
Chapter 1

GLOBAL CONSTRAINTS AND FILTERING
ALGORITHMS

Jean-Charles Régin
ILOG
1681, route des Dolines,
Sophia Antipolis, 06560 Valbonne, France
jcregin@ilog.fr

Abstract Constraint programming (CP) is mainly based on filtering algorithms;
their association with global constraints is one of the main strengths
of CP. This chapter is an overview of these two techniques. Some of
the most frequently used global constraints are presented. In addition,
the filtering algorithms establishing arc consistency for two useful con-
straints, the alldiff and the global cardinality constraints, are fully de-
tailed. Filtering algorithms are also considered from a theoretical point
of view: three different ways to design filtering algorithms are described
and the quality of the filtering algorithms studied so far is discussed.
A categorization is then proposed. Over-constrained problems are also
mentioned and global soft constraints are introduced.

Keywords: Global constraint, filtering algorithm, arc consistency, alldiff, global car-
dinality constraint, over-constrained problems, global soft constraint,
graph theory, matching.

1. Introduction
A constraint network (CN) consists of a set of variables; domains of

possible values associated with each of these variables; and a set of con-
straints that link up the variables and define the set of combinations
of values that are allowed. The search for an instantiation of all vari-
ables that satisfies all the constraints is called a Constraint Satisfaction
Problem (CSP), and such an instantiation is called a solution of a CSP.

A lot of problems can be easily coded in terms of CSP. For instance,
CSP has already been used to solve problems of scene analysis, place-

1

2

ment, resource allocation, crew scheduling, time tabling, scheduling, fre-
quency allocation, car sequencing, and so on. An interesting paper of
Simonis (Simonis, 1996) presents a survey on industrial studies and ap-
plications developed over the last ten years.

Unfortunately, a CSP is an NP-Complete problem. Thus, much work
has been carried out in order to try to reduce the time needed to solve
a CSP. Constraint Programming (CP) is one of these techniques.

Constraint Programming proposes to solve CSPs by associating with
each constraint a filtering algorithm that removes some values of vari-
ables that cannot belong to any solution of the CSP. These filtering algo-
rithms are repeatedly called until no new deduction can be made. This
process is called the propagation mechanism. Then, CP uses a search
procedure (like a backtracking algorithm) where filtering algorithms are
systematically applied when the domain of a variable is modified. There-
fore, with respect to the current domains of the variables and thanks to
filtering algorithms, CP removes once and for all certain inconsistencies
that would have been discovered several times otherwise. Thus, if the
cost of the calls of the filtering algorithms at each node is less than the
time required by the search procedure to discover many times the same
inconsistency, then the resolution will be speeded up.

One of the most interesting properties of a filtering algorithm is arc
consistency. We say that a filtering algorithm associated with a con-
straint establishes arc consistency if it removes all the values of the
variables involved in the constraint that are not consistent with the
constraint. For instance, consider the constraint x + 3 = y with the
domain of x equals to D(x) = {1, 3, 4, 5} and the domain of y equal to
D(y) = {4, 5, 8}. Then the establishing of arc consistency will lead to
D(x) = {1, 5} and D(y) = {4, 8}.

Since constraint programming is based on filtering algorithms, it is
quite important to design efficient and powerful algorithms. Therefore,
this topic caught the attention of many researchers, who then discov-
ered a large number of algorithms. Nevertheless, a lot of studies on arc
consistency have been limited to binary constraints that are defined in
extension, in other words by the list of allowed combinations of values.
This limitation was justified by the fact that any constraint can always
be defined in extension and by the fact that any non-binary constraint
network can be translated into an equivalent binary one with additional
variables (Rossi et al., 1990). However, in practice, this approach has
several drawbacks:

it is often inconceivable to translate a non-binary constraint into
an equivalent set of binary ones because of the underlying com-

Global Constraints and Filtering Algorithms 3

putational and memory costs (particularly for non-representable
ones (Montanari, 1974)).

the structure of the constraint is not used at all. This prevents
us from developing more efficient filtering algorithm dedicated to
this constraint. Moreover, some non-binary constraints lose much
of their structure when encoded into a set of binary constraints.
This leads, for example, to a much less efficient pruning behavior
for arc consistency algorithms handling them.

The advantage of using the structure of a constraint can be empha-
sized on a simple example: the constraint x ≤ y. Let min(D) and
max(D) be respectively the minimum and the maximum value of a
domain. It is straightforward to establish that all the values of y in
the range [min(D(x)),max(D(y)] are consistent with the constraint and
all the values of x in the range [min(D(x)),max(D(y)] are consistent
with the constraint. This means that arc consistency can be efficiently
and easily established by removing the values that are not in the above
ranges. Moreover, the use of the structure is often the only way to
avoid memory consumption problems when dealing with non-binary con-
straints. In fact, this approach prevents you from explicitly representing
all the combinations of values allowed by the constraint.

Thus, researchers interested in the resolution of real life applications
with constraint programming, and notably those developing languages
that encapsulate CP (like PROLOG), designed specific filtering algo-
rithms for the most common simple constraints (like =, 6=, <,≤, ...) and
also general frameworks to exploit efficiently some knowledge about bi-
nary constraints (like AC-5 (Van Hentenryck et al., 1992)). However,
they have been confronted with two new problems: the lack of expres-
siveness of these simple constraints and the weakness of domain reduc-
tion of the filtering algorithms associated with these simple constraints.
It is, indeed, quite convenient when modeling a problem in CP to have
at one’s disposal some constraints corresponding to a set of constraints.
Moreover, these new constraints can be associated with more powerful
filtering algorithms because they can take into account the simultane-
ous presence of simple constraints to further reduce the domains of the
variables. These constraints encapsulating a set of other constraints are
called global constraints.

One of the most well known examples is the alldiff constraint, espe-
cially because the filtering algorithm associated with this constraint is
able to establish arc consistency in a very efficient way.

An alldiff constraint defined on X, a set of variables, states that the
values taken by variables must be all different. This constraint can be

4

Mo Tu We Th ...

peter D N O M
paul D B M N
mary N O D D

...

A = {M,D,N,B,O}, P = {peter, paul, mary, ...}
W = {Mo, Tu, We, Th, ...}
M: morning, D: day, N: night B: backup, O: day-off

Figure 1.1. An Assignment Timetable.

represented by a set of binary constraints. In this case, a binary con-
straint of difference is built for each pair of variables belonging to the
same constraint of difference. But the pruning effect of arc consistency
for these constraints is limited. In fact, for a binary alldiff constraint
between two variables i and j, arc-consistency removes a value from do-
main of i only when the domain of j is reduced to a single value. Let us
suppose we have a CSP with 3 variables x1, x2, x3 and an alldiff con-
straint involving these variables with D(x1) = {a, b}, D(x2) = {a, b} and
D(x3) = {a, b, c}. Establishing arc consistency for this alldiff constraint
removes the values a and b from the domain of x3, while arc-consistency
for the alldiff represented by binary constraints of difference does not
delete any value.

We can further emphasize the advantage of global constraints on
a more realistic example that involves global cardinality constraints
(GCC).

A GCC is specified in terms of a set of variables X = {x1, ..., xp}
which take their values in a subset of V = {v1, ..., vd}. It constrains the
number of times a value vi ∈ V is assigned to a variable in X to be in
an interval [li, ui]. GCCs arise in many real life problems. For instance,
consider the example derived from a real problem and given in (Caseau
et al., 1993) (cf. Figure 1.1). The task is to schedule managers for a
directory-assistance center, with 5 activities (set A), 7 persons (set P)
over 7 days (set W). Each day, a person can perform an activity from
the set A. The goal is to produce an assignment matrix that satisfies the
following global and local constraints:

general constraints restrict the assignments. First, for each day
we may have a minimum and maximum number for each activity.
Second, for each week, a person may have a minimum and maxi-
mum number for each activity. Thus, for each row and each column
of the assignment matrix, there is a global cardinality constraint.

Global Constraints and Filtering Algorithms 5

peter

paul

mary

john

bob

mike

julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

peter

paul

mary

john

bob

mike

julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

Figure 1.2. An example of a global cardinality constraint.

local constraints mainly indicate incompatibilities between two
consecutive days. For instance, a morning schedule cannot be as-
signed after a night schedule.

Each general constraint can be represented by as many min/max con-
straints as the number of involved activities. Now, these min/max con-
straints can be easily handled with, for instance, the atmost/atleast
operators proposed in (Van Hentenryck and Deville, 1991). Such op-
erators are implemented using local propagation. But as is noted in
(Caseau et al., 1993): “The problem is that efficient resolution of a
timetable problem requires a global computation on the set of min/max
constraints, and not the efficient implementation of each of them sepa-
rately.” Hence, this way is not satisfactory. Therefore global cardinality
constraints associated with efficient filtering algorithms (like ones estab-
lishing arc consistency) are needed.

In order to show the difference in global and local filtering, consider
a GCC associated with a day (cf figure 1.2). The constraint can be
represented by a bipartite graph called a value graph (left graph in Figure
1.2). The left set corresponds to the person set, the right set to the
activity set. There exists an edge between a person and an activity
when the person can perform the activity. For each activity, the numbers
between parentheses express the minimum and the maximum number of
times the activity has to be assigned. For instance, John can work the
morning or the day but not the night; one manager is required to work
the morning, and at most two managers work the morning. We recall
that each person has to be associated with exactly one activity.

Encoding the problem with a set of atmost/atleast constraints leads
to no deletion. Now, we can carefully study this constraint. Peter, Paul,
Mary, and John can work only in the morning and during the day. More-
over, morning and day can be assigned together to at most 4 persons.
Thus, no other persons (i.e. Bob, Mike, nor Julia) can perform activities

6

M and D. So we can delete the edges between Bob, Mike, Julia and D, M.
Now only one possibility remains for Bob: N, which can be assigned at
most once. Therefore, we can delete the edges {mike,N} and {julia,N}.
This reasoning leads to the right graph in Figure 1.2. It corresponds to
the establishing of arc consistency for the global constraint.

This chapter is organized as follows. First, some preliminaries are
reviewed and the definition and the significance of global constraints are
discussed. Some of the most frequently used global constraints are then
presented. Section 3 deals with the possible types of filtering algorithms
(FA). Three types of filtering algorithm are presented. In section 4, the
filtering algorithms establishing arc consistency for the alldiff and the
global cardinality constraint are detailed. Section 5 deals with over-
constrained problems and shows the advantages of modeling the Max-
imal Constraint Satisfaction problem by a global constraint Max-Sat.
This section also introduces the global soft constraints and two general
definitions of violation costs associated with global constraints. The soft
alldiff constraint is taken as example. In Section 6 the quality of filtering
algorithms is discussed and a classification is proposed. Some miscella-
neous considerations about filtering algorithms are mentioned in Section
7. Finally, we conclude.

2. Global Constraints

2.1 Preliminaries
A finite constraint network N is defined as a set of n variables

X = {x1, . . . , xn}, a set of current domains D = {D(x1), . . . , D(xn)}
where D(xi) is the finite set of possible values for variable xi, and a set C
of constraints between variables. We introduce the particular notation
D0 = {D0(x1), . . . , D0(xn)} to represent the set of initial domains of N .
Indeed, we consider that any constraint network N can be associated
with an initial domain D0 (containing D), on which constraint definitions
were stated.

A constraint C on the ordered set of variables X(C) = (xi1 , . . . , xir)
is a subset T (C) of the Cartesian product D0(xi1) × · · · ×D0(xir) that
specifies the allowed combinations of values for the variables x1, . . . , xr.
An element of D0(x1)×· · ·×D0(xr) is called a tuple on X(C). |X(C)|
is the arity of C.

A value a for a variable x is often denoted by (x, a). var(C, i) repre-
sents the ith variable of X(C), while index(C, x) is the position of vari-
able x in X(C). τ [k] denotes the kth value of the tuple τ . τ [index(C, x)]
will be denoted by τ [x] when no confusion is possible. D(X) denotes the

Global Constraints and Filtering Algorithms 7

union of domains of variables of X (i.e. D(X) = ∪xi∈XD(xi)). #(a, τ)
is the number of occurrences of the value a in the tuple τ .

Let C be a constraint. A tuple τ on X(C) is valid if ∀(x, a) ∈ τ, a ∈
D(x). C is consistent iff there exists a tuple τ of T (C) which is valid. A
value a ∈ D(x) is consistent with C iff x 6∈ X(C) or there exists a valid
tuple τ of T (C) with a = τ [index(C, x)]. (τ is the called a support for
(x, a) on C.) A constraint is arc consistent iff ∀xi ∈ X(C), D(xi) 6= ∅
and ∀a ∈ D(xi), a is consistent with C.

A filtering algorithm associated with a constraint C is an algorithm
which may remove some values that are inconsistent with C; and that
does not remove any consistent values. If the filtering algorithm removes
all the values inconsistent with C we say that it establishes the arc
consistency of C.

The propagation is the mechanism that consists of calling the filter-
ing algorithm associated with the constraints involving a variable x each
time the domain of this variable is modified. Note that if the domains of
the variables are finite, then this process terminates because a domain
can be modified only a finite number of times.

2.2 Definition and Advantages
Two kinds of constraints can be identified: non-decomposable con-

straints and global constraints.
Non-decomposable constraints are constraints that cannot be expressed

by a set of other constraints, whereas global constraints are constraints
that are equal to a set of other constraints (non-decomposable or global).

As example of non-decomposable constraints is: the arithmetic con-
straints like x < y, x = y, x 6= y, x + y = z, x ∗ y = z...; and the
constraints given in extension.

Formally, the global constraints can be defined as follows:

Definition 1 Let C = {C1, C2, .., Cn} be a set of constraints. The con-
straint CG equals to the conjunction of all the constraints of C: CG =
∧{C1, C2, ..Cn} is a global constraint.
The set of tuples of C is equal to the set of solutions of
(∪C∈CX(C),DX(C), {C1, C2, .., Cn}).

Global constraints are often defined from a set of variables and some
prototypes of non-decomposable constraints. For instance, an alldiff
constraint is just defined by: alldiff(X) which means that it corresponds
to all the constraints 6= stated for each pair of variables of X.

Global constraints have three main advantages:

8

• Expressiveness: it is more convenient to define one constraint cor-
responding to a set of constraints than to define independently each
constraint of this set.

• Since a global constraint corresponds to a set of constraints it is
possible to deduce some information from the simultaneous presence of
constraints.

• Powerful filtering algorithms can be designed because the set of
constraints can be taken into account as a whole. Specific filtering algo-
rithms make it possible to use Operations Research techniques or graph
theory.

The last point is emphasized by the following property:

Property 1 The establishing of arc consistency on C = ∧{C1, C2, .., Cn}
is stronger (that is, cannot remove fewer values) than the establishing of
arc consistency of the network (∪C∈CX(C),DX(C), {C1, C2, .., Cn}).

proof: By Definition 1 the set of tuples of C = ∧{C1, C2, .., Cn} corresponds to

the set of solution of (∪C∈CX(C),DX(C), {C1, C2, .., Cn}). Therefore, the establishing

of arc consistency of ∧{C1, C2, .., Cn} removes all the values that do not belong to a

solution of (∪C∈CX(C),DX(C), {C1, C2, .., Cn}) which is stronger than the arc consis-

tency of the previous network.

Therefore, arc consistency on global constraints is a strong property.
The following proposition is an example of the gap between arc consis-
tency for a global constraint and arc consistency for the network corre-
sponding to this global constraint

Property 2 Arc Consistency for C =alldiff(X) corresponds to the arc
consistency of a Constraint Network with an exponential number of con-
straints defined by:
∀A ⊆ X: |D(A)| = |A| ⇒ D(X −A) is reduced to D(X)−D(A)

proof: see (Régin, 1995).

2.3 Examples
The purpose of this section is not to be exhaustive, but to present

some of the global constraints that are useful in pratice. We will give a
short review of:

• cumulative
• diff-n
• cycle
• sort
• alldiff and permutation

Global Constraints and Filtering Algorithms 9

• symmetric alldiff
• global cardinality
• global cardinality with costs
• sum and scalar product of alldiff variables
• sum and binary inequalities
• sequence
• stretch
• minimum global distance
• k-diff
• number of distinct values

Cumulative Constraint. Here is the definition of the constraint
cumulative(S, D,H, u) from (Beldiceanu and Contejean, 1994): “The
cumulative constraint matches directly the single resource scheduling
problem, where the S variables correspond to the start of the tasks,
the D variables to the duration of the tasks, and the H variable to the
heights of the resources that is the amounts of resource used by each
task. The natural number u is the total amount of available resource
that must be shared at any instant by the different tasks. The cumulative
constraint states that, at any instant i of the schedule, the summation
of the amount of resource of the tasks that overlap i does not exceed the
upper limit u.”

Definition 2 Consider A a set of activities where each activity i is
associated with 3 variables: si the start variable representing the start
time of the activity, di the duration variable representing the duration of
the activity, and hi the consumption activity representing the amount of
resource which is needed by the activity.
A cumulative constraint is a constraint C associated with a positive
integer u and A a set of activities, such that:

T (C) = { τ s.t. τ is a tuple of X(C)
and ∀i = [1, |A|] : τ [si] = a ⇔ ∑

j/τ [sj]≤a≤τ [sj]+τ [dj]−1
τ [hj] ≤ u}

A filtering algorithm is detailed in (Beldiceanu and Carlsson, 2002).
Its complexity is O(mn log n+mnp) where m is the number of resources,
n the number of tasks, and p the number of tasks that are not totally
fixed. Other algorithms have been proposed for disjunctive scheduling
problems. In this case, each resource can execute at most one activity
at a time. For instance, the reader can consult (Baptiste et al., 1998),or
(Carlier and Pinson, 1994) for a presentation of the edge-finder algorithm
with the lowest worst case complexity so far.

10

Diff-n Constraint. We present here only the diff-n/1 constraint.
We quote (Beldiceanu and Contejean, 1994): “The diff-n constraint was
introduced in CHIP in order to handle multi-dimensional placement
problems that occur in scheduling, cutting or geometrical placement
problems. The intuitive idea is to extend the alldiff constraint which
works on a set of domain variables to a nonoverlapping constraint be-
tween a set of objects defined in a n-dimensional space.”

Definition 3 Consider R a set of multidirectional rectangles. Each
multidirectional rectangle i is associated with 2 set of variables Oi =
{oi1, .., oin} and Li = {li1, .., lin}. The variables of Oi represent the ori-
gin of the rectangle for every dimension, for instance the variable oij

corresponds to the origin of the rectangle for the jth dimension. The
variables of Li represent the length of the rectangle for every dimension,
for instance the variable lij represents the length of the rectangle for the
jth dimension.
A diff-n constraint is a constraint C associated with a set R of multi-
directional rectangles, such that:

T (C) = { τ s.t. τ is a tuple of X(C)
and ∀i ∈ [1, m],∀j ∈ [1, m], j 6= i, ∃k ∈ [1, n]
s.t. τ [oik] ≥ τ [ojk] + τ [ljk] or τ [ojk] ≥ τ [oik] + τ [lik]}

This constraint is mainly used for packing problems. In (Beldiceanu
et al., 2001), an O(d) filtering algorithm for the non-overlapping con-
straint between two d-dimensional boxes and so a filtering algorithm for
the non-overlapping constraint between two convex polygons are pre-
sented.

Cycle Constraint. We present here only the cycle/2 constraint.
Here is the idea of this constraint (Beldiceanu and Contejean, 1994):
“The cycle constraint was introduced in CHIP to tackle complex vehicle
routing problems. The cycle/2 constraint can be seen as the problem
of finding N distinct circuits in a directed graph in such a way that
each node is visited exactly once. Initially, each domain variable xi

corresponds to the possible successors of the ith node of the graph.”

Definition 4 A cycle constraint is a constraint C associated with a
positive integer n and defined on a set X of variables, such that:

T (C) = { τ s.t. τ is a tuple of X(C)
and the graph defined from the arcs (k, τ [k])
has n connected components
and every connected component is a cycle}

This constraint is mentioned in the literature but no filtering algo-
rithm is explicitly given. It is mainly used for vehicle routing problems
or crew scheduling problems.

Global Constraints and Filtering Algorithms 11

Sort Constraint. This constraint has been proposed by (Bleuzen-
Guernalec and Colmerauer, 1997): ”A sortedness constraint expresses
that an n−tuple (y1, ..., yn) is equal to the n−tuple obtained by sorting
in increasing order the terms of another n−tuple (x1, ..., xn)”.

Definition 5 A sort constraint is a constraint C defined on two sets
of variables X = {x1, ..., xn} and Y = {y1, ..., yn} such that

T (C) = {τ s.t. τ is a tuple on X(C) and ∃f a permutation of [1..n] s.t.
∀i ∈ [1..n] τ [xf(i)] = τ [yi]}

The best filtering algorithm establishing bound consistency has been
proposed by (Melhorn and Thiel, 2000). Its running time is O(n) plus
the time required to sort the interval endpoints of the variables of X. If
the interval endpoints are from an integer range of size O(nk) for some
constant k the algorithm runs in linear time, because this sort becomes
linear.

A sort constraint involving 3 sets of variables has also been proposed
by (Zhou, 1996; Zhou, 1997). The n added variables are used for making
explicit a permutation linking the variables of X and those of Y . Well
known difficult job shop scheduling problems have been solved thanks
to this constraint.

Alldiff and Permutation Constraints. The alldiff constraint
constrains the values taken by a set of variables to be pairwise different.
The permutation constraint is an alldiff constraint in which |D(X(C))| =
|X(C)|.

Definition 6 An alldiff constraint is a constraint C such that
T (C) = {τ s.t. τ is a tuple on X(C) and ∀ai ∈ D(X(C)) : #(ai, τ) ≤ 1}

This constraint is used in a lot of real world problems like rostering or
resource allocation. It is quite useful to express that two things cannot
be at the same place at the same moment.
A filtering algorithm establishing arc consistency for the alldiff is given
in this chapter and also in (Régin, 1994). Its complexity is in O(m) with
m =

∑
x∈X |D(x)|, after the computation of the consistency of the con-

straint which requires O(
√

nm). When the domain of the variables are
intervals, (Melhorn and Thiel, 2000) proposed a filtering algorithm es-
tablishing bound consistency with a complexity which is asymptotically
the same as for sorting the internal endpoints. If the interval endpoints
are from an integer range of size O(nk) for some constant k the algo-
rithm runs in linear time. Therefore, Melhorn’s algorithm is linear for a
permutation constraint.

12

On the other hand, (Leconte, 1996) has proposed an algorithm which
considers that the domains are intervals, but which can create “holes”
in the domain. His filtering algorithm is in O(n2d).

Symmetric Alldiff Constraint. The symmetric alldiff constraint
constrains some entities to be grouped by pairs. It is a particular case
of the alldiff constraint, a case in which variables and values are defined
from the same set S. That is, every variable represents an element e of
S and its values represent the elements of S that are compatible with
e. This constraint requires that all the values taken by the variables
are different (similar to the classical alldiff constraint) and that if the
variable representing the element i is assigned to the value representing
the element j, then the variable representing the element j is assigned
to the value representing the element i.

Definition 7 Let X be a set of variables and σ be a one-to-one mapping
from X ∪D(X) to X ∪D(X) such that
∀x ∈ X: σ(x) ∈ D(X); ∀a ∈ D(X): σ(a) ∈ X and σ(x) = a ⇔ x =
σ(a).
A symmetric alldiff constraint defined on X is a constraint C asso-
ciated with σ such that:
T (C) = { τ s.t. τ is a tuple on X

and ∀a ∈ D(X) : #(a, τ) = 1
and a = τ [index(C, x)] ⇔ σ(x) = τ [index(C, σ(a))]}

This constraint has been proposed by (Régin, 1999b). It is useful to
be able to express certain items that should be grouped as pairs, for
example in the problems of sports scheduling or rostering. Arc consis-
tency can be established in O(nm) after computing the consistency of
the constraint which is equivalent to the search for a maximum matching
in a non-bipartite graph, which can be performed in O(

√
nm) by using

the complex algorithm of (Micali and Vazirani, 1980).
In (Régin, 1999b), another filtering algorithm is proposed. It is diffi-

cult to characterize it but its complexity is O(m) per deletion. In this
paper, it is also shown how the classical alldiff constraint plus some
additional constraints can be useful to solve the original problem. The
comparison between this approach, the symmetric alldiff constraint, and
the alldiff constraint has been carried out by (Henz et al., 2003).

Global Cardinality Constraint. A global cardinality constraint
(GCC) constrains the number of times every value can be taken by a
set of variables. This is certainly one of the most useful constraints in
practice. Note that the alldiff constraint corresponds to a GCC in which
every value can be taken at most once.

Global Constraints and Filtering Algorithms 13

Definition 8 A global cardinality constraint is a constraint C in
which each value ai ∈ D(X(C)) is associated with two positive integers
li and ui with li ≤ ui and
T (C) = { τ s.t. τ is a tuple on X(C)

and ∀ai ∈ D(X(C)) : li ≤ #(ai, τ) ≤ ui}
It is denoted by gcc(X, l, u).

This constraint is present in almost all rostering or car-sequencing
problems.
A filtering algorithm establishing arc consistency for this constraint is
described in (Régin, 1996) and is detailed in this chapter. The consis-
tency of the constraint can be checked in O(nm) and the arc consistency
can be computed in O(m) providing that a maximum flow has been de-
fined.

Global Cardinality Constraint with Costs. A global cardinality
constraint with costs (costGCC) is the conjunction of a GCC constraint
and a sum constraint:

Definition 9 A cost function on a variable set X is a function
which associates with each value (x, a), x ∈ X and a ∈ D(x) an integer
denoted by cost(x, a).

Definition 10 A global cardinality constraint with costs is a con-
straint C associated with cost a cost function on X(C), an integer H
and in which each value ai ∈ D(X(C)) is associated with two positive
integers li and ui
T (C) = { τ s.t. τ is a tuple on X(C)

and ∀ai ∈ D(X(C)) : li ≤ #(ai, τ) ≤ ui

and Σ
|X(C)|
i=1 cost(var(C, i), τ [i]) ≤ H }

It is denoted by costgcc(X, l, u, cost,H).

This constraint is used to model some preferences between assign-
ments in resource allocation problems.
Note that there is no assumption made on the sign of costs.

The integration of costs within a constraint is quite important, espe-
cially to solve optimization problems, because it improves back-propagation,
which is due to the modification of the objective variable. In other words,
the domain of the variables can be reduced when the objective variable
is modified. (Caseau and Laburthe, 1997) have used an alldiff constraint
with costs, but only the consistency of the constraint has been checked,
and no specific filtering has been used. The first proposed filtering al-
gorithm comes from (Focacci et al., 1999a) and (Focacci et al., 1999b),
and is based on reduced cost. A filtering algorithm establishing arc con-
sistency has been proposed by (Régin, 1999a) and (Régin, 2002). The

14

consistency of this constraint can be checked by searching for a minimum
cost flow and arc consistency can be established in O(|∆|S(m,n + d, γ))
where |∆| is the number of values that are taken by a variable in a tuple,
and where S(m,n + d, γ)) is the complexity of the search for shortest
paths from a node to every node in a graph with m arcs and n nodes
with a maximal cost γ.

Sum and Scalar product of Alldiff Variables. An interesting
example of costGCC is the constraint on the sum of all different vari-
ables. More precisely, for a given set of variable X, this constraint is the
conjunction of the constraint

∑
xi∈X xi ≤ H and alldiff(X). Similarly,

we can define the constraint which is the conjunction of the constraint∑
xi∈X αixi ≤ H and alldiff(X).

Definition 11 A scalar product of alldiff variables constraint is a
constraint C associated with α a set of coefficients, one for each variable,
an integer H, such that:
T (C) = { τ s.t. τ is a tuple on X(C)

and ∀ai ∈ D(X(C)) : #(ai, τ) ≤ 1

and Σ
|X(C)|
i=1 αiτ [i] ≤ H }

The following model is used to compute arc consistency for this con-
straint (Régin, 1999a).
Let us define the boundaries and cost function as follows:

• For each value ai ∈ D(X) we define li = 0 and ui = 1
• For each variable x ∈ X and for each value a ∈ D(x), cost(x, a) =

αia
Then, it is easy to prove that the costGCC constraint costgcc(X, l, u, cost, H)
represents the conjunction of the constraint

∑
xi∈X αixi ≤ H and alldiff(X).

Therefore, establishing arc consistency for this constraint is equivalent
to establish arc consistency to the costGCC constraint defined as above.

Note that we could generalize this constraint to deal with a global
cardinality constraint defined on the variables instead of an alldiff con-
straint.

This constraint is used, for instance, to solve the golomb ruler prob-
lem.

Sum and Binary Inequalities Constraint. This constraint is
the conjunction of a sum constraint and a set of distance constraints,
that is constraints of the form xj − xi ≤ c.

Definition 12 Let SUM(X, y) be a sum constraint, and Ineq be a set of
binary inequalities defined on X. The sum and binary inequalities
constraint is a constraint C associated with SUM(X, y) and Ineq such

Global Constraints and Filtering Algorithms 15

that:
T (C) = { τ s.t. τ is a tuple of X ∪ y

and (
∑|X|

i=1
τ [i]) = τ [y]

and the values of τ satisfy Ineq }

This constraint has been proposed by (Régin and Rueher, 2000). It
is used to minimize the delays in scheduling applications.
Bound consistency can be computed in O(n(m + n log n)), where m is
the number of inequalities and n the number of variables. It is also
instructive to remark that the bound consistency filtering algorithm still
works when y = Σi=n

i=1αixi where α is non-negative real number.

Sequence Constraint. A global sequencing constraint C is speci-
fied in terms of a ordered set of variables X(C) = {x1, ..., xp} which take
their values in D(C) = {v1, ..., vd}, some integers q, min and max and
a given subset V of D(C). On one hand, a gsc constrains the number
of variables in X(C) instantiated to a value vi ∈ D(C) to be in an in-
terval [li, ui]. On the other hand, a gsc constrains for each sequence Si

of q consecutive variables of X(C), that at least min and at most max
variables of Si are instantiated to a value of V .

Definition 13 A global sequencing constraint is a constraint C
associated with three positive integers min,max, q and a subset of values
V ⊆ D(C) in which each value vi ∈ D(C) is associated with two positive
integers li and ui and

T (C) = { t such that t is a tuple of X(C)
and ∀vi ∈ D(C) : li ≤ #(vi, t) ≤ ui

and for each sequence S of q consecutive
variables: min ≤ ∑

vi∈V
#(vi, t, S) ≤ max}

This constraint arises in car sequencing or in rostering problems. A
filtering algorithm is described in (Régin and Puget, 1997). Thanks to
it, some problems of the CSP-Lib have been closed.

Stretch Constraint. This constraint has been proposed by (Pe-
sant, 2001). This constraint can be seen as the opposite of the sequence
constraint. The stretch constraint aims to group the values by sequence
of consecutive values, whereas the sequence is often used to obtain a
homogenous repartition of values.

A stretch constraint C is specified in terms of an ordered set of vari-
ables X(C) = {x1, ..., xp} which take their values in D(C) = {v1, ..., vd},
and two set of integers l = {l1, ..., ld} and u = {u1, ..., ud}, where every
value vi of D(C) is associated with li the ith integer of L and ui the ith

integer of U . A stretch constraint states that if xj = vi then xj must
belong to a sequence of consecutive variables that also take value vi and

16

the length of this sequence (the span of the stretch) must belong to the
interval [li, ui].

Definition 14 A stretch constraint is a constraint C associated with
a subset of values V ⊆ D(C) in which each value vi ∈ D(C) is associated
with two positive integers li and ui and

T (C) = { t s.t. t is a tuple of X(C)
and ∀xj ∈ [1..|X(C)|], (xj = vi and vi ∈ D(C)) ⇔ ∃p, q with q ≥ p,
q − p + 1 ∈ [li, ui] s.t. j ∈ [p, q] and ∀k ∈ [p, q] xk = vi}

This constraint is used in rostering or in car sequencing problems (es-
pecially in the paint shop part).
A filtering algorithm has been proposed by (Pesant, 2001). The case
of cyclic sequence (that is, the successor of the last variable is the first
one) is also taken into account by this algorithm. Its complexity is in
O(m2max(u)max(l)). G. Pesant also described some filtering algorithms
for some variations of this constraint, notably one that deals with pat-
terns and constrains the successions of patterns (that is some patterns
cannot immediately follow some other patterns).

Global Minimum Distance Constraint. This constraint has
been proposed by (Régin, 1997) and is mentioned in (ILOG, 1999). A
global minimum distance constraint defined on X, a set of variables,
states that for any pair of variable x and y of X the constraint |x−y| ≥ k
must be satisfied.

Definition 15 A global minimum distance constraint is a con-
straint C associated with an integer k such that

T (C) = { τ s.t. τ is a tuple of X(C)
and ∀ai, aj ∈ τ : |ai − aj | ≥ k}

This constraint is present in frequency allocation problems.
A filtering algorithm has been proposed for this constraint (Régin, 1997).
Note that there is a strong relation between this constraint and the
sequence constraint. A 1/q sequence constraint constrained two variables
assigned to the same value to be separated by at least q− 1 variables, in
regard to the variable ordering. Here we want to select the values taken
by a set of variables such that are all pairs of values are at least k units
apart.

k-diff Constraint. The k-diff constraint constrains the number of
variables that are different to be greater than or equal to k.

Definition 16 A k-diff constraint is a constraint C associated with
an integer k such that

T (C) = {τ s.t. τ is a tuple on X(C) and
|{ai ∈ D(X(C)) s.t. #(ai, τ) ≤ 1}| ≥ k}

Global Constraints and Filtering Algorithms 17

This constraint has been proposed by (Régin, 1995). It is useful to
model some parts of over-constrained problems where it corresponds to
a relaxation of the alldiff constraint.
A filtering algorithm establishing arc-consistency is detailed in (Régin,
1995). Its complexity is the same as for the alldiff constraint, because the
filtering algorithm of the alldiff constraint is used when the cardinality
of the maximum matching is equal to k. When this cardinality is strictly
greater than k, we can prove that the constraint is arc consistent (see
(Régin, 1995).)

Number of Distinct Values Constraint. The number of distinct
values constraint constrains the number of distinct values taken by a set
of variables to be equal to another variable.

Definition 17 An number of distinct values constraint is a con-
straint C defined on a variable y and a set of variables X such that

T (C) = {τ s.t. τ is a tuple on X(C) and
|{ai ∈ D(X(C)) s.t. #(ai, τ) ≤ 1}| = τ [y]}

This constraint is quite useful for modeling some complex parts of
problems.
A filtering algorithm based on the search of a lower bound of the dom-
inating set problem (Damaschke et al., 1990) has been proposed by
(Beldiceanu, 2001). When all the domains of the variables are inter-
vals this lead to an O(n) algorithm, if the intervals are already sorted.

3. Filtering Algorithms
There are several ways to design a filtering algorithm associated with

a constraint. However, for global constraints we can see at least three
different and important types of filtering algorithms:

the filtering algorithms based on constraints addition. That is,
from the simultaneous presence of constraints the filtering algo-
rithm consists of adding some new constraints.

the filtering algorithms using the general filtering algorithm (GAC-
Schema) establishing arc consistency. In this case, there is no
new algorithm to write provided that an algorithm checking the
consistency of the constraint is given.

the dedicated filtering algorithms. That is, a custom-written fil-
tering algorithm is designed in order to take into account and to
exploit the structure of the constraint.

18

For convenience, we introduce the notion of pertinent filtering algo-
rithm for a global constraint:

Definition 18 A filtering algorithm associated with C = ∧{C1, C2, .., Cn}
is pertinent if it can remove more values than the propagation mecha-
nism called on the network (∪C∈CX(C),DX(C), {C1, C2, .., Cn}).

3.1 Algorithms Based on Constraints Addition
A simple way to obtain a pertinent filtering algorithm is to deduce

from the simultaneous presence of constraints, some new constraints. In
this case, the global constraint is replaced by a set of constraints that
is a superset of the one defining the global constraint. That is, no new
filtering algorithm is designed.

For instance, consider a set of 5 variables: X = {x1, x2, x3, x4, x5}
with domains containing the integer values from 0 to 4; and four con-
straints atleast(X, 1, 1), atleast(X, 1, 2), atleast(X, 1, 3), and
atleast(X, 1, 4) which mean that each value of {1, 2, 3, 4} has to be taken
at least one time by a variable of X in every solution.

An atleast(X, #time, val) constraint is a local constraint. If such a
constraint is considered individually then the value val cannot be re-
moved while it belongs to more than one domain of a variable of X. A
filtering algorithm establishing arc consistency for this constraint con-
sists of assigning a variable x to val if and only if x is the only one
variable whose domain contains val.

Thus, after the assignments x1 = 0, x2 = 0, and x3 = 0, no failure is
detected. The domains of x4 and x5, indeed, remain the same because
every value of {1, 2, 3, 4} belongs to these two domains. Yet, there is ob-
viously no solution including the previous assignments, because 4 values
must be taken at least 1 time and only 2 variables can take them.

For this example we can deduce another constraint by applying the
following property: If 4 values must be taken at least 1 time by 5 vari-
ables, then the other values can be taken at most 5− 4 = 1, that is we
have atmost(x, 1, 0).

This idea can be generalized for a gcc(X, l, u). Let card(ai) be a vari-
able associated with each value ai of D(X) which counts the number
of domains of X that contain ai. We have li ≤ card(ai) ≤ ui. Then,
we can simply deduce the constraint

∑
ai∈D(X) card(ai) = |X|; and each

time the minimum or the maximum value of card(ai) is modified, the
values of li and ui are accordingly modified and the GCC is modified.

Global Constraints and Filtering Algorithms 19

This method is usually worthwhile because it is easy to implement.
However, the difficulty is to find the constraints that can be deduced
from the simultenous presence of other constraints.

3.2 General Arc Consistency Filtering
Algorithm

The second way to easily define a powerful filtering algorithm, but
which may be time consuming, is to use the general arc consistency
algorithm (Bessière and Régin, 1997).

In constraint programming, to solve a problem, we begin by designing
a model using predefined constraints, such as sum, alldiff, and so on.
Next, we define other constraints specific to the problem. Then we call
a procedure to search for a solution.

Often when we are solving a real problem, say P, the various simple
models that we come up with cannot be solved within a reasonable
period of time. In such a case, we may consider a sub-problem of the
original problem, say R. We then try to improve the resolution of R
with the hope of thus eventually solving P. That is, we try to identify
sub-problems of P where the resolution can be improved by defining a
particular constraint for each of these sub-problems along with a filtering
algorithm associated with these constraints.

More precisely, for each possible relevant sub-problem of P, we con-
struct a global constraint that is the conjunction of the constraints in-
volved in the sub-problem. Suppose that we then apply arc consistency
to these new constraints and that this improves the resolution of P (i.e.,
the number of backtracks markedly decreases). In this case, we know
that it is worthwhile to write another algorithm dedicated to solving
the sub-problem R under consideration. In contrast, if the number of
backtracks decreases only slightly, then we know that the resolution of
R has only a modest effect on the resolution of P. By proceeding in
this way, we can improve the resolution of P much faster. Therefore, a
general algorithm can be really useful in practice.

3.2.1 Preliminaries. Suppose that you are provided with a
function, denoted by existSolution(P), which is able to know whether
a particular problem P = (X, C,D) has a solution or not. In this section,
we present two general filtering algorithms establishing arc consistency
for the constraint corresponding to the problem, that is the global con-
straint C(P) = ∧C

These filtering algorithms correspond to particular instantiations of a
more general algorithm: GAC-Schema (Bessière and Régin, 1997).

20

For convenience, we will denote by Px=a the problem P in which it is
imposed that x = a, in other words Px=a = (X, C ∪ {x = a},D).

Establishing arc consistency on C(P) is done by looking for supports
for the values of the variables in X. A support for a value (y, b) on C(P)
can be searched by using any search procedure since a support for (y, b)
is a solution of problem Py=b.

3.2.2 A First Algorithm. A simple algorithm consists of
calling the function existSolution with Px=a as a parameter for every
value a of every variable x involved in P , and then to remove the value
a of x when existSolution(Px=a) has no solution. Algorithm 1.1 is a
possible implementation.

SimpleGeneralFilteringAlgorithm(C(P): constraint; deletionSet: list):
Bool
for each a ∈ X do

for each a ∈ D(x) do
if ¬ existSolution(Px=a) then

remove a from D(x)
if D(x) = ∅ then return False
add (y, b) to deletionSet

return True

Algorithm 1.1. Simple general filtering algorithm establishing arc consistency

This algorithm is quite simple but it is not efficient because each time
a value will be removed, the existence of a solution for all the possible
assignments needs to be recomputed.

If O(P) is the complexity of function existSolution(P) then we can
recapitulate the complexity of this algorithms as follows:

Consistency checking Establishing Arc consistency

best worst best worst

From scratch Ω(P) O(P) nd× Ω(P) nd×O(P)
After k modifications k × Ω(P) k ×O(P) knd× Ω(P) knd×O(P)

3.2.3 A better general algorithm. This section shows how
a better general algorithm establishing arc consistency can be designed
provided that function existSolution(P) returns a solution when there
is one instead of being Boolean.

First, consider that a value (x, a) has been removed from D(x). We
must study the consequences of this deletion. So, for all the values (y, b)
that were supported by a tuple containing (x, a) another support must

Global Constraints and Filtering Algorithms 21

GeneralFilteringAlgorithm(C(P): constraint; x: variable; a: value,
deletionSet: list): Bool

1 for each τ ∈ SC(x, a) do
for each (z, c) ∈ τ do remove τ from SC(z, c)

2 for each (y, b) ∈ S(τ) do
remove (y, b) from S(τ)
if b ∈ D(y) then

3 σ ← seekInferableSupport(y, b)
if σ 6= nil then add (y, b) to S(σ)
else

4 σ ← existSolution(Py=b)
if σ 6= nil then

add (y, b) to S(σ)
for k = 1 to |X(C)| do add σ to SC(var(C(P), k), σ[k])

else
remove b from D(y)
if D(y) = ∅ then return False
add (y, b) to deletionSet

return True

Algorithm 1.2. function GeneralFilteringAlgorithm

be found. The list of the tuples containing (x, a) and supporting a value
is the list SC(x, a); and the values supported by a tuple τ is given by
S(τ).

Therefore, Line 1 of Algorithm 1.2 enumerates all the tuples in the SC

list and Line 2 enumerates all the values supported by a tuple. Then, the
algorithm tries to find a new support for these values either by “infer-
ring” new ones (Line 3) or by explicitly calling function existSolution
(Line 4).

Here is an example of this algorithm:
Consider X = {x1, x2, x3} and ∀x ∈ X,D(x) = {a, b};
and T (C(P)) = {(a, a, a), (a, b, b), (b, b, a), (b, b, b)} (i.e. these are the
possible solutions of P .)
First, a support for (x1, a) is sought: (a, a, a) is computed and (a, a, a) is
added to SC(x2, a) and SC(x3, a), (x1, a) in (a, a, a) is added to S((a, a, a)).
Second, a support for (x2, a) is sought: (a, a, a) is in SC(x2, a) and it is
valid, therefore it is a support. There is no need to compute another
solution.
Then a support is searched for all the other values.
Now, suppose that value a is removed from x2, then all the tuples in
SC(x2, a) are no longer valid: (a, a, a) for instance. The validity of the
values supported by this tuple must be reconsidered, that is the ones

22

belonging to S((a, a, a)), so a new support for (x1, a) must be searched
for and so on...

The program which aims to establish arc consistency for C(P) must
create and initialize the data structures (SC , S), and call function
GeneralFilteringAlgorithm(C(P), x, a, deletionSet) (see Algorithm
1.2) each time a value a is removed from a variable x involved in C(P),
in order to propagate the consequences of this deletion. deletionSet is
updated to contain the deleted values not yet propagated. SC and S
must be initialized in a way such that:

• SC(x, a) contains all the allowed tuples τ that are the current sup-
port for some value, and such that τ [index(C(P), x)] = a.

• S(τ) contains all values for which τ is the current support.
Function seekInferableSupport of GeneralFilteringAlgorithm

“infers” an already checked allowed tuple as support for (y, b) if possible,
in order to ensure that it never looks for a support for a value when a tu-
ple supporting this value has already been checked. The idea is to exploit
the property: “If (y, b) belongs to a tuple supporting another value, then
this tuple also supports (y, b)”. Therefore, elements in SC(y, b) are good
candidates to be a new support for (y, b). Algorithm 1.3 is a possible
implementation of this function.

seekInferableSupport(y: variable, b: value): tuple
while SC(y, b) 6= ∅ do

σ ← first(SC(y, b))
if σ is valid then return σ /* σ is a support */
else remove σ from SC(y, b)

return nil

Algorithm 1.3. function seekInferableSupport

The complexity of the GeneralFilteringAlgorithm is given in
the following table:

Consistency checking Establishing Arc consistency

best worst best worst

From scratch Ω(P) O(P) nd× Ω(P) nd×O(P)
After k modifications Ω(1) k ×O(P) nd× Ω(P) knd×O(P)

Moreover, the space complexity of this algorithm is O(n2d), where d is
the size of the largest domain and n is the number of variables involved in
the constraint. This space complexity depends on the number of tuples
needed to support all the values. Since there are nd values and only one
tuple is required per value, we obtain the above complexity.

Global Constraints and Filtering Algorithms 23

3.2.4 Discussion and Example. Algorithm 1.2 can be effi-
ciently improved, if the search for a solution of P can be made according
to a predefined ordering of the tuple. In this case, a more complex algo-
rithm can be designed. Moreover, it is also possible to use the solver in
itself to search for a solution in P . All these algorithms are fully detailed
in (Bessière and Régin, 1997) and (Bessière and Régin, 1999). These pa-
pers also detail how Algorithm 1.2 can be adapted to constraints that
are given by the list of tuples that satisfy the constraint (in this case the
resolution of P corresponds to the search for a valid tuple in that list)
or by the list of forbidden combinations of value for the constraint (i.e.
the complement of the previous list).

(Bessière and Régin, 1999) have proposed to study a configuration
problem as an example of the application of the general filtering algo-
rithm establishing arc consistency. The general formulation is: given a
supply of components and bins of given types, determine all assignments
of components to bins satisfying specified assignment constraints subject
to an optimization criterion.

In the example we will consider that there are 5 types of components:
{glass, plastic, steel, wood, copper}. There are three types of bins: {red,
blue, green} whose capacity constraints are: red has capacity 5, blue has
capacity 5, green has capacity 6.
The containment constraints are:

• red can contain glass, copper, wood
• blue can contain glass, steel, copper
• green can contain plastic, copper, wood

The requirement constraints are (for all bin types): wood requires plas-
tic.
Certain component types cannot coexist: glass excludes copper

Certain bin types have capacity constraints for certain components:
• red contains at most 1 of wood
• green contains at most 2 of wood
• for all the bins there is either no plastic or at least 2 plastic.

Given an initial supply of 12 of glass, 10 of plastic, 8 of steel, 12
of wood, and 8 of copper, what is the minimum total number of bins
required to contain the components?

A description of a possible implementation of a similar problem is
given in (ILOG, 1999). We will call it the “standard model”.

Almost all the constraints between types of bins and components are
local. The filtering algorithm associated with them leads to few domain
reductions. Therefore, they can be grouped inside a single global con-

24

straint. That is, problem P is formed by all these constraints and P is
solved by using another CP solver.

Here are the results we obtained:

Backtracks time (s)

standard model 1,361,709 430
new algorithm 12,659 11

These results clearly show the advantages of global constraints and
prove that a general filtering algorithm establishing arc consistency may
be useful in practice to solve some real life problems. However, in prac-
tice, when the problems become big the complexity of the GAC-Schema
often prevents its use, and specific filtering algorithm establishing arc
consistency have to be used. In (Bessière and Régin, 1999) some other
examples show by using GAC-Schema that sometimes arc consistency
is useless. Even in this case the search for a good model is improved
because wrong models can be identified more quickly.

3.3 Dedicated Filtering Algorithms
The third method to design a pertinent filtering algorithm is to use the

structure of the constraint in order to define some properties identifying
that some values are not consistent with the global constraint.

The use of the structure of a constraint has four main advantages:
• The search for a support can be speeded up.
• Some inconsistent values can be identified without explicitly check-

ing for every value whether it has a support or not.
• The call of the filtering algorithm, that is the needed to check the

consistency of some values, can be limited to some events that can be
clearly identified.

• Advantages of possible incrementality.

For instance, consider the constraint (x < y). Then:
• The search for a support for a value a of D(x) is immediate because

any value b of D(y) such that b > a is a support, so a is consistent with
the constraint if a < max(D(y)).

• We can immediately state that max(D(x)) < max(D(y)) and
min(D(y)) > min(D(x)) which mean that all values of D(x) greater
than or equal to max(D(y)) and all values of D(y) less than or equal to
min(D(x)) can be removed.

• Since the deletions of values of D(y) depends only on max(D(y))
and the deletions of values of D(x) depends only on min(D(x)), the
filtering algorithm must be called only when max(D(y)) or min(D(x))

Global Constraints and Filtering Algorithms 25

queen

i x x x

i + 1

i + 2 X

queen

i x x

i + 1

i + 2

i + 3 X X

Figure 1.3. Rules of the ad-hoc filtering algorithm for the n-queens problem.

are modified. It is useless to call it for the other modifications.

We propose an original contribution for a well-known problem: the
n-queens problem.

The n-queens problem involves placing n queens on a chess board in
such a way that none of them can capture any other using the conven-
tional moves allowed by a queen. In other words, the problem is to select
n squares on a chessboard so that any pair of selected squares is never
aligned vertically, horizontally, nor diagonally.

This problem is usually modeled by using one variable per queen; the
value of this variable represents the column in which the queen is set. If
xi represents the variable corresponding to queen i (that is the queen in
row i) the constraints can be stated in the following way. For every pair
(i, j), with i 6= j, xi 6= xj guarantees that the columns are distinct; and
xi + i 6= xj + j and xi− i 6= xj − j together guarantee that the diagonals
are distinct.
These relations are equivalent to defining an alldiff constraint on the
variables xi, an alldiff constraint on the variables xi + i, and an alldiff
constraint on the variables xi − i.

We propose to use a specific constraint that is defined on xi and try to
take into account the simultaneous presence of three alldiff constraints.
Consider a queen q: if there are more than three values in its domain, this
queen cannot lead to the deletion of one value of another queen, because
three directions are constrained (the column and the two diagonals) and
so at least one value of queen q does not belong to one of these directions.
Therefore, a first rule can be stated:

• While a queen has more than three values in its domain, it is useless
to study the consequence of the deletion of one of its values.
From a careful study of the problem we can deduce some rules (see
Figure 1.3):

• If a queen i has 3 values {a, b, c}, with a < b < c in its domain then
the value b of queens i− k and the value b of queen i + k can be deleted
if b = a + k and c = b + k;

26

• If D(xi) = {a, b} with a < b, then the values a and b of queens
i− (b− a) and of queens i + (b− a) can be deleted.

• If D(xi) = {a}, then the value a + j for all queens i + j, and the
value a− j for all queens i− j can be deleted.

• While a queen has more than 3 values in its domain, then this con-
straint cannot deduce anything.

Therefore, a careful study of a constraint can lead to efficient filtering
algorithms. This method is certainly the most promising way. However,
it implies a lot of work. In (Bessière and Régin, 1999), it is proposed to
try to use first the general arc consistency algorithm in order to study
if the development of a powerful filtering algorithm could be worthwhile
for the considered problem. Using the solver itself then solves the con-
sistency of the constraint.

4. Two Successful Filtering Algorithms
In this section, the filtering algorithms associated with two of the

most frequently used constraints in practice - the alldiff and the global
cardinality constraint - are presented. The advantages of these filtering
algorithms is that they clearly show how Operational Research algo-
rithms can be integrated into Constraint Programming.

4.1 Preliminaries
The definitions about graph theory are from (Tarjan, 1983). The

definitions, theorems and algorithms about flow are based on books of
(Berge, 1970; Lawler, 1976; Tarjan, 1983; Ahuja et al., 1993).

A directed graph or digraph G = (X, U) consists of a node set X
and an arc set U , where every arc (u, v) is an ordered pair of distinct
nodes. We will denote by X(G) the node set of G and by U(G) the arc
set of G.

A path from node v1 to node vk in G is a list of nodes [v1, ..., vk] such
that (vi, vi+1) is an arc for i ∈ [1..k− 1]. The path contains node vi for
i ∈ [1..k] and arc (vi, vi+1) for i ∈ [1..k − 1]. The path is simple if all
its nodes are distinct. The path is a cycle if k > 1 and v1 = vk.

If {u, v} is an edge of a graph, then we say that u and v are the ends
or the extremities of the edge. A matching M on a graph is a set of
edges no two of which have a common node. The size |M | of M is the
number of edges it contains. The maximum matching problem is
that of finding a matching of maximum size. M covers X when every
node of X is an endpoint of some edge in M .

Global Constraints and Filtering Algorithms 27

Let M be a matching. An edge in M is a matching edge; every edge
not in M is free. A node is matched if it is incident to a matching
edge and free otherwise.

An alternating path or cycle is a simple path or cycle whose edges
are alternately matching and free. The length of an alternating path
or cycle is the number of edges it contains.

Let G be a graph for which each arc (i, j) is associated with two inte-
gers lij and uij , respectively called the lower bound capacity and the
upper bound capacity of the arc.

A flow in G is a function f satisfying the following two conditions:
• For any arc (i, j), fij represents the amount of some commodity

that can “flow” through the arc. Such a flow is permitted only in the
indicated direction of the arc, i.e., from i to j. For convenience, we
assume fij = 0 if (i, j) 6∈ U(G).

• A conservation law is observed at each node: ∀j ∈ X(G) :∑
i fij =

∑
k fjk.

We will consider two problems of flow theory:
• the feasible flow problem: Does there exist a flow in G that sat-

isfies the capacity constraint? That is, find f such that ∀(i, j) ∈ U(G)
lij ≤ fij ≤ uij .

• the problem of the maximum flow for an arc (i, j): Find a
feasible flow in G for which the value of fij is maximum.

Without loss of generality (see p.45 and p.297 in (Ahuja et al., 1993)),
and to overcome notation difficulties, we will consider that:

• if (i, j) is an arc of G then (j, i) is not an arc of G.
• all boundaries of capacities are nonnegative integers.

In fact, if all the upper bounds and all the lower bounds are integers
and if there exists a feasible flow, then for any arc (i, j) there exists
a maximum flow from j to i which is integral on every arc in G (See
(Lawler, 1976) p113.)

The value graph (Laurière, 1978) of an non-binary constraint C is
the bipartite graph GV (C) = (X(C), D(X(C)), E) where (x, a) ∈ E iff
a ∈ D(x).

4.2 The Alldiff Constraint
4.2.1 Consistency and Arc Consistency. We have the
relation (Régin, 1994):

28

Proposition 1 Let C be an alldiff constraint.
A matching which covers X in the value graph of C is a tuple of T (C).

Therefore we have:

Proposition 2 A constraint C=alldiff(X) is consistent iff there exists
a matching that covers X(C) in GV (C).

From proposition 2 and by the definition of arc consistency, we have:

Proposition 3 A value a of a variable x is consistent with C if and only
if the edge {x, a} belongs to a matching that covers X(C) in GV (C).

Proposition 4 ((Berge, 1970)) An edge belongs to some but not all
maximum matchings, iff, for an arbitrary maximum matching, it belongs
to either an even alternating path which begins at a free node, or an even
alternating cycle.

Proposition 5 Given a bipartite graph G = (X, Y, E) with a matching
M which covers X and the graph O(G,M) = (X∪{s}, Y, Succ), obtained
from G by orienting the edge in M from their y-endpoint to their x-
endpoint, the edge not in M from their x-endpoint to their y-endpoint,
and by adding an arc from every free node of Y to every matched node
of Y . Then, we have the two properties
1) Every directed cycle of O(G, M) which does not contain an arc from a
free node of Y to a matched node of Y corresponds to an even alternating
cycle of G, and conversely.
2) Every directed cycle of O(G,M) which contains an arc from a free
node of Y to a matched node of Y corresponds to an even alternating
path of G which begins at a free node, and conversely.

proof
1) G and O(G, M) are bipartite and by definition of O(G, M) the first property holds.

2) O(G, M) is bipartite therefore all directed cycles of O(G, M) are even. An even

alternating path which begins at a free node yf in Y , necessarily ends at a matched

node ym in Y , because all nodes of X are matched and in O(G, M) there is only one

arc from a node x in X to a node in Y : the matching edge involving x. Hence, by

definition of O(G, M) there is an arc from s to yf and an arc from ym to s, so every

even alternating path of G is a directed cycle in O(G, M). Conversely, a directed

cycle involving s can be decomposed into a path from a free node yf in Y to a node

ym in Y and the path [ym, s, yf]. Since the cycle is even the path is also even and

it corresponds to an alternating path of G by definition of O(G, M). Therefore the

property holds.

From this proposition we immediately have:

Global Constraints and Filtering Algorithms 29

Proposition 6 Arc consistency of an alldiff constraint C is established
by computing M a matching which covers X(C) in GV (C) and by re-
moving all the values (x, a) such that (x, a) 6∈ M and a and x belong to
two different strongly connected components of O(GV (C),M).

proof: By definition of the strongly connected components, there exists
a cycle between two nodes belonging to the same strongly connected
components. Therefore, from Proposition 5 the proposition holds.

4.2.2 Complexity. Let m be the number of edges of GV (C),
and n = |X(C)| and d = |D(X(C))|. A matching covering X(C) can
be computed, or we can prove there is none, in O(

√
nm) (Hopcroft

and Karp, 1973). The search for strongly connected component can be
performed in O(m+n+d). Hence arc consistency for an alldiff constraint
can be established in O(m + n + d).

Moreover, consider M a matching which covers X and suppose that k
edges of the value graph are deleted (this means that k values have been
removed from the domain of their variable). Then a new matching which
covers X can be recomputed from M in O(

√
k m) and arc consistency

can be established in O(m + n + d).
It is important to note that arc consistency may remove O(n2) val-

ues (Puget, 1998). For instance, consider an alldiff constraint defined
on X = {x1, ..., xn} with the domains: ∀i ∈ [1, n

2], if i is odd then
D(xi) = [2i − 1, 2i] else D(xi) = D(xi−1); and ∀i ∈ [n

2 + 1, n] D(xi) =
[1, n]. For instance, for n = 12 we will have: D(x1) = D(x2) = [1, 2],
D(x3) = D(x4) = [5, 6], D(x5) = D(x6) = [9, 10], D(x7) = D(x8) =
D(x9) = D(x10) = D(x11) = D(x12) = [1, 12]. Then, if arc consis-
tency is established, the intervals corresponding to the domains of the
variables from x1 ro xn

2
will be removed from the domains of the vari-

ables from xn
2
+1 to xn. That is, 2× n

2 values will be effectively removed
from the domains of (n− (n

2 + 1)) variables. Therefore O(n2) values are
deleted. Since m is bounded by n2, the filtering algorithm establishing
arc consistency for the alldiff constraint can be considered as an optimal
algorithm.

The complexities are reported here:

Consistency checking Establishing Arc consistency

From scratch O(
√

n m) O(m + n + d)

After k modifications O(
√

k m) O(m + n + d)

Two important works carried out for the alldiff constraint must be
mentioned. (Melhorn and Thiel, 2000) have proposed a very efficient fil-
tering algorithm establishing bound consistency for the sort and alldiff
constraint. A linear complexity is reached in a lot of practical cases (for

30

a permutation, for instance). (Stergiou and Walsh, 1999) made a com-
parison between different filtering algorithm associated with the alldiff
constraints and showed the advantages of this constraint in practice.

4.2.3 Some Results. A graph-coloring problem consists of
choosing colors for the nodes of a graph so that adjacent nodes are not
the same color. Since we want to highlight the advantages of the filtering
algorithm establishing arc consistency for the alldiff constraint we will
consider only a very special kind of graph for this example.

The kind of graph that we will color is one with n ∗ (n− 1)/2 nodes,
where n is odd and where every node belongs to exactly two maximal
cliques of size n.

For example, for n = 5, there is a graph consisting of the following
maximal cliques:
c0 = {0, 1, 2, 3, 4} , c1 = {0, 5, 6, 7, 8}, c2 = {1, 5, 9, 10, 11}
c3 = {2, 6, 9, 12, 13}, c4 = {3, 7, 10, 12, 14}, c5 = {4, 8, 11, 13, 14}

The minimum number of colors needed for this graph is n since there
is a clique of size n. Consequently, our problem is to find out whether
there is a way to color such a graph in n colors.

We compare the results obtained with the alldiff constraint and with-
out it (that is only binary constraints of difference are used). Times are
expressed in seconds:

clique size

27 31 51 61

#fails time #fails time #fails time #fails time

binary 6= 1 0.17 65 0.37 24512 66.5 ? > 6h

alldiff 0 1.2 4 2.2 501 25.9 5 58.2

These results show that using global constraints establishing arc con-
sistency is not systematically worthwhile when the size of the problem
is small, even if the number of backtracks is reduced. However, when
the size of problem is increased, efficient filtering algorithm are needed.

4.3 The Global Cardinality Constraint
4.3.1 Consistency and Arc Consistency. A GCC C is
consistent iff there is a flow in an directed graph N(C) called the value
network of C (Régin, 1996):

Definition 19 Given C = gcc(X, l, u) a GCC; the value network of
C is the directed graph N(C) with lower bound capacity and upper bound
capacity on each arc. N(C) is obtained from the value graph GV (C),
by:

Global Constraints and Filtering Algorithms 31

• orienting each edge of GV (C) from values to variables. For such
an arc (u, v): luv = 0 and uuv = 1.

• adding a node s and an arc from s to each value. For such an arc
(s, ai): lsai = li, usai = ui.

• adding a node t and an arc from each variable to t. For such an
arc (x, t): lxt = 1, uxt = 1.

• adding an arc (t, s) with lts = uts = |X(C)|.

Proposition 7 Let C be a GCC and N(C) be the value network of C;
the following two properties are equivalent:

• C is consistent;
• there is a feasible flow in N(C).

sketch of proof: We can easily check that each tuple of T (C) corresponds to a flow

in N(C) and conversely. ¯

Definition 20 The residual graph for a given flow f , denoted by
R(f), is the digraph with the same node set as in G. The arc set of
R(f) is defined as follows:
∀(i, j) ∈ U(G):

• fij < uij ⇔ (i, j) ∈ U(R(f)) and has cost rcij = cij and upper
bound capacity rij = uij − fij.

• fij > lij ⇔ (j, i) ∈ U(R(f)) and has cost rcji = −cij and upper
bound capacity rji = fij − lij.
All the lower bound capacities are equal to 0.

Proposition 8 Let C be a consistent GCC and f be a feasible flow in
N(C). A value a of a variable x is not consistent with C if and only
if fax = 0 and a and x do not belong to the same strongly connected
component in R(f).

proof: It is well known in flow theory that the flow value for an arc (a, x) is con-

stant if there is no path from a to x in R(f) − {(a, x)} and no path from x to a in

R(f) − {(x, a)}. Moreover, uax = 1 thus (a, x) and (x, a) cannot belong simultane-

ously to R(f), hence fax is constant iff there is no cycle containing (x, a) or (a, x) in

R(f). That is, if x and a belong to different strongly connected components. ¯

The advantage of this proposition is that all the values not consis-
tent with the GCC can be determined by only one identification of the
strongly connected components in R(f).

32

4.3.2 Complexity. For our problem, a feasible flow can be
computed in O(nm) therefore we have the same complexity for the check
of the constraint consistency. Moreover flow algorithms are incremental.

The search for strongly connected components can be done in O(m+
n + d) (Tarjan, 1983), thus a good complexity for computing arc consis-
tency for a GCC is obtained.

Corollary 1 Let C be a consistent GCC and f be a feasible flow in
N(C). Arc consistency for C can be established in O(m + n + d).

Here is a recapitulation of the complexities:

Consistency Arc consistency

From scratch O(n m) O(m + n + d)
After k modifications O(k m) O(m + n + d)

4.3.3 Some results. This section considers the sport-scheduling
problem described in (McAloon et al., 1997) and in (Van Hentenryck
et al., 1999). The problem consists of scheduling games between n teams
over n − 1 weeks. In addition, each week is divided into n/2 periods.
The goal is to schedule a game for each period of every week so that the
following constraints are satisfied:

1 Every team plays against every other team;

2 A team plays exactly once a week;

3 A team plays at most twice in the same period over the course of
the season.

The meeting between two teams is be called a matchup and takes place
in a slot i.e. in a particular period in a particular week.

The following table gives a solution to this problem for 8 teams:

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3

In fact, the problem can be made more uniform by adding a “dummy”
final week and requesting that all teams play exactly twice in each period.
The rest of this section considers this equivalent problem for simplicity.

The sport-scheduling problem is an interesting application for con-
straint programming. On the one hand, it is a standard benchmark
(submitted by Bob Daniel) to the well known MIP library and it is

Global Constraints and Filtering Algorithms 33

claimed in (McAloon et al., 1997) that state of the art MIP solvers can-
not find a solution for 14 teams. The model presented in this section
is computationally much more efficient. On the other hand, the sports
scheduling application demonstrates fundamental features of constraint
programming including global and symbolic constraints. In particular,
the model makes heavy use of arc consistency for the GCCs.

The main modeling idea is to use two classes of variables: team vari-
ables that specify the team playing on a given week, period, and slot and
the matchup variables specifying which game is played on a given week
and period. The use of matchup variables makes it simple to state the
constraint that every team must play against each other team. Games
are uniquely identified by their two teams. More precisely, a game con-
sisting of home team h and away team a is uniquely identified by the
integer (h1) ∗ n + a.

These two sets of variables must be linked together to make sure that
the matchup and team variables for a given period and a given week are
consistent. This link is ensured by a constraint whose set of tuples is ex-
plicitly given. For 8 teams, this set consists of tuples of the form (1, 2, 1)
(which means that the game 1 vs 2 is the game number 1), (1, 3, 2), ...,
(7, 8, 55).

The games that are played in a given week can be determined by using
a round robin schedule. As a consequence, once the round robin schedule
is selected, it is only necessary to determine the period of each game, not
its schedule week. In addition, it turns out that a simple round robin
schedule makes it possible to find solutions for large numbers of teams.

The basic idea is to fix the set of games of each week, but without
fixing the period of each game. The goal is then to assign a period to
each game such that the constraints on periods are satisfied. If there is
no solution then another round robin is selected.

The constraints on periods are taken into account with the global
cardinality constraints. For every period a GCC is defined on the team
variables involved in the period. Every value is associated with the two
integers: 0 and 2 if the dummy week is not considered, otherwise if the
team variables of the dummy week are involved the two integers are
equal to 2.

The search procedure which is used consists of generating values for
the matchups in the first period and in the first week, then in the second
period and the second week, and so on. The results obtained by this
method implemented with ILOG Solver are given in the following table.
Times are expressed in seconds and the experiments have been run on
a Pentium III 400Mhz machine. As far as we know, this method gives

34

the best results for this problem.

#teams 8 10 12 14 16 18 20 24 30 40

#fails 10 24 58 21 182 263 226 2,702 11,895 2,834,754

time 0 0 0.2 0.2 0.6 0.9 1.2 10.5 138 6h

5. Global Constraints and Over-constrained
Problems

Global constraints have been proved to be very useful in modelling
and in improving the resolution of CSPs. This section aims to show
that they can also be useful to model and to improve the resolution of
over-constrained problems.

A problem is over-constrained when no assignment of values to vari-
ables satisfies all constraints. In this situation, the goal is to find a com-
promise. Violations are allowed in solutions, providing that such solu-
tions retain a practical advantage. Therefore, it is mandatory to respect
some rules and acceptance criteria defined by the user. Usually the set of
initial constraints is divided into two sets: the hard constraints, that is
the ones that must necessarily be satisfied, and the soft constraints, that
is constraints whose violation is possible. A violation cost is generally
associated with every soft constraint. Then, a global objective related
to the whole set of violation costs is usually defined. For instance, the
goal can be to minimize the total sum of costs. In some applications it
is necessary to express more complex rules on violations, which involve
several costs independent from the objective function. Such rules can be
defined through meta-constraints (Petit et al., 2000). In order to model
easily the part of the problem containing the soft constraints a global
constraint involving the soft ones can be defined.

Moreover, in practice, among some other possibilities, two important
types of violation costs can be identified:

• The violation cost depends only on the fact that the constraint is
violated or not. In other words, either the constraint is satisfied and the
violation cost is equal to 0, or the constraint is violated and the cost is
equal to a given value. That is all the possible violations of a constraint
have the same cost.

• The violation cost depends on the way the constraint is violated.
The violation is quantified, thus we will call it quantified violation cost.
For instance, consider a cost associated with the violation of a temporal
constraint imposing that a person should stop working before a given
date: the violation cost can be proportional to the additional amount of

Global Constraints and Filtering Algorithms 35

working time she performs.

In this section we show two different advantages of the global con-
straints for solving over-constraint problems. First, we consider the
Maximal Constraint Satisfaction Problem (Max-CSP), where the goal
is to minimize the number of constraint violations, and we show that
Max-CSP can be simply and efficiently modeled by a new global con-
straint. Then, we show how a quantified violation cost can be efficiently
taken into account for a constraint and how new global constraints can
be designed. These new constraints are called global soft constraints.

For more information about over-constrained problems and global
constraint the reader can consult (Petit, 2002).

5.1 Satisfiability Sum Constraint
Let N = (X,D, C) be a constraint network containing some soft con-

straints. Max-CSP can be represented by a single constraint, called the
Satisfiability Sum Constraint (SSC):

Definition 21 Let C = {Ci, i ∈ {1, . . . , m}} be a set of constraints, and S[C] =
{si, i ∈ {1, . . . , m}} be a set of variables and unsat be a variable, such that a one-to-
one mapping is defined between C and S[C]. A Satisfiability Sum Constraint is
the constraint ssc(C, S[C], unsat) defined by:

[unsat =

m∑
si=1

si] ∧
m∧

i=1

[(Ci ∧ (si = 0)) ∨ (¬Ci ∧ (si = 1))]

The variables S[C] are used in order to express which constraints of C
must be violated or satisfied: value 0 assigned to s ∈ S[C] expresses that
its corresponding constraint C is satisfied, whereas 1 expresses that C
is violated. Variable unsat represents the objective, that is the number
of violations in C, equal to the number of variables of S[C] whose value
is 1.

Throughout this formulation, a solution of a Max-CSP is an assign-
ment that satisfies the SSC with the minimal possible value of unsat.
A lower bound of the objective of a Max-CSP corresponds to a neces-
sary consistency condition of the SSC. The different domain reduction
algorithms established for Max-CSP correspond to specific filtering al-
gorithms associated with the SSC.

This point of view has some advantages in regard to the previous
studies:
1. Any search algorithm can be used. This constraint can be associated
with other ones, in order to separate soft constraints from hard ones.
2. No hypothesis is made on the arity of constraints C.

36

3. If a value is assigned to si ∈ S[C], then a filtering algorithm associated
with Ci ∈ C (resp. ¬Ci) can be used in a way similar to classical CSPs.

Moreover, the best algorithms to solve over-constrained problems like
PFC-MRDAC (Larrosa et al., 1998) and the ones based on conflict-sets
detection (Régin et al., 2000; Régin et al., 2001) can be implemented
as specific filtering algorithms associated with this constraint. A filter-
ing algorithm based on a PFC-MRDAC version dealing only with the
boundaries of the domain of the variable has also been described (Petit
et al., 2002).

Furthermore, an extension of the model can be performed (Petit et al.,
2000), in order to deal with Valued CSPs. Basically it consists of defining
larger domains for variables in S[C].

5.2 Global Soft Constraints
In this section we consider that the constraints are associated with

quantified violation costs. This section is based on (Petit et al., 2001).
Most of the algorithms dedicated to over-constrained problems are

generic. However, the use of constraint-specific filtering algorithms is
generally required to solve real-world applications, as their efficiency
can be much higher.

Regarding over-constrained problems, existing constraint-specific fil-
tering algorithms can be used only in the particular case where the
constraint must be satisfied. Indeed, they remove values that are not
consistent with the constraint: the deletion condition is linked to the
fact that it is mandatory to satisfy the constraint. This condition is not
applicable when the violation is allowed.

However, domains can be reduced from the objective and from the
costs associated with violations of constraints. The main idea of this
section is to perform this kind of filtering specifically, that is, to take
advantage of the structure of a constraint and from the structure of its
violation to efficiently reduce the domains of the variables it constrains.

The deletion condition will be linked to the necessity of having an
acceptable cost, instead of being related to the satisfaction requirement.

For instance, let C be the constraint x ≤ y. In order to quantify its
violation, a cost is associated with C. It is defined as follows:
− if C is satisfied then cost = 0.
− if C is violated then cost > 0 and its value is proportional to the

gap between x and y, that is, cost = x− y.
Assume that D(x) = [90001, 100000] and D(y) = [0, 200000], and

that the cost is constrained to be less than 5. Then, either C is satisfied:
x − y ≤ 0, or C is violated: x − y = cost and cost ≤ 5, which implies

Global Constraints and Filtering Algorithms 37

x − y ≤ 5. Hence, we deduce that x − y ≤ 5, and, by propagation,
D(y) = [89996, 200000].

Such a deduction is made directly by propagating bounds of the vari-
ables x, y and cost. Inequality constraints admit such propagation on
bounds without consideration of the domain values that lie between.
Such propagation, which depends on the structure of the inequality con-
straint, is fundamentally more efficient than the consideration for dele-
tion of each domain value in turn. If we ignore the structure of the con-
straint in the example, the only way to filter a value is to study the cost
of each tuple in which this value is involved. Performing the reduction of
D(y) in the example above is costly: at least |D(x)|∗89996 = 899960000
checks are necessary. This demonstrates the gain that can be made by
directly integrating constraints on costs into the problem and employing
constraint-specific filtering algorithms.

Following this idea, our goal is to allow the same modeling flexibility
with respect to violation costs as with any other constrained variable.
The most natural way to establish this is to include these violation costs
as variables in a new constraint network.

For sake of clarity, we consider that the values of the cost associated
with a constraint C are positive integers. 0 expresses the fact that C is
satisfied, and strict positive values are proportional to the importance of
a violation. This assumption is not a strong restriction; it just implies
that values of cost belong to a totally ordered set.

A new optimization problem derived from the initial problem can be
solved. It involves the same set of hard constraints Ch, but a set of
disjunctive constraints replaces Cs. This set of disjunctive constraints is
denoted by Cdisj and a one-to-one correspondence is defined between Cs

and Cdisj . Each disjunction involves a new variable cost ∈ Xcosts, which
is used to express the cost of C ∈ Cs. A one-to-one correspondence is
also defined between Cs and Xcosts. Given C ∈ Cs, the disjunction is the
following:

[C ∧ [cost = 0]] ∨ [C̄ ∧ [cost > 0]]

C̄ is the constraint including the variable cost that expresses the viola-
tion. A specific filtering algorithm can be associated with it. Regarding
the preliminary example, the constraints C and C̄ are respectively x ≤ y
and cost = x− y:

[[x ≤ y] ∧ [cost = 0]] ∨ [[cost = x− y] ∧ [cost > 0]]

The new defined problem is not over-constrained: it consists of satis-
fying the constraints Ch∪Cdisj , while optimizing an objective defined over
all the variables Xcosts (we deal with a classical optimization problem);
constraints on a variable cost can be propagated.

38

Such a model can be used for encoding directly over-constrained prob-
lems with existing solvers (Régin et al., 2000). Moreover, additional
constraints on cost variables can be defined in order to select solutions
that are acceptable for the user (Petit et al., 2000).

5.2.1 General Definitions of Cost. When the violation
of a constraint can be naturally defined, we use it (for instance, the
constraint of the preliminary example C : x ≤ y). However, this is
not necessarily the case. When there is no natural definition associated
with the violation of a constraint, different definitions of the cost can be
considered, depending on the problem.

For instance, let C be an alldiff constraint defined on variables var(C) =
{x1, x2, x3, x4}, such that ∀i ∈ [1, 4], D(xi) = {a, b, c, d}. If we ignore
the symmetric cases by considering that no value has more importance
than another, we have the following possible assignments: (a, b, c, d),
(a, a, c, d), (a, a, c, c), (a, a, a, c), (a, a, a, a).

Intuitively, it is straightforward that the violation of case (a, a, a, a)
is more serious than the one of case (a, a, c, d). This fact has to be
expressed through the cost.

Two general definitions of the cost associated with the violation of a
non-binary constraint exist:

Definition 22 : Variable Based Violation Cost Let C be a con-
straint. The cost of its violation can be defined as the number of assigned
values that should change in order to make C satisfied.

The advantage of this definition is that it can be applied to any (non-
binary) constraint. However, depending on the application, it can be in-
convenient. In the Alldiff example above we will have cost((a, b, c, d)) =
0, cost((a, a, c, d)) = 1, cost((a, a, c, c)) = 2, cost((a, a, a, c)) = 2, and
cost((a, a, a, a)) = 3. A possible problem is that assignments (a, a, c, c)
and (a, a, a, c) have the same cost according to definition 22. For an
Alldiff involving more than four variables, a lot of different assignments
have the same cost.

Therefore, there is another definition of the cost, which is well suited
to constraints that are representable through a primal graph (Dechter,
1992):

Definition 23 The primal graph Primal(C) = (var(C), Ep) of a
constraint C is a graph such that each edge represents a binary con-
straint, and the set of solutions of the CSP defined by
N = (var(C), D(var(C)), Ep) is the set of allowed tuples of C.

For an Alldiff C, Primal(C) is a complete graph where each edge rep-
resents a binary inequality.

Global Constraints and Filtering Algorithms 39

Definition 24 : Primal Graph Based Violation Cost Let C be
a constraint representable by a primal graph. The cost of its violation
can be defined as the number of binary constraints violated in the CSP
defined by Primal(C).

In the Alldiff case, the user may aim at controlling the number of binary
inequalities implicitly violated. The advantage of this definition is that
the granularity of the quantification is more accurate. In the example,
the costs are cost((a, b, c, d)) = 0, cost((a, a, c, d)) = 1, cost((a, a, c, c)) =
2, cost((a, a, a, c)) = 3, and cost((a, a, a, a)) = 6.

5.2.2 Soft Alldiff Constraint. The constraint obtained by
combining a variable based violation cost and alldiff constraint, is, in
fact, a k-diff constraint where k is the minimum value of the cost variable.
Therefore, if the modification of k is dynamically maintained, which is
relatively easy because it can only be increased, then we obtain a filtering
algorithm establishing algorithm for this global soft constraint.

The constraint formed by the combination of a primal graph based
cost and an alldiff constraint is much more complex. A specific filtering
algorithm for this constraint has been designed by (Petit et al., 2002). Its
complexity is in O(|var(C)|2√|var(C)|Kd), where K =

∑ |D(x)|, x ∈
var(C) and d = max(|D(x)|), x ∈ var(C).

6. Quality of Filtering Algorithms
In this section, we try to characterize some properties of a good fil-

tering algorithm.
Section 3.2 presents a general filtering algorithm establishing arc con-

sistency. From a problem P for which a method giving a solution is
known, this algorithm is able to establish and maintain arc consistency
of C(P) in nd×O(P). Therefore, there is no need to develop a specific
algorithm with the same complexity. Every dedicated algorithm must
improve that complexity otherwise it is not worthwhile.

From this remark we propose the following classification:

Definition 25 Let C be a constraint for which the consistency can be
computed in O(C). A filtering algorithm establishing arc consistency
associated with C is:

• poor if its complexity is O(nd)×O(C);
• medium if its complexity is O(n)×O(C);
• good if its complexity is O(C);

Some good filtering algorithms are known for some constraints. We
can cite the alldiff constraint or the global cardinality constraint.

40

Some medium filtering algorithms have also been developed for some
constraints like global cardinality constraint with costs, and symmetric
alldiff. Thus, these algorithms can be improved.

Good filtering algorithms are not perfect and the definition of the
quality we propose is based on worst-case complexity. This definition
can be refined to be more accurate with the use of filtering algorithms
in CP, because the incrementality is quite important:

Definition 26 A filtering algorithm establishing arc consistency is per-
fect if it always has the same cost as the consistency checking.

This definition means that the complexity must be the same in all the
cases and not only for the worst one. For instance, such an algorithm
is not known for the alldiff constraint, because the consistency of this
constraint can sometimes be checked in O(1) and the arc consistency
needs at least O(nd).

The only one constraint for which a perfect filtering algorithm is
known is the constraint (x < y).

Two other points play an important part in the quality of a filter-
ing algorithm: the incrementality and the amortized complexity. These
points are linked together.

The incremental behavior of a filtering algorithm is quite important in
CP, because the algorithms are systematically called when a modification
of a variable involved in the constraint occurs. However, the algorithm
should not be focus only on this aspect. Sometimes, the computation
from scratch can be much more quicker. This point has been emphasized
for general filtering algorithms based on the list of supported values of
a value (Bessière and Régin, 2001). An adaptive algorithm has been
proposed which outperforms both the non-incremental version and the
purely incremental version. This is one in which the consequences of
the deletion of a value are systematically studied from the information
associated with the deleted value and never from scratch. There are two
possible ways to improve the incremental behavior of the algorithm:

• The previous computations are taken into account when a new
computation is made in order to avoid doing the same treatment twice.
For instance, this is the idea behind the last support in some general
filtering algorithm algorithms.

• The filtering algorithm is not systematically called after each modi-
fication. Some properties that cannot lead to any deletions are identified,
and the filtering algorithm is called only when these properties are not
satisfied. For instance, this is the case for the model we present to solve

Global Constraints and Filtering Algorithms 41

the n-queens problem.

When a filtering algorithm is incremental we can expect to compute its
amortized complexity. This is the complexity in regard to the number of
deletions, or for one branch of the tree-search. This is why the complex-
ity can be analyze after a certain number of modifications. The amor-
tized complexity is often more accurate for filtering algorithm. Moreover,
it can lead to new interesting algorithms that are not too systematic.
For instance, there is a filtering algorithm for the symmetric alldiff con-
straint that is based on this idea. The filtering algorithm establishing arc
consistency calls another algorithm A n times, therefore its complexity
is n × O(A). Another algorithm has been proposed in (Régin, 1999b),
which can be described as follows: pick a variable then run A, and let k
be the number of deletions made by A. Then you can run A for k other
variables. By proceeding like that the complexity is O(A) per deletions.
Of course, the algorithm does not necessarily establish arc consistency
but this is possibly a good compromise.

7. Discussion

7.1 Incomplete Algorithms and Fixed-Point
Property

Some global constraints correspond to NP-Complete problems. Hence,
it is not possible to check polynomially the consistency of the constraint
to establish arc consistency. Nevertheless, some filtering algorithms can
be still proposed. This is the case for a lot of constraints: the cumula-
tive constraint, the diff-n constraint, the sequence constraint, the stretch
constraint, the global minimum distance constraint, the number of dis-
tinct values constraints, and so on. When the problem is NP-Complete
the filtering algorithm considers a relaxation, which is no longer difficult.
Currently, the filtering algorithms associated with such constraints are
independent of the definition of the problem. In other words, a prop-
agation mechanism using them will reach a fixed-point. That is, the
set of values that are deleted is independent from the ordering accord-
ing to the constraints defined and from the ordering according to the
filtering algorithms called. In order to guarantee such a property, the
filtering algorithm is based either on a set of properties that can be ex-
actly computed (not approximated), or on a relaxation of the domains
of the variables (that is, the domains are considered as ranges instead
of as a set of enumerated values). The loss of the fixed-point property
leads to several consequences: the set of values deleted by propagation
will depend on the ordering along with the stated constraints and on the

42

ordering along with the variables involved in a constraint. This means
that the debugging will be a much more difficult task because fewer con-
straints can lead to more deleted values, and more constraints can lead
to fewer deleted values.

In the future, we will certainly need filtering algorithms with which
the fixed-point property of the propagation mechanism will be lost, be-
cause more domain-reduction could be done with such algorithms. For
instance, suppose that a filtering algorithm is based on the removal of
nodes in a graph that belong to a clique of size greater than k. Removing
all the values that do not satisfy this property is an NP-Complete prob-
lem; therefore the filtering algorithms will not be able to do it. However,
some of these values can be removed, for instance by searching for one
clique for every node. The drawback of this approach is that it will
be difficult to guarantee that for a given node the graph will be tra-
versed according to the same ordering of nodes. This problem is closed
to the canonical representation of a graph; and currently this problem
is unclassified: we do not know whether it is NP-Complete or not.

7.2 Closure
In general, a filtering algorithm removes some values that do not sat-

isfy a property. The question is “Should a filtering algorithm be closed
with regard to this property?”

Consider the values deleted by the filtering algorithm. Then, the
consequences of these new deletions can be:

• taken into account by the same pass of the filtering algorithm;
• or ignored by the same pass of the filtering algorithm.

In the first case, there is no need to call the filtering algorithm again and
in the second case the filtering algorithm should be called again. When
the filtering algorithm is good, usually the first solution is the good one,
but when the filtering algorithm consists of calling another algorithm for
every variable or every value, it is possible that any deletion calls the
previous computations into question. Then, the risk is to have to check
again and again the consistency of some values. It is also possible that
the filtering algorithm internally manages a mechanism that is closed to
the propagation mechanism of the solver, which is redundant.
In this case, it can be better to stop the filtering algorithm when some
modifications occur in order to use the other filtering algorithms to fur-
ther reduce the domains of the variable and to limit the number of useless
calls.

Global Constraints and Filtering Algorithms 43

7.3 Power of a Filtering Algorithm
Arc consistency is a strong property, but establishing it costs some-

times in practice. Thus, some researchers have proposed to use weaker
properties in practice. That is, to let the user to choose which type of
filtering algorithm should be associated with a constraint. In some com-
mercial CP Solvers, like ILOG-Solver, the user is provided with such a
possibility. Therefore it is certainly interesting to develop some filtering
algorithms establishing properties weaker than arc consistency. How-
ever, arc consistency has some advantages that must not be ignored:

• The establishing of arc consistency is much more robust. Some-
times, it is time consuming, but it is often the only way to design a
good model. During the modeling phase, it is very useful to use strong
filtering algorithms, even if, sometimes, some weaker filtering algorithms
can be used to improve the time performance of the final model. It is
rare to be able to solve some problems in a reasonable amount of time
with filtering algorithms establishing properties weaker than arc consis-
tency and not be able to solve these problems with a filtering algorithm
establishing arc consistency.

• There is a room for the improvement of filtering algorithms. Most
of the CP solvers were designed before the introduction of global con-
straints in CP. We could imagine that a solver especially designed to
efficiently handle global constraints could lead to better performance.
On the other hand, the behavior of filtering algorithms could also be im-
proved in practice, notably by identifying more quickly the cases where
no deletion is possible.

• For binary CSPs,for a long time it was considered that the Forward
Checking algorithm (the filtering algorithms are triggered only when
some variables are instantiated) was the most efficient one, but several
studies showed that the systematic call of filtering algorithms after every
modification is worthwhile (for instance see (Bessière and Régin, 1996)).
All industrial solver vendors aim to solve real world applications and
claim that the use of strong filtering algorithms is often essential.

Thus, we think that the studies about filtering algorithms establish-
ing properties weaker than arc consistency should take into account the
previous points and mainly the second point. On the other hand, we
think that it is really worthwhile to work on techniques stronger than
arc consistency, like singleton arc consistency which consists of studying
the consequences of the assignments of every value to every variable.

44

8. Conclusion
Filtering algorithms are one of the main strengths of CP. In this chap-

ter, we have presented several useful global constraints with references
to the filtering algorithms associated with them. We have also detailed
the filtering algorithms establishing arc consistency for the alldiff con-
straint and the global cardinality constraint. We have also tried to give
a characterization of filtering algorithms. We have also showed how the
global constraint can be useful for over-constrained problems and no-
tably, we have presented the global soft constraints. At last, the the
filtering algorithms we presented are mainly based on arc consistency,
we think that some interesting work based on bound-consistency could
be carried out.

References
Ahuja, R., Magnanti, T., and Orlin, J. (1993). Network Flows. Prentice

Hall.
Baptiste, P., Le Pape, C., and Peridy, L. (1998). Global constraints for

partial csps: A case-study of resource and due date constraints. In
Proceedings CP’98, pages 87–101, Pisa, Italy.

Beldiceanu, N. (2001). Pruning for the minimum constraint family and
for the number of distinct values constraint family. In Proceedings
CP’01, pages 211–224, Pathos, Cyprus.

Beldiceanu, N. and Carlsson, M. (2002). A new multi-resource cumu-
latives constraint with negative heights. In Proceedings CP’02, pages
63–79, Ithaca, NY, USA.

Beldiceanu, N. and Contejean, E. (1994). Introducing global constraints
in chip. Journal of Mathematical and Computer Modelling, 20(12):97–
123.

Beldiceanu, N., Guo, Q., and Thiel, S. (2001). Non-overlapping con-
straints between convex polytopes. In Proceedings CP’01, pages 392–
407, Pathos, Cyprus.

Berge, C. (1970). Graphe et Hypergraphes. Dunod, Paris.
Bessière, C. and Régin, J.-C. (1996). Mac and combined heuristics: Two

reasons to forsake fc (and cbj?) on hard problems. In CP96, Second In-
ternational Conference on Principles and Practice of Constraint Pro-
gramming, pages 61–75, Cambridge, MA, USA.

Bessière, C. and Régin, J.-C. (1997). Arc consistency for general con-
straint networks: preliminary results. In Proceedings of IJCAI’97, pages
398–404, Nagoya.

Bessière, C. and Régin, J.-C. (1999). Enforcing arc consistency on global
constraints by solving subproblems on the fly. In Proceedings of CP’99,

REFERENCES 45

Fifth International Conference on Principles and Practice of Con-
straint Programming, pages 103–117, Alexandria, VA, USA.

Bessière, C. and Régin, J.-C. (2001). Refining the basic constraint propa-
gation algorithm. In Proceedings of IJCAI’01, pages 309–315, Seattle,
WA, USA.

Bleuzen-Guernalec, N. and Colmerauer, A. (1997). Narrowing a 2n-block
of sortings in o(nlog(n)). In Proceedings of CP’97, pages 2–16, Linz,
Austria.

Carlier, J. and Pinson, E. (1994). Adjustments of heads and tails for the
jobshop problem. European Journal of Operational Research, 78:146–
161.

Caseau, Y., Guillo, P.-Y., and Levenez, E. (1993). A deductive and
object-oriented approach to a complex scheduling problem. In Pro-
ceedings of DOOD’93.

Caseau, Y. and Laburthe, F. (1997). Solving various weighted matching
problems with constraints. In Proceedings CP97, pages 17–31, Austria.

Damaschke, P., Müller, H., and Kratsch, D. (1990). Domination in con-
vex and chrodal bipartite graphs. Information Processing Letters, 36:231–
236.

Dechter, R. (1992). From local to global consistency. Artificial Intelli-
gence, 55:87–107.

Focacci, F., Lodi, A., and Milano, M. (1999a). Cost-based domain filter-
ing. In Proceedings CP’99, pages 189–203, Alexandria, VA, USA.

Focacci, F., Lodi, A., and Milano, M. (1999b). Integration of cp and or
methods for matching problems. In Proceedings CP-AI-OR 99, Fer-
rara, Italy.

Henz, M., Müller, T., and Thiel, S. (2003). Global constraints for round
robin tournament scheduling. European Journal of Operational Re-
search, page To appear.

Hopcroft, J. and Karp, R. (1973). n5/2 algorithm for maximum match-
ings in bipartite graphs. SIAM Journal of Computing, 2:225–231.

ILOG (1999). ILOG Solver 4.4 User’s manual. ILOG S.A.
Larrosa, J., Meseguer, P., Schiex, T., and Verfaillie, G. (1998). Reversible

dac and other improvements for solving max-csp. Proceedings AAAI,
pages 347–352.

Laurière, J.-L. (1978). A language and a program for stating and solving
combinatorial problems. Artificial Intelligence, 10:29–127.

Lawler, E. (1976). Combinatorial Optimization: Networks and Matroids.
Holt, Rinehart and Winston.

Leconte, M. (1996). A bounds-based reduction scheme for constraints
of difference. In Constraint-96, Second International Workshop on
Constraint-based Reasoning, Key West, FL, USA.

46

McAloon, K., Tretkoff, C., and Wetzel, G. (1997). Sports league schedul-
ing. In Proceedings of ILOG user’s conference, Paris.

Melhorn, K. and Thiel, S. (2000). Faster algorithms for bound-consistency
of the sortedness and the alldifferent constraint. In Proceedings of
CP’00, pages 306–319, Singapore.

Micali, S. and Vazirani, V. (1980). An O(
√|V ||E|) algorithm for find-

ing maximum matching in general graphs. In Proceedings 21st FOCS,
pages 17–27.

Montanari, U. (1974). Networks of constraints : Fundamental properties
and applications to picture processing. Information Science, 7:95–132.

Pesant, G. (2001). A filtering algorithm for the stretch constraint. In
Proceedings CP’01, pages 183–195, Pathos, Cyprus.

Petit, T. (2002). Modelization and Algorithms for solving over-constrained
Problems. PhD thesis, Université de Montpellier II.

Petit, T., Régin, J.-C., and Bessière, C. (2000). Meta constraints on
violations for over-constrained problems. In Proceeding ICTAI-2000,
pages 358–365.

Petit, T., Régin, J.-C., and Bessière, C. (2001). Specific filtering algo-
rithms for over-constrained problems. In Proceedings CP’01, pages
451–465, Pathos, Cyprus.

Petit, T., Régin, J.-C., and Bessière, C. (2002). Range-based algorithms
for max-csp. In Proceedings CP’02, pages 280–294, Ithaca, NY, USA.

Puget, J.-F. (1998). A fast algorithm for the bound consistency of alldiff
constraints. In Proceedings of AAAI-98, pages 359–366, Menlo Park,
USA.

Régin, J.-C. (1994). A filtering algorithm for constraints of difference in
CSPs. In Proceedings AAAI-94, pages 362–367, Seattle, Washington.

Régin, J.-C. (1995). Développement d’outils algorithmiques pour l’Intelligence
Artificielle. Application à la chimie organique. PhD thesis, Université
de Montpellier II.

Régin, J.-C. (1996). Generalized arc consistency for global cardinality
constraint. In Proceedings AAAI-96, pages 209–215, Portland, Oregon.

Régin, J.-C. (1997). The global minimum distance constraint. Technical
report, ILOG.

Régin, J.-C. (1999a). Arc consistency for global cardinality with costs.
In Proceedings of CP’99, pages 390–404, Alexandria, VA, USA.

Régin, J.-C. (1999b). The symmetric alldiff constraint. In Proceedings of
IJCAI’99, pages 425–429, Stockholm, Sweden.

Régin, J.-C. (2002). Cost based arc consistency for global cardinality
constraints. Constraints, an International Journal, 7(3-4):387–405.

REFERENCES 47

Régin, J.-C., Petit, T., Bessière, C., and Puget, J.-F. (2000). An original
constraint based approach for solving over constrained problems. In
Proceedings of CP’00, pages 543–548, Singapore.

Régin, J.-C., Petit, T., Bessière, C., and Puget, J.-F. (2001). New lower
bounds of constraint violations for over-constrained problems. In Pro-
ceedings CP’01, pages 332–345, Pathos, Cyprus.

Régin, J.-C. and Puget, J.-F. (1997). A filtering algorithm for global se-
quencing constraints. In CP97, proceedings Third International Con-
ference on Principles and Practice of Constraint Programming, pages
32–46.

Régin, J.-C. and Rueher, M. (2000). A global constraint combining a
sum constraint and difference constraints. In Proceedings of CP’00,
pages 384–395, Singapore.

Rossi, F., Petrie, C., and Dhar, V. (1990). On the equivalence of con-
straint satisfaction problems. In Proceedings ECAI’90, pages 550–556,
Stockholm, Sweden.

Simonis, H. (1996). Problem classification scheme for finite domain con-
straint solving. In CP96, Workshop on Constraint Programming Ap-
plications: An Inventory and Taxonomy, pages 1–26, Cambridge, MA,
USA.

Stergiou, K. and Walsh, T. (1999). The difference all-difference makes.
In Proceedings IJCAI’99, pages 414–419, Stockholm, Sweden.

Tarjan, R. (1983). Data Structures and Network Algorithms. CBMS-NSF
Regional Conference Series in Applied Mathematics.

Van Hentenryck, P. and Deville, Y. (1991). The cardinality operator: A
new logical connective for constraint logic programming. In Proceed-
ings of ICLP-91, pages 745–759, Paris, France.

Van Hentenryck, P., Deville, Y., and Teng, C. (1992). A generic arc-
consistency algorithm and its specializations. Artificial Intelligence,
57:291–321.

Van Hentenryck, P., Michel, L., L.Perron, and Régin, J.-C. (1999). Con-
straint programming in opl. In PPDP 99, International Conference
on the Principles and Practice of Declarative Programming, pages 98–
116, Paris, France.

Zhou, J. (1996). A constraint program for solving the job-shop problem.
In Proceedings of CP’96, pages 510–524, Cambridge.

Zhou, J. (1997). Computing Smallest Cartesian Products of Intervals:
Application to the Jobshop Scheduling Problem. PhD thesis, Université
de la Méditerranée, Marseille.

