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Abstract. OPL is a modeling language for mathematical programming
and combinatorial optimization problems. It is the first modeling lan-
guage to combine high-level algebraic and set notations from model-
ing languages with a rich constraint language and the ability to specify
search procedures and strategies that is the essence of constraint pro-
gramming. In addition, OPL models can be controlled and composed
using OPLSCRIPT, a script language that simplifies the development of ap-
plications that solve sequences of models, several instances of the same
model, or a combination of both as in column-generation applications.
This paper illustrates some of the functionalities of OPL for constraint
programming using frequency allocation, sport-scheduling, and job-shop
scheduling applications. It also illustrates how OPL models can be com-
posed using OPLSCRIPT on a simple configuration example.

1 Introduction

Combinatorial optimization problems are ubiquitous in many practical appli-
cations, including scheduling, resource allocation, planning, and configuration
problems. These problems are computationally difficult (i.e., they are NP-hard)
and require considerable expertise in optimization, software engineering, and the
application domain.

The last two decades have witnessed substantial development in tools to sim-
plify the design and implementation of combinatorial optimization problems.
Their goal is to decrease development time substantially while preserving most
of the efficiency of specialized programs. Most tools can be classified in two
categories: mathematical modeling languages and constraint programming lan-
guages. Mathematical modeling languages such as AMPL [4] and GAMS [1]
provides very high-level algebraic and set notations to express concisely math-
ematical problems that can then be solved using state-of-the-art solvers. These
modeling languages do not require specific programming skills and can be used
by a wide audience. Constraint programming languages such as CHIP [3], Pro-
LoG IIT and its successors [2], OZ [12], and ILOG SOLVER [11] have orthogonal
strenghts. Their constraint languages, and their underlying solvers, go beyond
traditional linear and nonlinear constraints and support logical, high-order, and
global constraints. They also make it possible to program search procedures to
specify how to explore the search space. However, these languages are mostly
aimed at computer scientists and often have weaker abstractions for algebraic
and set manipulation.



The work described in this paper originated as an attempt to unify model-
ing and constraint programming languages and their underlying implementation
technologies. It led to the development of the optimization programming lan-
guage OPL [13], its associated script language OPLScripT [?], and its development
environment OPL STupio.

OPL is a modeling sharing high-level algebraic and set notations with tradi-
tional modeling languages. It also contains some novel functionalities to exploit
sparsity in large-scale applications, such as the ability to index arrays with arbi-
trary data structures. OPL shares with constraint programming languages their
rich constraint languages, their support for scheduling and resource allocation
problems, and the ability to specify search procedures and strategies. OPL also
makes it easy to combine different solver technologies for the same application.

OPLScriPT is a script language for composing and controlling OPL models.
Its motivation comes from the many applications that require solving several
instances of the same problem (e.g., sensibility analysis), sequences of models, or
a combination of both as in column-generation applications. OPLScRIPT supports
a variety of abstractions to simplify these applications, such as OPL models as
first-class objects, extensible data structures, and linear programming bases to
name only a few.

OPL Stupio is the development environment of OPL and OPLScripT. Beyond sup-
port for the traditional ”edit, execute, and debug” cycle, it provides automatic
visualizations of the results (e.g., Gantt charts for scheduling applications), vi-
sual tools for debugging and monitoring OPL models (e.g., visualizations of the
search space), and C++ code generation to integrate an OPL model in a larger
application. The code generation produces a class for each model objects and
makes it possible to add/remove constraints dynamically and to overwrite the
search procedure.

The purpose of this paper is to illustrate some of the constraint programming
features of OPL through a number of models. Section 2 describes a model for a
frequency allocation application that illustrates how to use high-level algebraic
and set manipulation, how to exploit sparsity, and how to implement search
procedures in OPL. Section 3 describes a model for a sport-scheduling applica-
tions that illustrates the use of global constraints in OPL. Section 4 describes
an application that illustrates the support for scheduling applications and for
search strategies in OPL. Section 5 shows how OPL models can be combined using
OPLScrIPT on a configuration application. All these applications can be run on
ILOG OPL Stupio 2.1.

2 Frequency Allocation

The frequency-allocation problem [11] illustrates a number of interesting features
of OPL: the use of complex quantifiers, and the use of a multi-criterion ordering
to choose which variable to assign next. It also features an interesting data
representation that is useful in large-scale linear models.



The frequency-allocation problem consists of allocating frequencies to a num-
ber of transmitters so that there is no interference between transmitters and the
number of allocated frequencies is minimized. The problem described here is an
actual cellular phone problem where the network is divided into cells, each cell
containing a number of transmitters whose locations are specified. The interfer-
ence constraints are specified as follows:

— The distance between two transmitter frequencies within a cell must not be
smaller than 16.

— The distances between two transmitter frequencies from different cells vary
according to their geographical situation and are described in a matrix.

The problem of course consists of assigning frequencies to transmitters to avoid
interference and, if possible, to minimize the number of frequencies. The rest of
this section focuses on finding a solution using a heuristic to reduce the number
of allocated frequencies.

int nbCells = ...;

int nbFregs = ...;

range Cells 1..nbCells;

range Fregs 1..nbFregs;

int nbTrans[Cells] = ...;

int distance[Cells,Cells] = ...;

struct TransmitterType { Cells c; int t; };
{TransmitterType} Transmits = { <c,t> | c in Cells & t in 1..nbTrans[c] };
var Freqs freq[Transmits];

solve {
forall(c in Cells & ordered tl1, t2 in 1..nbTransl[c])
abs(freq[<c,t1>] - freq[<c,t2>]) >= 16;

forall(ordered cl, c2 in Cells : distancelcl,c2] > 0)
forall(tl in 1..nbTrans[c1] & t2 in 1..nbTrans[c2])
abs(freq[<cl,t1>] - freq[<c2,t2>]) >= distancel[cl,c2];

}s
search {
forall(t in Transmits ordered by increasing <dsize(freq[t]),nbTrans[t.c]>)
tryall(f in Freqs ordered by decreasing nbOccur(f,freq))
freq[t] = £;
b

Fig. 1. The Frequency-Allocation Problem (alloc.mod).




Statement 1 shows an OPL statement for the frequency-allocation problem
and Statement 2 describes the instance data. Note the separation between models
and data which is an interesting feature of OPL. The model data first specifies
the number of cells (25 in the instance), the number of available frequencies (256
in the instance), and their associated ranges. The next declarations specify the
number of transmitters needed for each cell and the distance between cells. For
example, in the instance, cell 1 requires eight transmitters while cell 3 requires
six transmitters. The distance between cell 1 and cell 2 is 1.

The first interesting feature of the model is how variables are declared:

struct TransmitterType { Cells c; int t; };
{TransmitterType} Transmits = { <c,t> | c¢ in Cells & t in 1..nbTrans[c] };
var Freqs freq[Transmits];

As is clear from the problem statement, transmitters are contained within cells.
The above declarations preserve this structure, which will be useful when stating
constraints. A transmitter is simply described as a record containing a cell num-
ber and a transmitter number inside the cell. The set of transmitters is computed
automatically from the data using

{TransmitterType} Transmits = { <c,t> | c in Cells & t in 1..nbTrans[c] };

which considers each cell and each transmitter in the cell. OPL supports a rich
language to compute with sets of data structures and this instruction illustrates
some of this functionality. The model then declares an array of variables

var Freqs freq[Transmits];

indexed by the set of transmitters; the values of these variables are of course
the frequencies associated with the transmitters. This declaration illlustrates a
fundamental aspect of OPL: arrays can be indexed by arbitrary data. In this appli-
cation, the arrays of variables freq is indexed by the elements of transmitters
that are records. This functionality is of primary importance to exploit spar-
sity in large-scale models and to simplify the statement of many combinatorial
optimization problems.

There are two main groups of constraints in this model. The first set of
constraints handles the distance constraints between transmitters inside a cell.
The instruction

forall(c in Cells & ordered tl1, t2 in 1..nbTransl[c])
abs(freq[<c,t1>] - freql[<c,t2>]) >= 16;

enforces the constraint that the distance between two transmitters inside a cell
is at least 16. The instruction is compact mainly because we can quantify sev-
eral variables in forall statements and because of the keyword ordered that
makes sure that the statement considers triples <c,t1,t2> where t1 < t2. Of
particular interest are the expressions freq[<c,t1>] and freq[<c,t2>] illus-
trating that the indices of array freq are records of the form <c,t>, where c is
a cell and t is a transmitter. Note also that the distance is computed using the



nbCells = 25;

256;

nbFregs
nbTrans

[6661448888498441089845143811];

L
[t6110000011111221100022111]

distance

[116 200000221112211000000 0 0]
[121600000221112211000000 0 0]
[00016220000000000011100011]

[0002162000000000001110001 1]

[00022160000000000011100011]

[o0O000016200111001111200011]

[o000002160011100111120001 1]

[t220000016222222111111101 1]

[t220000021622222111111101 1]

[t1100011221622222211211011]

[t11100011222162222211211011]

[t1100011222216222211211011]

[22200000222221621111111111]

[22200000222222161111111111]

[t1100011112221116222122122]
[t1100011112221121622122122]

[po0OO0O111111111111221622110 2 2]
[poO0O111111111111222162110 2 2]
[p0OO0O1112211222111122161101 1]

[200000001111111221111621 2 2]

[200000001111111221112161 2 2]

[10000000000001111000111611]

[tT0o011111111111122221221162]

[too11111111111122221221216]];

Fig. 2. Instance Data for the Frequency-Allocation Problem (alloc.dat).




function abs, which computes the absolute value of its argument (which may be
an arbitrary integer expression).

The second set of constraints handles the distance constraints between trans-
mitters from different cells. The instruction

forall (ordered cl, c2 in Cells : distance[cl,c2] > 0)
forall(tl in 1..nbTrans[c1] & t2 in 1..nbTrans[c2])
abs(freq[<cl,t1>] - freq[<c2,t2>]) >= distancel[cl,c2];

considers each pair of distinct cells whose distance must be greater than zero
and each two transmitters in these cells, and states that the distance between
the frequencies of these transmitters must be at least the distance specified in
the matrix distance.

Another interesting part of this model is the search strategy. The basic struc-
ture is not surprising: OPL considers each transmitter and chooses a frequency
nondeterministically. The interesting feature of the model is the heuristic. OPL
chooses to generate a value for the transmitter with the smallest domain and, in
case of ties, for the transmitter whose cell size is as small as possible. This multi-
criterion heuristic is expressed using a tuple <dsize(freq[t]) ,nbTrans[t.c]>
to obtain

forall(t in Transmits ordered by increasing <dsize(freq[t]),nbTrans[t.c]>)

Each transmitter is associated with a tuple < s,c¢ >, where s is the number of
its possible frequencies and c¢ is the number of transmitters in the cell to which
the transmitter belongs. A transmitter with tuple < s1,c¢; > is preferred over a
transmitter with tuple < so,co > if 57 < s5 or if s1 = s2 and ¢; < ¢o.

Once a transmitter has been selected, OPL generates a frequency for it in
a nondeterministic manner. Once again, the model specifies a heuristic for the
ordering in which the frequencies must be tried. To reduce the number of fre-
quencies, the model says to try first those values that were used most often
in previous assignments. This heuristic is implemented using a nondetermin-
istic tryall instruction with the order specified using the nbOccur function
(nbOccur(i,a) denotes the number of occurrences of i in array a at a given
step of the execution):

forall(t in Transmits ordered by increasing <dsize(freq[t]),nbTrans[t.c]>)
tryall(f in Freqs ordered by decreasing nbOccur(f,freq))
freq[t] = £;

This search procedure is typical of many constraint satisfaction problems and
consists of using a first heuristic to dynamically choose which variable to in-
stantiate next (variable choice) and a second heuristic to choose which value to
assign nondeterministically to the selected variable (value choice). The forall
instruction is of course deterministic, while the tryall instruction is nondeter-
ministic: potentially all possible values are chosen for the selected variable. Note
that, on the instance depicted in Statement 2, OPL returns a solution with 95
frequencies in about 3 seconds.



3 Sport Scheduling

This section considers the sport-scheduling problem described in [7,10]. The
problem consists of scheduling games between n teams over n — 1 weeks. In
addition, each week is divided into n/2 periods. The goal is to schedule a game
for each period of every week so that the following constraints are satisfied:

1. Every team plays against every other team;
2. A team plays exactly once a week;
3. A team plays at most twice in the same period over the course of the season.

A solution to this problem for 8 teams is shown in Figure 3. In fact, the problem
can be made more uniform by adding a ”dummy” final week and requesting that
all teams play exactly twice in each period. The rest of this section considers
this equivalent problem for simplicity.

Week 1|Week 2|Week 3|Week 4|Week 5| Week 6/Week 7
period 1/ 0vs 1 [0vs2|4vs7|3vs6|[3vsT|1lvsH|2vs4
period 2/ 2vs 3 |1vs7|0vs3|bvs7|[1lvs4d|0vs6|5vsh
period 3|4 vs 5 |[3vsH|1vs6|0vs4d|[2vs6|2vsT|[0OvsT
period 4/ 6 vs 7|4 vs6|2vsH|1vs2|[0vsH|3vsd|1lvs3

Fig. 3. A Solution to the Sport-Scheduling Application with 8 Teams

The sport-scheduling problem is an interesting application for constraint pro-
gramming. On the one hand, it is a standard benchmark (submitted by Bob
Daniel) to the well-known MIP library and it is claimed in [7] that state-of-
the-art MIP solvers cannot find a solution for 14 teams. The OPL models pre-
sented in this section are computationally much more efficient. On the other
hand, the sport-scheduling application demonstrates fundamental features of
constraint programming including global and symbolic constraints. In particu-
lar, the model makes heavy use of arc-consistency [6], a fundamental constraint
satisfaction techniques from artificial intelligence.

The rest of this section is organized as follows. Section 3.1 presents an OPL
model that solves the 14-teams problem in about 44 seconds. Section 3.2 show
how to specialize it further to find a solution for 14 to 30 teams quickly. Both
models are based on the constraint programs presented in [10].

3.1 A Simple OPL model

The simple model is depicted in Statement 4. Its input is the number of teams
nbTeams. A number of ranges are defined from the input: the teams Teams, the
weeks Weeks, and the extended weeks EWeeks, i.e., the weeks plus the dummy
week. The model also declares an enumerated type slot to specify the team
position in a game (home or away). The declarations



int nbTeams = ...;

range Teams 1..nbTeams;

range Weeks 1..nbTeams-1;

range EWeeks 1..nbTeams;

range Periods 1..nbTeams/2;
range Games 1..nbTeams*nbTeams;
enum Slots = { home, away };

int occur[t in Teams] = 2;
int values[t in Teams] = t;

var Teams team[Periods,EWeeks,Slots];
var Games game[Periods,Weeks];

struct Play { int f; int s; int g; };
{Play} Plays = { <i,j,(i-1)*nbTeams+j> | ordered i, j in Teams };
predicate link(int f,int s,int g) in Plays;

solve {
forall(w in EWeeks)
alldifferent( all(p in Periods & s in Slots) team[p,w,s]) onDomain;
alldifferent (game) onDomain;
forall(p in Periods)
distribute(occur,values,all(w in EWeeks & s in Slots) team[p,w,s])
extendedPropagation;
forall(p in Periods & w in Weeks)
link(team[p,w,home] ,team[p,w,away] ,game[p,w]);

}s

search {
generate (game) ;
}s

Fig. 4. A Simple Model for the Sport-Scheduling Model.




int occur[t in Teams] = 2;
int values[t in Teams] = t;

specifies two arrays that are initialized generically and are used to state con-
straints later on. The array occur can be viewed as a constant function always
returning 2, while the array values can be tought of as the identify function
over teams.

The main modeling idea in this model is to use two classes of variables: team
variables that specify the team playing on a given week, period, and slot and the
game variables specifying which game is played on a given week and period. The
use of game variables makes it simple to state the constraint that every team
must play against each other team. Games are uniquely identified by their two
teams. More precisely, a game consisting of home team h and away team a is
uniquely identified by the integer (h-1)*nbTeams + a. The instruction

var Teams team[Periods,EWeeks,Slots];
var Games game[Periods,Weeks];

declares the variables. These two sets of variables must be linked together to
make sure that the game and team variables for a given period and a given week
are consistent. The instructions

struct Play { int f; int s; int g; };
a ays = <i,j,(i-1)*nbTeams+j> ordered i, in Teams ;;
Play; Play i,j (i-1) *nbT j | d. di, jinT

specify the set of legal games Plays for this application. For 8 teams, this set
consists of tuples of the form

<1,2,2>
<1,3,3>

<7,8,56>
Note that this definition eliminates some symmetries in the problem statement
since the home team is always smaller than the away team. The instruction

predicate link(int f,int s,int g) in Plays;

defines a symbolic constraint by specifying its set of tuples. In other words,
link(h,a,g) holds if the tuple <h,a,g> is in the set Plays of legal games. This
symbolic constraint is used in the constraint statement to enforce the relation
between the game and the team variables.

The constraint declarations in the model follow almost directly the problem
description. The constraint

alldifferent( all(p in Periods & s in Slots) team[p,w,s]) onDomain;

specifies that all the teams scheduled to play on week w must be different. It
uses an aggregate operator all to collect the appropriate team variables by
iterating over the periods and the slots and an annotation onDomain to enforce
arc consitency. See [8] for a description on how to enforce arc consistency on this
global constraint. The constraint



distribute (occur,values,all(w in EWeeks & s in Slots) team[p,w,s])
extendedPropagation

specifies that a team plays exactly twice over the course of the ”extended” season.
Its first argument specifies the number of occurrences of the values specified by
the second argument in the set of variables specified by the third argument that
collects all variables playing in period p. The annotation extendedPropagation
specifies to enforce arc consistency on this constraint. See [9] for a description
on how to enforce arc consistency on this global constraint. The constraint

alldifferent (game) onDomain;

specifies that all games are different, i.e., that all teams play against each other
team. These constraints illustrate some of the global constraints of OPL. Other
global constraints in the current version include a sequencing constraint, a circuit
constraint, and a variety of scheduling constraints. Finally, the constraint

link(team[p,w,home] ,team[p,w,away] ,game[p,w]);

is most interesting. It specifies that the game game[p,w] consists of the teams
team[p,w,home] and team[p,w,away]. OPL enforces arc-consitency on this sym-
bolic constraint.

The search procedure in this statement is extremely simple and consists of
generating values for the games using the first-fail principle. Note also that gener-
ating values for the games automatically assigns values to the team by constraint
propagation. As mentioned, this model finds a solution for 14 teams in about 44
seconds on a modern PC (400mhz).

3.2 A Round-Robin Model

The simple model has many symmetries that enlarge the search space consid-
erably. In this section, we describe a model that uses a round-robin schedule to
determine which games are played in a given week. As a consequence, once the
round-robin schedule is selected, it is only necessary to determine the period of
each game, not its schedule week. In addition, it turns out that a simple round-
robin schedule makes it possible to find solutions for large numbers of teams.
The model is depicted in Statements 5 and 6.

The main novelty in the statement is the array roundRobin that specifies the
games for every week. Assuming that n denotes the number of teams, the basic
idea is to fix the set of games of the first week as

<L2> U{<pn—p+2>| p>1}

where p is a period identifier. Games of the subsequent weeks are computed by
transforming a tuple < f,s > into a tuple < f’, s’ > where

1 iff=1

=42 iff=n
f + 1 otherwise



int nbTeams = ...;

range Teams 1..nbTeams;

range Weeks 1..nbTeams-1;

range EWeeks 1..nbTeams;

range Periods 1..nbTeams/2;
range Games 1..nbTeams*nbTeams;
enum Slots = { home, away };

int occur[t in Teams] = 2;
int values[t in Teams] = t;

var Teams team[Periods,EWeeks,Slots];
var Games game[Periods,Weeks];

struct Play { int f; int s; int g; };

Play} Plays = <i,j,(i-1)*nbTeams+j> | ordered i, j in Teams };
y y J J J

predicate link(int f,int s,int g) in Plays;

Play roundRobin[Weeks,Periods];
initialize {
roundRobin[1,1].f 1;
roundRobin[1,1].s 2;
forall(p in Periods : p > 1) {
roundRobin[1,p]l.f = p+1;
roundRobin[1,p]l.s = nbTeams - (p-2);
b
forall(w in Weeks: w > 1) {
forall(p in Periods) {
if roundRobin[w-1,p].f <> 1 then
if roundRobin[w-1,p]l.f = nbTeams then roundRobin[w,p].f = 2
else roundRobin[w,p].f = roundRobin[w-1,p]l.f + 1 endif
else

roundRobin[w,p] .f = roundRobin[w-1,p].f;
endif;
if roundRobin[w-1,p].
else roundRobin[w,p].

n
|

= nbTeams then roundRobin[w,p].s = 2
roundRobin[w-1,p].s + 1 endif;

2]
1]

}
b
forall(w in Weeks, p in Periods)
if roundRobin[w,p].f < roundRobin[w,p]l.s then
roundRobin[w,p].g = nbTeams*(roundRobin[w,p].f-1) + roundRobin[w,p].s
else

roundRobin[w,pl.g
endif;

nbTeams* (roundRobin[w,p]l.s-1) + roundRobin[w,p].f

}s

{int} domain[w in Weeks]

{ roundRobin[w,pl.g | p in Periods };

Fig. 5. A Round-Robin Model for the Sport-Scheduling Model (Part I).




solve {
forall(p in Periods & w in Weeks)
game [p,w] in domainl[w];
forall(w in EWeeks)
alldifferent( all(p in Periods & s in Slots) team[p,w,s]) onDomain;
alldifferent (game) onDomain;
forall(p in Periods)
distribute(occur,values,all(w in EWeeks & s in Slots) team[p,w,s])
extendedPropagation;
forall(p in Periods & w in Weeks)
link(team[p,w,home] ,team[p,w,away] ,game[p,w]);

}s

search {
forall(p in Periods) {
generateSeq(game [p]) ;
forall(po in Periods : po > 1)
generate (game [po,pl) ;
}s

};

Fig. 6. A Round-Robin Model for the Sport-Scheduling Model (Part II).

nb. of teams 14 |16 |18 (20 |22 24 26 28 (30
CPU Time (sec.)|3.91(4.97|1.00|6.41|10.36|11.81|45.66|36.2|42.38

Fig. 7. Experimental Results for the Sport-Scheduling Model



and
o — 2 iff=n
| s + 1 otherwise
This round-robin schedule is computed in the initialize instruction and the
last instruction computes the game associated with the teams. The instruction

{int} domain[w in Weeks] = { roundRobin[w,pl.g | p in Periods };
defines the games played in a given week. This array is used in the constraint
game[p,w] in domain[w];

which forces the game variables of period p and of week w to take a game allocated
to that week.

The model also contains a novel search procedure that consists of generating
values for the games in the first period and in the first week, then in the sec-
ond period and the second week, and so on. Table 7 depicts the experimental
results for various numbers of teams. It is possible to improve model further by
exploiting even more symmetries: see [10] for complete details.

4 Job-Shop Scheduling

One of the other significant features of OPL is its support for scheduling applica-
tions. OPL has a variety of domain-specific concepts for these applications that
are translated into state-of-the-art algorithms. To name only a few, they include
the concepts of activities, unary, discrete, and state resources, reservoirs, and
breaks as well as the global constraints linking them.

Statement 8 describes a simple job-shop scheduling model. The problem is
to schedule a number of jobs on a set of machines to minimize completion time,
often called the makespan. Each job is a sequence of tasks and each task requires
a machine. Statement 8 first declares the number of machines, the number of
jobs, and the number of tasks in the jobs. The main data of the problem, i.e.,
the duration of all the tasks and the resources they require, are then given. The
next set of instructions

ScheduleHorizon = totalDuration;

Activity task[j in Jobs, t in Tasks](duration[j,t]);
Activity makespan(0);

UnaryResource tool[Machines];

is most interesting. The first instruction describes the schedule horizon, i.e., the
date by which the schedule should be completed at the lastest. In this application,
the schedule horizon is given as the summation of all durations, which is clearly
an upper bound on the duration of the schedule. The next instruction declares
the activities of the problem. Activities are first-class objects in OPL and can
be viewed (in a first approximation) as consisting of variables representing the
starting date, the duration, and the end date of a task, as well as the constraints
linking them. The variables of an activity are accessed as fields of records. In
our application, there is an activity associated with each task of each job. The
instruction



int nbMachines = ...;

range Machines 1..nbMachines;

int nbJobs = ...;

range Jobs 1..nbJobs;

int nbTasks = ...;

range Tasks 1..nbTasks;

Machines resource[Jobs,Tasks] = ...;

int+ duration[Jobs,Tasks] = ...;

int totalDuration = sum(j in Jobs, t in Tasks) duration[j,t];

ScheduleHorizon = totalDuration;

Activity task[j in Jobs, t in Tasks] (duration[j,t]);
Activity makespan(0);

UnaryResource tool[Machines];

minimize
makespan.end
subject to {
forall(j in Jobs)
task[j,nbTasks] precedes makespan;
forall(j in Jobs & t in 1..nbTasks-1)
task[j,t] precedes task[j,t+1];
forall(j in Jobs & t in Tasks)
task[j,t] requires tool[resourcel[j,t]];

}s

search {
LDSearch() {
forall(r in Machines ordered by increasing localSlack(tool[r]))
rank (ulr]);

Fig. 8. A Job-Shop Scheduling Model (jobshop.mod).




UnaryResource tool[Machines];

declares an array of unary resources. Unary resources are, once again, first-class
objects of OPL; they represent resources that can be used by atmost one activity
at anyone time. In other words, two activities using the same unary resource
cannot overlap in time. Note that the makespan is modeled for simplicity as an
activity of duration zero.

Consider now the problem constraints. The first set of constraints specifies
that the activities associated with the problem tasks precede the makespan ac-
tivity. The next two sets specify the precedence and resource constraints. The
resource constraints specify which activities require which resource. Finally, the
search procedure

search {
LDSearch() {
forall(r in Machines ordered by increasing localSlack(tool[r]))
rank(ulr]);

}

illustrates a typical search procedure for job-shop scheduling and the use of
limited discrepancy search (LDS) [5] as a search strategy. The search procedure

forall(r in Machines ordered by increasing localSlack(tool[r]))
rank (ulr]);

consists of ranking the unary resources, i.e., choosing in which order the activities
execute on the resources. The instruction LDSearch() specifies that the search
space specified by the search procedure defined above must be explored using
limited discrepancy search. This strategy, which is effective for many scheduling
problems, assumes the existence of a good heuristic. Its basic intuition is that
the heuristic, when it fails, probably would have found a solution if it had made
a small number of different decisions during the search. The choices where the
search procedure does not follow the heuristic are called discrepancies. As a con-
sequence, LDS systematically explores the search tree by increasing the number
of allowed discrepancies. Initially, a small number of discrepancies is allowed. If
the search is not successful or if an optimal solution is desired, the number of
discrepancies is increased and the process is iterated until a solution is found or
the whole search space has been explored. Note that, besides the default depth-
first search and LDS, OPL also supports best-first search, interleaved depth-first
search, and depth-bounded limited discrepancy search. It is interesting to men-
tion that this simple model solves MT10 in about 40 seconds and MT20 in about
0.4 seconds.

5 A Configuration Problem

This section illustrates OPLScriPT, a script language for controlling and composing
OPL models. It shows how to solve an application consisting of a sequence



of two models: a constraint programming model and an integer program. The
application is a configuration problem, known as Vellino’s problem, that is a
small but good representive of many similar applications. For instance, complex
sport scheduling applications can be solved in a similar fashion.

Given a supply of components and bins of various types, Vellino’s problem
consists of assigning the components to the bins so that the bin constraints are
satisfied and the smallest possible number of bins is used. There are five types
of components, i.e., glass, plastic, steel, wood, and copper, and three types of
bins, i.e., red, blue, green. The bins must obey a variety of configuration con-
straints. Containment constraints specify which components can go into which
bins: red bins cannot contain plastic of steel, blue bins cannot contain wood or
plastic, and green bins cannot contain steel or glass. Capacity constraints specify
a limit for certain component types for some bins: red bins contain at most one
wooden component and green bins contain at most two wooden components.
Finally, requirement constraints specify some compatibility constraints between
the components: wood requires plastic, glass excludes copper and copper ex-
cludes plastic. In addition, we are given an initial capacity for each bin, i.e., red
bins have a capacity of 3 components, blue bins of 1 and green bins of 4 and a
demand for each component, i.e., 1 glass, 2 plastic, 1 steel, 3 wood, and 2 copper
components.

Model bin("genBin.mod","genBin.dat");

import enum Colors bin.Colors;

import enum Components bin.Components;
struct Bin { Colors c; int n[Components]; };
int nbBin := 0;

Open Bin bins[1..nbBin];

while bin.nextSolution() do {

nbBin := nbBin + 1;
bins.addh();
bins[nbBin].c := bin.c;

forall(c in Components)
bins [nbBin] .n[c] := bin.n[c];
}
Model pro("chooseBin.mod","chooseBin.dat");
if pro.solve() then
cout << "Solution at cost: " << pro.objectiveValue() << endl;

Fig. 9. A Script to Solve Vellino’s Problem (vellino.osc) .

The strategy to solve this problem consists of generating all the possible bin
configurations and then to choose the smallest number of them that meet the
demand. This strategy is implemented using a script vellino.osc depicted in



enum Colors ...;
enum Components ...;
int capacity[Colors] = ...;
int maxCapacity = max(c in Colors) capacityl[c];
var Colors c;
var int n[Components] in 0..maxCapacity;
solve {
0 < sum(c in Components) n[c] <= capacitylc];
c = red => n[plastic] = 0 & n[steel]l = 0 & n[wood] <= 1;
blue => n[plastic] = 0 & n[wood] = 0;
c = green => n[glass] = 0 & n[steel]l = 0 & n[wood] <= 2;
n[wood] >= 1 => n[plastic] >= 1;
n[glass] = 0 \/ n[copper] = 0;
nlcopper] = 0 \/ n[plastic] = 0;

C

Fig. 10. Generating the Bins in Vellino’s Problem (genBin.mod) .

import enum Colors;
import enum Components;
struct Bin { Colors c; int n[Components]; };
import int nbBin;
import Bin bin[1..nbBin];
range R 1..nbBin;
int demand[Components] = ...;
int maxDemand = max(c in Components) demand[c];
var int produce[R] in O..maxDemand;
minimize

sum(b in R) produce[b]
subject to

forall(c in Components)

sum(b in R) bin[b].n[c] * produce[b] = demand[c];

Fig.11. Choosing the Bins in Vellino’s Problem (chooseBin.mod) .




Figure 9 and two models genBin.mod and chooseBin.mod depicted in Figures 10
and 11. It is interesting to study the script in detail at this point. The instruction

Model bin("genBin.mod","genBin.dat");

declare the first model. Models are, of course, a fundamental concept of OPLScRIPT:
they support a variety of methods (e.g., solve and nextSolution), their data
can be accessed as fields of records, and they can be passed as parameters to
procedures. The instructions

import enum Colors bin.Colors;
import enum Components bin.Components;

import the enumerated types from the model to the script; these enumerated
types will be imported by the second model as well. The instructions

struct Bin { Colors c; int n[Components]l; };
int nbBin := 0;
Open Bin bins[1..nbBin];

declare a variable to store the number of bin configurations and an open array
to store the bin configurations themselves. Open arrays are arrays that can grow
and shrink dynamically during the execution. The instructions

while bin.nextSolution() do {

nbBin := nbBin + 1;
bins.addh();
bins[nbBin].c := bin.c;

forall(c in Components)
bins [nbBin] .n[c] := bin.n[c];

}

enumerate all the bin configurations and store them in the bin array in model
pro. Instruction bin.nextSolution() returns the next solution (if any) of the
model bin. Instruction bins.addh increases the size of the open array (addh
stands for ”add high”). The subsequent instructions access the model data and
store them in the open array. Once this step is completed, the second model is
executed and produces a solution at cost 8.

Model genBin.mod specifies how to generate the bin configurations: It is a
typical constraint program using logical combinations of constraints that should
not raise any difficulty. Model chooseBin.mod is an integer program that chooses
and minimizes the number of bins. This model imports the enumerated types as
mentioned previously. It also imports the bin configurations using the instruc-
tions

import int nbBin;
import Bin bin[1..nbBin];

It is important to stress to both models can be developed and tested indepen-
dently since import declarations can be initialized in a data file when a model is
run in isolation (i.e., not from a script). This makes the overall design composi-
tional.



6 Conclusion

The purpose of this paper was to review, through four applications, a number
of constraint programming features of OPL to give a basic understanding of the
expressiveness of the language. These features include very high-level algebraic
notations and data structures, a rich constraint programming language sup-
porting logical, higher-level, and global constraints, support for scheduling and
resource allocation problems, and search procedures and strategies. The paper
also introduced briefly OPLScriPT, a script language to control and compose OPL
models. The four applications presented in this paper should give a preliminary,
although very incomplete, understanding of how OPL can decrease development
time significantly.
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