Minimization of the Number of Breaks in
Sports Scheduling Problems using Constraint
Programming.

Jean-Charles Régin
ILOG
Les Taissounieres HB2

06560 Valbonne, FRANCE
e-mail : regin@ilog.fr

Abstract

This paper aims to show the interest of constraint programming for
minimizing the number of breaks in sports scheduling problems. We
consider single round-robin problems with an even number of teams.
In such a problem we are given n teams and n — 1 periods and for each
period each team has to play either at home or away game against
another team such that every team plays every other team exactly
once during all the periods. A break for a team is defined to be two
consecutive home matches or two consecutive away matches. For the
considered problem, it has been proven by Schreuder that the minimal
number of breaks is n — 2. We propose a model using constraint
programming that has the capability to efficiently prove this result.
For 20 teams this takes a mere 0.61s and for 60 teams it still takes less
than 1 minute. The main reason for this is the use of several global
constraints with which powerful filtering algorithms are associated.

Moreover, this model is well adapted to solve some variations of the
initial problem in which new constraints are added such as: for each
team the number of away and home matches has to be balanced, it is
forbidden to have two consecutive breaks, etc. We are also able to find
and prove the minimal number of breaks for some given timetables of
teams.

1 Introduction

Sport scheduling problems is an area of increasing interest as amateur and
professional sports leagues proliferate and grow in size and complexity. Or-
ganizers are increasingly turning to computer assisted scheduling. The sci-
entific literature in this area is also growing. Some systems dedicated to the
resolution of sports scheduling problems are also proposed.

Constraint programming has already been shown to be a good way to
attack these problems, while Integer programming methods do not perform
very well, because when n increases the number of 0-1 variables and the
number of constraints grow too much [MTW97].

In this paper we consider only a restriction of real world problem. We
study only one part of the problem, which is the core of most of the real-life
applications.

The rest of the paper is organized as follows. First we present the sports
scheduling problem that we will consider. Then we introduce constraint pro-
gramming and try to define what is a good model in constraint programming.
In section 3, we study the minimization of the number of breaks of a round-
robin with an even number of teams in which no schedule are predefined.
We will show two models, a simple one and a more complex one, with which
it is possible to solve this problem with an almost polynomial complexity.
In section 4, we study several variations of the initial problem in which the
schedule is precomputed. The problem is to determine the location of the
games. We propose several new constraints that leads to an efficient reso-
lution of this problem. Six models will be successively studied. At last, we
introduce some real world constraints in order to understand their impact on
our model.

1.1 Sports Scheduling Problems

We consider single round-robin problems with an even number of teams. In
such a problem we are given n teams and n — 1 periods and for each period
each team has to play either at home or away game against another team
such that every team plays every other team exactly once during all the
periods.

This problem models half of the season, the second part is usually ob-
tained by mirroring the first part.

A break for a team is defined to be two consecutive home matches or
two consecutive away matches. The following table present a solution for
8 teams. Home games are represented by the sign +, while away game are
represented by the sign —. Breaks appear in bold.

+2 -3 44 -5 +6 -7 48
-1 +4 -6 +8 -3 +5 -7
-8 +1 +5 -7 +2 -4 46
+7 -2 -1 +6 -8 +3 -5
-6 +8 -3 41 +7 -2 +4
+5 -7 42 -4 -1 48 -3
-4 46 -8 +3 -5 +1 +2
s{|+3 -5 +7 -2 44 -6 -1

=IO O W= | W DN —

In real-life application a lot of other constraints are added. We will not
consider them, and some information about this subject can be found in
[INT98, Sch92].

We concentrate our study to the minimization of the number of breaks,
because this problem is one of the main problems to solve when we want to
find a solution to a real-life application, and because no constraints can be
violated in this problem.

When the teams are not already assigned this problem can be solved in
polynomial time as it is explained in [Sch92]. It has been proven that the
minimal number of breaks is n—2. Nethertheless, when the teams are already
assigned the problem is not easy to solved, because the optimal bound is not
true for all the timetables. In real-life applications some constraints restrict
the possible timetables. Thus, the determination of the minimal number of
breaks becomes an important problem.

Our study can be divided into two parts.

In the first part we propose a model that has the capability to prove
that the minimal number of breaks is n — 2 even for large n. This result
has no interest in pratice, because an algorithm was already known. How-
ever, this thought process has several advantages: it proves that constraint
programming, which is a technique to solve some hard problems is also an
efficient way to solve easy problems and it permits to identify where are the
bottlenecks of the sports scheduling problems and to model and solve hard
variations of the initial problem.

In the second part we introduce some modifications of the initial problem,
and show where are the difficulties and what constraint programming is able
to solve. For instance, we consider the problem where the teams are already
assigned but not the place where the matches are played. We also introduce
some real-life constraints: the first match is different from the last match,
there is no two consecutive breaks...

1.2 Constraint Programming (CP)

Constraint programming forms a simple formal frame to represent and solve
certain problems. They involve finding values for problem variables subject to
constraints on which combinations are acceptable. Constraint programming
is based on the constraint network theory.

Constraint network A finite constraint network N is defined as a set of n
variables X = {xy, ..., x,}, aset of current domains D = {D(xy),..., D(x,)}
where D(x;) is the finite set of possible values for variable x;, and a set
C of constraints between variables. We introduce the particular notation
Do = {Do(zy),...,Do(x,)} to represent the set of initial domains of N.
Indeed, we consider that any constraint network A’ can be associated to an
initial domain Dy (containing D), on which constraint definitions were stated.

A total ordering <4 can be defined on D(a;),Va; € X, without loss of
generality. max(D(x;)) and min(D(z;)) denotes respectivly the maximum
and the minimum value of the domain of the variable z;.

Constraints. Then, a constraint C on the ordered set of variables X (C') =
(i), ..,2;) is asubset T(C') of the Cartesian product Do(x;,)x---x Do(a;,)
that specifies the allowed combinations of values for the variables z; x ... x
x;,. An element of Do(ax;,) X -+ x Do(a;,) is called a tuple on X(C). | X(C)|
is the arity of C'.

A constraint C' involving the subset of variables X (C) = (x;,,...,2;,)
can be described by the set of allowed tuples (resp. the set of forbidden
tuples) given in extension when the constraint is tight (resp. is loose), or by
an arithmetic relation. More generally, it can be represented by any boolean
function defined on Dg(x;,) X -+ x Do(x;,).

Solutions. The search space consists of the Cartesian product of the
domains of the variables of the problem.

A solution of a constraint network 1s an instantiation of the variables such
that all the constraints are satisfied.

Notations. A value a for a variable x is often denoted by (x,). index(C, x)
is the position of variable z in X (). 7[k] denotes the k' value of 7.

Consistency. Let N = (X,D,C) be a constraint network, C' a constraint
in C defined on X(C) = (x;,...,2;,).

A tuple 7 of X(C) is valid if V(x,a) € 7,a € D(x); otherwise it is rejected.
C'is consistent if there exists a tuple of T'(C') which is valid. A value ¢ € D(x)
is consistent with C'iff v ¢ X (C), or 37 € T(C'), such that a = 7[index(C,)]
and 7 is valid.

C is arc consistent iff Va; € X(C),Va € D(x;),a is consistent with '

Constraint programming In constraint programming, each constraint
is associated with a filtering algorithm which aims to remove some values
that are not consistent with the constraint. Sometimes a filtering algorithm
achieves arc consistency, sometimes not.
We will denote by:
o f(C) the filtering algorithm associated with the constraint C.
« R(C) the set of values deleted from the domain of their variable when
f(C) is called.
In this paper, we will consider that a variation of a backtrack algorithm
is used to search for a solution. In this variation each time the domain of a
variable is modified, the filtering algorithm associated with each constraint
involving the variable is called. This process is called propagation. And, the
variables and the values assigned to the variables are choosen by following
what we call a variable-value ordering. These orderings can be complex and
dynamic (that is the next variable or value to try corresponds to the variable
or the value which satisfies a given criteria).
Constraint programming offers a wide range of predefined constraints.
These predefined constraints greatly clarify the problem description, the
problem representation, and the problem solution.

Constraint programming also allows the definition of new constraints and
the filtering algorithm associated with them. This is particularly usefull to
represent a particular statement of the problem.

We have used ILOG Solver 4.3 on Windows N'T' in all of our experiements.
The used computer is based on a Pentium Pro at 200Mhz.

Optimization problem Usually, in constraint programming, branch-and-
bound algorithm is used to solve optimization problem. The solver we used,
performs a depth-first search branch and bound algorithm.

2 What is a good model in CP?

Obviously a good model is a model that leads to an efficient resolution of a
given problem. However, we can give some basic ideas involved in a good
model.

A good model deals with four important notions of constraint program-
ming;:

e symmetries
e implicit constraints
e global constraints

e pertinent and redundant constraints

2.1 symmetries

The complexity of a problem can often be reduced by detecting intrinsic
symmetries. Parts of the search space can then be safely ignored. When two
or more variables have identical characteristics, it is pointless to differentiate
them artificially. Identical characteristics can be viewed as the satisfaction
of the following conditions:

e the initial domains of these variables are identical;

e these variables are subject to the same constraints;

e the variable can be permuted without changing the statement of the
problem

then there is really no point in examining all the possible solutions for these
variables and their values. In fact, the permutations give rise to sets of
solutions that are identical as far as the physical reality of the problem is
concerned. We can exploit this idea to minimize the size of the search space.

If we reduce the domains of theses variables by introducing a supplemen-
tary constraint, such as order, or by imposing a special feature on each of
these variables, then we can markedly reduce the size of the search space.

For instance, suppose that you want to solve x + y = z where = and y
have the same initial domain. In this case, we can add the constraint x <y
and solve the new problem. From the solutions of this problem we can build
all the solutions of the initial problem.

Detecting some hidden symmetries, and finding a way to avoid them is
certainly one of the main problem of the modelisation.

In sports scheduling problems, we will see that it is possible to remove
some non obvious symmetries in a efficient way when we want to determine
the minimum number of breaks.

2.2 implicit constraints

An implicit constraint makes explicit a property that satisfies any solution
implicitly.

Since constraint programming decreases the search space by reducing the
domains of variables, it is obviously important to express all necessary con-
straints. In some cases, it is even a good idea to introduce implicit constraint
to reduce the size of the search space by supplementary domain reductions.

The introduction of implicit constraints does not change the nature of
the solution but can slow down the execution of the propagation process.
However, this slowing down may be negligible in certain problems when it
is compared with the efficiency gained from reducing the size of the search
space obtained by the filtering algorithms.

Here is a good example of the interest of an implied constraint:

Suppose you want to solve a constraint network involving 100 variables with
the same domain {0,1,2,3,4}. The constraints are: all the values but 0
must be taken at least 5 times. The filtering algorithm associated with each

of these four constraints acheives the arc consistency. In this case, this al-
gorithm corresponds to the idea: “if a is assigned to k& < 5 variables and if
there are only 5 — k variables that are not instantiated, then assigned a to all
these variables”. Suppose that the variable-value ordering consists of choos-
ing the variable with the domain of the minimum size and the first value in
the domain (the classical domain-min ordering). Then, 95 variables will be
instantiated to 0 before detecting an inconsistency. Because when 94 vari-
ables are instantiated to 0 then all the filtering algorithms remove no value.
Even so, it is clear that at most 100 —4 x 5 = 80 variables can be instantiated
with 0. This remark is an implicit constraint. If we add this implicit con-
straint we will avoid 5 = 6,103,515, 625 instantiations! Moreover, we can
add a more sophisticated implied constraint which states that the number of
uninstatiated variables must be sufficient to satisfy simultaneously the four
initial constraints.

In sports scheduling we will see that the number of break is always an
even number. The introduction of such an implied constraint speeds up the
search for the minimal solution.

2.3 global constraints

A global constraint C' is a constraint involving a set of other constraints,
such that the filtering algorithm associated with €' is more powerful than
the conjunction of the filtering algorithm of each constraint involved in C'
taken separately.

From a mathematical point of view, if C' is a global constraint involving
the constraints ¢y, ..., ¢, then R(c1)U...U R(¢,) C R(C).

Such a global constraint is particularly interesting if the complexity of
f(C) is comparable to the sum of the complexity of f(¢1), ..., f(¢,).

A well known example of global constraint is the alldiff constraint. This
constraint states that the involved variables must take different values from
each other when they are instantiated. For instance, consider three variables
x1, 3 and x3 such that D,, = {«,b}, D,, = {a,b} and D,, = {a,b, ¢} and the
constraints ¥y # x5, x; # x3 and x5y # x3. If the filtering algorithm associated
with each of these constraints acheives the arc consistency, then no value will
be deleted. While, if we use an alldiff constraints involving x, 5 and x3 and
if the filtering algorithm associated with the alldiff constraint acheives arc
consistency then xs will be instantiated with ¢. Such a filtering algorithm has

been proposed by [Rég94]. Its complexity is low ((3°,, |D(z;)])). In the rest
of the paper when will use this constraint and without particular mention,
we will consider that the filtering algorithm associated with it is this one.

The introduction of global constraints will not change the set of solu-
tions and can be essential for solving some problems as noted by [CGL93]:
“The problem is that efficient resolution of a timetable problem requires a
global computation on the set of min/max constraints, and not the efficient
implementation of each of them separately.”

Sometimes, a global constraint is simply the conjunction of a set of con-
straints and an implied constraint deduced from the simultaneous presence
of this set of constraints, and the filtering algorithm associated with this
global constraint is the conjunction of all the filtering algorithms, that is no
new algorithm is defined. Such a constraint can be obtained for the example
given in the paragraph about implied constraints.

Often, the introduction of global constraints leads to the discovery of some
new variable-value orderings that improve the search for solution, because
global constraints lead to more domain reductions after each choice of variable
or value.

2.4 pertinent and redundant constraints

At first glance it seems that adding a constraint which removes some sym-
metries, or an implicit constraint, or a global constraint always improves the
current model.

This is not true. For instance, the removal of some symmetries can in-
crease the time needed to find a solution. This can be generally explained by
the fact that the adequation between the current variable-value ordering and
the constraints introduced to remove the symmetries becomes poor. The fil-
tering algorithms associated with these constraints can remove a lot of values
that can change the next chosen variable. Note that with a static ordering
such a behaviour cannot arise. Similarly, if we add an implicit constraint to
a model, sometimes the number of backtracks and the time needed to solve
the problem do not decrease, because the necessarily condition introduced
by this constraint is already taken into account by the model.

So, we insist on the fact that the reduction of the size of the search
space from a mathematical point of view does not necessarily lead to better
performance for finding a solution in practice. This is another major problem

of the modelisation.
From these remarks, we can define a the notion of pertinent constraint.
A constraint is pertinent w.r.t. a model if the introduction of this constraint:

e is needed by the definition of the problem;

e or if it permits to remove some symmetries, or it is an implied or a
global constraint, and the introduction of the constraint improves the
search for the solution in term of performance.

It is important to note that the pertinence of a constraint is defined
w.r.t. a given model, because sometimes the introduction of a constraint
does not improve the resolution for a given variable-value ordering, but leads
to the discovery of another ordering with better performance only when the
constraint is added.

When a constraint is not pertinent it is called redundant constraint.

3 Minimisation of the number of break

In such a problem we are given n teams and n — 1 periods and for each
period each team has to play either at home or away game against another
team such that every team plays every other team exactly once during all the
periods. A break for a team is defined to be two consecutive home matches
or two consecutive away matches.

3.1 A first model

From the definition of the problem, some variables are defined:

o For each period each team has to play game against another team.
So, for a team 7, n—1 variables are defined. O;; is the variables corresponding
to the opponent of the team 7 at the period j. Then, O;; = k means that
team i plays versus team k at the period j (this is 7 match of team i),
Initially, the domain of any variable O;; contains all the teams except .
These variables are called opponent variables.

o For each period each team has to play either at home or away game.
For each team 7 and for each period j a 0-1 variable F;; is defined. By
convention 0 corresponds to a away game and 1 to an home game. Then

10

P;; = 0 means that the team ¢ will have an away game at the period j.
These variables are called place variables.

o A break for a team is defined to be two consecutive home matches or
two consecutive away matches.
For each team and for each pair of consecutive period, a 0-1 variable B;; is
defined. B;; = 1 means that the team ¢ has a break involving the games play
at period 7 and at period j 4+ 1. These variables are called break variables.
For each team there are n — 2 break variables. A break due to the presence
of two consecutive home games is called an home break. A break due to the
presence of two consecutive away games is called an away break.

The objective variable, that is the variable to minimize, is #B. This is
the variable that counts the total number of breaks for the schedule.

The constraints of the problem can be represented as follows:

o cvery team plays every other team exactly once during all the periods.
For each team 7, an alldiff constraint involving the O;; variables for j =
1.n — 1 is defined.

o for the period j, if team 1 plays against team k, then team k plays
against team 1 and the place where the game is played is different for 1 and k
A constraint (O;; = k < Oy; =1 and P;; # Py;) is defined for each period
7 and each pair of teams ¢ and k. For a given period j these constraints are
called place-opponent contraint.

o A break for a team is defined to be two consecutive home matches or
two consecutive away matches.
For each team ¢ and each period j, j = 1..n — 2, the constraint (B;; = 1 &
Pij = Pi(j-l—l)) is defined.

For counting the number of breaks, the constraint (#B = Y7,y , > i1 2 Bij)
is introduced in the model

The filtering algorithm associated with each of the above constraints
acheives the arc consistency. For the alldiff constraints, such a filtering algo-
rithm can be found in [Rég94]. For the two other kinds of constraint, specific
algorithms have to be designed.

These algorithms are not complex, and corresponds to the enumeration

11

and checking of all the possible cases. For instance, the filtering algorithm
associated with a place-opponent constraint (0;; = k < Op; =i and P;; #
Pyj), will be implemented as follows:

1) if Oij = k then Ok]‘ — 1

2) if P;; is instantiated then remove from O;; all the values k such that
Py; is instantiated with the same value as P;.

3) if k is removed from O;; then remove ¢ from Oy;.
We can easily prove that this algorithm will acheive arc consistency.

A depth-first branch and bound algorithm is used to find the minimal
value and to prove that it is minimal.

It is difficult to find a variable-value ordering that leads to solutions with
this simple model. However, if the break variables are instantiated first, the
place variable second and the opponent variables third, the following results
are obtained:

#teams 4 6
#bk 73 | 62,082
time (s) || 0.1 17.7

3.2 Introduction of pertinent constraints

The previous results can be greatly improved by removing some symme-
tries and changing the variable-value ordering in order to take into account
efficiently the fact that some symmetries have been removed. Some new vari-
ables are needed:

for each team 1, # Bt; is a variable that counts the number of breaks for 1.
Then #B is redefined by (#B =3, #Bt:).

The initial formulation contains several symmetries. Two kind of sym-
metries can be identified:

o All the home games can be replaced by away games and conversly

e The teams can be permuted

12

The first kind of symmetry can be easily removed by deciding that the
first game of the first team will be an home game.

The second kind of symmetry can be removed by defining the schedule
of the first team. That is, for instance, by choosing the opponent w.r.t an
increasing order. Moreover, the first team can be any team since the teams
are interchangeable. So, we decide that the first team will have the lowest
number of breaks.

So, in order to break the symmetries the following constraints are added
to the model:
e P 1
Vi=1ln—-1:01+5+1
Vi=2..n: Bt; < Bt

The variable-value ordering used is the following:

1. the # Bt; variables are instantiated first, by dynamically choosing the
variable that has the minimum value in its domain and by choosing
this value.

2. the break variables are then instantiated by trying first the value 1.
3. the place variables are then instantiated

4. the opponent variables are then instantiated.

3.3 Results

Here are the results with this new model:

#teams 4 6 8 10 12 14 16 18 20 22 40 60
#bk 3 22 45 76 | 115 | 162 | 217 | 280 | 351 | 430 | 1,501 | 3,451
time (s) 00} 00) 00} O1| 01| 02| 03] 05| 07| 10| 107 | 580
% 0.19 1061|070 0.76 | 0.80 | 0.83 | 0.85 | 0.86 | 0.88 | 0.89 | 0.94 | 0.97

The last row of this table indicates that the proposed model leads to an

almost linear algorithm, because the square of number of teams corresponds
to the size of the problem.

13

If arc consistency is not acheived by the filtering algorithm associated
with the alldiff constraint then for 4 teams the results are identical , for 6
teams 1,713 backtracks and 0.31s are needed and for 8 teams the problem
cannot be solved in a reasonable amount of time.

4 Other problems

In this
problem the places where the games are played have to be determined. The

First, we will consider, that the schedule of the teams is given.

goal is to minimize the number of breaks.
The initial assignements of the teams are precomputed. Here are the
problems we have considered:

6 teams : optimal solution : 4 breaks
T[¥2 -3+4 -5+%6
2 1 445 -6+3
3 551 -6+4 -2
1 6+2 -1 -3+5
E[F3+6 -2+1 -4
6 ||[+4 -5+3+2 -1
8 teams : optimal solution : 8 breaks
T[¥2 -3+4 -556 -7+38
Pl "1 443 -645 -8 +7
3 4+1 -247 -8+5 -6
T [F3+2 -1+8 -7+6 -5
5 6+ 7 841 -2 -3 F4
6 |[+5+8 -7+2 -1 -4+ 3
78 -5+6 -3+4F1 -2
3 ~7 645 -4+3+2 -1
10 teams : optimal solution : 12 breaks
1 T2 -3+4 -5+6 -7+8 -9+10
Pl 1 -4+3 -645 -8+7-10 ¥09
3 4 F1 -2 F7 -8 F9-10 %5 -6
1 T3 +2 -1 ¥8 -9+10 -5 +6 -7
5 -7 +9-10 +1 -2 -6+4 -3 +3
3 710 £7 -8 ¥2 -1 ¥5+9 -4 3
7 T5 -6+9 -3-10 1 -2 -8 +4
3 941046 -443 +2 -1+7 -5
] T8 -5 - 71044 -3 -6+1 -2
0 |[£6 -8+5 -9+7 -4+3+2 -1
12 teams : optimal solution : 14 breaks
1 T2 -34+4 -5 6 -7 +8 -9+10-11 7 12
2 1 -4 +3 6 +5 -8 +7-10 +9-12 + 11
3 4 F1 -2 -7 ¥8 -5 F6-11F12 -9 f10
1 T3 +2 -1 -8 ¥7 -9F10-12+11 -5 F6
5 94+ 10-11 §1 -2 3 -12+6 -7 +4 -8
3 10 ¥9-12 £2 -1F11 -3 -5 -8 +7 -4
7 11 F12-10 ¥3 -4 ¥1 -2 -8 ¥5 -6 F9
3 12411 -9 4 -3 +2 -1+7 +6-10 +5
9 I5 -6+8+10 -12 +4 -11+1 -2+3 -7
0 ||[£6 -5 47 -9 -11F12 -4+2 -1+8 -3
11 |[£7 -8 4+5 -12F10 -6 ¥9+3 -4 +1 -2
12 |[£8 -7 +64F11 +9 -10 +5+4 -3 +2 -1
14 teams : optimal solution : 20 breaks

14

1 ¥2 -3+4 -5 +6 -7 +8 -9+ 10-11 4 12-13 + 14
2 -1 -4+3 -6 +5 -8 47 -10 +9-12 F 11 - 14 13
3 “4 +1 -2 -7 +8 -5 46 -11 ¥12-13 14 -9 F 10
4 ¥3 +2 -1 -8 +7 -6 +5 -12+ 11-14 +13-10 + 9
5 "9 +10-11 +1 -2 +3 -4 +F13 -14 6 7 +8 - 12
6 10 + 11 - 13+ 2 T +4 -3+14 +8 -5 +0-12 F7
7 12 f9-14 F 3 4 +1 -2 -8F13-10 ¥5-11 -6
B 13 +14-12 4 -3 2 T 7 -6 -9 10 -5+ 11
9 ¥5 -7-10+11 -12 +13 -14 +1 -2 48 -6 +3 -4
10 Y6 -5+9+12 -14 +11 -13 +2 -1+7 -8 +4 -3
1 |[+14 -6 +5 -9+13 -10+12 +3 -4 1 -2 7 -8
12 7 -138 +8 -10 +9 +14 -11 +4 -3 +2 -1+6 5
13 ¥8 12 +6 +14 -11 -9 +10 -5 -7 +3 -4 +1 -2
14 11 -8 +7 -13 +10 -12 +9 6 +5+4 -3 +2 -1

In the previous studied problem, the minimal solution can be found only
if some symmetries have been removed. In this new problem, it is difficult to
identify some symmetries. Only one symmetry appears: the home games and
the away games can be all exchanged. So the constraint Pj; < 1 remains in
the model. All the others constraints that was introduced in order to remove
some symmetries must be deleted.

We can also use the result proved by Schreuder: the minimal value is at
least n — 2. Then, the constraint #8 > n — 2 is introduced in the model.
This information is also interesting because another algorithm than branch-
and-bound can be used. If the minimal value is close to n — 2 then it is more
interesting to try successively all the values from n — 2 w.r.t an increasing
order than finding a first solution and then trying to reduce the objective
value.

For small numbers of teams there is no real difference as it is shown in
the two following tables. In the first one, a depth-first search branch-and-
bound algorithm is used, while in the second one the objective value is first

instantiated.
#Hteams 6 8 10
#bk 16 | 3,899 | 352,701
time (s) || 0.0 0.7 73
#Hteams 6 8 10
#bk 513,843 | 349,159
time (s) || 0.0 0.7 71.5

When n increases the time needed to find the first solution becomes too
long to use a branch and bound algorithm. This is also due to the fact
that the # Bt; variables are first instantiated. Neithertheless, we do not find
better variable-value ordering.

From these experiements we can see that we are not able to solve instances

15

for more than 10 teams. So, the model has to be changed.

4.1 Introduction of other pertinent constraints

The first pertinent constraint that can be added comes from the observation
that the number of breaks is always an even number.

Property 1 For ecach pair of consecutive periods j and 741, let #Bp; be the
variable that counts the number of breaks for the pair of consecutive periods.

Then, V3 =1..n —2: #Bp; is even
proof:

Consider two consecutive periods j and j+1. Let p be the number
of home breaks of these two consecutive periods and ¢ be the
number of away breaks. Suppose that p # ¢. Without loss of
generality we can consider that p > g. When a team plays a
home game its opponent plays a away game, so in each period
there are n/2 home games and n/2 away games. Then, in period
J, n/2—q away games have to be defined such that no new breaks
appears. This result can be obtained if n/2 — ¢ home games are
available in period j+ 1, but p > ¢ this means n/2 —p < n/2—q.
Thus, the number of remaining home games in period j 41 is not
sufficient. Hence p = ¢ and #Bp; = p+ ¢ = 2p is even.

Property 2 #B is cven

proof:
#B =3,_1 .2 #DBpj, each #Bp; is even so #B is even.

After the introduction of the constraint #B is even, the number of back-
tracks and the time needed to solve the problems are divided by a factor of 3:

#Hteams 6 8 10
#bk 51970 | 101,844
time (s) || 0.0 | 0.2 20.8

However, only a small factor is gained. This is not sufficient to solve
instances with more than 10 teams.

16

By a careful study of the problem a non obvious constraint can be added.
This constraint deals with the parity of the # Bt; variables. Suppose that
for a team ¢ the first game is an home game and the third game is an away
game. The other locations are not known for this team. Suppose now that
only one break is required for this team. Such a requierement arises often
because the # Bt; variables are instantiated first. It is obvious that there will
be a break either for the first and the second games or for the second and
the third games. So, if only one break is required, it is impossible that there
is a break involving a game succeeding to the third game. That means that
the fourth game will be an home game, the fifth an away game, the sixth an
home game etc...

The following property is a generalization of this idea.

Property 3 Let j be any period, and k be any other period such that k =
J+p, p>0. Let #Bt(j, k) be the number of breaks for the team i between
the period 5 and the period k. Then,

P = Py, & #Bt(j, k) has the parity of p.

proof:

By induction. This is true for p =0, 1, 2.
Let P;; be the opposite value of P,.

First, suppose that P;; = P;. For any assignement of the P, for
x=74+1,...,k — 1 there exists a period [, such that 7 <[< k
and Py = Py, and P, = Py for 2 =1+ 1,...,k — 1. Moreover,
#B1:(j,k) = #Bt:(3,1) + #BL;(l + 1,k — 1), because Py # P41
and Pj_1y # Pi. And P = Py so #B1;(j,1) has the parity of
[— 7, because [< k. All the P, values for z =[+41,....k —1 are
equals, then #Bt;,(l+ 1,k—1)=k—-1—-2=j54p—-1—-2. So
#Bt,(7, k) has the parity of ({ —j)+ (j+p—1—2) = p—2 which
has the parity of p.

Now, suppose that Pj; # Pj;. For any assignement of the P, for
x=741,...,k — 1 there exists a period [, such that 7 <[< k
and Py = P; and Py = Py, for » = [4+ 1,...,k. Moreover,
#Bli(j,k) = #BL:(5,1) + #Bt(l + 1,k), because Py # P41y

17

Since Py = P;; and P41y = Pix, #B1:(j,1) has the parity of [—j
and #Bt;(l + 1,k) has the parity of k—[—1=74+p—1—1. So
#Bt,(7, k) has the parity of ({—j)+(j+p—1—1) = p—1 which
has not the parity of p.

As we have already mentionned it, this property is very usefull to deduce
a lot of things for the place where the games are played for each team. A
filtering algorithm can be deduced from this property.

Notation 1 Let ¢ be a team and

« OddUSeq;(j, k) a sequence of periods from the period j to the period k
such that k > 7+1, P;; and Py, are instantiated and Vz = 7+1,.. k—1, P,
is not instantiated and the number of breaks involved in the sequence is odd.

« BvenlUSeq;(7,k) a sequence of periods from the period j to the period k
such that k > 7+1, P;; and Py, are instantiated and Vz = 7+1,.. k—1, P,
is not instantiated and the number of breaks involved in the sequence is even.

« BExtUSeqi(j) a sequence of periods either from the period 1 to the pe-
riod j such that 5 > 1, Py is instantiated and Vz = 1,...,5 — 1, P;, is nol
instantiated, or from the period j to the period n —1 such that 3 <n—1, P
is instantiated andVz =35+ 1,....,n — 1, P;, is not instantiated.

« #o0ddUSeq; is the number of sequences OddU Seq;(j, k)

e #evenlU Seq; is the number of sequences EvenlUSeq; (7, k).

e #extUSeq; is the number of sequences ExtUSeq(j).

o #Buinst; is the number of breaks already instantiated for the teams 1.

o maxQOddU Seq; the mazimal number of breaks that can be generated by
instantiate the sequences OddUSeq;(j, k).

o max EvenlUSeq; the mazimal number of breaks that can be generated
by instantiate the sequences EvenlUSeq;(j,k).

o max ExtUSeq; the mazimal number of breaks that can be generated by
instantiate the sequences ExtUSeq(j).

Proposition 1 Let i be a team, then the following properties hold:
a) min(#Bt;) > #Binst; + #oddU Seg;

b) max(#Bt;) < #Binst;+maxOddUSeq+max EvenlUSeq+max ExtUSeq;
¢) #extUSeq; =0 & #Bt; has the parity of (#Binst; + #oddU Seq;)
d #Bti s odd & Py 75 Pi(n—l)

€

~—

#Bt; is even & Py = Py,_y)

18

f) #Bt; = nb and #oddU Seq; = nb — # Binst; < no break are gener-
ated by all the EvenUSeq(j,k) and by all the ExtUSeq(j)

g) #Bt; = nb and #oddUSeq; + 1 = nb — #Binst, < no break are
generated by all the FvenlUSeq;(j, k)

h) #Bt; = nb and maxOddU Seq; + max EvenlU Seq; + max ExtU Seq;+
#Binst; = nd < all the EvenlUSeq;(7,k) and all the ExtUSeq(j) generate

their mazimum of breaks.

This proposition can be easily proved.

Note that if #Bt; is instantiated then properties d) and e) prevents
#extUSeq; from being equal to 1.

For each team 1 a constraint is added and the filtering algorithm associ-
ated with this constraint corresponds to the application of the above propo-
sition each time any # Bt variable or place variable is modified.

The results obtained by introducing these new constraints are given by
the following table:

#Hteams 6 8 10 12
#bk 21226 | 11,542 | 135,129
time (s) || 0.0 | 0.1 4.0 55.3

For the first time the problem can be solved for 12 teams. The new added
constraints can be considered as essential to solve the problem.

However, the resolution of the problem for 12 teams is not sufficient.

The model can be improved by taking into account a new conjecture:

Conjecture 1 There are at most two teams ¢ and j such that #Bt; =

#Bt; =0.
proof:

This conjecture has been “proved” by a computer until 60 teams
(see the appendix).

The introduction of a constraint based on this conjecture greatly helps
to solve the problem, because the # Bt variables are instantiated first, so the
number of combinaisons to study is reduced.

19

Here are the new results:

#Hteams 6 81| 10 12 14
#bk 2 41 | 846 | 2,435 | 1,716,513
time (s) | 0.0 | 0.1 | 0.4 | 1.37 904.4

The problem for 14 teams can now be solved.
Finally we propose to slightly modify the variable-value ordering.

1. the # Bt; variables are instantiated first, by dynamically choosing the
variable that has the minimum value in its domain and by choosing
this value.

2. the place variables for the first period are then instantiated.
3. the break variables are then instantiated by trying first the value 1.
4. the place variables are then instantiated

The results we obtained are:

#Hteams 6 81| 10 12 14
#bk 2 41 | 846 | 2,209 | 711,408
time (s) || 0.0 | 0.1 | 0.4 | 1.18 397.1

The performance of this new variable-value ordering can be explained by
the correlation between the constraint obtained from proposition 1 and the
place variables of the first period.

The problem can also be solved for 16 teams but in more than 5 hours
and 20 millions of bakctracks.

We do not find any more constraints to improve the model. So, the

problem becomes clearly solvable until 12 teams, and sometimes solvable for
more than 12 teams.

4.2 Restrictions of the problem

If further information is known the problem can be solved more quickly.

20

Suppose that it is known that #B¢; > 0 and #Bt, = 0.

In this case the problem can be solved for 16 teams in one minute as
shown in the following table:

#Hteams 6 8| 10| 12 14 16
#bk 1 6 | 67| 128 | 4,533 | 108,563
time (s) | 0.0 | 0.1 | 0.2 | 0.2 2.6 64.2

This means that such an information is quite usefull to solve the problem.
Suppose that no two consecutive breaks are allowed

This is a request that arises in real-life problem. This request slightly
improves the resolution of the problem.

Suppose that for each team the first and the last game must
have to be played at a different place

This is a request that arises in real-life problem.
By proposition 1, this means that all the # Bt variables are odd. The optimal
value is changed. The time needed to solve the problem changes also.

#Hteams 6 81| 10 12 14
opt val 6| 12| 16 20 24
#bk 2] 61 | 464 | 4,740 | 158,784
time (s) || 0.0 | 0.1 | 0.3 2.4 118.5

Suppose that for each team the number of away and home games
must be almost equal

This is a request that arises in real-life problem. There is no modification
in time and in number of backtracks to solve the problem.

21

5 Discussion

In real-life applications, it is often impossible to have a solution that respects
all the constraints. In this case, a certain function must be minimized. Of-
ten, this function includes the number of breaks. So our study can be used
to compute a minimal bound of this function. Moreover, we have presented a
lot of constraints that cannot be violated for any sports scheduling problem.
Thus, these constraints should be usefull in practice. Some new constraints
should also be defined when some other information are available. For in-
stance, if no two consecutive breaks are allowed then proposition 1 can be
extended to deal with this new condition.

When the teams are not instantiated, we advice to introduce the following
hidden constraint:

o for each period every team plays.

For each period 7, an alldiff constraint involving the O;; variables for ¢ = 1..n
is defined.
This constraint is often redundant. (This is the case for the problem we have
studied). However, we think that it can greatly help the resolution of certain
instances where only some games are already defined.

6 Conclusion

In this paper, we have shown the interest of constraint programming for
solving a large scale optimization problem: the minimization of the number of
breaks in sports scheduling problems. First we introduced a model that solves
a polynomial problem in a polynomial time with constraint programming.
This shows that constraint programming is also an efficient technique to solve
easy instances. Then, we have studied a modification of the original problem
which is hard to solve. The introduction of ad-hoc usefull constraints leads
to results that are quite promising. These new constraints should be used to
improve the resolution of complex real-life applications.

References

[CGLI3] Y. Caseau, P-Y. Guillo, and E. Levenez. A deductive and object-

oriented approach to a complex scheduling problem. In Proceed-

22

ings of DOOD’93, 1993.

IMTW97] K. McAloon, C. Tretkoff, and G. Wetzel. Sports league scheduling.
In Proceedings of ILOG user’s conference, Paris, July 1997.

[NT98] G. Nemhauser and M. Trick. Scheduling a major college basketball
conference. Operations Research, 46(1):1-8, 1998.

[Rég94] J-C. Régin. A filtering algorithm for constraints of difference in
CSPs. In AAAI-94, proceedings of the Twelth National Confer-
ence on Artificial Intelligence, pages 362367, Seattle, Washing-
ton, 1994.

[Sch92] J. Schreuder. Combinatorial aspects of construction of competi-
tion dutch professional football leagues. Discrete Applied Mathe-
matics, 35:301-312, 1992.

A Appendix

The source code in Solver 4.3 of the different models and algorithms presented
in this paper is available upon request by sending a message to regin@ilog.fr.

23

