated type slot to specify the teamposition in a game (home or away). The declarations

int nbTeams = ...;range Teams 1..nbTeams;range Weeks 1..nbTeams-1;range EWeeks 1..nbTeams;range Periods 1..nbTeams/2;range Games 1..nbTeams*nbTeams;enum Slots = f home, away g;int occur[t in Teams] = 2;int values[t in Teams] = t;var Teams team[Periods,EWeeks,Slots];var Games game[Periods,Weeks];struct Play f int f; int s; int g; g;fPlayg Plays = f <i,j,(i-1)*nbTeams+j> | ordered i, j in Teams g;predicate link(int f,int s,int g) in Plays;solve fforall(w in EWeeks)alldifferent(all(p in Periods & s in Slots) team[p,w,s]) onDomain;alldifferent(game) onDomain;forall(p in Periods)distribute(occur,values,all(w in EWeeks & s in Slots) team[p,w,s])extendedPropagation;forall(p in Periods & w in Weeks)link(team[p,w,home],team[p,w,away],game[p,w]);g;search fgenerate(game);g; Fig. 4. A Simple Model for the Sport-Scheduling Model.

int occur[t in Teams] = 2;int values[t in Teams] = t;speci�es two arrays that are initialized generically and are used to state con-straints later on. The array occur can be viewed as a constant function alwaysreturning 2, while the array values can be tought of as the identify functionover teams.The main modeling idea in this model is to use two classes of variables: teamvariables that specify the team playing on a given week, period, and slot and thegame variables specifying which game is played on a given week and period. Theuse of game variables makes it simple to state the constraint that every teammust play against each other team. Games are uniquely identi�ed by their twoteams. More precisely, a game consisting of home team h and away team a isuniquely identi�ed by the integer (h-1)*nbTeams + a. The instructionvar Teams team[Periods,EWeeks,Slots];var Games game[Periods,Weeks];declares the variables. These two sets of variables must be linked together tomake sure that the game and team variables for a given period and a given weekare consistent. The instructionsstruct Play f int f; int s; int g; g;fPlayg Plays = f <i,j,(i-1)*nbTeams+j> | ordered i, j in Teams g;specify the set of legal games Plays for this application. For 8 teams, this setconsists of tuples of the form<1,2,2><1,3,3>...<7,8,56>Note that this de�nition eliminates some symmetries in the problem statementsince the home team is always smaller than the away team. The instructionpredicate link(int f,int s,int g) in Plays;de�nes a symbolic constraint by specifying its set of tuples. In other words,link(h,a,g) holds if the tuple <h,a,g> is in the set Plays of legal games. Thissymbolic constraint is used in the constraint statement to enforce the relationbetween the game and the team variables.The constraint declarations in the model follow almost directly the problemdescription. The constraintalldifferent(all(p in Periods & s in Slots) team[p,w,s]) onDomain;speci�es that all the teams scheduled to play on week w must be di�erent. Ituses an aggregate operator all to collect the appropriate team variables byiterating over the periods and the slots and an annotation onDomain to enforcearc consitency. See [8] for a description on how to enforce arc consistency on thisglobal constraint. The constraint

distribute(occur,values,all(w in EWeeks & s in Slots) team[p,w,s])extendedPropagationspeci�es that a team plays exactly twice over the course of the "extended" season.Its �rst argument speci�es the number of occurrences of the values speci�ed bythe second argument in the set of variables speci�ed by the third argument thatcollects all variables playing in period p. The annotation extendedPropagationspeci�es to enforce arc consistency on this constraint. See [9] for a descriptionon how to enforce arc consistency on this global constraint. The constraintalldifferent(game) onDomain;speci�es that all games are di�erent, i.e., that all teams play against each otherteam. These constraints illustrate some of the global constraints of OPL. Otherglobal constraints in the current version include a sequencing constraint, a circuitconstraint, and a variety of scheduling constraints. Finally, the constraintlink(team[p,w,home],team[p,w,away],game[p,w]);is most interesting. It speci�es that the game game[p,w] consists of the teamsteam[p,w,home] and team[p,w,away]. OPL enforces arc-consitency on this sym-bolic constraint.The search procedure in this statement is extremely simple and consists ofgenerating values for the games using the �rst-fail principle. Note also that gener-ating values for the games automatically assigns values to the team by constraintpropagation. As mentioned, this model �nds a solution for 14 teams in about 44seconds on a modern PC (400mhz).3.2 A Round-Robin ModelThe simple model has many symmetries that enlarge the search space consid-erably. In this section, we describe a model that uses a round-robin schedule todetermine which games are played in a given week. As a consequence, once theround-robin schedule is selected, it is only necessary to determine the period ofeach game, not its schedule week. In addition, it turns out that a simple round-robin schedule makes it possible to �nd solutions for large numbers of teams.The model is depicted in Statements 5 and 6.The main novelty in the statement is the array roundRobin that speci�es thegames for every week. Assuming that n denotes the number of teams, the basicidea is to �x the set of games of the �rst week as< 1; 2 > [f< p; n� p+ 2 > j p > 1gwhere p is a period identi�er. Games of the subsequent weeks are computed bytransforming a tuple < f; s > into a tuple < f 0; s0 > wheref 0 =8<:1 if f = 12 if f = nf + 1 otherwise

int nbTeams = ...;range Teams 1..nbTeams;range Weeks 1..nbTeams-1;range EWeeks 1..nbTeams;range Periods 1..nbTeams/2;range Games 1..nbTeams*nbTeams;enum Slots = f home, away g;int occur[t in Teams] = 2;int values[t in Teams] = t;var Teams team[Periods,EWeeks,Slots];var Games game[Periods,Weeks];struct Play f int f; int s; int g; g;fPlayg Plays = f <i,j,(i-1)*nbTeams+j> | ordered i, j in Teams g;predicate link(int f,int s,int g) in Plays;Play roundRobin[Weeks,Periods];initialize froundRobin[1,1].f = 1;roundRobin[1,1].s = 2;forall(p in Periods : p > 1) froundRobin[1,p].f = p+1;roundRobin[1,p].s = nbTeams - (p-2);g;forall(w in Weeks: w > 1) fforall(p in Periods) fif roundRobin[w-1,p].f <> 1 thenif roundRobin[w-1,p].f = nbTeams then roundRobin[w,p].f = 2else roundRobin[w,p].f = roundRobin[w-1,p].f + 1 endifelseroundRobin[w,p].f = roundRobin[w-1,p].f;endif;if roundRobin[w-1,p].s = nbTeams then roundRobin[w,p].s = 2else roundRobin[w,p].s = roundRobin[w-1,p].s + 1 endif;gg;forall(w in Weeks, p in Periods)if roundRobin[w,p].f < roundRobin[w,p].s thenroundRobin[w,p].g = nbTeams*(roundRobin[w,p].f-1) + roundRobin[w,p].selseroundRobin[w,p].g = nbTeams*(roundRobin[w,p].s-1) + roundRobin[w,p].fendif;g;fintg domain[w in Weeks] = f roundRobin[w,p].g | p in Periods g;Fig. 5. A Round-Robin Model for the Sport-Scheduling Model (Part I).

solve fforall(p in Periods & w in Weeks)game[p,w] in domain[w];forall(w in EWeeks)alldifferent(all(p in Periods & s in Slots) team[p,w,s]) onDomain;alldifferent(game) onDomain;forall(p in Periods)distribute(occur,values,all(w in EWeeks & s in Slots) team[p,w,s])extendedPropagation;forall(p in Periods & w in Weeks)link(team[p,w,home],team[p,w,away],game[p,w]);g;search fforall(p in Periods) fgenerateSeq(game[p]);forall(po in Periods : po > 1)generate(game[po,p]);g;g; Fig. 6. A Round-Robin Model for the Sport-Scheduling Model (Part II).
nb. of teams 14 16 18 20 22 24 26 28 30CPU Time (sec.) 3.91 4.97 1.00 6.41 10.36 11.81 45.66 36.2 42.38Fig. 7. Experimental Results for the Sport-Scheduling Model

and s0 = �2 if f = ns+ 1 otherwiseThis round-robin schedule is computed in the initialize instruction and thelast instruction computes the game associated with the teams. The instructionfintg domain[w in Weeks] = f roundRobin[w,p].g | p in Periods g;de�nes the games played in a given week. This array is used in the constraintgame[p,w] in domain[w];which forces the game variables of period p and of week w to take a game allocatedto that week.The model also contains a novel search procedure that consists of generatingvalues for the games in the �rst period and in the �rst week, then in the sec-ond period and the second week, and so on. Table 7 depicts the experimentalresults for various numbers of teams. It is possible to improve model further byexploiting even more symmetries: see [10] for complete details.4 Job-Shop SchedulingOne of the other signi�cant features of OPL is its support for scheduling applica-tions. OPL has a variety of domain-speci�c concepts for these applications thatare translated into state-of-the-art algorithms. To name only a few, they includethe concepts of activities, unary, discrete, and state resources, reservoirs, andbreaks as well as the global constraints linking them.Statement 8 describes a simple job-shop scheduling model. The problem isto schedule a number of jobs on a set of machines to minimize completion time,often called the makespan. Each job is a sequence of tasks and each task requiresa machine. Statement 8 �rst declares the number of machines, the number ofjobs, and the number of tasks in the jobs. The main data of the problem, i.e.,the duration of all the tasks and the resources they require, are then given. Thenext set of instructionsScheduleHorizon = totalDuration;Activity task[j in Jobs, t in Tasks](duration[j,t]);Activity makespan(0);UnaryResource tool[Machines];is most interesting. The �rst instruction describes the schedule horizon, i.e., thedate by which the schedule should be completed at the lastest. In this application,the schedule horizon is given as the summation of all durations, which is clearlyan upper bound on the duration of the schedule. The next instruction declaresthe activities of the problem. Activities are �rst-class objects in OPL and canbe viewed (in a �rst approximation) as consisting of variables representing thestarting date, the duration, and the end date of a task, as well as the constraintslinking them. The variables of an activity are accessed as �elds of records. Inour application, there is an activity associated with each task of each job. Theinstruction

int nbMachines = ...;range Machines 1..nbMachines;int nbJobs = ...;range Jobs 1..nbJobs;int nbTasks = ...;range Tasks 1..nbTasks;Machines resource[Jobs,Tasks] = ...;int+ duration[Jobs,Tasks] = ...;int totalDuration = sum(j in Jobs, t in Tasks) duration[j,t];ScheduleHorizon = totalDuration;Activity task[j in Jobs, t in Tasks](duration[j,t]);Activity makespan(0);UnaryResource tool[Machines];minimizemakespan.endsubject to fforall(j in Jobs)task[j,nbTasks] precedes makespan;forall(j in Jobs & t in 1..nbTasks-1)task[j,t] precedes task[j,t+1];forall(j in Jobs & t in Tasks)task[j,t] requires tool[resource[j,t]];g;search fLDSearch() fforall(r in Machines ordered by increasing localSlack(tool[r]))rank(u[r]);gg Fig. 8. A Job-Shop Scheduling Model (jobshop.mod).

UnaryResource tool[Machines];declares an array of unary resources. Unary resources are, once again, �rst-classobjects of OPL; they represent resources that can be used by atmost one activityat anyone time. In other words, two activities using the same unary resourcecannot overlap in time. Note that the makespan is modeled for simplicity as anactivity of duration zero.Consider now the problem constraints. The �rst set of constraints speci�esthat the activities associated with the problem tasks precede the makespan ac-tivity. The next two sets specify the precedence and resource constraints. Theresource constraints specify which activities require which resource. Finally, thesearch proceduresearch fLDSearch() fforall(r in Machines ordered by increasing localSlack(tool[r]))rank(u[r]);ggillustrates a typical search procedure for job-shop scheduling and the use oflimited discrepancy search (LDS) [5] as a search strategy. The search procedureforall(r in Machines ordered by increasing localSlack(tool[r]))rank(u[r]);consists of ranking the unary resources, i.e., choosing in which order the activitiesexecute on the resources. The instruction LDSearch() speci�es that the searchspace speci�ed by the search procedure de�ned above must be explored usinglimited discrepancy search. This strategy, which is e�ective for many schedulingproblems, assumes the existence of a good heuristic. Its basic intuition is thatthe heuristic, when it fails, probably would have found a solution if it had madea small number of di�erent decisions during the search. The choices where thesearch procedure does not follow the heuristic are called discrepancies. As a con-sequence, LDS systematically explores the search tree by increasing the numberof allowed discrepancies. Initially, a small number of discrepancies is allowed. Ifthe search is not successful or if an optimal solution is desired, the number ofdiscrepancies is increased and the process is iterated until a solution is found orthe whole search space has been explored. Note that, besides the default depth-�rst search and LDS, OPL also supports best-�rst search, interleaved depth-�rstsearch, and depth-bounded limited discrepancy search. It is interesting to men-tion that this simple model solves MT10 in about 40 seconds and MT20 in about0.4 seconds.5 A Con�guration ProblemThis section illustrates OPLSCRIPT, a script language for controlling and composingOPL models. It shows how to solve an application consisting of a sequence

of two models: a constraint programming model and an integer program. Theapplication is a con�guration problem, known as Vellino's problem, that is asmall but good representive of many similar applications. For instance, complexsport scheduling applications can be solved in a similar fashion.Given a supply of components and bins of various types, Vellino's problemconsists of assigning the components to the bins so that the bin constraints aresatis�ed and the smallest possible number of bins is used. There are �ve typesof components, i.e., glass, plastic, steel, wood, and copper, and three types ofbins, i.e., red, blue, green. The bins must obey a variety of con�guration con-straints. Containment constraints specify which components can go into whichbins: red bins cannot contain plastic of steel, blue bins cannot contain wood orplastic, and green bins cannot contain steel or glass. Capacity constraints specifya limit for certain component types for some bins: red bins contain at most onewooden component and green bins contain at most two wooden components.Finally, requirement constraints specify some compatibility constraints betweenthe components: wood requires plastic, glass excludes copper and copper ex-cludes plastic. In addition, we are given an initial capacity for each bin, i.e., redbins have a capacity of 3 components, blue bins of 1 and green bins of 4 and ademand for each component, i.e., 1 glass, 2 plastic, 1 steel, 3 wood, and 2 coppercomponents.Model bin("genBin.mod","genBin.dat");import enum Colors bin.Colors;import enum Components bin.Components;struct Bin f Colors c; int n[Components]; g;int nbBin := 0;Open Bin bins[1..nbBin];while bin.nextSolution() do fnbBin := nbBin + 1;bins.addh();bins[nbBin].c := bin.c;forall(c in Components)bins[nbBin].n[c] := bin.n[c];gModel pro("chooseBin.mod","chooseBin.dat");if pro.solve() thencout << "Solution at cost: " << pro.objectiveValue() << endl;Fig. 9. A Script to Solve Vellino's Problem (vellino.osc) .The strategy to solve this problem consists of generating all the possible bincon�gurations and then to choose the smallest number of them that meet thedemand. This strategy is implemented using a script vellino.osc depicted in

enum Colors ...;enum Components ...;int capacity[Colors] = ...;int maxCapacity = max(c in Colors) capacity[c];var Colors c;var int n[Components] in 0..maxCapacity;solve f0 < sum(c in Components) n[c] <= capacity[c];c = red => n[plastic] = 0 & n[steel] = 0 & n[wood] <= 1;c = blue => n[plastic] = 0 & n[wood] = 0;c = green => n[glass] = 0 & n[steel] = 0 & n[wood] <= 2;n[wood] >= 1 => n[plastic] >= 1;n[glass] = 0 \/ n[copper] = 0;n[copper] = 0 \/ n[plastic] = 0;g; Fig. 10. Generating the Bins in Vellino's Problem (genBin.mod) .
import enum Colors;import enum Components;struct Bin f Colors c; int n[Components]; g;import int nbBin;import Bin bin[1..nbBin];range R 1..nbBin;int demand[Components] = ...;int maxDemand = max(c in Components) demand[c];var int produce[R] in 0..maxDemand;minimizesum(b in R) produce[b]subject toforall(c in Components)sum(b in R) bin[b].n[c] * produce[b] = demand[c];Fig. 11. Choosing the Bins in Vellino's Problem (chooseBin.mod) .

Figure 9 and two models genBin.mod and chooseBin.mod depicted in Figures 10and 11. It is interesting to study the script in detail at this point. The instructionModel bin("genBin.mod","genBin.dat");declare the �rst model. Models are, of course, a fundamental concept of OPLSCRIPT:they support a variety of methods (e.g., solve and nextSolution), their datacan be accessed as �elds of records, and they can be passed as parameters toprocedures. The instructionsimport enum Colors bin.Colors;import enum Components bin.Components;import the enumerated types from the model to the script; these enumeratedtypes will be imported by the second model as well. The instructionsstruct Bin f Colors c; int n[Components]; g;int nbBin := 0;Open Bin bins[1..nbBin];declare a variable to store the number of bin con�gurations and an open arrayto store the bin con�gurations themselves. Open arrays are arrays that can growand shrink dynamically during the execution. The instructionswhile bin.nextSolution() do fnbBin := nbBin + 1;bins.addh();bins[nbBin].c := bin.c;forall(c in Components)bins[nbBin].n[c] := bin.n[c];genumerate all the bin con�gurations and store them in the bin array in modelpro. Instruction bin.nextSolution() returns the next solution (if any) of themodel bin. Instruction bins.addh increases the size of the open array (addhstands for "add high"). The subsequent instructions access the model data andstore them in the open array. Once this step is completed, the second model isexecuted and produces a solution at cost 8.Model genBin.mod speci�es how to generate the bin con�gurations: It is atypical constraint program using logical combinations of constraints that shouldnot raise any di�culty. Model chooseBin.mod is an integer program that choosesand minimizes the number of bins. This model imports the enumerated types asmentioned previously. It also imports the bin con�gurations using the instruc-tionsimport int nbBin;import Bin bin[1..nbBin];It is important to stress to both models can be developed and tested indepen-dently since import declarations can be initialized in a data �le when a model isrun in isolation (i.e., not from a script). This makes the overall design composi-tional.

6 ConclusionThe purpose of this paper was to review, through four applications, a numberof constraint programming features of OPL to give a basic understanding of theexpressiveness of the language. These features include very high-level algebraicnotations and data structures, a rich constraint programming language sup-porting logical, higher-level, and global constraints, support for scheduling andresource allocation problems, and search procedures and strategies. The paperalso introduced brie
y OPLSCRIPT, a script language to control and compose OPLmodels. The four applications presented in this paper should give a preliminary,although very incomplete, understanding of how OPL can decrease developmenttime signi�cantly.References1. J. Bisschop and A. Meeraus. On the Development of a General Algebraic ModelingSystem in a Strategic Planning Environment. Mathematical Programming Study,20:1{29, 1982.2. A. Colmerauer. An Introduction to Prolog III. Commun. ACM, 28(4):412{418,1990.3. M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier.The Constraint Logic Programming Language CHIP. In Proceedings of the Inter-national Conference on Fifth Generation Computer Systems, Tokyo, Japan, De-cember 1988.4. R. Fourer, D. Gay, and B.W. Kernighan. AMPL: A Modeling Language for Math-ematical Programming. The Scienti�c Press, San Francisco, CA, 1993.5. W.D. Harvey and M.L. Ginsberg. Limited Discrepancy Search. In Proceedingsof the 14th International Joint Conference on Arti�cial Intelligence, Montreal,Canada, August 1995.6. A.K. Mackworth. Consistency in Networks of Relations. Arti�cial Intelligence,8(1):99{118, 1977.7. K. McAloon, C. Tretko�, and G. Wetzel. Sport League Scheduling. In Proceedingsof the 3th Ilog International Users Meeting, Paris, France, 1997.8. J-C. R�egin. A �ltering algorithm for constraints of di�erence in CSPs. In AAAI-94, proceedings of the Twelth National Conference on Arti�cial Intelligence, pages362{367, Seattle, Washington, 1994.9. J-C. R�egin. Generalized arc consistency for global cardinality constraint. In AAAI-96, proceedings of the Thirteenth National Conference on Arti�cial Intelligence,pages 209{215, Portland, Oregon, 1996.10. J-C. R�egin. Sport league scheduling. In INFORMS, Montreal, Canada, 1998.11. Ilog SA. Ilog Solver 4.31 Reference Manual, 1998.12. G. Smolka. The Oz Programming Model. In Jan van Leeuwen, editor, ComputerScience Today. LNCS, No. 1000, Springer Verlag, 1995.13. P. Van Hentenryck. The OPL Optimization Programming Language. The MITPress, Cambridge, Mass., 1999.

