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Abstract. We perform a comprehensive theoretical and empirical study
of the benefits of singleton consistencies. Our theoretical results help
place singleton consistencies within the hierarchy of local consistencies.
To determine the practical value of these theoretical results, we mea-
sured the cost-effectiveness of pre-processing with singleton consistency
algorithms. Our experiments use both random and structured problems.
Whilst pre-processing with singleton consistencies is not in general ben-
eficial for random problems, it starts to pay off when randomness and
structure are combined, and it is very worthwhile with structured prob-
lems like Golomb rulers. On such problems, pre-processing with consis-
tency techniques as strong as singleton generalized arc-consistency (the
singleton extension of generalized arc-consistency) can reduce runtimes.
We also show that limiting algorithms that enforce singleton consisten-
cies to a single pass often gives a small reduction in the amount of prun-
ing and improves their cost-effectiveness. These experimental results also
demonstrate that conclusions from studies on random problems should
be treated with caution.

1 Introduction

Local consistency techniques lie close to the heart of constraint programming’s
success. They can prune values from the domain of variables, saving much fruit-
less exploration of the search tree. They can also terminate branches of the search
tree, again saving much fruitless exploration. But how do we balance effort be-
tween inference (enforcing some level of local consistency) and search (exploring
partial assignments)? If we maintain a local consistency technique at each node
in the search tree, then experience suggests that it must not be too expensive to
enforce. We may, however, be able to afford a (relatively expensive) local con-
sistency technique if it is only used for pre-processing or for the first few levels
of search. We are then faced with a large number of choices as a vast menagerie
of local consistencies have been defined over the last few years. Debruyne and
Bessiere identified singleton arc-consistency as one of the most promising can-
didates [DB97]. This paper therefore explores its usefulness in greater detail, as
well as that of other singleton consistencies.
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2 Formal Background

A constraint satisfaction problem (Csp) P is a triple (X, D, C). X is a set
of variables. For each xi ∈ X , Di is the domain of the variable. Each k-ary
constraint c ∈ C is defined over a set of variables (x1, . . . xk) by the sub-
set of the Cartesian product D1 × . . .Dk which are consistent values. Follow-
ing [DB97], we denote by P |Di={a} the CSP obtained by assigning value a to
variable xi. An all-different constraint over the variables (x1, . . . xk) allows the
values {(a1, . . . ak) | ai ∈ Di &∀u, v.au ̸= av}. A solution is an assignment of
values to variables that is consistent with all constraints.

Many lesser levels of consistency have been defined for binary constraint
satisfaction problems (see [DB97] for additional references). A problem is (i, j)-
consistent iff it has non-empty domains and any consistent instantiation of i
variables can be extended to a consistent instantiation involving j additional
variables [Fre85]. A problem is strong (i, j)-consistent iff it is (k, j)-consistent
for all k ≤ i. A problem is arc-consistent (AC) iff it is (1, 1)-consistent. A prob-
lem is path-consistent (PC) iff it is (2, 1)-consistent. A problem is strong path-
consistent iff it is strong (2, 1)-consistent. A problem is path inverse consistent
(PIC) iff it is (1, 2)-consistent. A problem is neighbourhood inverse consistent
(NIC) iff any value for a variable can be extended to a consistent instantiation
for its immediate neighbourhood [FE96]. A problem is restricted path-consistent
(RPC) iff it is arc-consistent and if a variable assigned to a value is consistent
with just a single value for an adjoining variable then for any other variable
there exists a value compatible with these instantiations. A problem is singleton
arc-consistent (SAC) iff it has non-empty domains and for any instantiation of
a variable, the resulting subproblem can be made arc-consistent.

Many of these definitions can be extended to non-binary constraints. For
example, a (non-binary) Csp is generalized arc-consistent (GAC) iff for any
variable in a constraint and value that it is assigned, there exist compatible
values for all the other variables in the constraint [MM88]. Regin gives an effi-
cient algorithm for enforcing generalized arc-consistency on a set of all-different
constraints [Reg94]. We can also maintain a level of consistency at every node
in a search tree. For example, the MAC algorithm for binary Csps maintains
arc-consistency at each node in the search tree [Gas79]. As a second example,
on a non-binary problem, we can maintain generalized arc-consistency (MGAC)
at every node in the search tree.

3 Singleton Consistencies

The notion of a singleton consistency is general, and can be applied to other
levels of local consistency than arc-consistency. For instance, a problem is sin-
gleton restricted path-consistent (SRPC) iff it has non-empty domains and for
any instantiation of a variable, the resulting subproblem can be made restricted
path-consistent [DB97]. As a second (and we believe previously undefined) ex-
ample, a non-binary problem is singleton generalized arc-consistent (SGAC) iff it
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has non-empty domains and for any instantiation of a variable, the resulting sub-
problem can be made generalized arc-consistent. As generalized arc-consistency
is itself a high level of consistency to achieve (see, for example, [SW99]), sin-
gleton generalized arc-consistency is a very high level of consistency to achieve.
However, as our experimental results demonstrate, it can be very worthwhile
enforcing it.

One advantage of singleton consistencies (which is shared with inverse con-
sistencies like path inverse consistency and neighbourhood inverse consistency,
as well as with restricted path-consistency) is that enforcing them only requires
values to be pruned from the domain of variables. Enforcing path-consistency, by
comparison, can change the constraint graph by adding new binary constraints.
Note that a singleton consistency can be achieved using any algorithm that
achieves the relevant local consistency. The definition of singleton consistency
only insists we can make the resulting subproblem locally consistent. We are
not interested in what values need to be pruned (or nogoods added) to make the
subproblem locally consistent. We can therefore use a lazy approach to enforcing
the local consistency. For example, we can use the lazy AC7 algorithm [SRGV96]
when achieving SAC.

In this paper, we have used the algorithm proposed in [DB97] to achieve SAC
and a simple generalization of this algorithm to n−ary CSPs to achieve SGAC.
To achieve SAC (SGAC) in a CSP P , this algorithm first achieves AC (GAC)
and then goes through each variable xi in P . For every value a in the domain
of xi it checks if the subproblem P |Di={a} is AC (GAC). If it is not then a is
removed from the domain of xi and AC (GAC) is enforced. Failure to do so
means that P is not SAC (SGAC). The process of going through the variables
in the CSP continues while new inconsistent values are detected and deleted. In
short, there is an inner loop that goes through the variables and an outer loop
that keeps this process going while new values are deleted.

The worst-case complexity of achieving SAC is O(en2d4), where e is the
number of constraints, n the number of variables, and d the domain size. For
non-binary constraints, if we assume that GAC-schema [BR97] is used to en-
force GAC then the worst case complexity of achieving SGAC is O(en2d2k),
where k is the arity of the constraints. For the specialized case of all-different
constraints, taking advantage of Regin’s algorithm means that SGAC can be
achieved with O(cn4d4) worst-case complexity, where c is the number of all-
different constraints.

We can reduce the average cost of the above algorithm by making just one
pass, i.e., going through the variables and deleting inconsistent values only once.
This deletes less values and thus achieves a lesser level of consistency than SAC
(SGAC), but as our experimental results show, is, in some cases, very cost-
effective. We call this algorithm restricted SAC (SGAC).

Berthe Choueiry
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4 Theoretical Results

Following [DB97], we call a consistency property A stronger than B (A ≥ B) iff
in any problem in which A holds then B holds, and strictly stronger (A > B)
iff it is stronger and there is at least one problem in which B holds but A does
not. We call a local consistency property A incomparable with B (A ∼ B) iff A
is not stronger than B nor vice versa. Finally, we call a local consistency prop-
erty A equivalent to B iff A implies B and vice versa. The following relationships
summarize the most important results from [DB97] and elsewhere: strong PC >
SAC > PIC > RPC > AC, NIC > PIC, NIC ∼ SAC, and NIC ∼ strong PC.

Our first result shows that a singleton consistency is stronger than the cor-
responding local consistency. A local consistency property A is monotonic iff
when a problem is A-consistent then any subproblem formed by instantiating a
variable is also A-consistent. Most local consistencies (e.g. all those introduced
so far) are monotonic.

Theorem 1. If A-consistency is monotonic then singleton A-consistency ≥ A-
consistency.

Proof. Immediate from the definitions of monotonic and singleton consistency.

Note that it is possible to construct (admittedly bizarre) local consistencies
which are not monotonic. For example, consider a weakened form of AC which is
equivalent to AC on every arc except the arc between variables x1 and x2 when
either are instantiated. If we take a problem in which the arc between x1 and x2

is not AC, then this weakened form of AC will detect the arc-inconsistency but
the singleton consistency will not. On this problem, the singleton consistency
is actually weaker than the corresponding local consistency. Note also that a
singleton consistency is not necessarily strictly stronger than the corresponding
monotonic local consistency. For example, on problems whose constraint graphs
are trees, SAC is only equivalent to AC (since arc-consistency is already enough
to guarantee global consistency).

Our next result allows us to map many previous results up to singleton con-
sistencies. For example, as RPC is stronger than AC, singleton RPC is stronger
than SAC.

Theorem 2. If A-consistency ≥ B-consistency then singleton A-consistency ≥
singleton B-consistency.

Proof. Consider a problem that is singleton A-consistent, and a subproblem
formed from instantiating a variable. Now this subproblem is A-consistent. As
A ≥ B, this subproblem is B-consistent. Hence the original problem is single-
ton B-consistent.

Note that we do not need A-consistency or B-consistency to be mono-
tonic for this proof to work. Debruyne and Bessiere prove that SAC is strictly
stronger than PIC [DB97]. We can generalize this proof to show that singleton
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(i, j)-consistency is strictly stronger than (i, j + 1)-consistency. Debruyne and
Bessiere’s result is then a special case for i = j = 1. In addition, [DB97] does
not give the proof of strictness, so for completeness we give it here for the case
i = j = 1.

Theorem 3. Singleton (i, j)-consistency > (i, j + 1)-consistency.

Proof. Consider a problem that is singleton (i, j)-consistent, and the subproblem
resulting from any possible instantiation. This subproblem is (i, j)-consistent.
Hence, for any consistent instantiation for i variables in the subproblem, we can
extend it to j other variables. That is, for any instantiation of i variables in the
original problem, we can extend it to j + 1 other variables. Hence the original
problem is (i, j + 1)-consistent. To show strictness, consider i = j = 1 and a
problem in four 0-1 variables with the constraints x1 ̸= x2, x2 ̸= x3, x2 ̸= x4,
x3 ̸= x4. This is path inverse consistent. However, enforcing SAC proves that
the problem is insoluble since if we instantiate x1 with either of its values, the
resulting subproblem cannot be made arc-consistent.

Debruyne and Bessiere also prove that strong PC is strictly stronger than
SAC [DB97]. We can also generalize this proof, showing that strong (i + 1, j)-
consistency is strictly stronger than singleton (i, j)-consistency. Debruyne and
Bessiere’s result is again a special case for i = j = 1. As before, [DB97] does
not give the proof of strictness, so for completeness we give it here for the case
i = j = 1.

Theorem 4. Strong (i + 1, j)-consistency > singleton (i, j)-consistency.

Proof. Consider a problem that is strongly (i + 1, j)-consistent. Any consistent
instantiation for i + 1 variables can be extended to j other variables. As the
original problem was strongly (i + 1, j)-consistent, it is (i, j)-consistent. Hence
a subproblem formed by instantiating one variable is (i, j)-consistent, and any
consistent instantiation of i variables can be extended to j other variables. Thus
the original problem is singleton (i, j)-consistent. To show strictness, consider
i = j = 1 and a problem in three 0-1 variables with x1 ̸= x2 and x1 ̸= x3.
The problem is SAC. But it is not path-consistent since the consistent partial
assignment x2 = 0 and x3 = 1 cannot be extended. Enforcing path-consistency
adds the constraint x2 = x3.

The last two results show that singleton (i, j)-consistency is sandwiched be-
tween strong (i + 1, j)-consistency and (i, j + 1)-consistency. Finally, we give
some results concerning SGAC. Whilst this is a very high level of consistency to
achieve in general, our experiments show that it can be very worthwhile provided
we have an efficient algorithm to achieve it (as we do for the all-different con-
straint). In [SW99], GAC was compared against binary consistencies (like SAC)
on decomposable non-binary constraints. These are non-binary constraints that
can be represented by binary constraints on the same set of variables [Dec90].
For example, an all-different constraint can be decomposed into a clique of not-
equals constraints. Decomposable constraints are a special case of non-binary
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constraints where comparisons between the binary and non-binary representa-
tions are very direct. Constraints which are not decomposable (like parity con-
straints) require us to introduce additional variables to represent them using
binary constraints. These additional variables make comparisons more compli-
cated.

Theorem 5. On decomposable non-binary constraints, singleton generalized
arc-consistency is strictly stronger than singleton arc-consistency on the binary
decomposition.

Proof. The proof follows immediately from Theorem 1, and the result of [SW99]
that GAC is strictly stronger than AC on the binary decomposition. To show
strictness, consider three all-different constraints on {x1, x2, x3}, on {x1, x2, x4},
and on {x1, x3, x4}, in which all variables have the domain {1, 2, 3}. The bi-
nary decomposition is SAC. But enforcing SGAC proves that the problem is
unsatisfiable.

Though SGAC is a very high level of consistency to enforce, it is incomparable
in general to both strong PC and NIC on the binary decomposition.

Theorem 6. On decomposable non-binary constraints, singleton generalized
arc-consistency is incomparable to strong path-consistency and to neighbourhood
inverse consistency on the binary decomposition.

Proof. Consider a problem with six all-different constraints on {x1, x2, x3}, on
{x1, x3, x4}, on {x1, x4, x5}, on {x1, x2, x5}, on {x2, x3, x4}, and on {x3, x4, x5}.
All variables have the domain {1, 2, 3, 4}. This problem is SGAC because any
instantiation of a variable results in a problem that is GAC. Enforcing NIC,
however, shows that the problem is insoluble. Consider a problem with three
not-equals constraints, x1 ̸= x2, x1 ̸= x3, x2 ̸= x3 in which each variable has the
same domain of size two. This problem is SGAC but enforcing strong PC proves
that it is insoluble.

Consider the following 2-colouring problem. We have 5 variables, x1 to x5

arranged in a ring. Each variable has the same domain of size 2. Between each
pair of neighbouring variables in the binary decomposition, there is a not-equals
constraint. In the non-binary representation, we post a single constraint on all
5 variables. This problem is NIC, but enforcing SGAC on the non-binary repre-
sentation shows that the problem is insoluble. Finally, consider an all-different
constraint on 4 variables, each with the same domain of size 3. The binary rep-
resentation of the problem is strong PC but enforcing SGAC shows that it is
insoluble.

5 Random Problems

These theoretical results help place singleton consistencies within the hierarchy
of local consistencies. But how useful are singleton consistencies in practice? To
explore this issue, we ran experiments first with random problems, then with
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problems that combine structure and randomness, and afterwards with more
realistic structured problems. One of our intentions was to determine how well
results from random problems predicted behaviour on more realistic problems.
Our starting point is [DB97] which reports a set of experiments on random
problems with 20 variables and 10 values. These experiments identify how well
consistency techniques like SAC approximate global consistency, and give the
ratio of the number of values pruned to the CPU times at different points in
the phase space. Debruyne and Bessiere conclude that SAC is a very promising
local consistency technique, removing most of the strong path-inconsistent values
while requiring less time than path inverse consistency.

Debruyne and Bessiere’s experiments suffer from two limitations. First, their
experiments only measure the ability of singleton arc-consistency to approxi-
mate global consistency. They do not tell us if SAC is useful within complete
search procedures like MAC. For instance, does pre-processing with singleton
arc-consistency reduce MAC’s search enough to justify its cost? Can we afford
to maintain SAC within (a number of levels of) search? Second, their experiments
were restricted to random binary problems. Do results on random problems pre-
dict well behaviour on real problems? What about non-binary problems? Can it
pay to enforce the singleton version of non-binary consistencies like GAC? Our
experiments tackle both these issues.

5.1 SAC and AC as a Pre-process

Mackworth’s AC3 algorithm was encoded and used to implement the AC and
SAC pre-processes and the domain filtering within the FC and MAC search al-
gorithms. The reason AC3 was chosen is because it allows a standard measure
of comparison between algorithms, namely the consistency check. FC was imple-
mented as a crippled version of MAC, i.e. propagation within AC3 was disabled
beyond the constraints incident on the current variable.
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Fig. 1. SAC and AC pre-processing for ⟨20, 10, 0.5⟩: on the left (a) effort mea-
sured as mean consistency checks and on the right (b) values deleted
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Figure 1a shows the mean pre-processing cost measured in consistency checks
for AC and SAC over ⟨20, 10, 0.5⟩ model-B problems with a sample size of 500
(i.e. problems studied by Debruyne and Bessiere) at each value of constraint
tightness p2. Looking at the contours for SAC and AC we see that the two blend
together at the arc-consistency phase transition (p2 ≈ 0.65). This is expected
as the first phase of SAC is to make the problem arc-consistent. If this phase
detects arc-inconsistency the problem is also SAC inconsistent and there is no
more work to do.

Figure 1b shows the average number of values removed from the problem by
pre-processing. Again, we see the SAC and AC contours blend together at the
AC phase transition. About 80% of values are deleted in order to show SAC
insolubility (p2 ≈ 0.41), and about 70% for AC insolubility. The solubility phase
transition for this problem is round about p2 ≈ 0.37, and we see next to no values
being deleted by SAC until p2 ≈ 0.38. This does not bode well for reduction in
search effort for this problem.

5.2 Search after SAC
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Fig. 2. Search cost for MAC and FC over ⟨20, 10, 0.5⟩ with and without pre-
processing: on the left (a) effort measured as mean consistency checks and on
the right (b) effort measured as nodes visited

Figure 2a shows the total cost of determining if a ⟨20, 10, 0.5⟩ problem is
soluble using the MAC and FC algorithm with various pre-processing steps,
both algorithms using the MRV dvo heuristic. Constraint tightness p2 was in-
cremented in steps of 0.01, and at each value of p2 100 problems were analyzed.
Cost is measured as average consistency checks, which also directly corresponds
to cpu times. The cost of SAC pre-processing dominates search cost. SAC-MAC
and SAC-FC compare poorly with their AC and null pre-processing equivalents.
At the solubility phase transition, p2 ≈ 0.37, the average cost of SAC-MAC
is 605K checks whereas MAC without any pre-process costs 198K checks. The
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cost of SAC pre-processing from Figure 1 is 432K checks at p2 = 0.37. This
suggests that in these problems SAC is an uneconomical overhead. In fact we
see the solubility complexity peak dominated to such a degree that it appears
shifted right to the higher value of constrainedness associated with the SAC
phase transition. Around the solubility phase transition it was observed that
for all algorithms studied soluble problems were easier than insoluble problems.
This was most notable for SAC-FC, the reason being that SAC pre-processing
frequently detected insolubility, but this was at the cost of deleting many values
from variables, changing the problem and this in turn initiates more iterations
of the outermost loop of the SAC algorithm. As an aside it should be noted that
AC-FC exhibits a twin peaked complexity contour, the second (and lower) peak
due to the AC phase transition.

Figure 2b shows cost measured in median nodes visited. SAC pre-processing
makes no impact on the size of the search tree explored until it starts to delete
values. As noted in Figure 1a, this does not begin to occur until just after the
solubility phase transition. Consequently we see a reduction in nodes visited only
as we approach the SAC phase transition, i.e. values of p2 > 0.4.

5.3 Dense Problems and Large Sparse Problems

We investigated denser problems and large sparse problems. For the dense
⟨20, 10, 1.0⟩ problems search costs dominate pre-processing when problems are
hard. At the solubility complexity peak p2 = 0.21 the cost of SAC pre-processing
was about 680K checks whereas SAC-MAC took 1835K checks, MAC alone took
1163K checks, SAC-FC took 931K checks, and FC alone took 258K checks.
Therefore, although SAC pre-processing shows no advantage it is now substan-
tially less effort than the search process on hard problems.

In the sparse ⟨50, 10, 0.1⟩ problems MAC and FC compete with each other
over hard problems. Although the SAC pre-process continues to be uneconomic,
it is just beginning to break even. In particular, on 100 (hard) instances of
⟨50, 10, 0.1, 0.55⟩ of the 26 insoluble instances 22 were detected by the SAC pre-
process, and 23 of the 74 soluble instances were discovered without backtracking.
In total 43 of the soluble instances took less than 100 search nodes. A study
of ⟨50, 10, 0.2⟩ problems, i.e large but slightly denser, showed that SAC pre-
processing was again uneconomical.

These experiments suggest that SAC pre-processing may be worthwhile on
larger sparse problems with tight constraints, but uneconomical on dense prob-
lems with relatively loose constraints.

6 Small-World Problems

To test the efficiency of singleton consistency techniques on problems with struc-
ture, we first studied “small-world” problems. These are problems that com-
bine structure and randomness. In graphs with “small world” topology, nodes
are highly clustered, whilst the path length between them is small. Recently,
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Watts and Strogatz have shown such graphs occur in many biological, social
and man-made systems that are often neither completely regular nor completely
random [WS98]. Walsh has argued that such a topology can make search prob-
lems hard since local decisions quickly propagate globally [Wal99]. To construct
graphs with such a topology, we start from the constraint graph of a struc-
tured problem like a quasigroup. Note that a quasigroup can be modelled using
either all-different constraints for each row and column or cliques of binary “not-
equals” constraints. To introduce randomness, we add edges at random in the
binary representation. Small world problems created in this way quickly become
very hard when the order of the quasigroup is increased.

Figures 3a and 3b show the median number of branches explored and the cpu
time used when GAC and SGAC are used for preprocessing small-world problems
created by randomly adding edges to an order 6 quasigroup. GAC on the all-
different constraints is maintained during search. The x-axis gives the percentage
of added edges in the total number of edges left to turn the quasigroup into a
complete graph. 100 problems were generated at each data point. We do not
include SAC and AC preprocessing in Figures 3a and 3b because they have no
impact as they do no pruning at all. This is not surprising, because of the nature
of the constraints. AC on a binary “not-equals” constraint may delete a value
from one of the variables only if the other one has a singleton domain. Likewise,
when SAC reduces a variable x to a singleton value v then v is removed from the
domain of all variables constrained with x, but no more filtering can be made.
As a result, there can be no singleton arc-inconsistent values in problems with
domain size 6.
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Fig. 3. Search cost for GAC and SGAC. On the left (a) effort measured as
branches explored and on the right (b) effort measured as cpu time used (in
seconds)

Preprocessing with SGAC is very efficient especially at the solubility com-
plexity peak and in the insoluble region, where insolubility is detected without
search for most insoluble instances. SGAC preprocessing is also cost-effective for
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soluble instances, especially for hard ones near the complexity peak, as it cuts
down the number of branches explored significantly. CPU times are also reduced
despite the cost of preprocessing. The presence of structure in the problems
makes SGAC much more efficient than on purely random problems.

7 Problems of Distance

To test singleton consistency techniques on a class of structured, and non-binary
problems, we ran experiments on a variety of problems of distance. This general
class of problems is introduced in [SSW00], and models several challenging com-
binatorial problems including Golomb rulers and all-interval series. A problem
of distances is defined by a graph in which nodes are labelled with integers, the
edges are labelled by the difference between the node labels at either end of each
edge, and there are constraints that all edge labels are different. As in [SSW00],
we model such problems with variables for both the nodes and edges, ternary
constraints of the form dij = |xi − xj | that limit the values given to the edges,
and a single all-different constraint on the edges.

7.1 Golomb Rulers

Peter van Beek has proposed the Golomb ruler problem as a challenging con-
straint satisfaction problem for the CSPLib benchmark library (available as
prob006 at http://csplib.cs.strath.ac.uk).The problem specification given
there is:

“A Golomb ruler may be defined as a set of m integers 0 = x1 < x2 <
... < xm, such that the m(m−1)/2 differences xj−xi, 1 ≤ i < j ≤ m, are
distinct. Such a ruler is said to contain m marks and is of length xm. The
objective is to find optimal (minimum length) or near optimal rulers.”

Golomb rulers are problems of distance in which the underlying graph is com-
plete. To turn optimization into satisfaction, we build a sequence of decision
problems, reducing am until the problem becomes unsatisfiable. The longest
currently known optimal ruler has 21 marks and length 333. Peter van Beek
reports that even quite small problems (with fewer than fifteen marks) are very
difficult for complete methods such as backtracking search, and that their diffi-
culty lies both in proving optimality and in finding a solution, since the problems
have either a unique solution or just a handful of solutions.

Table 1 shows the search cost in branches and cpu time for algorithms that
preprocess with AC, SAC and restricted SAC, and maintain GAC during search.
Although preprocessing with SAC deletes considerably more values than prepro-
cessing with AC, this is not reflected in the search effort.

Table 2 shows the search effort for algorithms that preprocess with GAC,
SGAC, and restricted SGAC, and maintain GAC on the all-different constraint
during search. SGAC deletes a large number of values during preprocessing (more
than 60% in some cases) and that has a notable effect on search. The number
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Table 1. Branches explored and cpu time in seconds when trying to find a ruler
of optimal length (F) or prove that no shorter exists (P). Preprocessing was done
with AC, SAC and restricted SAC

Marks Branches CPU time
AC SAC restricted SAC AC SAC restricted SAC

7-F 10 10 10 0.15 1.27 0.63
7-P 87 65 65 0.20 1.25 0.83
8-F 26 26 26 0.22 2.98 1.564
8-P 506 461 461 1.55 3.52 2.26
9-F 309 282 282 1.28 8.00 4.04
9-P 2489 2318 2318 8.44 13.73 10.30
10-F 1703 1692 1692 6.05 27.45 13.41
10-P 11684 9658 9665 56.18 68.16 54.17
11-F 7007 6584 6584 26.98 87.74 48.72
11-P 202137 193419 193498 1240.90 1170.77 1151.70

of explored branches is cut down, especially when trying to prove optimality,
and despite the cost of preprocessing, there is a gain in cpu times for the harder
instances. Restricted SGAC seems a better option than full SGAC since it deletes
almost the same number of values and is more efficient in cpu times.

Given the good results obtained by preprocessing with SGAC, we investigated
whether maintaining such a high level of consistency during search is worthwhile.
Our results showed that maintaining SGAC even for depth 1 in search (i.e., at
the first variable) is too expensive. When trying to find an optimal ruler, we
enforced SGAC after instantiating the first variable. As a result, the number
of branches was cut down (though not significantly), but runtimes were higher.
When trying to prove optimality, we enforced SGAC after each value of the first
variable was tried. Again there was a gain in branches, but runtimes were much
higher than before.

7.2 2-d Golomb Rulers and All-Interval Series

A Golomb ruler is a problem of distance in which the underlying graph is com-
plete (i.e. a clique). Our results with random problems suggest that singleton
consistencies will show more promise on sparser problems. What happens then
with problems of distance in which the underlying graph (and hence the associ-
ated constraint graph) is sparser? For example, in a 2-d Golomb ruler we have
(2 or more) layers of cliques, with edges between node i in clique j and node i
in clique j + 1. A 2-d Golomb ruler with k layers has a constraint graph with
approximately 1/k the edges of that of a 1-d Golomb ruler of the same size.

Table 3 shows the search effort for algorithms that preprocess with GAC,
SGAC, and restricted SGAC, and maintain GAC on the all-different constraint
during search. SGAC preprocessing reduces the number of branches, and the
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Table 2. Branches explored and cpu time in seconds when preprocessing with
GAC, SGAC and restricted SGAC

Marks Branches CPU time
GAC SGAC restricted SGAC GAC SGAC restricted SGAC

7-F 10 5 6 0.15 1.06 0.58
7-P 87 0 0 0.18 0.34 0.32
8-F 26 22 22 0.21 2.49 1.29
8-P 506 265 339 1.57 3.21 1.55
9-F 309 261 262 1.30 5.14 2.90
9-P 2489 1844 1862 8.64 8.56 5.92
10-F 1703 1592 1592 6.16 14.61 9.15
10-P 11684 7823 7924 56.35 37.65 30.77
11-F 7007 6464 6464 27.04 65.53 37.96
11-P 202137 98967 99602 1239.81 491.58 442.96

Table 3. Branches explored, and cpu time in seconds when GAC, SGAC and
restricted SGAC are used for preprocessing 2-d Golmb rulers

Marks Branches CPU time
GAC SGAC restricted SGAC GAC SGAC restricted SGAC

3-F 1 0 0 0.051 0.120 0.068
3-P 6 0 0 0.048 0.052 0.050
4-F 32 26 26 0.27 0.693 0.407
4-P 210 74 191 0.389 1.228 0.598
5-F 1404 1276 1276 2.552 3.767 3.111
5-P 8177 7521 7521 14.764 14.389 13.554
6-F 133010 113723 113723 376.23 321.553 317.033
6-P 433087 357320 357320 1420.63 1071.82 1067.32

cpu times in the harder instances (rulers with 6 marks), but the effect is not as
significant as in the 1-d case.

An even sparser problem of distance is the all-interval series problem. This
problem was proposed by Holger Hoos as a challenging constraint satisfaction
problem for the CSPLib benchmark library (available as prob007 at
http://csplib.cs.strath.ac.uk). All-interval series are problems of distance
in which the underlying graph is a simple ring. They therefore have an asso-
ciated constraint graph which is very sparse compared to 1-d and 2-d Golomb
rulers. In the case of all-interval series, preprocessing with SAC and SGAC had
no effect as no values were pruned. Also, enforcing SAC (SGAC) at depth 1 had
very little impact on the number of branches explored and increased runtimes.
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8 Related Work

As mentioned briefly before, Debruyne and Bessiere compared the ability of a
variety of different local consistencies (e.g. AC, RPC, PIC, SAC, strong PC,
and NIC) at approximating global consistency on randomly generated binary
problems with 20 variables and 10 values. [DB97]. In addition, they computed
the ratio of CPU time to number of values pruned. They concluded that SAC
and RPC are both promising, the first having a good CPU time to number of
values pruned, and the second requiring little additional CPU time to AC but
pruning most of the values of path inverse consistency. Debruyne and Bessiere
also studied singleton restricted path-consistency (SRPC) but concluded that it
is too expensive despite its ability to prune many values.

Closely related inference techniques have shown promise in the neighbour-
ing field of propositional satisfiability (SAT). One of the best procedures to
solve the SAT problem is the Davis-Putnam (DP) procedure [DLL62]. The DP
procedure consists of three main rules: the empty rule (which fails and back-
tracks when an empty clause is generated), the unit propagation rule (which
deterministically assigns any unit literal), and the branching or split rule (which
non-deterministically assigns a truth value to a chosen variable). The effective-
ness of DP is in large part due to the power of unit propagation. Note that
the unit propagation rule is effectively the “singleton” empty rule. That is, if
we assign the complement of an unit clause, the empty rule will show that the
resulting problem is unsatisfiable; we can therefore delete this assignment. Other
“singleton” consistencies (specifically that provided by the “singleton” unit rule)
might therefore be of value. Indeed, some of the best current implementations
of DP already perform a limited amount of “singleton” unit reasoning, having
heuristics that choose between a set of literals to branch upon by the amount of
unit propagation that they cause [LA97].

Smith, Stergiou and Walsh performed an extensive theoretical and empirical
analysis of the use of auxiliary variables and implied constraints in models of
problems of distance [SSW00]. They identified a large number of different models,
both binary and non-binary, and compared theoretically the level of consistency
achieved by GAC on them. Their experiments on 1-d, 2-d and circular Golomb
rulers showed that the introduction of auxiliary variables and implied constraints
significantly reduces the size of the search space. For instance, their final models
reduced the time to find an optimal 10-mark Golomb ruler 50-fold.

9 Conclusions

We have performed a comprehensive theoretical and empirical study of the ben-
efits of singleton consistencies. For example, we proved that singleton (i, j)-
consistency is sandwiched between strong (i + 1, j)-consistency and (i, j + 1)-
consistency. We also proved that, on non-binary constraints, singleton gener-
alized arc-consistency (the singleton extension of generalized arc-consistency)
is strictly stronger than both generalized arc-consistency and singleton arc-
consistency (on the binary decomposition). Singleton generalized arc-consistency
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is, however, incomparable to neighbourhood inverse consistency and strong path-
consistency (on the binary decomposition). Singleton generalized arc-consistency
is a very high level of consistency to achieve. Nevertheless our experiments
showed that it can be worthwhile if we have an efficient algorithm (as we do
for all-different constraints). We ran experiments on both random and struc-
tured problems. On random problems, singleton arc-consistency was rarely cost-
effective as a pre-processing technique. However, it did best on sparse problems.
Results on problems with structure were quite different. On small-world prob-
lems, 1-d and 2-d Golomb rulers, singleton generalized arc-consistency was often
cost-effective as a pre-processing technique, especially on large and insoluble
problems. Unlike random problems, more benefits were seen on dense prob-
lems than on sparse problems. Our experiments also showed that restricting
algorithms that enforce singleton consistencies to one pass only gave a small
reduction in the amount of pruning.

What general lessons can be learned from this study? First, singleton consis-
tencies can be useful for pre-processing but can be too expensive for maintain-
ing, even during the initial parts of search only. Second, singleton consistencies
appear to be most beneficial on large, unsatisfiable and structured problems.
Third, limiting algorithms that enforce singleton consistencies to a single pass
makes a small dent on their ability to prune values, and can thus improve their
cost-effectiveness. Fourth, provided we have an efficient algorithm, it can pay
to enforce consistencies as high as singleton generalized arc-consistency. And
finally, random problems can be very misleading. Our experiments on random
problems suggested that pre-processing with singleton consistencies was rarely
cost-effective and that it was most beneficial on sparse problems. The results of
our experiments on structured problems could hardly be more contradictory.
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