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Preface

This document is a survey of literature on the subject of temporal reasoning
problems. We hope it will serve several functions.

For the reader with a general background in computer science, it may
serve as an introduction to the field of temporal reasoning problems and the
current state of research in this area.

For ourselves, writing this survey has been a good way to consolidate the
knowledge we have obtained by studying the literature. The document will
also serve as a foundation to refer back to when conducting our own future
research.

Finally, the survey will serve to expose as yet unexplored, blank areas on
the map of this field of research. We will stumble upon a few of these while
discussing the various subjects; in our own future research, we hope to fill in
some blank spots.

Léon Planken, August 2007
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Chapter 1

Introduction

The subject we discuss in this document concerns problems involving rea-
soning about time. Examples of this class of problems are:

• the scheduling of arrivals, departures and ground handling on airports;

• logistics of supply chains, taxi companies et cetera; and

• applications where agents must plan their activities autonomously or
in co-operation with one another.

Several branches of temporal reasoning exist.

• Qualitative versus quantitative problems

Qualitative problems can only specify how two events must occur in
relation to each other; for example, “event a must occur before event
b” is a qualitative constraint.

In contrast, quantitative problems allow for constraining durations and
time gaps; for example, “event a must occur between 20 and 50 minutes
before event b” is a quantitative constraint.

Note that every qualitative constraint can trivially be converted into
a quantitative one by setting the lower and upper bounds on the time
difference to zero and infinity, respectively.

• Time points versus intervals

For problems in the former category, the fundamental elements of rea-
soning are instants in time without any duration. To describe an event
having a non-zero duration, two time points can be used to denote the
beginning and the end of the event. Constraints describe the relation of

1



2 CHAPTER 1. INTRODUCTION

time points to one another without discerning between time points de-
limiting an event with a duration versus those denoting instantaneous
events.

In the latter category of problems, every fundamental item of reasoning
is an interval with some (possibly zero-length) duration. Constraints
describe the relation between intervals, and allow for description of
such relations as events overlapping, one event occurring while another
takes place, and one event finishing before another starts.

Some formalisms allow for a mixture of intervals and time points as
fundamental elements.

In this survey, we limit ourselves to quantitative problems involving time
points.∗ Research on temporal reasoning started in the 1980s with, for ex-
ample, Allen’s interval algebra [All83] and Vilain’s and Kautz’s point algebra
[VK86]. The work that can be seen to have started the branch of quantitative
time-point problems is the 1991 publication by Dechter, Meiri and Pearl. In
this work, they proposed the Simple Temporal Problem (STP) and the Tem-
poral Constraint Satisfaction Problem (TCSP) [DMP91]; in 2000, Stergiou
and Koubarakis proposed the formalism that became known as the Disjunc-
tive Temporal Problem (DTP), thereby giving birth to another important
member of the family. These problems have at their root the general theory
of constraint satisfaction problems (CSPs). Many concepts and techniques
from general CSP literature such as forward checking, conflict-directed back-
jumping, and no-good recording have also been successfully applied in the
field of temporal reasoning problems, as we will show.

In our discussion of these problems, we will focus on the following issues:

• formal definitions of the problems;

• concepts related to the problems that are used in algorithms;

• formal complexity analyses of the problems;

• a representative selection of available algorithms for solving the prob-
lems, pointing out the strengths and weaknesses of each and contrasting
the differences between them.

∗Problems of other types can always be recast into this form; we have already seen
that this is the case for qualitative versus quantitative constraints. Representing relations
between intervals with only time points as fundamental elements is less straightforward,
but still quite feasible with the expressive power of the DTP, as the reader shall see.
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We will start our discussion, in Chapter 2, with the Simple Temporal Prob-
lem. As its name suggests, this formalism can be used to represent only a
modest selection of problems that are relatively easy to solve. Starting by
discussing only this subset has the advantage that the reader is gently intro-
duced to the concepts underlying temporal reasoning, but more importantly,
being able to solve problems of this type is at the heart of solving its more
difficult cousins that we will describe next.

Chapter 3 introduces both the TCSP and the DTP, which are closely
related to each other and far more expressive than the STP; however, the
reverse of the medal is that they are also much harder to solve. We will show
that all current algorithms for tackling the TCSP and the DTP rely on fast
methods for solving the STP.

Finally, in Chapter 4, we will give the conclusions to this literature survey.
We will first concisely recapitulate the theory discussed, and then point out
interesting blank spots on the map we have drawn of this field of research,
briefly discussing our plans for future expeditions.

In the appendices, we will include proofs of some theorems we give in the
main text. These theorems concern theoretical results that were not taken
from existing literature but were contributed by ourselves.
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Chapter 2

The Simple Temporal Problem

2.1 Introduction

In this chapter, we introduce a simple method for reasoning about temporal
information, called the Simple Temporal Problem (STP). Though the scope
of the problems that can be represented with the STP is not very wide, it still
suffices in many cases; more importantly, there exist very efficient algorithms
for solving it.

To illustrate this problem, we will first discuss an example and show how
to represent it as an STP. Then, we will define the problem more formally
and discuss some of its properties that can be used when solving it. Next, we
give a representative list of the available algorithms for tackling STPs and
establish the complexity of the problem theoretically. The remainder of the
chapter is devoted to a more detailed discussion of each of these algorithms.

2.2 Example

Before formally defining the STP, we first present an example that is based
on the one that provided in the original publication by Dechter, Meiri and
Pearl that proposed the STP [DMP91]. We will use this example in the
remainder of this chapter to illustrate the operation of the algorithms we
will describe.

John goes to work by car, which takes 30–40 minutes; Fred goes
to work in a carpool, which takes 40–50 minutes. Today, John left
home between 7:10 and 7:20, and Fred arrived at work between
7:50 and 8:10. We also know that John arrived at work after than
Fred left home, but not more than 20 minutes later than he left.

5



6 CHAPTER 2. THE SIMPLE TEMPORAL PROBLEM

x0

x1 x2

x3 x4

[10, 20]
[30, 40]

[0, 20]

[40, 50]

[50, 70]

Figure 2.1: An example STP instance

We can associate a variable with each event in this short story. Let
us say that x1 and x2 represent John leaving home and arriving at work,
respectively; x3 and x4 denote the same events for Fred. We also need a
temporal reference point to be able to refer to absolute time points; this
is denoted by x0 will stand for seven o’clock this morning. The network
representation of the STP for this example is given in Figure 2.1.

2.3 Definitions

In this section, we will formally define the Simple Temporal Problem (STP).
We start by defining which form an STP instance takes and giving an in-
terpretation of this definition, and defining a solution to an STP instance.
Then, we will define additional properties of the STP on which the algorithms
described in Section 2.5 are based.

2.3.1 Problem representation and solutions

An instance of the Simple Temporal Problem (STP) consists of a set of time-
point variables X = {x1, . . . , xn} representing events, and a set of binary
constraints over the variables, C = {c1, . . . , cm}, bounding the time differ-
ence between two events. Every constraint ci→j has a weight wi→j ∈ Z

corresponding to an upper bound on the time difference, and thus represents
an inequality xj − xi ≤ wi→j.∗ Two constraints ci→j and cj→i can then be
combined into a single constraint ci→j : −wj→i ≤ xj − xi ≤ wi→j or, equiv-
alently, xj − xi ∈ [−wj→i, wi→j], giving both upper and lower bounds. If
ci→j exists and cj→i does not, this is equivalent to xj − xi ∈ [−∞, wi→j].

∗Rational weights can easily be recast as integer weights by multiplying each with
the least common denominator. Real weights are outside the scope of this discussion; as
Dechter et al. note [SD97], rational weights always suffice in practice.
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x0

x1

x2

[0,2]

[5,10]

[0,5]

x0

x1

x2

[0,2]

[5,7]

[3,5]

Figure 2.2: An STN and its corresponding minimal network

In this text, we will sometimes use ci→j to stand for the upper bound only,
and sometimes to represent both upper and lower bounds; our intention will
always be clear from context.

A solution to an STP instance schedules the events such that all con-
straints are satisfied. Formally, it is represented by a tuple τ = 〈x1 =
b1, . . . , xn = bn〉 of assignments of values to all variables. An instance is
called consistent if at least one solution exists. Note that since the weights
are integers, a consistent instance always has an integer-valued solution.

Using the concepts defined so far, time differences between two events
can easily be expressed, but we have as yet no way to denote absolute time
constraints such as “event x42 must occur between 1 September 2007 and
31 December 2007”. These could be represented with unary constraints
like x42 ∈ [t1, t2], where t1 and t2 are suitable integer representations of 1
September 2007 and 31 December 2007, respectively; however, this has the
disadvantage of having two types of constraints, unary and binary. The usual
way to represent constraints of this type is to introduce a temporal reference
point, denoted by x0 or z, that represents some agreed-upon epoch. This way,
the problem representation is nicely uniform, consisting only of variables and
binary constraints between them. In the remainder of this text, we will sel-
dom treat the temporal reference point specially, except where required for
examples.

An additional advantage of introducing the temporal reference point is
that a STP instance can then easily be depicted as a graph, in which nodes
represent variables and weighted arcs represent constraints. When repre-
sented this way, an STP instance is also called a Simple Temporal Network
(STN); we have already seen an STN representation in Figure 2.1 in the pre-
vious section. Because the STP and its network representation are so closely
related, we will sometimes use the terms STP and STN interchangeably.

2.3.2 Minimal network

The constraints given in an STP instance may not accurately represent the
allowed time difference between two events. We will illustrate this with
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an example. See the network on the left-hand side of Figure 2.2; in this
STN, c0→2 allows event x2 to occur up to 10 minutes after x0. However, the
transitive closure of c0→1 and c1→2 yields an actual upper bound of 7 minutes;
a similar argument holds for c1→0 and c0→2. This method of tightening is
called path consistency in general constraint satisfaction literature, and we
will also refer to it by that name. The right-hand side of Figure 2.2 depicts
a network for which every constraint has been tightened as much as possible
without invalidating any solutions; this is called the minimal network.

The minimal network has the desirable property that solutions can be
extracted from it in a backtrack-free manner. For the first variable, any
value at all can be picked, yielding the first partial solution; for example, the
value of the temporal reference point can be set to 0. Any partial solution
can be extended by picking a new variable and instantiating it to a value
that satisfies all constraints with from already instantiated variables; the
minimality of the network guarantees that such a value can always be found.
For this reason, calculating the minimal network is often equated with solving
the STP.

An important property of the STP is that it is consistent if and only
if it contains no cycles with negative total weight. It is easy to see why a
negative cycle yields inconsistency: the transitive closure (summation) of the
constraints making up the cycle require that an event occur before itself. For
example, the two inequalities x2 − x1 ≤ −2 and x1 − x2 ≤ 0 form a negative
cycle; their summation yields x2 − x2 ≤ −2 which is clearly inconsistent. If
there is a negative cycle, the minimal network is also undefined; calculating
it would require that constraints along that cycle be tightened over and
over again. In contrast, the absence of a negative cycle means that the
shortest path between each two nodes in the STN is well-defined and that
a minimal network can be calculated. As we have seen, a solution can then
easily be extracted, which proves that the absence of negative cycles implies
consistency.

Having defined the terminology relevant to the STP, we will now describe
its complexity.

2.4 Complexity

Perhaps surprisingly, none of the relevant literature gives a formal complexity
class for the STP; the respective authors only establish P as an upper bound
by giving polynomial algorithms for solving the problem. In this section, we
will first give a short overview of the complexity of some available algorithms;
then, we include several new theorems which delimit the complexity of the
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STP more rigidly.
We should start by noting that there are three possible definitions for

solving the STP :

1. deciding consistency;

2. finding a valid instantiation of time-point variables; or

3. calculating the minimal network

These are listed in order of increasing difficulty; the first is implied by the
second, which in turn is implied by the third.

We will now list the complexity of the algorithms we will describe later
in this chapter. Some of these algorithms only determine consistency, while
others calculate the minimal network. When describing the complexities and
the algorithms themselves, n and m will be used to denote the number of
variables and the number of constraints, respectively. We also use W ∗(d),
a measure called the induced graph width, which depends on the ordering
d of the variables chosen but never exceeds the maximum vertex degree of
the graph, i.e. the maximal number of constraints that a single variable
participates in.

Authors Type Complexity Section

Floyd & Warshall Minimal O(n3) 2.5.1
Bellman & Ford Consistency O(n · m) 2.5.2
Johnson Minimal O(n2 log n + m · n) 2.5.3
Dechter et al. Consistency O(nW ∗(d)2) 2.5.4
Bliek & Sam-Haroud Minimal O(n3) 2.5.5

We now give new theorems which more rigidly define the complexity of
the STP. These theorems are proven in Appendix A.

Theorem 2.1 Deciding consistency of an STP instance is NL-hard.

Theorem 2.2 Calculating the minimal network for, or deciding consistency
of an STP instance is a member of NC

2.

Theorem 2.3 For constraint weights polynomially bounded by the number
of variables, deciding consistency of an STP instance is a member of NL.

Theorem 2.4 For constraint weights polynomially bounded by the number of
variables, calculating the minimal network for an STP instance is a member
of NL.
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Algorithm 1: Floyd’s and Warshall’s APSP algorithm

for k ← 1 to n do1

∀i∀j : wi→j ← min(wi→j, wi→k + wk→j)2

end3

It holds that L ⊆ NL ⊆ NC2 ⊆ P.
The complexity class NL contains those problems that can be solved by a

non-deterministic algorithm in logarithmic space; an interpretation of the NL-
completeness result could be that a randomised approach may prove effective,
since it is known in complexity theory that NL is equivalent to the class of
problems solvable in logarithmic space by a type of probabilistic algorithms.

NC
2 problems can be solved by a parallel algorithm in O(log2 n) time

using a polynomial amount of processors; these problems can therefore be
said to be efficiently parallelisable. To our best knowledge, neither of these
facts is made use of in current literature.

2.5 Solution techniques

Having established the complexity of solving the STP, we now move on to
describing a selection of available algorithms for solving it.

2.5.1 Floyd’s and Warshall’s algorithm

This algorithm for calculating all-pairs-shortest-paths (APSP) on a graph
was first published in 1962 [Flo62][War62] and computes the shortest distance
between all pairs of vertices, or finds any negative cycle if it exists, in time
O(n3). We include it as Algorithm 1.

The algorithm runs a loop of n iterations, for 1 ≤ k ≤ n. In each
iteration, the algorithm computes for each pair (i, j) (including i = j) the
shortest distance from node xi via xk to xj and updates the weight wi→j if
the new value is less than the original value. After n iterations, all wi→j have
been set to their minimal values. The initial value of all wi→i (the weight
of the virtual edge from a node to itself) is taken to be zero; if it is ever
to be changed to a negative value, a negative cycle has been detected and
inconsistency can be concluded.

In Figure 2.3, we show the result of applying the APSP algorithm to our
example problem from Section 2.2. The constraints c0→4 and c3→2 have been
tightened, which means that we now know that our original information can
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x0

x1 x2

x3 x4

[10, 20]

[30, 40]

[10
, 20

]

[40, 50]

[60, 70]

[20, 30]
[10, 20] [20, 30]

[50, 60]

[40, 50]

Figure 2.3: The minimal network after APSP

be refined: Fred must have arrived at work at 8:00 at the earliest, and John
arrived at work at least 10 minutes after Fred left home.

We also note that the graph is now complete, which gives us additional
information. For example, we know from constraint c0→2 that John arrived
at work between 7:40 and 7:50, and from constraint c0→3 that Fred left his
home between 7:20 and 7:30.

Note that APSP is equivalent to enforcing the path consistency property
from constraint satisfaction literature.

Definition 2.1 (Path consistency) A pair of constraints (ci→j, cj→k) is
path consistent (PC) if all instantiations of xi and xk that satisfy ci→k can
be extended to an instantiation of xj that satisfies both ci→j and cj→k.

An STP instance S is path consistent if all of its constraints are.

2.5.2 Bellman’s and Ford’s algorithm

This algorithm is based on publications by Bellman and Ford, in 1958 and
1962 respectively [Bel58][FF62]. It calculates single-source shortest paths to
all vertices, instead of all-pairs shortest paths. It is similar to Dijkstra’s al-
gorithm [Dij59], but unlike the latter, it can deal with negative edge weights.
It cannot be used to calculate the minimal graph, but it can be used to
determine consistency.

If the graph contains a negative cycle, the algorithm will detect this in
the final for loop. The reason for this is that in a negative cycle, the distance
matrix will keep being updated and is never finished, so to speak; when the
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Algorithm 2: Bellman’s and Ford’s algorithm

Input: Weighted directed graph G = 〈V, A〉, vertex vorigin ∈ V
Output: Distance matrix D
for i← 1 to n do /* initialise distance matrix */1

D[vi]←∞2

end3

D[vorigin]← 04

repeat n times5

foreach (vi, vj) ∈ A do6

D[vj ]← min(D[vj ], D[vi] + wi→j)7

end8

end9

foreach (vi, vj) ∈ A do10

if D[vj] > D[vi] + wi→j then return inconsistent11

end12

return D13

updates of the distance matrix stop, there will always be an edge in a negative
cycle that fails the condition in line 10.

2.5.3 Johnson’s algorithm

Published in 1977 [Joh77], this algorithm may yield improved performance
over Floyd’s and Warshall’s algorithm when run on sparse graphs.

The algorithm adds a new node v0 with zero-weight edges to all other
nodes vi ∈ V and then runs Bellman’s and Ford’s algorithm to compute
the shortest paths from v0 to all others, finding any negative cycles in the
process. Then, the algorithm associates a value h(vi) with each original node
vi ∈ V ; this value is equal to the shortest path from v0 to vi. These values
are used to reweight the edges: w′

i→j = wi→j +h(vi)−h(vj). This reweighting
scheme has two important properties: (i) all weights are now positive, and
(ii) except for their total weight, the shortest paths are invariant.

Since the graph now no longer has negative edge weights, Dijkstra’s al-
gorithm [Dij59] can be used repeatedly to determine the shortest path from
each node to all other nodes. These are then corrected again with the weights
h(v) to yield the shortest paths with the original edge weights. Note that
in the absence of any negative edge weights, h(v) = 0 for all v ∈ V ; i.e., no
edge reweighting takes place.
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Algorithm 3: Directed path consistency

for k ← n to 1 do1

∀i < k, ∀j < k : wi→j ← min(wi→j, wi→k + wk→j)2

end3

2.5.4 Directed path consistency

This method for determining consistency without calculating the minimal
network was described in the publication by Dechter et al. that introduced,
among other things, the STP [DMP91].

The algorithm assumes that there is a total ordering ≺ over the set of
variables. We number the variables {x1, . . . , xn} such that xi ≺ xj if and
only if i < j. The ordering has no impact on the soundness of the algorithm,
but does influence its performance, as we will show below.

The algorithm iterates over k from n down to 1 and for all i, j < k
performs the same operation as APSP. Inconsistency can again be con-
cluded as soon as any wi→i drops below zero. The resemblance to Floyd’s
and Warshall’s algorithm, i.e. to undirected path consistency, is clear. The
sole difference is that undirected PC considers all pairs (i, j) throughout all
iterations, whereas directed PC only considers those i and j less than k.

When running the algorithm, wi→j will trivially remain unchanged if ei-
ther wi→k or wk→j is infinite, i.e. if there is no constraint between vi and vk

or between vk and vj . This means that these pairs (i, j) can be ignored by
the algorithm, and explains why the ordering of the variables is significant
for performance. In the next section, we will see that careful choice of this
ordering will result in high efficiency.

2.5.5 Partial path consistency and the !STP algorithm

In 2003, Xu and Choueiry [XC03c] proposed a new algorithm for solving the
STP. They based their algorithm on a publication by Bliek and Sam-Haroud
[BSH99], which introduces a new type of path consistency, called partial path
consistency (PPC).

Standard path consistency is defined on complete graphs: to make a con-
straint graph PC, edges between all pairs of variables are considered and
updated, even those that do not correspond to constraints that are explicitly
defined by the problem and thus correspond to the universal constraint. En-
forcing PC on an STP instance corresponds to calculating all-pairs-shortest-
paths, as we have noted in Section 2.5.1. The property of partial path consis-
tency is instead defined for chordal graphs, and considers no other edges than
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Algorithm 4: PPC

Input: A chordal STN S = 〈V, A〉
Q← A1

until Q is empty do2

(vi, vj)← an arc from Q3

Q← Q \ {(vi, vj)}4

foreach vk such that (vi, vk) ∈ A and (vk, vj) ∈ A do5

wi→j ← min(wi→j, wi→k + wk→j)6

if wi→j has changed then7

Q← Q ∪ {(vi, vk), (vk, vj)}8

end9

end10

end11

those in the graph. Thus, if a constraint graph is triangulated by adding some
fill edges (representing universal constraints) until each cycle of size greater
than 3 has a chord, partial path consistency can be enforced. Since the tri-
angulated graph generally contains far less edges than the complete graph,
especially so for sparse constraint graphs, enforcing PPC is often far cheaper
than enforcing PC.

Bliek and Sam-Haroud have proven [BSH99] that for problems with con-
vex constraints, PPC is equivalent to PC. A constraint c is convex if the
following proposition holds:

∀x∀y∀z : x ≤ y ≤ z ∧ satisfies(x, c) ∧ satisfies(z, c)→ satisfies(y, c)

Informally, this means that for a constraint to be convex, if any single variable
satisfies it for any two values x and z, it must also satisfy it for any value y
in between.

Since STP constraints take the form of a single interval, it is easy to
see that they are indeed convex. As we recall that making a STP path
consistent amounts to solving the APSP problem, partial path consistency
is an attractive method for tackling the STP. We include this algorithm as
Algorithm 4.

In Figure 2.4, we show the result of applying the PPC algorithm to our
example problem from Section 2.2; compare also with Figure 2.3. Again, the
constraints c0→4 and c3→2 have been tightened, but only two new constraints
have had to be added to the original problem to triangulate it, as opposed
to five to complete it when the APSP algorithm was applied. Instead of the
triangulation used here, which added edges representing c0→2 and c0→3 we
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x0

x1 x2

x3 x4

[10, 20]

[30, 40]

[10, 20]

[40, 50]

[60, 70]

[20, 30]

[40, 50]

Figure 2.4: The result of applying PPC

could have chosen to add any pair of edges that were not already present and
have a node in common.

Xu and Choueiry [XC03c] first realised that enforcing the PPC property
suffices for solving the Simple Temporal Problem and implemented an effi-
cient version of the algorithm, called !STP. Their algorithm mainly differs
from Algorithm 4 in that it considers the graph as being composed of tri-
angles rather than edges, which saves some constraint checks. Even though
DPC sometimes required less processing time in their tests, they stated that
their algorithm performed better than any other solving method known at
the time; their justification for this statement is that unlike !STP, DPC does
not compute the minimal network.

To the best of our knowledge, !STP still represents the state of the art
for this task; however, we will show in Appendix C that enforcing DPC
along a carefully chosen variable ordering will always outperform !STP for
determining consistency. This ordering results in a merger between DPC and
PPC that we shall call partial directed path consistency (PDPC).

2.6 Summary

In this chapter, we have seen that the Simple Temporal Problem allows for
a concise and clear representation of temporal information. By means of
calculating the minimal network, queries about the temporal information
encoded in the instance can be answered efficiently.

We presented several algorithms for calculating this minimal network;
the most used of these are Floyd’s and Warshall’s all-pairs-shortest-path
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algorithm, well-known in graph literature, and the efficient !STP algorithm,
based on the property of partial path consistency from constraint satisfaction
literature.

To determine whether an STP instance is consistent, i.e. whether there
exists any solution at all, the minimal network need not be calculated. For
this task, which corresponds to determining whether the graph contains a
cycle with negative total weight, the directional path consistency algorithm
and Bellman’s and Ford’s algorithm can be used.

In the next chapter, we will see that there are temporal problems for
which the limited expressiveness of the STP does not suffice; however, the
extensions we will discuss are built upon the same basic idea. Also, the fact
that the STP can be solved quite efficiently proves to be very useful.



Chapter 3

The TCSP and the DTP

3.1 Introduction

The Simple Temporal Problem can represent only a rather limited scope of
problems, which is of course why it can be solved so efficiently. If there
are several alternative ways to perform an action, or one has to express
that two events may occur in any order but must not overlap, the STP
formalism no longer suffices. One has to make use of a formalism that allows
for disjunctions to be modelled.

The STP formalism can easily be extended by allowing the constraints
to take the shape of a disjunction (or union) of multiple temporal intervals
instead of just a single interval. This extension has first been described as
the Temporal Constraint Satisfaction Problem in the publication by Dechter,
Meiri and Pearl [DMP91] that also defined the STP. Stergiou and Koubarakis
[SK00] further expanded on the idea of disjunction with what they called the
Deciding Disjunctions of Temporal Constraints problem, which is usually
referred to as Disjunctive Temporal Problem.

By allowing disjunctions of temporal intervals, the scope of addressable
problems widens greatly, at the cost that these problems are far harder to
solve. In fact, it is in general infeasible to solve them for large instances:
they are NP-complete. What exactly constitutes a ‘large instance’ differs
from case to case, but real-world problems usually fall in this category.

In this chapter, we start by expanding our example to include disjunc-
tions, thereby giving an idea of the increased scope of problems that can
be addressed. Next, we give formal definitions of the problems and describe
their complexity. Then, we discuss some methods for preprocessing problem
instances; not part of the solving proper, they serve to reduce the search
space before search starts and thus improve performance of the solving pro-

17
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x0

x1 x2

x3 x4

[10, 20]
[30, 40] ∪ [60,∞]

[0, 20]

[20, 30] ∪ [40, 50]

[50, 70]

Figure 3.1: An example TCSP instance

cess. After this, we present a selection of algorithms for tackling the TCSP;
since this problem has a simpler expression than the DTP, the algorithms
also tend to be more straightforward. Finally, we present algorithms for the
DTP. It is in this area that the most recent advances have been made.

3.2 Examples

We extend the example from Section 2.2. First, we extend the STP to a
TCSP by giving both John and Fred some extra options, again taken from
[DMP91]. John has the choice to take a bus, increasing his travel time to at
least an hour, instead of taking his car; Fred may decide to take his own car
instead of joining the carpool, thereby saving exactly 20 minutes.

The result of these choices is the TCSP instance shown in Figure 3.1. We
see that the arcs representing c1→2 and c3→4 are now labelled by two intervals
each.

Now, on to the DTP. In a DTP instance, we can easily express rules
like the following. Suppose that John and Fred share a single parking lot at
their office, and that they therefore have agreed never to both come to work
with their cars on the same day. To incorporate this rule, we first have to
transform the TCSP instance into a DTP, which is straightforward, as we will
show in Section 3.4. After transformation, we add the following constraint:

x1 − x2 ≤ −50 ∨ x3 − x4 ≤ −35

This constraint says that John or Fred, or both John and Fred, must have
a travel time exceeding a threshold of respectively 50 and 35 minutes, thus
limiting their choice of transportation.
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3.3 Definition

3.3.1 The Temporal Constraint Satisfaction Problem

In a Temporal Constraint Satisfaction Problem∗ (TCSP), a constraint ci→j

between two time points xi and xj can be expressed as a union of intervals:

xj − xi ∈ Iij1 ∪ · · · ∪ Iijn = [aij1, bij1] ∪ · · · ∪ [aijn, bijn]

This allows the time difference between the two time points to assume a value
from any of the intervals, instead of from just a single interval. The network
representation of the TCSP is similar to the STN; the only difference is that
arcs are not labelled by a single interval, but by a union of intervals.

3.3.2 The Disjunctive Temporal Problem

In the Disjunctive Temporal Problem (DTP), every constraint is a disjunction
of inequalities, each involving two time points:

(xj1 − xi1) ≤ wi1j1 ∨ · · · ∨ (xjn − xin) ≤ winjn

The most important difference with the TCSP is that more than two different
time points may participate in a single DTP constraint, whereas the TCSP
constraints are binary. Conversion from the TCSP to the DTP is therefore
much more straightforward than vice versa, and for the same reason, there
is no simple network representation of the DTP: arcs are now no longer
sufficient to represent DTP constraints, as they involve only two variables.

3.3.3 Object-level and meta-level

The TCSP and the DTP are both usually solved with some flavour of back-
tracking search. An instance can be tackled in two ways:

• In the object-level approach, values are assigned to all time points while
making sure that all constraints are satisfied;

• In the meta-level approach, an interval or an inequality is selected for
each constraint, while making sure that the resulting STP, which is
called a component STP or a labelling, remains consistent.

∗Note that not all authors adhere to this nomenclature; they often reserve the phrase
“temporal constraint satisfaction problem”, being rather wide in scope, to refer to any
CSP that deals with time. Since all constraints in the TCSP are binary, the abbreviation
bTCSP is sometimes used instead (e.g. [Mof06]). However, in this document, we will use
the abbreviation TCSP to denote this binary problem only.
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All published algorithms use the latter approach, in which efficiently solving
the STP is clearly of prime importance.

A note on terminology. In the meta-level approach, the original object-
level constraints take on the role of variables, an instantiation of which cor-
responds to the selection of an interval (in the case of the TCSP) or an
inequality (in the case of the DTP), and thus corresponds to a component
STP. No explicit meta-level constraints exist; the single implicit meta-level
constraint is satisfied if and only if an instantiation corresponds to a consis-
tent component STP.

We now summarise the terminology used in the remainder of the chapter,
mostly conforming to the nomenclature adopted by Tsamardinos and Pollack
[TP03]:

• ‘time point’, ‘node’ and ‘vertex’ refer to an object-level variable, de-
noted by xk.

• ‘variable’ refers to a meta-level variable (i.e. an object-level constraint),
denoted by ci.

• ‘value’ and ‘arc’ refer to a single inequality or interval as used in a
component STP; the jth value for ci is denoted by cij , and an arc from
time point xi to time point xj is denoted by ci→j.∗

• ‘instantiation’ refers to a selection of a meta-value for a meta-variable,
or a set of such selections.

• ‘domain’ refers to the set of (remaining) valid instantiations for a meta-
variable; for ci, this is a set {ci1, . . . , cin}.

3.4 Complexity

Deciding consistency of an instance is NP-complete for both the TCSP and
the DTP. Membership in NP is obvious. Dechter et al. [DMP91] include a
proof of hardness for the TCSP in the publication which defines the problem,
using a reduction from three-colourability, which we reproduce here
almost verbatim.

Theorem 3.1 Deciding consistency for the TCSP is NP-hard.

∗It may seem confusing here that we adopt such similar denotations cij and ci→j for
different concepts; however, the intended meaning will always be clear from context.
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Proof Reduction from three-colourability. Let G = (V, E) with V =
{v1, . . . , vn} be a graph to be coloured; we construct a TCSP T in the follow-
ing way. First, we define a temporal reference point x0. Then, for each node
vi ∈ V , we introduce a time point xi and a constraint c0→i : xi−x0 ∈ {1, 2, 3},
where the set {1, 2, 3} corresponds to the three allowed colours. Finally, for
each edge {vi, vj} ∈ E we add a constraint ci→j : xj−xi ∈ [−∞,−1]∪ [1,∞],
which ensures that the time points representing connected nodes take dif-
ferent values. Hence, T is consistent if and only if G is three-colourable.
!

The complexity of calculating the minimal network for the TCSP is only
given as FNP-hard in the literature; Schwalb and Dechter write that deter-
mining minimality of a given network is NP-hard [SD97].

Indeed, the minimal network may in some cases be super-polynomial (if
not quite exponential) in the size of the original instance; see the discussion
on fragmentation in Section 3.5.1 below. However, for weights polynomially
bounded in the number of time points, calculating the minimal network be-
comes feasible in FNP. This follows from an argument similar to the one
we make in Appendix A.2.2 on the complexity of calculating the minimal
network for the STP.

Curiously, Stergiou and Koubarakis nowhere explicitly establish the com-
plexity of deciding consistency for their DTP. An instance of the TCSP can
however trivially be translated into an instance of the DTP by means of split-
ting each constraint ci (having |ci| intervals) into |ci| − 1 DTP constraints
with two inequalities each, plus at most 2 singleton DTP constraints, as we
show in Figure 3.2. This results in a DTP instance with size differing by
no more than a constant factor∗ from the original TCSP instance, and also
shows that deciding consistency for the DTP is as hard as it is for the TCSP.

Both the TCSP and the DTP belong to the equivalence class of NP-
complete problems and can therefore be said to have the same complexity.
Though it may not be expected at first sight, we show in Appendix B that
there also exists a linear transformation back from the DTP to the TCSP.
Since these problems are so closely related, the simplest algorithms for solving
them also show a close kinship, as we shall see in Sections 3.6 and 3.7. First,
we will discuss methods that can be used to enhance the efficiency of search.

∗Despite the fact that the DTP instance I ′ has more constraints than the TCSP
instance I, the reader can verify that a reasonable representation of both instances yields
|I ′| = O(|I|).
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x2 − x1 ≤ −10 ∨ x1 − x2 ≤ 3
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x2 − x1 ≤ 4

x1 − x3 ≤ 0
x3 − x1 ≤ 7

x2 − x3 ≤ −2
x3 − x2 ≤ 4 ∨ x2 − x3 ≤ −5

Figure 3.2: Transformation from TCSP to DTP

3.5 Preprocessing

Before initiating the actual solving procedure of an instance, some form of
preprocessing can be performed to prune the search space, thereby making
the solving itself more efficient.

In this section, we first describe preprocessing methods for the TCSP,
which are all based on the path consistency (PC) property, which we defined
in Section 2.5.1. Because DTP constraints are in general of higher than bi-
nary order and disjunctive in nature, the path consistency method cannot be
usefully employed to them; however, we shall describe several preprocessing
methods of a different nature.

3.5.1 Path consistency

To show how path consistency can be enforced on TCSP instances, we need
to define the composition operation.

Definition 3.1 (Composition) The composition of two binary TCSP con-
straints, denoted c1 0 c2, corresponds to the set

{r | ∃s, t : s ∈ c1 ∧ t ∈ c2 ∧ r = s + t}

See Figure 3.3 for an example of this operation. Informally, c1 0 c2 can be
associated with a “summation” of the two constraints.

Proposition 3.2 ci→j and cj→k are path consistent if and only if ci→k ⊆
ci→j 0 cj→k.
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Figure 3.4: The PC property and fragmentation
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Algorithm 5: Path consistency

for k ← 1 to n do1

∀i∀j : ci→j ← ci→j ∩ (ci→k 0 ck→j)2

end3

x0 x1 x2 x3 xn−1 xn
{0, 1} {0, 2} {0, 4} {0, 2n−1}

{0, 1, 2, 3}

{0, . . . , 7}

{0, . . . , 2n − 1}
Figure 3.5: Exponential fragmentation

Algorithm 5 can be used for enforcing path consistency on a TCSP instance.
Note the great similarity to APSP (Algorithm 1); indeed, the two algorithms
are identical when applied to an STP instance.

For the result of enforcing PC on a constraint, see Figure 3.4. All object-
level values from the domain of ca→c in the left-hand side of the figure that
are not consistent with the constraints ca→b and cb→c have been removed in
the right-hand side domain. Note that the number of intervals labelling ci→j

has more than tripled; this phenomenon is called fragmentation.
Fragmentation can cause the number of intervals labelling a single con-

straint to explode, possibly even assuming exponential proportions; we show
this in Figure 3.5. In this figure, we use sets of two integers as constraints,
which are of course unions of two singleton intervals. The solid arcs repre-
sent original constraints; the dashed arcs are added by enforcing PC. After
applying PC, the longest arc holds 2n intervals, which is exponential in the
number of time points.

3.5.2 Upper-lower tightening

To avoid the problem of fragmentation, several approximations of PC have
been proposed. These will never cause the number of intervals labelling an
edge to increase, and therefore can be enforced in polynomial time. One of
these approximations is upper-lower tightening (ULT) [SD93], in which only
the upper and lower bound imposed by each constraint are updated in each
iteration, and all internal interval boundaries are ignored.



3.5. PREPROCESSING 25

Algorithm 6: Upper-lower tightening

Input: TCSP T = 〈X, C〉
Output: Tightened TCSP T ′

repeat forever1

C ′ ← ∅2

foreach constraint ci ∈ C do3

c′i ← [min ci, max ci] /* circumscribe ci */4

C ′ ← C ′ ∪ c′i5

end6

〈X, C ′〉 ← Solve-STP(〈X, C ′〉)7

C ′′ ← ∅8

foreach constraint c′i ∈ C ′ do9

if c′i = ∅ then return inconsistent10

c′′i ← ci ∩ c′i11

C ′′ ← C ′′ ∪ c′′i12

end13

if C ′′ = C then return 〈X, C ′′〉 /* fixed point reached */14

else C ← C ′′
15

loop16

This approach comes down to circumscribing a TCSP as an STP by
taking the upper and lower bound for each constraint, thus summarising each
constraint with a single interval. For the resulting STP, the minimal network
can then be calculated by an algorithm like APSP or !STP; the resulting
interval for each constraint in this minimal network is then intersected with
the original TCSP constraint. This intersection operation could eliminate
some of the original intervals, leading to a different circumscribing STP, in
which case the process is repeated. Upper-lower tightening is included as
Algorithm 6.

The ULT algorithm repeats this procedure until an inconsistency is dis-
covered by the STP solver or a fixed point is reached. If during some iteration,
line 11 eliminates no intervals from any constraint, it is not hard to see that
the next circumscribing STP is identical to the current minimal STP, after
which the algorithm will terminate. Clearly then, this method requires solv-
ing an STP at most k times, where k is the total number of intervals in the
original TCSP instance.
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T ! S
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Figure 3.6: Standard versus loose intersection

3.5.3 Loose path consistency

A more sophisticated algorithm for approximating PC is loose path consis-
tency (LPC) [SD97]. This method hinges on the insight that fragmentation
is caused by the intersection operation, so it employs an operation called
loose intersection instead.

Definition 3.2 (Loose intersection) Let S and T be unions of intervals,
S = I1 ∪ · · · ∪ In and T = J1 ∪ · · · ∪ Jm. Now, define I ′

i as follows:

I ′
i =

{
∅ if Ii ∩ T = ∅

[ min(Ii ∩ T ) , max(Ii ∩ T ) ] otherwise

The loose intersection of S and T , denoted S " T , is then equal to
⋃n

i=1 I ′
i.

Note that loose intersection is a non-commutative operation and in gen-
eral S " T 4= T " S. Informally, S " T is equal to S with some of its intervals
shrunk or eliminated; see Figure 3.6. It follows directly from the definition
that loose intersection will never yield a number of intervals larger than the
number of intervals in the left-hand operand, which solves the problem of
fragmentation.

The loose path consistency operation computes

∀i < j : c′i→j ←
⋂

∀k

(ci→k 0 ck→j)

and assigns ci→j ← ci→j " c′i→j .
The authors discuss several variations of the LPC algorithm, of which

the one they identify as having the best trade-off between effectiveness and
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Figure 3.7: The !AC algorithm in operation.

efficiency uses a partial approach reminiscent of PPC; it only considers tri-
angles of which at least two constraint edges were present, i.e. non-universal,
in the original constraint graph.

3.5.4 !Arc-consistency

The final preprocessing method for the TCSP that we include was described
by Xu and Choueiry [XC03a]. It considers the TCSP at the meta-level and
is derived from the arc consistency property in CSP literature.

Definition 3.3 (Arc-consistency) A constraint c involving variables Xc

is arc-consistent if for each variable x ∈ Xc having domain d(x), an instan-
tiation of x to any value in d(x) can be extended to an instantiation for all
variables in Xc such that c is satisfied.

TCSP constraints are trivially arc-consistent; however, !AC considers a
set of meta-TCSP constraints that correspond to the set of all triangles in
the original TCSP. The meta-variables participating in this meta-constraint
correspond to the edges in the triangle, and the domain of each of these
meta-variables consists of the intervals labelling the edge.

Now, for each (meta-)value in the domain of each (meta-)variable, it is
checked whether it is supported by values in the domain the other two vari-
ables of the (meta-)constraint. Such support automatically implies reciprocal
support to each of the two supporting values. If support does not exist, the
value is deleted from its domain, and other values that were supported by
this value are re-checked for still having support from some other value.

As an example, consider the small network in Figure 3.7. If we first
consider triangle {a, b, c}, the three lower intervals mutually support each
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other, as do the three higher ones. Looking at triangle {a, b, d}, we see that
the interval [10, 12] in the domain of constraint ca→b has no support, since
ca→d0 cd→b = [−1, 3], which has an empty intersection with [10, 12]. In turn,
removing this interval from ca→b causes the higher intervals of constraints
ca→c and cc→b to lose their support. The resulting network is shown on the
right-hand side of the figure.

Because the algorithm considers the meta-level, it makes an all-or-nothing
choice: either an interval is removed wholesale or it remains unchanged, but
it is never tightened. Xu and Choueiry cite the publication that proposed
the loose path consistency (LPC) algorithm six years prior to their research
[SD97], but very selectively indeed: they ignore the LPC algorithm itself and
only mention the weaker upper-lower tightening procedure (ULT), which had
been published even longer before [SD93]. In their conclusions, they state
that an interesting direction for future research would be a merger of !AC
with ULT, completely overlooking the fact that the LPC algorithm is just
that (and more).

3.5.5 Preprocessing the DTP

The structure of the DTP makes the general path consistency method im-
practical; however, some preprocessing can still be done. We will list the
approach taken by three of the algorithms described in the next section.

Stergiou’s and Koubarakis’s algorithm

Stergiou and Koubarakis [SK00] first proposed the DTP formalism along
with a solver which we will discuss in Section 3.7.1. They also described
some preprocessing rules:

• If the domain of a (meta)variable ci contains an inequality that is sub-
sumed by a variable cj with just one inequality in its domain, ci can be
deleted. The reason for this is that satisfying cj implies satisfying ci.

As an example, take these disjunctions:

c1 : x2 − x1 ≤ 4 ∨ x2 − x3 ≤ 2

c2 : x2 − x1 ≤ 3

Clearly, if c2 is satisfied, the first inequality in c1 is also true, satisfying
c1. Therefore, c1 can be disregarded during solving.

• If each value in the domain of a variable cj subsumes a value from the
domain of some variable ci, the latter can be deleted; this is just a
generalisation of the previous rule.
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¬l2 ∨ ¬l3

x2 − x1

l1 ∨ ¬l3l1 ∨ l2

Figure 3.8: Preprocessing rules in the TSAT algorithms

For example, c3 can be disregarded when solving the following set of
disjunctions, because in any solution, either c41 or c42 must be satisfied,
the former subsuming c31 and the latter subsuming c33; c3 is satisfied
in both cases.

c3 : x3 − x2 ≤ 9 ∨ x1 − x4 ≤ −2 ∨ x3 − x4 ≤ 6

c4 : x3 − x2 ≤ 4 ∨ x3 − x4 ≤ 5

• If the domain of a variable ci contains a value cik that is inconsistent
with a some value in a singleton domain, cik can be deleted from the
domain of ci. If this was the last value in ci’s domain, the entire DTP
is inconsistent.

We again provide an example. The second inequality of c5 is inconsis-
tent with c6 and can be pruned:

c5 : x5 − x2 ≤ 3 ∨ x3 − x5 ≤ 1

c6 : x5 − x3 ≤ −2

If there were also a variable c7 : x2 − x5 ≤ −8, this would cause c5’s
domain to become empty, making the DTP inconsistent.

TSAT and TSAT++

In the TSAT and TSAT++ algorithms, described in Sections 3.7.3 and 3.7.6,
additional preprocessing is necessary, because the propositional satisfiability
solver that is used to generate instantiations is unaware of the underlying
inequalities. To avoid the generation of trivially inconsistent instantiations,
all pairs of literals (i.e. individual inequalities in constraints) are checked for
consistency. Since a pair of literals can only be inconsistent if it represents
a negative cycle, it is clear that only pairs which each involve the same two
time points need be considered.

As an example of preprocessing, consider the following literals:

l1 : x2 − x1 ≤ 4

l2 : x1 − x2 ≤ −3

l3 : x2 − x1 ≤ 2
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In the preprocessing step, the three possible pairings of these literals are
considered and one of three possible conclusions is drawn, resulting in a
new constraint. For the literals just listed, we depict this process in Figure
3.8. We represent the difference x2 − x1 with a number line; the literals
are represented by arrows over and under this line to show where they are
true. Below the number line, we show the conclusions that are drawn by the
preprocessing step, which results in three new constraints:

l1 ∨ l2 ∧ l1 ∨ ¬l3 ∧ ¬l2 ∨ ¬l3

Note that TSAT included an earlier version of this preprocessing method,
which only considered the right-hand case and thus yielded just a single new
constraint.

While current algorithms consider only pairs of literals, this method could
easily be extended to consider larger sets, thereby further pruning the search
space. However, some limit must be imposed, because the amount of sets of
size i is of order O(ni) in the worst case; the amount of clauses added by
preprocessing is thus also of this size. An interesting topic for future research
might be to find out at which i the overhead becomes prohibitive.

3.6 Solving the TCSP

3.6.1 Standard backtracking

The publication by Dechter, Meiri and Pearl [DMP91] that defined the STP
and the TCSP also included a simple algorithm for calculating the minimal
network of the TCSP. We paraphrase their recursive backtracking procedure
as Algorithm 7. It is invoked with the TCSP T = 〈X, C〉 and an empty
labelling S = 〈X, ∅〉 as input.

For the procedure Solve-STP, Dechter et al. use the APSP algorithm; for
Consistent-STP, they use directed path consistency.

3.6.2 Improvements

Xu and Choueiry [XC03b] gave some improvements to the basic algorithm
by Dechter et al.

Less consistency checks Xu and Choueiry note that a component STN
without cycles is necessarily consistent, and that adding an edge to a con-
sistent STP can only result in inconsistency if a new cycle is formed by this
addition.
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Algorithm 7: Backtracking algorithm for solving the TCSP

Input: TCSP T = 〈X, C〉, component STP S = 〈X, C ′〉
Output: Minimal network M
if C = ∅ then1

return Solve-STP(S)2

else3

ci→j ← first value in C4

C ← C \ {ci→j}5

M ← ∅6

foreach interval I in ci→j do7

c′i→j ← I8

C ′ ← C ′ ∪ {c′i→j}9

if Consistent-STP(〈X, C ′〉) then10

M = M ∪ Solve-TCSP(T = 〈X, C〉,S = 〈X, C ′〉)11

end12

C ′ ← C ′ \ {c′i→j}13

end14

return M15

end16

The call to Consistent-STP in line 10 of Algorithm 7 is therefore only
necessary if the addition of c′i→j to the component STP S formed a new
cycle.

Edge-ordering heuristic A general rule of thumb for ordering search is
the “fail first principle”: if the algorithm has entered a dead-end branch
of the search tree and must backtrack, the sooner the better. The basic
algorithm selects the edges in no particular order (line 4 of Algorithm 7); Xu
and Choueiry give precedence to edges that participate in many triangles.

Preprocessing with !AC Xu and Choueiry devised a preprocessing step
that eliminates those (meta-)values from (meta-)variables that have no sup-
port in some triangle; in other words, for each variable ci→j, only those values
are kept which can be extended to consistent instantiations of all triangles
in which ci→j participates.

We described this preprocessing step in more detail in Section 3.5.4.

Using !STP for solving component STPs One of the most obvious
improvements is the application of the highly efficient !STP algorithm for
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Figure 3.9: Effect of triangulation plan

determining consistency and calculating the minimal network of component
STPs, in lines 2 and 10 of Algorithm 7, respectively.

For dense STPs, DPC is sometimes more efficient than !STP for deter-
mining consistency, but Xu and Choueiry have demonstrated that this point
is moot. The reason for this is that the backtracking algorithm requires
building up the component STP step by step; thus, most of the time, the
STP being processed is much sparser than the actual constraint graph of the
TCSP being solved.

Precomputing a triangulation of the constraint graph Since the
edge-ordering heuristic is run beforehand and the edges are instantiated in a
fixed order, the triangulation of the constraint graph can also be done only
once, before the actual solving starts.

Xu and Choueiry devised two triangulation plans. The first is to build
up the constraint graph step by step, and to compute a triangulation at
every step; the second is to compute only the triangulation of the full TCSP
constraint graph and to induce from that the triangulated graph for each
level of the search.

In Figure 3.9, we depict a constraint graph for a TCSP on the left-hand
side; solid edges denote constraints specified by the problem and dotted edges
denote edges added by triangulating the constraint graph. Let us assume that
at some point during backtracking search, all edges but those involving nodes
e and f are instantiated. On the right-hand side, we show the constraint
graph as it has been instantiated at this point in search, where solid edges
again denote original constraint edges. Triangulating the solid right-hand
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graph yields only one extra edge {g, i} (dashed in the figure), but when we
induce the triangulation from the already triangulated left-hand graph, we
also get the edges {d, g} and {d, j} (dotted in the figure). The latter method
thus requires the !STP algorithm to deal with two more triangles; the same
solution is attained with more calculation.

Xu and Choueiry conclude that to improve performance of the algorithm,
the best choice is the second triangulation plan: triangulate the constraint
graph once for each level in the search tree.

3.7 Solving the DTP

Having covered the TCSP, we now turn our attention to the DTP, which
as the reader will remember allows constraints to involve more than two
variables.

Like Dechter et al., Stergiou and Koubarakis [SK00], who first defined
the DTP formalism, also included a basic algorithm for solving it, along with
several improvements; we discuss their method in Section 3.7.1.

Their basic algorithm was improved upon by Oddi and Cesta [OC00] (Sec-
tion 3.7.4) and again by Tsamardinos and Pollack [TP03] (Section 3.7.5).
Interspersed between the original publication by Stergiou and Koubarakis
and the improvements of Oddi and Cesta was the TSAT algorithm by Ar-
mando, Castellini and Giunchiglia [ACG00], described in Section 3.7.3. They
approached the problem from the perspective of propositional satisfiability
(SAT). They later teamed up with Maratea [ACGM05][ACG+05] and de-
veloped TSAT++ , discussed in Section 3.7.6, which improves upon their
previous results; to our best knowledge, this algorithm still represents the
current state of the art.

3.7.1 Stergiou’s and Koubarakis’ algorithm

The basic algorithm described by Stergiou and Koubarakis [SK00] has at its
base the incremental directed path consistency (IDPC) algorithm by Chleq
[Chl95]. As its name suggests, this algorithm enforces directed path consis-
tency incrementally for each constraint instantiated. Recall that DPC can
be used to decide consistency of the STP. Thus, enforcing DPC incremen-
tally rather than starting anew for every component STP encountered during
search is desirable for a backtracking algorithm, in which a component STP
is built up step by step.

Stergiou and Koubarakis make a few adjustments to Chleq’s IDPC al-
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Algorithm 8: Incremental directed path consistency (IDPC)

Input: A directed component STP G = (V, A) and a new arc
xm − xl ≤ wl→m.

Output: consistent if the new arc has been consistently added to
G; inconsistent otherwise.

initialise all entries in Π to false1

Q← {max≺({xl, xm})}2

Π[xl][xm]← true3

A← A ∪ (xl, xm)4

while Q 4= ∅ do5

xk ← max≺(Q)6

Q← Q \ {xk}7

forall xi, xj ≺ xk, i 4= j such that8

{(xi, xk), (xk, xj)} ⊆ A ∧ (Π[xi][xk] ∨Π[xk][xj ]) do
if (xi, xj) /∈ A ∨ wi→j > wi→k + wk→j then9

wi→j ← wi→k + wk→j10

A← A ∪ {(xi, xj)}11

if wi→j + wj→i < 0 then return inconsistent12

Q← Q ∪ {max≺({xi, xj})}13

Π[xi][xj ]← true14

end15

end16

end17

return consistent18

gorithm. Unfortunately, some of these changes introduced errors.∗ In the
version of IDPC we include here, as Algorithm 8, we have corrected these
errors.

IDPC is called as a subroutine in a backtracking algorithm similar to the
original TCSP algorithm by Dechter et al., with the following changes (line
numbers refer to Algorithm 7):

• Instead of selecting an interval (in line 7), an inequality is selected;

∗These errors include:

• Added arcs (xl, xm) must satisfy xl ≺ xm; arcs in the reverse direction cannot be
added. Thus, the STP that is built up is a tree and is trivially consistent.

• The comparison in line 9 was wi→j < wi→k + wk→j .

• The comparison in line 12 was wi→j − wj→i < 0.
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• The original algorithm calculates the minimal network. For the DTP,
the concept of “minimal network” is undefined; instead, the algorithm
returns each individual satisfying instantiation of (meta-)variables.

• As mentioned, the call to Consistent-STP in line 10 is implemented by
Chleq’s IDPC algorithm instead of standard DPC.

3.7.2 Improvements

Stergiou and Koubarakis propose several improvements to their basic algo-
rithm, well known in general CSP literature (e.g. [HE80], [Pro93], [FD95]),
that improve efficiency by pruning the search space.

Preprocessing Before the search itself starts, a preprocessing step detailed
in Section 3.5.5 is performed. This step prunes the search space by removing
those constraints that are trivially satisfied and those inequalities that are
trivially inconsistent with any solution.

Backjumping When a dead-end is encountered (the check in line 10 of Al-
gorithm 7 fails for all values in a domain), the original algorithm backtracks
just one step; however, the cause of the problem may lay farther in the past.
The technique of backjumping, also known as conflict-directed backtracking,
skips those variables that play no role in the current inconsistency, and imme-
diately reverts to the most recent variable that does. This avoids fruitlessly
instantiating the variables in between to other values.

Forward checking When some variable is instantiated, this may not lead
to a direct inconsistency, but it may remove all remaining values in the do-
main of some variable farther down the line. The technique of forward check-
ing runs each (meta-)variable instantiation by the domains of all remaining
variables, eliminating those values which are invalidated; if the domain of
some variable becomes empty, the instantiation is reverted.

Variable ordering The standard algorithm imposes no particular order on
the instantiation of the variables. The ordering can be determined statically,
before the search starts, as Xu and Choueiry do for the TCSP; but Stergiou
and Koubarakis propose a dynamic ordering scheme. They use the minimum
remaining values heuristic, giving precedence to those variables that have the
least values left, again adhering to the “fail first principle”. This technique is
most successful when combined with forward checking, which causes domains
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Algorithm 9: TSAT

Input: DTP D = 〈X, C〉, component STP S = 〈X, C ′〉
if C = ∅ then return Solve-STP(S)1

else if ∅ ∈ C then return false /* empty clause */2

else if ∃{l} ∈ C then /* unit clause */3

return TSAT(simplify(D,C ′ ∪ {l}), 〈X, C ′ ∪ {l}〉)4

else5

choose l ∈ c ∈ C /* branch */6

7 return TSAT(simplify(D,C ′ ∪ {l}) , 〈X, C ′ ∪ {l}〉 ) ∨
TSAT(simplify(D,C ′ ∪ {¬l}), 〈X, C ′ ∪ {¬l}〉)

end8

of variables to shrink in a dynamic fashion that cannot be anticipated before
search starts.

3.7.3 TSAT

This algorithm was proposed in 2000 by Armando, Castellini and Giunchiglia
[ACG00]. It makes use of the power of available solvers for the propositional
satisfiability (SAT) problem, which is used to generate valuations for a set
of clauses, where each clause corresponds to a (meta-)variable. A valuation
sets at least one literal from every clause to true, which corresponds to an
instantiation of the variables, and yields a component STP. If this turns
out to be consistent, a solution has been found; if it is inconsistent, search
backtracks, asking the propositional satisfiability solver to come up with a
new valuation. We include the TSAT algorithm as Algorithm 9.

Before the algorithm starts the actual solving of the instance, it performs
a preprocessing step that was detailed in Section 3.5.5. When preprocessing
is done, the search is started with the DTP instance D = 〈X, C〉 and an
empty component STP S = 〈X, ∅〉. The instance D consists of a set of time
points X and a set of (meta-)variables or clauses C, with the domain of
each variable c ∈ C modelled as a set of inequalities (or literals, in the SAT
terminology). The algorithm recursively selects variables to be instantiated
until it reaches one of the base cases: either no variables remain or some
variable’s domain is empty. In the former case, the resulting STP instance
is checked for consistency; if it is inconsistent, search backtracks, otherwise
a solution has been found and the algorithm terminates. In the latter case,
an inconsistency has been deduced, so search also backtracks.

To reach one of these base cases, the algorithm must recursively instanti-
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ate variables. Whenever the domain of some variable (clause) holds just one
value (literal), it is instantiated (unit propagation). Otherwise, a value that
has the greatest number of occurrences in the smallest domains is selected to
be instantiated; this heuristic was first proposed by Böhm in his winning en-
try in a 1991/1992 SAT competition organised at the University of Paderborn
[BB93]. At first glance, application of this rule to the DTP would appear
almost useless because identical inequalities seldom appear multiple times
in different domains. However, the preprocessing step introduces clauses of
length 2 that contain negations of original inequalities; these will usually
appear more often, which explains the suitability of the heuristic.

In Algorithm 9, a variable is instantiated by the simplify function. In its
simplest form, this function does the following:

• it removes all variables whose domain contains the value to be instan-
tiated, since the constraints they represent are satisfied by the current
component STP;

• it removes the negation of the inequality to be instantiated from the
domains of all variables, since this is now no longer available to be
consistently instantiated.

The forward-checking version of the function does one more thing:

• it checks all remaining values in all domains for consistency with the
current component STP (including the newly added inequality), and
removes all values that are found to be inconsistent.

This is a much more expensive operation than the other two, but its costs
are empirically justified.

The main difference between the original algorithm by Stergiou and Kou-
barakis and TSAT is that the latter performs what is called semantic branch-
ing ; if a literal is found to be inconsistent with the current component STP,
the SAT approach causes its negation to be added instead, which further
prunes the search space, whereas the former let this information go to waste.
This is one of the foremost reasons for TSAT’s improved performance: it
is almost two orders of magnitude faster than Stergiou’s and Koubarakis’
algorithm.

3.7.4 Improvements by Oddi and Cesta

Oddi and Cesta [OC00] improved upon Stergiou’s and Koubarakis’ algo-
rithm by including semantic branching and disregarding constraints that are
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already satisfied in the current component STP, both of which are also used
in the TSAT approach.

A new improvement is the use of incremental full path consistency (IFPC)
[MH86] instead of incremental directional path consistency (IDPC). Though
both require quadratic time in the worst case, maintaining IFPC is slightly
more expensive than IDPC in practice; the extra cost is justified because
performing a forward check, which is done many more times than adding a
new edge and re-enforcing PC/DPC, can be done in constant time on a fully
PC graph, while it requires linear time on a DPC graph. The trade-off is not
entirely clear-cut, though, and requires further investigation [TP03].

As a fourth and final improvement, Oddi and Cesta found that forward
checking need not be performed every time. They show that a value ci→j for
some variable need only be checked if the weight wj→i of the reverse arc in the
APSP matrix maintained by IFPC has changed since the last check. They
call this technique incremental forward checking ; it saves some constraint
checks, but does not prune the search space.

3.7.5 Epilitis (Tsamardinos and Pollack)

In 2003, Tsamardinos and Pollack published their study on the DTP [TP03].
Beside an algorithm of their own, called Epilitis, it included a thorough
overview of existing techniques for tackling the DTP. All previous solvers
only included a subset of these techniques; Epilitis uses all of them, sometimes
in a more advanced implementation.

A new technique that Tsamardinos and Pollack bring to bear on the DTP
is no-good recording or no-good learning, well-known in general CSP literature
(e.g. [SV94]). Informally, without no-good recording, a search algorithm will
make the same mistake over and over again. In principle, a no-good can be
recorded whenever the current instantiation of (meta-)variables cannot be
extended any further, i.e. whenever search must backtrack. This happens
when the domain of some variable Ci consists only of values that would yield
a negative cycle in the component STP when chosen for instantiation. The
justification J of the no-good to be recorded, also called the culprit set, then
consists of the variables whose current values yield the other edges in these
negative cycles; the no-good itself is defined as the pair 〈A, J〉, where A is
the subset of the current instantiation (“assignment”) limited to variables
in J .

Once a no-good is recorded, it is checked whenever all variables in its jus-
tification are first instantiated. The amount of no-goods that can potentially
be learnt during the solving process is theoretically exponential in the size of
the problem instance and could have a prohibitive impact on performance. It
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x1 x2

x3

x4 x5
c11 : −20

c22 : 10

c31 : 15

c43 : −5

c51 : 15

c62 : 30

variable value arc

C1 c11 x2 − x1 ≤ −20
C2 c22 x3 − x2 ≤ 10
C3 c31 x1 − x3 ≤ 15
C4 c43 x4 − x2 ≤ −5
C5 c51 x3 − x4 ≤ 15
C6 c62 x5 − x3 ≤ 30
C7 c71 x1 − x2 ≤ 15
C7 c72 x1 − x3 ≤ 5
C7 c73 x1 − x4 ≤ 10
C7 c74 x1 − x5 ≤ −10

Figure 3.10: No-good recording

is for this reason that Epilitis only records no-goods involving up to a limited
number of variables; the authors found a bound of 10 to give good results.

The justification J of a no-good is also used for determining which vari-
able to backjump to; whether or not a no-good is actually recorded, search
resumes at the deepest variable in J , since any intermediate variables can-
not have played a part in the inconsistency discovered. As search progresses,
multiple recorded no-goods can be combined into a single new one; a detailed
description of this technique is however outside the scope of this discussion.

See Figure 3.10 for an example of no-good recording. The bottom of the
picture depicts a “snapshot” of the component STN at some point during
search, corresponding to the instantiation of the variables C1 through C6,
shown in the top half of the table.

The next variable to be instantiated is C7; however, all values in its do-
main, {c71, . . . , c74}, shown in the bottom half of the table, would correspond
to arcs in the STN yielding a negative cycle. We conclude that the search
has reached a dead end, and at this point a no-good can be inferred.

The justification J of the no-good consists of those instantiated variables
that participate in at least one of the negative cycles, so in this case, J =
{C1, C2, C4, C6}. The corresponding arcs are shown dashed in the graph
and give A = {c11, c22, c43, c62}. The algorithm can now record the no-good
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〈A, J〉. Search backjumps to C6, the deepest variable in J ; not much of a
jump, really, since it skips no variables. If the domain of C6 contains no more
options after c62, a new dead end has been found and the no-good can be
pruned to 〈{c11, c22, c43}, {C1, C2, C4}〉, after which a little jump back to C4

is made for search to continue.
No-goods also play a role in the heuristic that is used to determine which

variable to instantiate, and to which value. Like Stergiou’s and Koubarakis’
algorithm, Epilitis adheres to the fail first principle by employing the mini-
mum remaining values heuristic, always instantiating the variable that has
the least valid values left in its domain. If there is a tie for selecting this
variable, it is broken by selecting the variable Ci with the value cij in its do-
main that is inconsistent with the largest amount of other remaining values;
the next tie-breaker criterion is the amount of no-goods that cij appears in.
When a variable has been selected, the order in which values are selected to
instantiate it to uses the same metric, but reversed, which helps finding a
solution (if it exists in the current search branch) as soon as possible.

The use of no-goods by Epilitis is effective; however, it surprisingly still
suffers from two obvious weaknesses:

• In the algorithm as presented, the justification recorded for no-goods
can only grow during search. In the example given above, after back-
tracking again for C6, we asserted that the new no-good has as its justi-
fication the set {C1, C2, C4}; however, this is not according to the spec-
ification of Epilitis, which never shrinks justifications and only removes
assignments from A. This means that the actual no-good recorded is
〈{c11, c22, c43}, {C1, C2, C4, C6}〉.

The implication is that checking no-goods is postponed, until all vari-
ables in its justification, some of them irrelevant, have been instanti-
ated. Hence, the search space is not pruned as much as it could be.

• When a no-good 〈{c11, c22}, {C1, C2}〉 has been recorded, this causes
the algorithm to avoid simultaneously instantiating C1 and C2 to these
values again during the remainder of the search; we coin the term
“syntactic no-good learning” for this behaviour.

However, this type of learning does not preclude selecting values for
other variables with the same effect on the constraint graph of the
component STP. Referring to Figure 3.10 for the interpretation of c1

and c2, it would be sensible to forbid any instantiation that simul-
taneously sets w1→2 and w2→3 to values smaller than -20 and 10, re-
spectively. This type of learning, which we propose to call “semantic
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no-good recording”, can easily be accomplished by the addition of new
disjunctions, in the case of this example x2− x1 > −20∨ x3− x2 > 10.

3.7.6 TSAT++

This algorithm was first published in 2004 [ACGM05][ACG+05], and to our
best knowledge, it still represents the current state of the art, outperforming
the previously fastest algorithm, Epilitis. As its name suggests, it improves
on the authors’ previous algorithm, TSAT, incorporating recent advances in
the field of propositional satisfiability and previously untapped techniques
from the constraint satisfaction literature. We list the most important im-
provements here.

Firstly, backjumping and no-good recording are incorporated. Unlike
Epilitis, TSAT++ adds the recorded no-goods as new clauses, which is no
doubt one of the reasons for its better performance. The method used by
TSAT++ to bound the number of no-good constraints learnt dynamically
during search also differs from that used by Epilitis. The reader may recall
that the latter records and remembers all no-goods during search, as long
as the amount of variables featuring in them does not exceed some bound.
In contrast, TSAT++ enforces no limit on the size of each individual no-
good, but instead periodically re-evaluates previously learnt no-goods, giving
precedence to those recently discovered and “forgetting” older ones. The
reason for this is that no-goods recorded at the beginning of search may no
longer be relevant in the current search branch.

One of the advances in the field of propositional satisfiability employed
by TSAT++ is the two-literal watching data structure, taken from the Chaff
solver [MMZ+01]. To keep track of which clauses have only a single available
literal remaining, i.e. the ones to which unit resolution can be applied, the
traditional way is to associate with each clause a counter that corresponds to
the number of its invalidated literals, taking action when this counter reaches
the value n− 1 for a clause of size n. This scheme requires that the counters
of all clauses that some literal participates in be updated every time it is
invalidated, and again if it becomes available again during backtracking.

The technique of two-literal watching stems from the insight that the
solver is not particularly interested in the first n−2 literals becoming invalid.
For each clause, two available literals are selected to be watched. It is easy
to see that as long as both remain available, unit resolution is not applicable
to such a clause. Only when one of them is rendered invalid, the clause is
checked to see whether there is more than one literal still remaining. If there
is, one of these is selected to replace the literal that just dropped out of the
two-literal watching scheme; if there is not, the single remaining watched
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Figure 3.11: Performance of Epilitis vs TSAT++

literal is selected for unit resolution.

To compare the performance of TSAT++ to that of Epilitis, we include
Figure 3.11, which was reproduced from [ACGM05]. On the horizontal axis is
the ratio of constraints to time points. It can immediately be seen that TSAT
++ outperforms Epilitis by almost an order of magnitude for the majority
of cases. Also interesting to note is the fact that the hardest DTP instances
seem to be those which have between 6 and 7 times as many constraints
as time points. This behaviour is common for DTP solvers; in fact, it was
already described by Stergiou and Koubarakis [SK00], who noted that this
region appears to be related to the transition from mostly consistent (un-
derconstrained) to mostly inconsistent (overconstrained) problem instances,
which lies between ratios of 4 and 7.

TSAT++ determines consistency of component STNs by running Bell-
man’s and Ford’s algorithm (BF) on them, taking the negative cycle with
the least nodes as culprit set to guide backjumping and to record as no-good.
The authors give the solving of component STNs relatively little attention in
their discussion; they apparently run BF anew each time they check consis-
tency, overlooking the fact that component STNs usually exhibit substantial
overlap between instantiations. It is our opinion that the performance of
TSAT++ could benefit greatly from some incremental consistency checker
such as IFPC, as employed by Epilitis.
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3.8 Summary

We have seen that the TCSP and DTP are formalisms that allow for the
representation of a wide scope of problems, at the cost that they are hard to
solve.

All published algorithms tackle the problems at the meta-level. At this
level, original constraints are considered as variables, an instantiation of
which corresponds to a component STP; if such an STP is consistent, a
solution has been found. Approaching the problem in this manner means
that availability of efficient algorithms to solve the STP is very important.
These algorithms were described in the previous chapter.

Before the actual solving of the problem is begun, some preprocessing can
be done. Preprocessing methods use some simple rules which can be used to
prune the search space, thereby making the search more efficient.

The algorithms for solving the TCSP and the DTP that we discussed can
be split into two categories.

The first category takes a standard CSP approach, instantiating variables
one by one until either a solution has been found or a dead end is encountered.
All discussed TCSP solvers fall into this category.

The second category consists of the TSAT algorithms, which abstract
away the inequalities to recast the temporal problem as a SAT instance,
which is then fed to a SAT solver. This solver returns an instantiation of all
variables, satisfying the problem at the abstract level; this instantiation is
then checked for temporal satisfiability.

Algorithms from both categories can benefit from such techniques as for-
ward checking, backjumping and no-good recording. The best algorithm
currently known is TSAT++ , of the second category.
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Chapter 4

Conclusions

In this chapter, we will first give a short summary of the theory discussed
in Chapters 2 and 3. We conclude by identifying interesting and promising
topics for future research.

4.1 Summary

We have seen that the Simple Temporal Problem (STP) is a concise and
clear method for representing temporal information, and that it can be used
to efficiently answer several types of queries about that temporal information.
Since the transformation of an STP instance into a directed weighted graph
is an identity function, it should come as no surprise that many of the basic
methods for solving the problem, such as Floyd’s and Warshall’s all-pairs-
shortest-paths algorithm and Bellman’s and Ford’s single-source-shortest-
paths algorithm, are taken from graph theory. However, it is interesting
to note that for the STP, Floyd’s and Warshall’s algorithm is identical to
enforcing the well-known property of path consistency (PC) from constraint
satisfaction theory. The most efficient algorithm known to date for solving
the STP is based on the property of partial path consistency, which is taken
from the constraint satisfaction literature, but also shows close kinship to
graph theory.

The extensions of the STP we discussed are the Temporal Constraint
Satisfaction Problem (TCSP) and the Disjunctive Temporal Problem (DTP).
Since the TCSP can also be easily represented as a graph, it shares the STP’s
properties of conciseness and clarity; it is however far more expressive, and
therefore far harder to solve. Enforcing PC, a method that can be used to
solve the STP, is also possible on TCSP instances, and may be used to at-
tempt to prune the search space as a preprocessing step; however, it can lead

45
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to an explosion of intervals labelling each edge, thereby inadvertently widen-
ing the search space instead. Several approximations of PC are available
that are safe to use as a preprocessing step; they eliminate those intervals for
which it can be concluded without search that they appear in no solution,
while guaranteeing that the amount of intervals labelling an edge will never
increase.

The DTP allows for even more expressiveness, at the cost of losing some
clarity: since its constraints are generally of higher than binary order, it can-
not be represented as a graph. This means that the preprocessing methods
based on enforcing PC are not applicable to DTP instances; however, some
preprocessing methods are still available, making use of simple logical rules.

All algorithms we described use a backtracking search, and work on the
meta-level: they do not assign values to time points directly, but instead se-
lect intervals or inequalities and determine whether the resulting component
STP is consistent. This means that the actual solving algorithms for the
TCSP and the DTP are very closely related, since the same methods apply.

There are two main categories of algorithms: the CSP-based technique,
for which the state-of-the-art is represented by Epilitis, and the SAT-based
technique, whose state-of-the-art is TSAT++ ; currently, the latter has the
edge. In both categories, techniques such as forward checking, backjumping
and no-good recording are employed.

4.2 New results and future work

Throughout the text, we have presented some new results and pointed out
several areas where future research could yield improvements on results from
currently published research; we will sum these up in this section. We will
also propose some promising new directions for research for which the liter-
ature covered by our survey may serve as a starting point. Concerning the
STP, these are the following:

• We have shown on page 9 (with proofs in Appendix A) that the com-
plexity of solving the STP is bounded below by NL and bounded above
by NC

2; for polynomially bounded weights, it is NL-complete. As a
consequence of membership in NC

2, we know that solving the STP can
be done efficiently by a parallel algorithm; to our best knowledge, this
fact has not yet been utilised at present. The implication of the NL-
completeness result may be that a randomised algorithm would perform
well; however, this needs further investigation as well.
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• On page 15, we claimed that determining consistency of an STP in-
stance can be done by a merger between directed path consistency
(DPC) and partial path consistency (PPC); this claim is proved in Ap-
pendix C. Such a merger will always perform at least as well as PPC
itself, an implementation of which is the current state-of-the-art algo-
rithm for determining consistency of the STP. We will report on an
implementation of such a new algorithm in an upcoming publication.

For the DTP (and the TCSP), further research can be done with regard to
consistency checking of component STPs:

• Current algorithms for the DTP from the CSP category employ incre-
mental path consistency algorithms such as IFPC and IDPC during
their backtracking search and for forward checking; see, for example,
Section 3.7.4. In an upcoming publication, we will propose a new al-
gorithm based on an incremental version of the PPC algorithm. We
strongly suspect that this algorithm will outperform one or quite pos-
sibly both existing incremental methods.

• As we stated on page 42, TSAT++ uses Bellman’s and Ford’s algo-
rithm for determining consistency of component STPs; an interesting
direction for future research would be to use an incremental consis-
tency enforcing technique instead, which we expect to yield improved
performance.

Finally, the two best-performing algorithms, Epilitis and TSAT++ , can each
probably be made more efficient:

• In our opinion, the current state-of-the-art solver from the CSP cat-
egory, Epilitis, suffers from two inefficiencies in its implementation of
no-good recording, as noted on page 40:

– It never shrinks culprit sets (justifications), thereby postponing
the checking of recorded no-goods;

– It does syntactic no-good recording, checking only those meta-
variables that participated in the dead end encountered, whereas
semantic no-good recording would prune the search space to a
much greater extent.

An interesting direction for future research would be whether Epili-
tis would outperform its nemesis TSAT++ if these inefficiencies are
remedied.
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• The TSAT family of algorithms performs a preprocessing step, de-
scribed in Section 3.5.5 that checks all pairs of inequalities defined on
the same two variables for consistency. It is our belief that for checking
sets of size 3 or even 4, the resulting pruning of the search space may
outweigh the penalty incurred by having to search the added clauses.

• TSAT++ was published in 2004; since then, however, the field of propo-
sitional satisfiability has not stood still. In the near future, we plan to
study recent advances in SAT solving techniques and determine their
applicability to the DTP.

The literature we addressed in this survey has given a perspective on the
field of temporal reasoning that is far from complete, even if we limit our
view to the STP/TCSP/DTP family of problems. For example, extensions
exist that allow for the modelling of preferences with temporal constraints.
Recall the application areas we listed in Chapter 1. In all of these, multiple
parties participate, each having its own interests: airlines and ground han-
dling companies, taxi companies or even individual taxi drivers, et cetera.
Even the interests of John and Fred from our example in Section 2.2 may at
times conflict.

When allowing for preferences to be modelled, one can differentiate be-
tween hard constraints and soft constraints. The former represent limits that
may not be ignored; for example, one can not be in two places at the same
time, nor can vehicles hold unlimited capacity. The latter represent actors’
preferred way of doing things: both John and Fred would like to take their car
to work and every airline wants ground handling operations for its aircraft to
proceed as smoothly and efficiently as possible, without having to wait. By
extending temporal reasoning problems with preferences, the goal in solving
them is no longer to find any solution that satisfies all constraints specified,
but instead to find a solution that must satisfy every hard constraint and
cater as best as possible to the soft constraints.

It is therefore unavoidable that negotiation and fairness become issues
when considering problems of this type, and one enters into the interesting
fields of algorithmic game theory and mechanism design. In addition to the
specific topics we already listed, we expect the general direction of our future
research to be in these fields.



Appendix A

Complexity of the STP

In this appendix, we determine the formal complexity class of solving the
STP. There are two possible definitions for “solving” the STP: deciding
consistency or calculating the minimal network; the latter implies the former.
We show that for polynomially bounded weights, the problem is NL-complete;
for unrestricted weights, the problem is in NC2. This shows that the problem
is efficiently parallelisable. Surprisingly, the results hold for either definition
of “solving”.

A note on non-integer weights: a network with rational weights can be
converted to one with integer weights by multiplying all weights by their
least common multiple. The usefulness for real-valued weights (which we are
not allowed to approximate with a finite decimal or binary representation) is
doubtful and is outside the scope of this discussion. For these reasons, the
remainder of this appendix assumes integer weights.

A.1 NL-hardness

In this section, we will show NL-hardness of STP-inconsistency. Since NL =
coNL, we can then conclude that STP-consistency is also NL-hard. The same
result holds for calculating the minimal network, since it implies determining
consistency.

A known NL-complete problem is st-connectivity. This problem can
be stated as follows:

Given a directed graph G = (V, A) and two vertices s, t ∈ V , does
G contain a path from s to t?

This can now be reduced to STP-inconsistency in logarithmic space, as fol-
lows. We transform every vertex into a time-point variable, and we associate
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every arc (vi, vj) ∈ A with a constraint ci→j, with weight wi→j = 0. This
leads to a trivially consistent STP, which will at least have the solution
τ = 〈x1 = 0, . . . , xn = 0〉.

Now we add the constraint ct→s, with weight wt→s = −1; if a constraint
between t and s already existed, we replace the previously existing one.

If there was a path from s to t in the original graph, its total weight is
trivially equal to 0. The constraint between t and s then yields a cycle with
negative total weight and thus leads to inconsistency.

If the STN that results from the transformation is inconsistent, it must
have a negative cycle. This cycle must incorporate the arc between t and s,
because this is the only arc with negative weight. But then there must also
be a path from s to t.

We conclude that STP-inconsistency is NL-hard, and hence that solving
the STP is NL-hard.

A.2 NL-completeness for bounded weights

In this section, we will first show that (in)consistency for STPs with bounded
weights can be decided in logarithmic space by a nondeterministic algorithm.
We will again demonstrate this only for the case of determining inconsistency;
the result for determining consistency then follows. We then show the same
for calculating the minimal network.

A.2.1 Determining consistency

A nondeterministic algorithm can find any cycle by guessing a starting ver-
tex, repeatedly guessing edges and verifying that the last vertex is equal to
the first one. Thus, for determining inconsistency, it can guess which cycle
has negative total weight and then walk that cycle, keeping a running total
weight, and verify negativity when the original node is reached again.

The algorithm has limited space for determining whether the total weight
of the cycle is actually negative: O(log |I|), where |I| is the size of the prob-
lem instance. The size of an STP instance S = 〈X, C〉 depends on encod-
ing; if we let wmax be the maximum absolute constraint weight, it may be
O(m log n log wmax ) when the instance is encoded as a list of constraints with
weights, or O(n2 log wmax ) for a matrix representation. In either case, the
algorithm must have space complexity O(log n + log log wmax ).

Calculating the total weight, which results from the summation of at
most n terms of order wmax , uses up O(log n + log wmax ) bits of memory
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space. To fit this in logarithmic space, we require log wmax = O(log n)∗,
which is attained for wmax = O(nk) with constant k, i.e. if the maximum
weight is polynomially bounded by the number of variables (and constraints).
Additionally, walking the cycle requires two pointers: one to the current
vertex and one to the original vertex. As each of these is logarithmic in size,
we have shown that the space requirements are met.

Hence, if the value of weights is limited in this fashion, STP-(in)consistency
is a member of NL and, combined with the results of the previous section,
NL-complete.

A.2.2 Calculating the minimal network

This problem is not a decision problem, as above, but a function problem.
In this subsection we show that this problem is FNL-complete. A function is
FNL-computable if it can be calculated by a non-deterministic Turing machine
with a read-only input tape, a logarithmically bounded working tape and a
write-only output tape. The method we describe here makes use of the fact
that deciding consistency is an NL problem.

Our very first step is to verify that the original network is consistent. If
it isn’t, we reject; the concept of a minimal network makes no sense for an
inconsistent network.

The algorithm then iterates over all pairs (i, j) with 1 ≤ i, j ≤ m. For
each original constraint ci→j, it nondeterministically selects a new weight
w′

i→j ∈ [−(n − 1)wmax , wi→j], thus making sure that every new constraint
c′i→j is tighter than the original constraint, which is a requirement for the
minimal network. The lower bound follows from a path of maximal length
with all maximally negative weights; the upper bound applies if the constraint
was already minimal.

If there was no original constraint ci→j (put differently, if the original
constraint was the universal constraint), the algorithm adds it, and selects a
weight w′

i→j ∈ [−(n− 1)wmax , (n− 1)wmax] for it.†

The space required for w′
i→j is then O(log n) for polynomially bounded

weights.
Next, the algorithm checks consistency for the original network with ci→j

replaced by c̄′i→j : xj − xi > w′
i→j, its inverse. If this network is consistent,

∗The alternative, log wmax = O(log log wmax ), is clearly useless.
†A minor inconvenience occurs if there is no path from xi to xj in the STN: in this

case, the weight must remain infinite (for a universal constraint).
However, because ST-connectivity is in NL, the algorithm can check this as a subroutine;

if it finds that the nodes are unconnected, it leaves the constraint universal and moves on
to process the next constraint.
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this implies that c′i→j has been made too tight and removed some solutions
from the network, so we reject.

Finally, we check consistency for the original network with ci→j replaced
by ĉ′i→j : xj − xi = w′

i→j. If this network is inconsistent, c′i→j is not tight
enough and we reject; otherwise, we output c′i→j and continue with the next
constraint.

In conclusion, we have shown that the constraints we output

1. are tighter than the original constraints;

2. allow all solutions that the original network allowed;

3. cannot be tightened further without losing solutions to the problem.

In addition to the space required for determining consistency, this only re-
quires a pointer to the constraint currently under scrutiny and its new weight
w′

i→j, for which logarithmic space suffices. Thus, calculating the minimal
network is in FNL, and combined with the result from the previous section,
FNL-complete.

A.3 Membership of NC
2

The discussion in the previous section shows that it is highly unlikely that
solution of the STP with unbounded weights is a member of NL, since it
requires the summation of those weights. We now turn our attention to the
next complexity class higher up the ladder, which is NC2.

The complexity class NC contains those decision problems that can be
solved on a parallel random access machine (PRAM) by O(nk) parallel
processors in O(logc n) time, where c and k are constants; NC

c contains
the decision problems that can be solved in O(logc n) time. It holds that
NC

1 ⊆ L ⊆ NL ⊆ NC
2.

In this section we show that there exists a parallel algorithm that calcu-
lates the minimal network on a PRAM in O(log2 n) time, and that (in)con-
sistency is thus also a member of NC2.

We assume a PRAM with n3 · log(nwmax ) processors. The algorithm
operates on the complete graph; if wi→j is undefined in the problem instance,
an infinite weight is assumed. The idea of the algorithm is then as follows.
For every triple (i, j, k) we determine the length of all paths xi → xk → xj by
calculating wi→k + wk→j. We set wi→j to the minimum of these values, and
then repeat the procedure. Every time this procedure iterates, the length
of the paths taken into account doubles; in particular, after at most 2log n
iterations, all paths have been considered. If the resulting network has a cycle
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xi → xj → xi with negative weight, we conclude inconsistency; otherwise,
we have calculated the minimal network.

We have log(nwmax ) processors devoted to calculating wi→k + wk→j for
every triple (i, j, k), which is enough to do it in parallel, in logarithmic time
O(log log(nwmax )) = O(log |I|). Determining the minimum of these values
can also be done in logarithmic time by this number of processors. Hence,
every iteration requires O(log |I|) time to complete, which yields total time
complexity of O(log2 |I|).



54 APPENDIX A. COMPLEXITY OF THE STP



Appendix B

Transforming DTP to TCSP

Deciding consistency of an instance of the Disjunctive Temporal Problem
at first glance seems to be more complex than deciding consistency of an
instance of the Temporal Constraint Satisfaction Problem. In this appendix,
we show that there exists a linear translation from the former to the latter,
thus demonstrating that both problems are very comparable in complexity.

Before we formally present this result, we take the following steps. First,
in Section B.1, we add constraints to bound the DTP time points, making
sure that this does not affect its consistency; then, having established these
bounds, we show in Section B.2 how to “wrap” the DTP time points and
constraints inside a TCSP instance. Finally, in Section B.3, we prove the
soundness of this reduction and show that it can be performed in linear
time.

B.1 Bounding the time points

Let D = 〈X, C〉 be a DTP instance, with X a set of time points and C a
set of disjunctions ci of the form ci1 ∨ . . . ∨ cin, where each cij represents an
inequality xl − xk ≤ w.

We define a new time point z 4∈ X to use as temporal reference point.
Using z, we can bound the values of all time points in X by introducing a
set of new constraints:

C1 = {xi − z ∈ [0, B] | xi ∈ X}

We want to find a value for B that does not change the consistency of the
problem; i.e. if the original instance D = 〈X, C〉 has a solution, there must
also be a solution to D′ = 〈X ∪ {z}, C ∪ C1〉. We have seen in Section
3.3.3 that on the meta-level, a solution to a DTP instance corresponds to
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z

B

0

Figure B.1: Bounding the DTP time points

a consistent component STP. The constraints in C1 are non-disjunctive;
therefore, they feature in any component STP for D′.

In Figure B.1, we depict a component STN of an original DTP instance
D enclosed in a dashed line on the right; on the left is the new temporal
reference point z, connected to all time points in X by the constraints in C1;
the entire network is then a component STN for D′. We will now show the
following:

Theorem B.1 For B ≥ |(n − 1)wmin|, where wmin denotes the minimum
weight among all inequalities in C, no component STN for D′ contains a
simple negative cycle that includes z.

Proof If wmin is positive, there are no negative edge weights in the compo-
nent STN, so the result follows trivially.

Otherwise, suppose that D′ contains a simple negative cycle (z, xi1 , . . . , xik , z)
for some k > 1. Then, the following inequality must hold:

B +
k−1∑

j=1

wij→ij+1
< 0

which implies
k−1∑

j=1

wij→ij+1
< −B ≤ (n− 1)wmin

since wmin is negative.
The summation contains at most n − 1 terms, which occurs if all time

points in X participate once in the cycle, i.e. k = n. Since each of these
terms is no smaller than wmin, we conclude that the inequality cannot hold;
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therefore, our assumption was false and D′ contains no simple negative cycle
involving z. !

From this, we can conclude the following:

Corollary B.2 For B ≥ |(n− 1)wmin| as above, D′ = 〈X ∪ {z}, C ∪ C1〉 is
consistent if and only if D = 〈X, C〉 is.

Proof If D is consistent, there exists a consistent component STN S for
it, and it follows directly from Theorem B.1 that addition of z and the con-
straints C1 preserve its consistency. Otherwise, each possible component
STN for D contains a negative cycle; this cycle will still be present in the
corresponding component STN for D′, so inconsistency is also preserved. !

B.2 Wrapping the constraints

In this section, we will show how to transform a disjunction ci ∈ C from a
DTP instance into a set of binary TCSP constraints. We will make use of
the temporal reference point z and the bound B introduced in the previous
section; specifically, we use them to define the concepts of “offside” and
“onside” time points:∗

Definition B.1 A time point t 4= z is called onside in some instantiation τ
if t− z ∈ [0, B]; otherwise, it is called offside.

Informally, only onside time points are considered to be “in play” from the
perspective of the original time points X, whose playground we have already
seen to be limited to an interval of [0, B] around z; it follows that all time
points x ∈ X are trivially onside. In this section, we will define some extra
time points to represent the individual inequalities from the DTP constraints;
placing one of these time points onside will have the effect of enforcing the
inequality it represents.

We consider the following disjunction ci ∈ C:

ci : xmi
1
− xli1

≤ wi
1 ∨ · · · ∨ xmi

k
− xlik

≤ wi
k

To represent this disjunction in the TCSP instance, we introduce a set of new
time points P i = {pi

1, . . . , p
i
k}, one for each inequality; in the remainder of

this section, we will often omit the superscript i since we will consider ci only.
We will also introduce new constraints to enforce the following properties for
any instantiation τ :

∗The concepts onside and offside were first defined in the Laws of Football [FIF07];
according to these Laws, only football players in an onside position are allowed to score.
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Figure B.2: The effect of constraint sets C2 and C3

1. all but one of the time points in P are offside; and

2. only an onside time point may influence the time points in X.

B.2.1 The offside trap

To ensure that a single time point pj is onside, we add the following sets of
binary constraints:

Ci
2 = {pi

j − z ∈ [0, (2k − 1)B] | 1 ≤ j ≤ k}

Ĉi
3 = {pi

j1 − pi
j2 ∈ (−∞,−2B] ∪ [2B,∞), | 1 ≤ j1 < j2 ≤ k}

The constraints in C2 limit the range of values that the time points pj can

assume; those in Ĉ3 ensure that none of the time points in P may take place
less than 2B time units from eachother. Together, they achieve the goal of
having exactly one time point pj onside.

However, note that |Ĉ3| = k(k− 1)/2, which can be quadratic in the size
of the original DTP. Since our goal is to produce a linear transformation,
this will not do. Fortunately, we can redefine Ĉ3 to have linear size while
achieving the same effect:

Ci
3 = {pi

j+1 − pi
j ∈ {−(2k − 2)B, 2B} | 1 ≤ j ≤ k}

Note that we let the subscripts wrap around in the definition of C3 such
that pk+1 signifies p1. These constraints enforce the time points pj to be
ordered consecutively. If a time point pj is offside, it takes place exactly 2B
time units later than its precursor pj−1; if it is onside, it takes place exactly
(2k− 2)B time units before pj−1. We pictorially represent the effect of these
constraints in Figure B.2. In the situation depicted, time point pj, shown as
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a black circle, is onside, and the others, shown as white circles, are offside.
The time points are positioned on a number line running from 0 to (2k−1)B
which denotes the difference pj − z. The thick sections of the number line
demarcate the values that each time point in P can assume, and the arrows
represent the constraints in C2 and C3. The figure illustrates the following
result:

Lemma B.3 The set of all instantiations 〈τP 〉 of the time points in P ∪{z}
that satisfy the constraints in C2 ∪ C3 has the following properties:

1. for each time point pj ∈ P , there exists a set of instantiations 〈τP 〉j ⊂
〈τP 〉 in which pj is the unique onside time point; and

2. 〈τP 〉j contains an instantiation for each value in the interval [0, B] that
pj − z can assume; and finally

3. it holds that 〈τP 〉 =
⋃k

j=1〈τP 〉j.

B.2.2 From inequality to binary constraint

We can now show how to translate the inequalities in ci into binary con-
straints. Let cij : xmj

− xlj ≤ wj be an inequality featuring in the DTP
constraint ci. If pj is onside in some instantiation τ , we want to enforce
xmj
≤ pj ≤ xlj + wj ; this is equivalent to enforcing cij, since Lemma B.3

states that pj − z is free to assume any value in the interval [0, B]. In con-
trast, if pj is offside, it must not constrain xlj and xmj

in any way. This is
achieved by adding the following sets of constraints:

Ci
4 = {xmi

j
− pi

j ∈ (−∞, 0] | 1 ≤ j ≤ k} (i.e. xmi
j
≤ pi

j)

Ci
5 = {pi

j − xlij
∈ (−∞, wi

j] ∪ (B,∞) | 1 ≤ j ≤ k} (i.e. pi
j ≤ xlij

+ wi
j)

This leads us to the following lemma:

Lemma B.4 For each j, the set of instantiations 〈τj〉 of the time points in
{pj, xlj , xmj

, z} satisfying the constraints in C1 ∪ C4 ∪ C5 has the following
properties:

1. if pj is onside in some instantiation τj, then the values of xlj and xmj

in that instantiation satisfy cij; and

2. the subset of 〈τj〉 in which pj is offside contains an instantiation for
each value in the set [0, B]× [0, B] that the pair (xlj − z, xmj

− z) can
assume.
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B.3 Integrating the results

Building on the results established in the previous sections, we can now state
our main result.

Corollary B.5 Let D = 〈X, C〉 be a DTP instance. Define the TCSP in-
stance T = 〈X ′, C ′〉 as follows, referring to the sets defined in the previous
sections:

• X ′ = X ∪ P ∪ {z}

• P =
⋃

i P
i

• C ′ = C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5

• for 2 ≤ j ≤ 5, Cj =
⋃

i C
i
j

Then, T is consistent if and only if D is consistent.

Proof (⇒) If D is consistent, there exists a meta-instantiation of each meta-
variable ci ∈ C to a meta-value cij yielding a consistent component STP S.
It follows from Corollary B.2 that the addition to S of time point z and
the constraints C1 preserve its consistency; therefore, there must exist an
instantiation τX of the variables in X ∪ {z} such that C ∪ C1 are satisfied.

The meta-instantiation of each ci ∈ C to a meta-value cij corresponds to
a selection of time points pi

j to place onside; Lemma B.3 states that there
exists an object-level instantiation τP of the variables in P ∪ {z} that yields
this selection while satisfying the constraints in C2 ∪ C3.

Finally, using z as “glue”, we can combine the instantiations τX and τP

into an instantiation τ of all variables in X ′. For τ to be a solution to T , it
must additionally satisfy the constraints in C4 ∪ C5. It follows from Lemma
B.4 and our selection of onside time points pi

j that this is the case.
(⇐) Conversely, if T is consistent, there must exist a solution τ for it.

Lemma B.3 states that the set of onside time points in τ has a one-to-one
relationship with an instantiation to the meta-variables in C; Lemma B.4
ensures that this instantiation to C is a solution to D. !

The reduction we have given is also very efficient.

Theorem B.6 The transformation from D to T can be performed in linear
time; it follows that the sizes of the instances are asymptotically equal.
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Proof The size of each of the sets of new variables and constraints is clearly
linear in the size of the original problem instance. After the bound B has
been established, which can easily be done in linear time, the construction
of the new sets requires constant time for each element added to them. !



62 APPENDIX B. TRANSFORMING DTP TO TCSP



Appendix C

Partial directed path
consistency

We saw in Section 2.5.5 that enforcing partial path consistency (PPC) on
a STP is a very efficient way to solve it when compared to the traditional
method of enforcing full path consistency (PC), i.e. calculating all-pairs-
shortest-paths. The reason for PPC’s improved efficiency is that it triangu-
lates the constraint graph of the STP, which generally leads to far less edges
to process than the n(n− 1)/2 edges in the complete graph that PC has to
deal with. The most efficient algorithm currently known for enforcing the
PPC property is !STP; this algorithm considers the constraint graph to be
composed of triangles.

In Section 2.5.4, we saw that to determine whether an STP instance is
consistent, it is not necessary to enforce full path consistency; instead it suf-
fices to make the constraint network directionally path consistent (DPC).
We also saw that the DPC algorithm is never more costly than the PC algo-
rithm; however, its performance depends on the order in which the variables
are processed.

The authors of !STP state [XC03c] that their algorithm is in many cases
faster than enforcing DPC. In this appendix, we will show that after a
constraint graph has been triangulated, DPC will always outperform !STP
when processing the variables in a simplicial elimination ordering (sometimes
also referred to as a “perfect elimination ordering”).

Definition C.1 In a graph G = (V, E), a vertex v ∈ V is simplicial if
the set of its neighbours N(v) = {w | {v, w} ∈ E} induces a clique, i.e. if
∀{s, t} ⊆ N(v) : {s, t} ∈ E.

Let Gi be the subgraph of G induced by Vi = {v1, . . . , vi}; note that Gn = G
for n = |V |. A simplicial elimination ordering of G is an order (vn, . . . , v1) in
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which vertices can be deleted from G, such that every vertex vi is a simplicial
vertex of the graph Gi.

The following result was proven in [FG65]:

Theorem C.1 A graph is chordal if and only if it has a simplicial elimina-
tion ordering.

Enforcing PPC requires iterating over the triangles in the constraint graph at
least once. We will now show that enforcing DPC along a perfect elimination
ordering considers each triangle exactly once.

Theorem C.2 Let G = (V, E) be a chordal constraint graph. Enforcing
DPC on G along a perfect elimination ordering (vn, . . . , v1) introduces no
new constraint edges and considers each triangle in G exactly once.

Proof Recall that Algorithm 3 iterates over the vertices vk along the order-
ing chosen.

Let e = {vi, vj} 4∈ E, where i, j < k; as noted in Section 2.5.4, the
algorithm will only add e to the constraint graph if both {vi, vk} ∈ E and
{vj, vk} ∈ E. Since vk is a simplicial vertex of Gk, it follows that this is never
the case.

For i < j < k, let {vi, vj, vk} be a triangle in G. Clearly, this triangle is
only considered once, when vk is being processed. !

We have now shown that when run on a chordal constraint graph along a
simplicial elimination ordering, DPC will outperform !STP. If a constraint
graph is not chordal, it can be made so by running a triangulation algorithm,
like !STP does. For chordal graphs, a simplicial elimination ordering can
be determined in linear time by running the maximum cardinality search
algorithm [TY84].

We conclude that we have sketched a new algorithm that enforces a prop-
erty we will call partial directed path consistency (PDPC); it relates to DPC
like PPC relates to (full) PC. It is clear that this algorithm will always
outperform the current state-of-the-art algorithm !STP when determining
consistency of an STP instance.
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