
Minimization of the Number of Breaks inSports Scheduling Problems using ConstraintProgramming.Jean-Charles R�eginILOGLes Taissouni�eres HB206560 Valbonne, FRANCEe-mail : regin@ilog.frAbstractThis paper aims to show the interest of constraint programming forminimizing the number of breaks in sports scheduling problems. Weconsider single round-robin problems with an even number of teams.In such a problem we are given n teams and n�1 periods and for eachperiod each team has to play either at home or away game againstanother team such that every team plays every other team exactlyonce during all the periods. A break for a team is de�ned to be twoconsecutive home matches or two consecutive away matches. For theconsidered problem, it has been proven by Schreuder that the minimalnumber of breaks is n � 2. We propose a model using constraintprogramming that has the capability to e�ciently prove this result.For 20 teams this takes a mere 0.61s and for 60 teams it still takes lessthan 1 minute. The main reason for this is the use of several globalconstraints with which powerful �ltering algorithms are associated.Moreover, this model is well adapted to solve some variations of theinitial problem in which new constraints are added such as: for eachteam the number of away and home matches has to be balanced, it isforbidden to have two consecutive breaks, etc. We are also able to �ndand prove the minimal number of breaks for some given timetables ofteams. 1

1 IntroductionSport scheduling problems is an area of increasing interest as amateur andprofessional sports leagues proliferate and grow in size and complexity. Or-ganizers are increasingly turning to computer assisted scheduling. The sci-enti�c literature in this area is also growing. Some systems dedicated to theresolution of sports scheduling problems are also proposed.Constraint programming has already been shown to be a good way toattack these problems, while Integer programming methods do not performvery well, because when n increases the number of 0-1 variables and thenumber of constraints grow too much [MTW97].In this paper we consider only a restriction of real world problem. Westudy only one part of the problem, which is the core of most of the real-lifeapplications.The rest of the paper is organized as follows. First we present the sportsscheduling problem that we will consider. Then we introduce constraint pro-gramming and try to de�ne what is a good model in constraint programming.In section 3, we study the minimization of the number of breaks of a round-robin with an even number of teams in which no schedule are prede�ned.We will show two models, a simple one and a more complex one, with whichit is possible to solve this problem with an almost polynomial complexity.In section 4, we study several variations of the initial problem in which theschedule is precomputed. The problem is to determine the location of thegames. We propose several new constraints that leads to an e�cient reso-lution of this problem. Six models will be successively studied. At last, weintroduce some real world constraints in order to understand their impact onour model.1.1 Sports Scheduling ProblemsWe consider single round-robin problems with an even number of teams. Insuch a problem we are given n teams and n � 1 periods and for each periodeach team has to play either at home or away game against another teamsuch that every team plays every other team exactly once during all theperiods.This problem models half of the season, the second part is usually ob-tained by mirroring the �rst part. 2

A break for a team is de�ned to be two consecutive home matches ortwo consecutive away matches. The following table present a solution for8 teams. Home games are represented by the sign +, while away game arerepresented by the sign �. Breaks appear in bold.1 + 2 - 3 + 4 - 5 + 6 - 7 + 82 - 1 + 4 - 6 + 8 - 3 + 5 - 73 - 8 + 1 + 5 - 7 + 2 - 4 + 64 + 7 - 2 - 1 + 6 - 8 + 3 - 55 - 6 + 8 - 3 + 1 + 7 - 2 + 46 + 5 - 7 + 2 - 4 - 1 + 8 - 37 - 4 + 6 - 8 + 3 - 5 + 1 + 28 + 3 - 5 + 7 - 2 + 4 - 6 - 1In real-life application a lot of other constraints are added. We will notconsider them, and some information about this subject can be found in[NT98, Sch92].We concentrate our study to the minimization of the number of breaks,because this problem is one of the main problems to solve when we want to�nd a solution to a real-life application, and because no constraints can beviolated in this problem.When the teams are not already assigned this problem can be solved inpolynomial time as it is explained in [Sch92]. It has been proven that theminimal number of breaks is n�2. Nethertheless, when the teams are alreadyassigned the problem is not easy to solved, because the optimal bound is nottrue for all the timetables. In real-life applications some constraints restrictthe possible timetables. Thus, the determination of the minimal number ofbreaks becomes an important problem.Our study can be divided into two parts.In the �rst part we propose a model that has the capability to provethat the minimal number of breaks is n � 2 even for large n. This resulthas no interest in pratice, because an algorithm was already known. How-ever, this thought process has several advantages: it proves that constraintprogramming, which is a technique to solve some hard problems is also ane�cient way to solve easy problems and it permits to identify where are thebottlenecks of the sports scheduling problems and to model and solve hardvariations of the initial problem. 3

In the second part we introduce some modi�cations of the initial problem,and show where are the di�culties and what constraint programming is ableto solve. For instance, we consider the problem where the teams are alreadyassigned but not the place where the matches are played. We also introducesome real-life constraints: the �rst match is di�erent from the last match,there is no two consecutive breaks...1.2 Constraint Programming (CP)Constraint programming forms a simple formal frame to represent and solvecertain problems. They involve �nding values for problem variables subject toconstraints on which combinations are acceptable. Constraint programmingis based on the constraint network theory.Constraint network A �nite constraint network N is de�ned as a set of nvariables X = fx1; : : : ; xng, a set of current domains D = fD(x1); : : : ;D(xn)gwhere D(xi) is the �nite set of possible values for variable xi, and a setC of constraints between variables. We introduce the particular notationD0 = fD0(x1); : : : ;D0(xn)g to represent the set of initial domains of N .Indeed, we consider that any constraint network N can be associated to aninitial domainD0 (containing D), on which constraint de�nitions were stated.A total ordering <d can be de�ned on D(xi);8xi 2 X, without loss ofgenerality. max(D(xi)) and min(D(xi)) denotes respectivly the maximumand the minimum value of the domain of the variable xi.Constraints. Then, a constraint C on the ordered set of variablesX(C) =(xi1; : : : ; xir) is a subset T (C) of the Cartesian product D0(xi1)�� � ��D0(xir)that speci�es the allowed combinations of values for the variables xi1 � : : :�xir . An element of D0(xi1)� � � ��D0(xir) is called a tuple on X(C). jX(C)jis the arity of C.A constraint C involving the subset of variables X(C) = (xi1 ; : : : ; xir)can be described by the set of allowed tuples (resp. the set of forbiddentuples) given in extension when the constraint is tight (resp. is loose), or byan arithmetic relation. More generally, it can be represented by any booleanfunction de�ned on D0(xi1)� � � � �D0(xir).4

Solutions. The search space consists of the Cartesian product of thedomains of the variables of the problem.A solution of a constraint network is an instantiation of the variables suchthat all the constraints are satis�ed.Notations. A value a for a variable x is often denoted by (x; a). index(C; x)is the position of variable x in X(C). � [k] denotes the kth value of � .Consistency. Let N = (X;D; C) be a constraint network, C a constraintin C de�ned on X(C) = (xi1; : : : ; xik).A tuple � of X(C) is valid if 8(x; a) 2 �; a 2 D(x); otherwise it is rejected.C is consistent if there exists a tuple of T (C) which is valid. A value a 2 D(x)is consistent with C i� x =2 X(C), or 9� 2 T (C), such that a = � [index(C; x)]and � is valid.C is arc consistent i� 8xi 2 X(C);8a 2 D(xi); a is consistent with CConstraint programming In constraint programming, each constraintis associated with a �ltering algorithm which aims to remove some valuesthat are not consistent with the constraint. Sometimes a �ltering algorithmachieves arc consistency, sometimes not.We will denote by:� f(C) the �ltering algorithm associated with the constraint C.� R(C) the set of values deleted from the domain of their variable whenf(C) is called.In this paper, we will consider that a variation of a backtrack algorithmis used to search for a solution. In this variation each time the domain of avariable is modi�ed, the �ltering algorithm associated with each constraintinvolving the variable is called. This process is called propagation. And, thevariables and the values assigned to the variables are choosen by followingwhat we call a variable-value ordering. These orderings can be complex anddynamic (that is the next variable or value to try corresponds to the variableor the value which satis�es a given criteria).Constraint programming o�ers a wide range of prede�ned constraints.These prede�ned constraints greatly clarify the problem description, theproblem representation, and the problem solution.5

Constraint programming also allows the de�nition of new constraints andthe �ltering algorithm associated with them. This is particularly usefull torepresent a particular statement of the problem.We have used ILOG Solver 4.3 on Windows NT in all of our experiements.The used computer is based on a Pentium Pro at 200Mhz.Optimization problem Usually, in constraint programming, branch-and-bound algorithm is used to solve optimization problem. The solver we used,performs a depth-�rst search branch and bound algorithm.2 What is a good model in CP?Obviously a good model is a model that leads to an e�cient resolution of agiven problem. However, we can give some basic ideas involved in a goodmodel.A good model deals with four important notions of constraint program-ming:� symmetries� implicit constraints� global constraints� pertinent and redundant constraints2.1 symmetriesThe complexity of a problem can often be reduced by detecting intrinsicsymmetries. Parts of the search space can then be safely ignored. When twoor more variables have identical characteristics, it is pointless to di�erentiatethem arti�cially. Identical characteristics can be viewed as the satisfactionof the following conditions:� the initial domains of these variables are identical;� these variables are subject to the same constraints;6

� the variable can be permuted without changing the statement of theproblemthen there is really no point in examining all the possible solutions for thesevariables and their values. In fact, the permutations give rise to sets ofsolutions that are identical as far as the physical reality of the problem isconcerned. We can exploit this idea to minimize the size of the search space.If we reduce the domains of theses variables by introducing a supplemen-tary constraint, such as order, or by imposing a special feature on each ofthese variables, then we can markedly reduce the size of the search space.For instance, suppose that you want to solve x + y = z where x and yhave the same initial domain. In this case, we can add the constraint x � yand solve the new problem. From the solutions of this problem we can buildall the solutions of the initial problem.Detecting some hidden symmetries, and �nding a way to avoid them iscertainly one of the main problem of the modelisation.In sports scheduling problems, we will see that it is possible to removesome non obvious symmetries in a e�cient way when we want to determinethe minimum number of breaks.2.2 implicit constraintsAn implicit constraint makes explicit a property that satis�es any solutionimplicitly.Since constraint programming decreases the search space by reducing thedomains of variables, it is obviously important to express all necessary con-straints. In some cases, it is even a good idea to introduce implicit constraintto reduce the size of the search space by supplementary domain reductions.The introduction of implicit constraints does not change the nature ofthe solution but can slow down the execution of the propagation process.However, this slowing down may be negligible in certain problems when itis compared with the e�ciency gained from reducing the size of the searchspace obtained by the �ltering algorithms.Here is a good example of the interest of an implied constraint:Suppose you want to solve a constraint network involving 100 variables withthe same domain f0; 1; 2; 3; 4g. The constraints are: all the values but 0must be taken at least 5 times. The �ltering algorithm associated with each7

of these four constraints acheives the arc consistency. In this case, this al-gorithm corresponds to the idea: \if a is assigned to k < 5 variables and ifthere are only 5�k variables that are not instantiated, then assigned a to allthese variables". Suppose that the variable-value ordering consists of choos-ing the variable with the domain of the minimum size and the �rst value inthe domain (the classical domain-min ordering). Then, 95 variables will beinstantiated to 0 before detecting an inconsistency. Because when 94 vari-ables are instantiated to 0 then all the �ltering algorithms remove no value.Even so, it is clear that at most 100�4�5 = 80 variables can be instantiatedwith 0. This remark is an implicit constraint. If we add this implicit con-straint we will avoid 514 = 6; 103; 515; 625 instantiations! Moreover, we canadd a more sophisticated implied constraint which states that the number ofuninstatiated variables must be su�cient to satisfy simultaneously the fourinitial constraints.In sports scheduling we will see that the number of break is always aneven number. The introduction of such an implied constraint speeds up thesearch for the minimal solution.2.3 global constraintsA global constraint C is a constraint involving a set of other constraints,such that the �ltering algorithm associated with C is more powerful thanthe conjunction of the �ltering algorithm of each constraint involved in Ctaken separately.From a mathematical point of view, if C is a global constraint involvingthe constraints c1; :::; cp then R(c1) [::: [R(cp) � R(C).Such a global constraint is particularly interesting if the complexity off(C) is comparable to the sum of the complexity of f(c1); :::; f(cp).A well known example of global constraint is the alldi� constraint. Thisconstraint states that the involved variables must take di�erent values fromeach other when they are instantiated. For instance, consider three variablesx1, x2 and x3 such thatDx1 = fa; bg,Dx2 = fa; bg andDx3 = fa; b; cg and theconstraints x1 6= x2, x1 6= x3 and x2 6= x3. If the �ltering algorithm associatedwith each of these constraints acheives the arc consistency, then no value willbe deleted. While, if we use an alldi� constraints involving x1, x2 and x3 andif the �ltering algorithm associated with the alldi� constraint acheives arcconsistency then x3 will be instantiated with c. Such a �ltering algorithm has8

been proposed by [R�eg94]. Its complexity is low ((Pxi jD(xi)j)). In the restof the paper when will use this constraint and without particular mention,we will consider that the �ltering algorithm associated with it is this one.The introduction of global constraints will not change the set of solu-tions and can be essential for solving some problems as noted by [CGL93]:\The problem is that e�cient resolution of a timetable problem requires aglobal computation on the set of min/max constraints, and not the e�cientimplementation of each of them separately."Sometimes, a global constraint is simply the conjunction of a set of con-straints and an implied constraint deduced from the simultaneous presenceof this set of constraints, and the �ltering algorithm associated with thisglobal constraint is the conjunction of all the �ltering algorithms, that is nonew algorithm is de�ned. Such a constraint can be obtained for the examplegiven in the paragraph about implied constraints.Often, the introduction of global constraints leads to the discovery of somenew variable-value orderings that improve the search for solution, becauseglobal constraints lead to more domain reductions after each choice of variableor value.2.4 pertinent and redundant constraintsAt �rst glance it seems that adding a constraint which removes some sym-metries, or an implicit constraint, or a global constraint always improves thecurrent model.This is not true. For instance, the removal of some symmetries can in-crease the time needed to �nd a solution. This can be generally explained bythe fact that the adequation between the current variable-value ordering andthe constraints introduced to remove the symmetries becomes poor. The �l-tering algorithms associated with these constraints can remove a lot of valuesthat can change the next chosen variable. Note that with a static orderingsuch a behaviour cannot arise. Similarly, if we add an implicit constraint toa model, sometimes the number of backtracks and the time needed to solvethe problem do not decrease, because the necessarily condition introducedby this constraint is already taken into account by the model.So, we insist on the fact that the reduction of the size of the searchspace from a mathematical point of view does not necessarily lead to betterperformance for �nding a solution in practice. This is another major problem9

of the modelisation.From these remarks, we can de�ne a the notion of pertinent constraint.A constraint is pertinent w.r.t. a model if the introduction of this constraint:� is needed by the de�nition of the problem;� or if it permits to remove some symmetries, or it is an implied or aglobal constraint, and the introduction of the constraint improves thesearch for the solution in term of performance.It is important to note that the pertinence of a constraint is de�nedw.r.t. a given model, because sometimes the introduction of a constraintdoes not improve the resolution for a given variable-value ordering, but leadsto the discovery of another ordering with better performance only when theconstraint is added.When a constraint is not pertinent it is called redundant constraint.3 Minimisation of the number of breakIn such a problem we are given n teams and n � 1 periods and for eachperiod each team has to play either at home or away game against anotherteam such that every team plays every other team exactly once during all theperiods. A break for a team is de�ned to be two consecutive home matchesor two consecutive away matches.3.1 A �rst modelFrom the de�nition of the problem, some variables are de�ned:� For each period each team has to play game against another team.So, for a team i, n�1 variables are de�ned. Oij is the variables correspondingto the opponent of the team i at the period j. Then, Oij = k means thatteam i plays versus team k at the period j (this is jth match of team i).Initially, the domain of any variable Oij contains all the teams except i.These variables are called opponent variables.� For each period each team has to play either at home or away game.For each team i and for each period j a 0-1 variable Pij is de�ned. Byconvention 0 corresponds to a away game and 1 to an home game. Then10

Pij = 0 means that the team i will have an away game at the period j.These variables are called place variables.� A break for a team is de�ned to be two consecutive home matches ortwo consecutive away matches.For each team and for each pair of consecutive period, a 0-1 variable Bij isde�ned. Bij = 1 means that the team i has a break involving the games playat period j and at period j + 1. These variables are called break variables.For each team there are n� 2 break variables. A break due to the presenceof two consecutive home games is called an home break. A break due to thepresence of two consecutive away games is called an away break.The objective variable, that is the variable to minimize, is #B. This isthe variable that counts the total number of breaks for the schedule.The constraints of the problem can be represented as follows:� every team plays every other team exactly once during all the periods.For each team i, an alldi� constraint involving the Oij variables for j =1::n� 1 is de�ned.� for the period j, if team i plays against team k, then team k playsagainst team i and the place where the game is played is di�erent for i and kA constraint (Oij = k , Okj = i and Pij 6= Pkj) is de�ned for each periodj and each pair of teams i and k. For a given period j these constraints arecalled place-opponent contraint.� A break for a team is de�ned to be two consecutive home matches ortwo consecutive away matches.For each team i and each period j, j = 1::n� 2, the constraint (Bij = 1 ,Pij = Pi(j+1)) is de�ned.For counting the number of breaks, the constraint (#B =Pi=1::nPj=1::n�2Bij)is introduced in the modelThe �ltering algorithm associated with each of the above constraintsacheives the arc consistency. For the alldi� constraints, such a �ltering algo-rithm can be found in [R�eg94]. For the two other kinds of constraint, speci�calgorithms have to be designed.These algorithms are not complex, and corresponds to the enumeration11

and checking of all the possible cases. For instance, the �ltering algorithmassociated with a place-opponent constraint (Oij = k , Okj = i and Pij 6=Pkj), will be implemented as follows:1) if Oij = k then Okj i2) if Pij is instantiated then remove from Oij all the values k such thatPkj is instantiated with the same value as Pij .3) if k is removed from Oij then remove i from Okj .We can easily prove that this algorithm will acheive arc consistency.A depth-�rst branch and bound algorithm is used to �nd the minimalvalue and to prove that it is minimal.It is di�cult to �nd a variable-value ordering that leads to solutions withthis simple model. However, if the break variables are instantiated �rst, theplace variable second and the opponent variables third, the following resultsare obtained:#teams 4 6#bk 73 62,082time (s) 0.1 17.73.2 Introduction of pertinent constraintsThe previous results can be greatly improved by removing some symme-tries and changing the variable-value ordering in order to take into accounte�ciently the fact that some symmetries have been removed. Some new vari-ables are needed:for each team i, #Bti is a variable that counts the number of breaks for i.Then #B is rede�ned by (#B = Pi=1::n#Bti).The initial formulation contains several symmetries. Two kind of sym-metries can be identi�ed:� All the home games can be replaced by away games and conversly� The teams can be permuted 12

The �rst kind of symmetry can be easily removed by deciding that the�rst game of the �rst team will be an home game.The second kind of symmetry can be removed by de�ning the scheduleof the �rst team. That is, for instance, by choosing the opponent w.r.t anincreasing order. Moreover, the �rst team can be any team since the teamsare interchangeable. So, we decide that the �rst team will have the lowestnumber of breaks.So, in order to break the symmetries the following constraints are addedto the model:� P11 1� 8j = 1::n� 1 : O1j j + 1� 8i = 2::n : Bt1 � BtiThe variable-value ordering used is the following:1. the #Bti variables are instantiated �rst, by dynamically choosing thevariable that has the minimum value in its domain and by choosingthis value.2. the break variables are then instantiated by trying �rst the value 1.3. the place variables are then instantiated4. the opponent variables are then instantiated.3.3 ResultsHere are the results with this new model:#teams 4 6 8 10 12 14 16 18 20 22 40 60#bk 3 22 45 76 115 162 217 280 351 430 1,501 3,451time (s) 0.0 0.0 0.0 0.1 0.1 0.2 0.3 0.5 0.7 1.0 10.7 58.0#bk(#teams)2 0.19 0.61 0.70 0.76 0.80 0.83 0.85 0.86 0.88 0.89 0.94 0.97The last row of this table indicates that the proposed model leads to analmost linear algorithm, because the square of number of teams correspondsto the size of the problem. 13

If arc consistency is not acheived by the �ltering algorithm associatedwith the alldi� constraint then for 4 teams the results are identical , for 6teams 1; 713 backtracks and 0.31s are needed and for 8 teams the problemcannot be solved in a reasonable amount of time.4 Other problemsFirst, we will consider, that the schedule of the teams is given. In thisproblem the places where the games are played have to be determined. Thegoal is to minimize the number of breaks.The initial assignements of the teams are precomputed. Here are theproblems we have considered:6 teams : optimal solution : 4 breaks1 + 2 - 3 + 4 - 5 + 62 - 1 - 4 + 5 - 6 + 33 - 5 + 1 - 6 + 4 - 24 - 6 + 2 - 1 - 3 + 55 + 3 + 6 - 2 + 1 - 46 + 4 - 5 + 3 + 2 - 18 teams : optimal solution : 8 breaks1 + 2 - 3 + 4 - 5 + 6 - 7 + 82 - 1 - 4 + 3 - 6 + 5 - 8 + 73 - 4 + 1 - 2 + 7 - 8 + 5 - 64 + 3 + 2 - 1 + 8 - 7 + 6 - 55 - 6 + 7 - 8 + 1 - 2 - 3 + 46 + 5 + 8 - 7 + 2 - 1 - 4 + 37 + 8 - 5 + 6 - 3 + 4 + 1 - 28 - 7 - 6 + 5 - 4 + 3 + 2 - 110 teams : optimal solution : 12 breaks1 + 2 - 3 + 4 - 5 + 6 - 7 + 8 - 9 + 102 - 1 - 4 + 3 - 6 + 5 - 8 + 7 - 10 + 93 - 4 + 1 - 2 + 7 - 8 + 9 - 10 + 5 - 64 + 3 + 2 - 1 + 8 - 9 + 10 - 5 + 6 - 75 - 7 + 9 - 10 + 1 - 2 - 6 + 4 - 3 + 86 - 10 + 7 - 8 + 2 - 1 + 5 + 9 - 4 + 37 + 5 - 6 + 9 - 3 - 10 + 1 - 2 - 8 + 48 - 9 + 10 + 6 - 4 + 3 + 2 - 1 + 7 - 59 + 8 - 5 - 7 + 10 + 4 - 3 - 6 + 1 - 210 + 6 - 8 + 5 - 9 + 7 - 4 + 3 + 2 - 112 teams : optimal solution : 14 breaks1 + 2 - 3 + 4 - 5 + 6 - 7 + 8 - 9 + 10 - 11 + 122 - 1 - 4 + 3 - 6 + 5 - 8 + 7 - 10 + 9 - 12 + 113 - 4 + 1 - 2 - 7 + 8 - 5 + 6 - 11 + 12 - 9 + 104 + 3 + 2 - 1 - 8 + 7 - 9 + 10 - 12 + 11 - 5 + 65 - 9 + 10 - 11 + 1 - 2 + 3 - 12 + 6 - 7 + 4 - 86 - 10 + 9 - 12 + 2 - 1 + 11 - 3 - 5 - 8 + 7 - 47 - 11 + 12 - 10 + 3 - 4 + 1 - 2 - 8 + 5 - 6 + 98 - 12 + 11 - 9 + 4 - 3 + 2 - 1 + 7 + 6 - 10 + 59 + 5 - 6 + 8 + 10 - 12 + 4 - 11 + 1 - 2 + 3 - 710 + 6 - 5 + 7 - 9 - 11 + 12 - 4 + 2 - 1 + 8 - 311 + 7 - 8 + 5 - 12 + 10 - 6 + 9 + 3 - 4 + 1 - 212 + 8 - 7 + 6 + 11 + 9 - 10 + 5 + 4 - 3 + 2 - 114 teams : optimal solution : 20 breaks 14

1 + 2 - 3 + 4 - 5 + 6 - 7 + 8 - 9 + 10 - 11 + 12 - 13 + 142 - 1 - 4 + 3 - 6 + 5 - 8 + 7 - 10 + 9 - 12 + 11 - 14 + 133 - 4 + 1 - 2 - 7 + 8 - 5 + 6 - 11 + 12 - 13 + 14 - 9 + 104 + 3 + 2 - 1 - 8 + 7 - 6 + 5 - 12 + 11 - 14 + 13 - 10 + 95 - 9 + 10 - 11 + 1 - 2 + 3 - 4 + 13 - 14 + 6 - 7 + 8 - 126 - 10 + 11 - 13 + 2 - 1 + 4 - 3 + 14 + 8 - 5 + 9 - 12 + 77 - 12 + 9 - 14 + 3 - 4 + 1 - 2 - 8 + 13 - 10 + 5 - 11 - 68 - 13 + 14 - 12 + 4 - 3 + 2 - 1 + 7 - 6 - 9 + 10 - 5 + 119 + 5 - 7 - 10 + 11 - 12 + 13 - 14 + 1 - 2 + 8 - 6 + 3 - 410 + 6 - 5 + 9 + 12 - 14 + 11 - 13 + 2 - 1 + 7 - 8 + 4 - 311 + 14 - 6 + 5 - 9 + 13 - 10 + 12 + 3 - 4 + 1 - 2 + 7 - 812 + 7 - 13 + 8 - 10 + 9 + 14 - 11 + 4 - 3 + 2 - 1 + 6 + 513 + 8 + 12 + 6 + 14 - 11 - 9 + 10 - 5 - 7 + 3 - 4 + 1 - 214 - 11 - 8 + 7 - 13 + 10 - 12 + 9 - 6 + 5 + 4 - 3 + 2 - 1In the previous studied problem, the minimal solution can be found onlyif some symmetries have been removed. In this new problem, it is di�cult toidentify some symmetries. Only one symmetry appears: the home games andthe away games can be all exchanged. So the constraint P11 1 remains inthe model. All the others constraints that was introduced in order to removesome symmetries must be deleted.We can also use the result proved by Schreuder: the minimal value is atleast n � 2. Then, the constraint #B � n � 2 is introduced in the model.This information is also interesting because another algorithm than branch-and-bound can be used. If the minimal value is close to n� 2 then it is moreinteresting to try successively all the values from n � 2 w.r.t an increasingorder than �nding a �rst solution and then trying to reduce the objectivevalue.For small numbers of teams there is no real di�erence as it is shown inthe two following tables. In the �rst one, a depth-�rst search branch-and-bound algorithm is used, while in the second one the objective value is �rstinstantiated.#teams 6 8 10#bk 16 3,899 352,701time (s) 0.0 0.7 73#teams 6 8 10#bk 5 3,843 349,159time (s) 0.0 0.7 71.5When n increases the time needed to �nd the �rst solution becomes toolong to use a branch and bound algorithm. This is also due to the factthat the #Bti variables are �rst instantiated. Neithertheless, we do not �ndbetter variable-value ordering.From these experiements we can see that we are not able to solve instances15

for more than 10 teams. So, the model has to be changed.4.1 Introduction of other pertinent constraintsThe �rst pertinent constraint that can be added comes from the observationthat the number of breaks is always an even number.Property 1 For each pair of consecutive periods j and j+1, let #Bpj be thevariable that counts the number of breaks for the pair of consecutive periods.Then, 8j = 1::n� 2 : #Bpj is evenproof:Consider two consecutive periods j and j+1. Let p be the numberof home breaks of these two consecutive periods and q be thenumber of away breaks. Suppose that p 6= q. Without loss ofgenerality we can consider that p > q. When a team plays ahome game its opponent plays a away game, so in each periodthere are n=2 home games and n=2 away games. Then, in periodj, n=2�q away games have to be de�ned such that no new breaksappears. This result can be obtained if n=2 � q home games areavailable in period j+1, but p > q this means n=2�p < n=2� q.Thus, the number of remaining home games in period j+1 is notsu�cient. Hence p = q and #Bpj = p+ q = 2p is even.Property 2 #B is evenproof:#B = Pj=1::n�2#Bpj, each #Bpj is even so #B is even.After the introduction of the constraint #B is even, the number of back-tracks and the time needed to solve the problems are divided by a factor of 3:#teams 6 8 10#bk 5 970 101,844time (s) 0.0 0.2 20.8However, only a small factor is gained. This is not su�cient to solveinstances with more than 10 teams. 16

By a careful study of the problem a non obvious constraint can be added.This constraint deals with the parity of the #Bti variables. Suppose thatfor a team i the �rst game is an home game and the third game is an awaygame. The other locations are not known for this team. Suppose now thatonly one break is required for this team. Such a requierement arises oftenbecause the #Bti variables are instantiated �rst. It is obvious that there willbe a break either for the �rst and the second games or for the second andthe third games. So, if only one break is required, it is impossible that thereis a break involving a game succeeding to the third game. That means thatthe fourth game will be an home game, the �fth an away game, the sixth anhome game etc...The following property is a generalization of this idea.Property 3 Let j be any period, and k be any other period such that k =j + p, p � 0. Let #Bti(j; k) be the number of breaks for the team i betweenthe period j and the period k. Then,Pij = Pik , #Bti(j; k) has the parity of p.proof:By induction. This is true for p = 0; 1; 2.Let Pik be the opposite value of Pik.First, suppose that Pij = Pik. For any assignement of the Pix forx = j + 1; :::; k � 1 there exists a period l, such that j � l < kand Pil = Pik and Piy = Pik for z = l + 1; :::; k � 1. Moreover,#Bti(j; k) = #Bti(j; l)+#Bti(l+1; k� 1), because Pil 6= Pi(l+1)and Pi(k�1) 6= Pik. And Pij = Pil so #Bti(j; l) has the parity ofl� j, because l < k. All the Piy values for z = l+ 1; :::; k� 1 areequals, then #Bti(l + 1; k � 1) = k � l � 2 = j + p � l � 2. So#Bti(j; k) has the parity of (l� j)+ (j+ p� l� 2) = p� 2 whichhas the parity of p.Now, suppose that Pij 6= Pik. For any assignement of the Pix forx = j + 1; :::; k � 1 there exists a period l, such that j < l � kand Pil = Pij and Piy = Pik for z = l + 1; :::; k. Moreover,#Bti(j; k) = #Bti(j; l) + #Bti(l + 1; k), because Pil 6= Pi(l+1).17

Since Pil = Pij and Pi(l+1) = Pik, #Bti(j; l) has the parity of l�jand #Bti(l+ 1; k) has the parity of k � l� 1 = j + p� l� 1. So#Bti(j; k) has the parity of (l� j)+ (j+ p� l� 1) = p� 1 whichhas not the parity of p.As we have already mentionned it, this property is very usefull to deducea lot of things for the place where the games are played for each team. A�ltering algorithm can be deduced from this property.Notation 1 Let i be a team and� OddUSeqi(j; k) a sequence of periods from the period j to the period ksuch that k > j+1, Pij and Pik are instantiated and 8z = j+1; :::; k� 1; Pizis not instantiated and the number of breaks involved in the sequence is odd.� EvenUSeqi(j; k) a sequence of periods from the period j to the period ksuch that k > j+1, Pij and Pik are instantiated and 8z = j+1; :::; k� 1; Pizis not instantiated and the number of breaks involved in the sequence is even.� ExtUSeqi(j) a sequence of periods either from the period 1 to the pe-riod j such that j > 1, Pij is instantiated and 8z = 1; :::; j � 1; Piz is notinstantiated, or from the period j to the period n� 1 such that j < n� 1, Pijis instantiated and 8z = j + 1; :::; n� 1; Piz is not instantiated.� #oddUSeqi is the number of sequences OddUSeqi(j; k)� #evenUSeqi is the number of sequences EvenUSeqi(j; k).� #extUSeqi is the number of sequences ExtUSeqi(j).� #Binsti is the number of breaks already instantiated for the teams i.� maxOddUSeqi the maximal number of breaks that can be generated byinstantiate the sequences OddUSeqi(j; k).� maxEvenUSeqi the maximal number of breaks that can be generatedby instantiate the sequences EvenUSeqi(j; k).� maxExtUSeqi the maximal number of breaks that can be generated byinstantiate the sequences ExtUSeqi(j).Proposition 1 Let i be a team, then the following properties hold:a) min(#Bti) � #Binsti +#oddUSeqib) max(#Bti) � #Binsti+maxOddUSeqi+maxEvenUSeqi+maxExtUSeqic) #extUSeqi = 0, #Bti has the parity of (#Binsti +#oddUSeqi)d) #Bti is odd , Pi1 6= Pi(n�1)e) #Bti is even , Pi1 = Pi(n�1)18

f) #Bti = nb and #oddUSeqi = nb�#Binsti , no break are gener-ated by all the EvenUSeqi(j; k) and by all the ExtUSeqi(j)g) #Bti = nb and #oddUSeqi + 1 = nb � #Binsti , no break aregenerated by all the EvenUSeqi(j; k)h) #Bti = nb and maxOddUSeqi+maxEvenUSeqi+maxExtUSeqi+#Binsti = nd , all the EvenUSeqi(j; k) and all the ExtUSeqi(j) generatetheir maximum of breaks.This proposition can be easily proved.Note that if #Bti is instantiated then properties d) and e) prevents#extUSeqi from being equal to 1.For each team i a constraint is added and the �ltering algorithm associ-ated with this constraint corresponds to the application of the above propo-sition each time any #Bt variable or place variable is modi�ed.The results obtained by introducing these new constraints are given bythe following table:#teams 6 8 10 12#bk 2 226 11,542 135,129time (s) 0.0 0.1 4.0 55.3For the �rst time the problem can be solved for 12 teams. The new addedconstraints can be considered as essential to solve the problem.However, the resolution of the problem for 12 teams is not su�cient.The model can be improved by taking into account a new conjecture:Conjecture 1 There are at most two teams i and j such that #Bti =#Btj = 0.proof:This conjecture has been \proved" by a computer until 60 teams(see the appendix).The introduction of a constraint based on this conjecture greatly helpsto solve the problem, because the #Bt variables are instantiated �rst, so thenumber of combinaisons to study is reduced.19

Here are the new results:#teams 6 8 10 12 14#bk 2 41 846 2,435 1,716,513time (s) 0.0 0.1 0.4 1.37 904.4The problem for 14 teams can now be solved.Finally we propose to slightly modify the variable-value ordering.1. the #Bti variables are instantiated �rst, by dynamically choosing thevariable that has the minimum value in its domain and by choosingthis value.2. the place variables for the �rst period are then instantiated.3. the break variables are then instantiated by trying �rst the value 1.4. the place variables are then instantiatedThe results we obtained are:#teams 6 8 10 12 14#bk 2 41 846 2,209 711,408time (s) 0.0 0.1 0.4 1.18 397.1The performance of this new variable-value ordering can be explained bythe correlation between the constraint obtained from proposition 1 and theplace variables of the �rst period.The problem can also be solved for 16 teams but in more than 5 hoursand 20 millions of bakctracks.We do not �nd any more constraints to improve the model. So, theproblem becomes clearly solvable until 12 teams, and sometimes solvable formore than 12 teams.4.2 Restrictions of the problemIf further information is known the problem can be solved more quickly.20

Suppose that it is known that #Bt1 > 0 and #Bt1 = 0.In this case the problem can be solved for 16 teams in one minute asshown in the following table:#teams 6 8 10 12 14 16#bk 1 6 67 128 4,533 108,563time (s) 0.0 0.1 0.2 0.2 2.6 64.2This means that such an information is quite usefull to solve the problem.Suppose that no two consecutive breaks are allowedThis is a request that arises in real-life problem. This request slightlyimproves the resolution of the problem.Suppose that for each team the �rst and the last game musthave to be played at a di�erent placeThis is a request that arises in real-life problem.By proposition 1, this means that all the #Bt variables are odd. The optimalvalue is changed. The time needed to solve the problem changes also.#teams 6 8 10 12 14opt val 6 12 16 20 24#bk 2 61 464 4,740 158,784time (s) 0.0 0.1 0.3 2.4 118.5Suppose that for each team the number of away and home gamesmust be almost equalThis is a request that arises in real-life problem. There is no modi�cationin time and in number of backtracks to solve the problem.21

5 DiscussionIn real-life applications, it is often impossible to have a solution that respectsall the constraints. In this case, a certain function must be minimized. Of-ten, this function includes the number of breaks. So our study can be usedto compute a minimal bound of this function. Moreover, we have presented alot of constraints that cannot be violated for any sports scheduling problem.Thus, these constraints should be usefull in practice. Some new constraintsshould also be de�ned when some other information are available. For in-stance, if no two consecutive breaks are allowed then proposition 1 can beextended to deal with this new condition.When the teams are not instantiated, we advice to introduce the followinghidden constraint:� for each period every team plays.For each period j, an alldi� constraint involving the Oij variables for i = 1::nis de�ned.This constraint is often redundant. (This is the case for the problem we havestudied). However, we think that it can greatly help the resolution of certaininstances where only some games are already de�ned.6 ConclusionIn this paper, we have shown the interest of constraint programming forsolving a large scale optimization problem: the minimization of the number ofbreaks in sports scheduling problems. First we introduced a model that solvesa polynomial problem in a polynomial time with constraint programming.This shows that constraint programming is also an e�cient technique to solveeasy instances. Then, we have studied a modi�cation of the original problemwhich is hard to solve. The introduction of ad-hoc usefull constraints leadsto results that are quite promising. These new constraints should be used toimprove the resolution of complex real-life applications.References[CGL93] Y. Caseau, P-Y. Guillo, and E. Levenez. A deductive and object-oriented approach to a complex scheduling problem. In Proceed-22

ings of DOOD'93, 1993.[MTW97] K. McAloon, C. Tretko�, and G. Wetzel. Sports league scheduling.In Proceedings of ILOG user's conference, Paris, July 1997.[NT98] G. Nemhauser and M. Trick. Scheduling a major college basketballconference. Operations Research, 46(1):1{8, 1998.[R�eg94] J-C. R�egin. A �ltering algorithm for constraints of di�erence inCSPs. In AAAI-94, proceedings of the Twelth National Confer-ence on Arti�cial Intelligence, pages 362{367, Seattle, Washing-ton, 1994.[Sch92] J. Schreuder. Combinatorial aspects of construction of competi-tion dutch professional football leagues. Discrete Applied Mathe-matics, 35:301{312, 1992.A AppendixThe source code in Solver 4.3 of the di�erent models and algorithms presentedin this paper is available upon request by sending a message to regin@ilog.fr.
23

