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Abstract. In this paper, a new pre-processing step is proposed in the
resolution of SAT instances, that recovers and exploits structural knowl-
edge that is hidden in the CNF. It delivers an hybrid formula made of
clauses together with a set of equations of the form y = f(x1, . . . , xn)
where f is a standard connective operator among (∨, ∧, ⇔) and where y
and xi are boolean variables of the initial SAT instance. This set of equa-
tions is then exploited to eliminate clauses and variables, while preserving
satisfiability. These extraction and simplification techniques allowed us
to implement a new SAT solver that proves to be the most efficient cur-
rent one w.r.t. several important classes of instances.
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1 Introduction

Recent impressive progress in the practical resolution of hard and large SAT
instances allows real-world problems that are encoded in propositional clausal
normal form (CNF) to be addressed (see e.g. [20,10,27]). While there remains
a strong competition about building more efficient provers dedicated to hard
random k-SAT instances [8], there is also a real surge of interest in implement-
ing powerful systems that solve difficult large real-world SAT problems. Many
benchmarks have been proposed and regular competitions (e.g. [6,1,22,23]) are
organized around these specific SAT instances, which are expected to encode
structural knowledge, at least to some extent.

Clearly, encoding knowledge under the form of a conjunction of propositional
clauses can flatten some structural knowledge that would be more apparent
in a full propositional logic representation, and that could prove useful in the
resolution step [21,12].

In this paper, a new pre-processing step is proposed in the resolution of SAT
instances, that extracts and exploits some structural knowledge that is hidden
in the CNF. It delivers an hybrid formula made of clauses together with a set
of equations of the form y = f(x1, . . . , xn) where f is a standard connective
operator among {∨, ∧, ⇔} and where y and xi are Boolean variables of the initial
SAT instance. Such an hybrid formula exhibits a twofold interest. On the one
hand, the structural knowledge in the equations could be exploited by the SAT
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solver. On the other hand, these equations can allow us to determine equivalent
variables and implied ones, in such a way that clauses and variables can be
eliminated, while preserving satisfiability. These extraction and simplification
techniques allowed us to implement a new SAT solver that proves to be the
most efficient current one w.r.t. several important classes of instances.

The paper is organized as follows. After some preliminary definitions, it is
shown how such a kind of equations can be extracted from the CNF, using a
graph of clauses. Then, the task of simplifying the set of clauses using these
equations is addressed. Experimental results showing the efficiency of the pro-
posed approach are provided. Finally, promising paths of research are discussed
in the conclusion.

2 Technical Preliminaries

Let L be a Boolean (i.e. propositional) language of formulas built in the standard
way, using usual connectives (∨, ∧, ¬, ⇒, ⇔) and a set of propositional vari-
ables. A CNF formula is a set (interpreted as a conjunction) of clauses, where a
clause is a disjunction of literals. A literal is a positive or negated propositional
variable. An interpretation of a Boolean formula is an assignment of truth val-
ues {true, false} to its variables. A model of a formula is an interpretation that
satisfies the formula. Accordingly, SAT consists in finding a model of a CNF
formula when such a model does exist or in proving that such a model does not
exist. Let c1 be a clause containing a literal a and c2 a clause containing the op-
posite literal ¬a, one resolvent of c1 and c2 is the disjunction of all literals of c1
and c2 less a and ¬a. A resolvent is called tautological when it contains opposite
literals. Let us recall here that any Boolean formula can be translated thanks to
a linear time algorithm in CNF, equivalent with respect to SAT (but that can
use additional propositional variables). Most satisfiability checking algorithms
operate on clauses, where the structural knowledge of the initial formulas is thus
flattened.

Other useful definitions are the following ones. An equation or gate is of the
form y = f(x1, . . . , xn) where f is a standard connective among {∨, ∧, ⇔}
and where y and xi are propositional variables. An equation is satisfied iff the
left and right hand sides of the equation are simultanousely true or false. An
interpretation of a set of equations is a model of this set iff it satisfies each
equation of this set.

The first technical goal of this paper is to extract gates from a CNF formula.
A propositional variable y (resp. x1, . . . , xn) is an output variable (resp. are input
variables) of a gate of the form y = f(x1, . . . , xn). An output variable is also
called definable.

A propositional variable z is an output variable of a set of gates iff z is an
output variable of at least one gate in the set. An input variable of a set of gates
is an input variable of a gate which is not an output variable of the set of gates.

Clearly, the truth-value of an y output variable depends on the truth value
of the xi input variables of its gate. Moreover, the set of definable variables
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of a CNF formula is a subset of the so-called dependent variables as defined
in [15]. Knowing output variables can play an important role in solving the
consistency status of a CNF formula. Indeed, the truth value of such variables can
be obtained by propagation, and e.g. they can be omitted by selection heuristics
of DPLL-like algorithms [4]. In the general case, knowing n′ output variables of
a CNF formula using n variables allows the size of the set of interpretations to
be investigated to decrease from 2n to 2n−n′

.
Unfortunately, extracting gates from a CNF formula can be a time-consuming

operation in the general case, unless some depth-limited search resources or
heuristic criteria are provided. Indeed, showing that y = f(x1, . . . , xi) (where
y, x1, . . . , xi belong to Σ), follows from a given CNF Σ, is coNP-complete [15].

3 Gates Extraction

To the best of our knowledge, only equivalent gates were subject of previous
investigation. Motivated by Selman et-al. challenge [24] about solving the parity-
32 problems, Warners and van Maaren [26] have proposed an approach that
succeeds in solving such class of hard CNF formulas. More precisely, a two steps
algorithm is proposed: in the first one, a polynomially solvable subproblem (a
set of equivalent gates) is identified thanks to a linear programming approach.
Using the solution to this subproblem, the search-space is dramatically restricted
for the second step of the algorithm, which is an extension of the well-known
DPLL procedure [4]. More recently, Chu Min Li [18] proposed a specialised
DPLL procedure called EqSatz which dynamically search for lists of equivalent
literals, lists whose length is lower or equal to 3. Such an approach is costly as
it performs many useless syntactical tests and suffers from restrictions (e.g. on
the length of the detected lists).

In this paper, in order to detect hidden gates in the CNF formula, it is
proposed to make use of an original concept of partial graph of clauses to limit
the number of syntactical tests to be performed. Moreover, this technique allows
gates y = f(x1, . . . , xn) (where f ∈ {⇔,∨,∧} and where no restriction on n is a
priori given) to be detected.

Definition 1 (Graph of clauses)
Let Σ be a CNF formula. A graph of clauses G = (V , E) is associated to Σ
s.t.
– each vertex of V corresponds to a clause of Σ;
– each edge (c1, c2) of E corresponds to a pair of clauses c1 and c2 of Σ ex-

hibiting a resolvent clause;
– each edge is labeled either by T (when the resolvent is tautological) or R

(when the resolvent is not tautological).
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Fig. 1. Clausal and graphical representations of ⇔ gates

Example 1 (Graph of clauses)

Σ =




c1 : (a ∨ b ∨ ¬c)
c2 : (¬a ∨ b ∨ d)
c3 : (¬a ∨ b ∨ ¬c)
c4 : (a ∨ c ∨ ¬e)




graph of clauses−−−−−−−−−−−−→ G =

c1

c2 c3

c4
R T

R

R R

Definition 2 (Partial graph of clauses)
A partial graph of clauses G′ of a CNF formula Σ is the graph of clauses G
of Σ that is restricted to edges labelled by T.

Example 2 (Partial graph of clauses)

Σ =




c1 : (a ∨ d ∨ e)
c2 : (¬a ∨ ¬b ∨ ¬c)
c3 : (a ∨ b ∨ ¬c)
c4 : (¬a ∨ b ∨ c)




partial graph−−−−−−−−−−→
of clauses

G′ =

c1

c2 c3

c4
TT

T

In Figure 1, both graphical and clausal representations of an equivalence
gate y = ⇔ (x1, . . . , xn) (n = 1 and n = 2) are given. In the general case an
equivalence gate will be represented by a partial graph that is a clique since any
pair of clauses gives rise to a tautological resolvent.

In Figure 2, both graphical and clausal representations of gates a = ∧(b, c, d)
and a = ∨(b, c, d) are provided.

Let us note that graphical representations of gates ∨ and ∧ are identical since
their clausal representations only differ by the variables signs. We also note that
one clause plays a pivotal role and exhibits tautological resolvents with all clauses
in the clausal representation of a ∨ or ∧ gate. This property also applies for gates
whose number of involved literals is greater than 3:



Recovering and Exploiting Structural Knowledge from CNF Formulas 189

a = ∧(b, c, d) clausal−−−−−−→
form

8>><
>>:

c1 : (a ∨ ¬b ∨ ¬c ∨ ¬d)
c2 : (¬a ∨ b)
c3 : (¬a ∨ c)
c4 : (¬a ∨ d)

9>>=
>>;

a = ∨(b, c, d) clausal−−−−−−→
form

8>><
>>:

c1 : (¬a ∨ b ∨ c ∨ d)
c2 : (a ∨ ¬b)
c3 : (a ∨ ¬c)
c4 : (a ∨ ¬d)

9>>=
>>;

3
77775
associated−−−−−−−−→
graph

c1

c2 c3 c4

T TT

Fig. 2. Clausal and graphical representations of ∧ and ∨ gates

y = ∨(x1, . . . , xn) clausal−−−−−→
form




(¬y ∨ x1 · · · ∨ xn)
(y ∨ ¬x1)
. . .
(y ∨ ¬xn)




It is also easy to check that any resolvent from any pair of clauses from a
same gate is tautological. Accordingly, the clauses from a same gate (⇔, ∨ and
∧) are connected in the partial graph of clauses. Thus, a necessary (but not
sufficient) condition for clauses to belong to a same gate is to form a connected
subgraph. An example showing that such a condition is not sufficient is given in
Example 2.

Building the graph of clauses is quadratic in the size of the set of clauses Σ
but the representation of the graph can be too much space-consuming. Accord-
ingly, finding gates will be performed in a dynamic manner (without representing
the graph explicitly) by checking for each clause c which clauses of Σ exhibit
tautological resolvents with c. This step can be achieved using two stacks:

– a stack of clauses sharing literals with c;
– a stack of clauses containing opposite literals to the literals of c.

At this step, the initial CNF formula is reduced to an hybrid formula, i.e. a set
of equations together with initial clauses not taking part in these equations. For
the uniformity of the representation each such remaining clause c : (x1∨· · ·∨xn)
can be interpreted as a or gate of the form true = ∨(x1, . . . , xn) with its output
variable assigned the value true (but we shall sometimes still call them clauses,
indifferently).

4 Exploiting Structural Knowledge

In this section, it is shown how such an obtained representation can even be
simplified, and how its intrinsic properties can lead to more efficient satisfiability
checking algorithms (by eliminating variables and clauses).
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First of all, the n′ output variables of the set of gates are clearly fixed by the
remaining input variables. Accordingly, DPLL-like satisfiability algorithms [4]
can restrict their search to input variables only.

Moreover, in the following it is shown how some properties of gates can allow
even more variables and equations to be eliminated.

4.1 Equivalence Gates

First, let us recall that when only equivalence gates are involved, then they can
be solved in polynomial time [9]. These classes of formulas are known as chains
of biconditionals. In the following, some basic properties of equivalence gates are
presented. For more details, see, Dunham and Wang’s paper [9]. For commodity,
we use chains of biconditionals instead of equivalences gates.

Property 1 (about ⇔ gates [9])
1. ⇔ is commutative and associative.
2. (a ⇔ a ⇔ B) (resp. (¬a ⇔ a ⇔ B)) with B a chain of biconditionnals is

equivalent to B (resp ¬B).
3. ¬(a ⇔ b ⇔ c) is equivalent to (¬a ⇔ b ⇔ c)
4. (¬a ⇔ ¬b ⇔ ¬c) is equivalent to (¬a ⇔ b ⇔ c).
5. (l ⇔ A1), (l ⇔ A2), . . . , (l ⇔ Am) is SAT iff (A1 ⇔ A2), . . . , (Am−1 ⇔ Am)

is SAT.

It is easy to see that the first four equivalence gates properties apply on hybrid
formulas.

As a consequence of the first property, any variable in an equivalence gate can
play the role of the output variable of this gate. Currently, we have selected a very
simple way for choosing output variables of equivalence gates. An output variable
of an equivalence gate is selected among the set of output variables already
defined for other gates. When the intersection of this set and the set of variables
of the equivalence gate is empty, the output variable is selected in a random way
in the set of variables involved in the equivalence gate. Properties 1.2. and 1.5.
can lead to the elimination of variables and thus to a reduction of the search
space. Property 1.4. shows that negation can be eliminated in pairs in chains of
biconditionals (i.e. at most one literal of a chain of biconditionals is a negative
one).

Let us now give new simplification properties of equivalent gates in the con-
text of hybrid formulas (set of gates).

Property 2
Let Σ be a set of gates (i.e. an hybrid formula), B ⊂ Σ a set of equivalence
gates, b ∈ B s.t. its output variable y occurs only in B and Σ′ the set of gates
obtained by the substitution of y with its definition and removing b from Σ, then
Σ is satisfiable iff Σ′ is satisfiable

Remark 1
The previous property is a simple extension of property 1.5 to set of gates.
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Property 3
Let Σ be a set of gates, any equivalence gate of Σ containing a literal which does
not occur elsewere in Σ, can be removed from Σ without loss of satisfiability.

Consequently, each literal in an equivalence gate must occur at least twice in the
formula.

4.2 “And” & “or” Gates

In the case of ∨ and ∧ gates, the following property can be used to achieve useful
simplifications.

Property 4 (∨ and ∧ gates)
– a = f(b, c, b) with f ∈ {∨,∧} is equivalent to a = f(b, c)
– a = ∨(b, c,¬b) (resp. a = ∧(b, c,¬b)) is equivalent to a (resp. ¬a)
– ¬a = ∨(b, c, d) (resp. ¬a = ∧(b, c, d)) is equivalent to a = ∧(¬b,¬c,¬d)

(resp. a = ∨(¬b,¬c,¬d))
– Property 2 and 3 hold for ∨ and ∧ gates.

4.3 Simplification of the Remaining Set of Clauses

Let Γ be the remaining set of clauses (that can be interpreted as true =
∨(x1, . . . , xn) equations). Many practical approaches to SAT focus on the re-
duction of the number of variables of the instance to be solved, in order to
reduce the size of the search space. In this paper, we also try to reduce the
number of involved clauses. As we shall show it, this can lead to the elimina-
tion of variables, too. Interestingly, reducing the number of clauses and variables
involved in Γ , leads to a reduction of the number of input variables.

In the following, two types of simplification are proposed. The first one
is derived from an extension of the definition of blocked clauses, as proposed
in [13,14,9]. The second one takes its roots in the pre-processing step of many ef-
ficient implementations of the DPLL algorithm [4]: the introduction of constant-
length resolvents in a C-SAT-like spirit [7]. Let us note that, we can use other
useful simplification techniques (see for example recent works by Brafman [3]
and Marques-Silva [19]) to achieve further reduction on the CNF part of the
formula.

Generalization of the Blocked Clause Concept

Definition 3 (Blocked clause [13])
A clause c of a CNF formula Σ is blocked iff there is a literal l ∈ c s.t. for all
c′ ∈ Σ with ¬l ∈ c′ the resolvent of c and c′ is tautological.

From a computational point of view, a useful property attached to the con-
cept of blocked clause is the following one.
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Property 5 (Blocked clause [13])
Let c be a clause belonging to a CNF formula Σ s.t. c is blocked. Σ is satisfiable
iff Σ\{c} is satisfiable.

Example 3 (Blocked clause)
The following clause c1 is blocked by the literal a.

Σ =




c1 : (a ∨ b ∨ c)
c2 : (¬a ∨ ¬b)
c3 : (¬b ∨ c)
c4 : (b ∨ ¬c)




is SAT iff Σ\{c1} =




c2 : (¬a ∨ ¬b)
c3 : (¬b ∨ c)
c4 : (b ∨ ¬c)


 is SAT

The concept of blocked clause can be generalized as follows, using the defi-
nition of non-fundamental clause.

Definition 4 (Non-fundamental clause)
A clause c belonging to a CNF formula Σ is non-fundamental iff c is either
tautological or is subsumed by another clause from Σ.

From this, the concept of blocked clause is extended to nf-blocked clause.

Definition 5 (nf-blocked clause)
A clause c belonging to a CNF formula Σ is nf-blocked iff there exists a literal l
from c s.t. there does not exist any resolvent in l, or s.t. all resolvents are not
fundamental.

Property 5 can be extended to nf-blocked clauses.

Property 6 (nf-blocked clause)
Let c be a clause belonging to a CNF formula Σ s.t. c is nf-blocked. Σ is satifiable
iff Σ\{c} is satisfiable.

Corollary 1
Blocked clauses and clauses containing a pure literal are nf-blocked.

The following example illustrates how the elimination of clauses can allow
the consistency of a CNF formula to be proved.

Example 4 (nf-blocked)




c1 : (a ∨ b ∨ c)
c2 : (¬a ∨ b ∨ d)
c3 : (b ∨ c ∨ d)
c4 : (¬b ∨ c ∨ ¬d)
c5 : (a ∨ b ∨ ¬c)




c1 nf-blocked by a−−−−−−−−−−−→
nf-blocked clause




c2 : (¬a ∨ b ∨ d)
c3 : (b ∨ c ∨ d)
c4 : (¬b ∨ c ∨ ¬d)
c5 : (a ∨ b ∨ ¬c)







c2 : (¬a ∨ b ∨ d)
c3 : (b ∨ c ∨ d)
c4 : (¬b ∨ c ∨ ¬d)
c5 : (a ∨ b ∨ ¬c)




c2 nf-blocked by b−−−−−−−−−−−→
blocked clause




c3 : (b ∨ c ∨ d)
c4 : (¬b ∨ c ∨ ¬d)
c5 : (a ∨ b ∨ ¬c)
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c3 : (b ∨ c ∨ d)
c4 : (¬b ∨ c ∨ ¬d)
c5 : (a ∨ b ∨ ¬c)




c3 nf-blocked by d−−−−−−−−−−−→
blocked clause

{
c4 : (¬b ∨ c ∨ ¬d)
c5 : (a ∨ b ∨ ¬c)

}

{
c4 : (¬b ∨ c ∨ ¬d)
c5 : (a ∨ b ∨ ¬c)

}
c4 nf-blocked by d−−−−−−−−−−−→

pure literal

{
c5 : (a ∨ b ∨ ¬c)

}
{

c5 : (a ∨ b ∨ ¬c)
} c5 nf-blocked by a−−−−−−−−−−−→

pure literal
SAT

As it can be done when pure literals are involved, this technique can lead to
the elimination of variables. Indeed, it is always possible to nf-block a clause.
To this end, we just have to add to the CNF all resolvents of the clause w.r.t. a
given literal of this clause.

Property 7
Any clause c from a CNF formula Σ can be nf-blocked, introducing additional
clauses in Σ.

In order to eliminate a variable, we just have to nf-block all clauses where
it occurs. From a practical point of view, such a technique should be limited to
variables giving rise to a minimum number of resolvents (e.g. variables which do
not occur often). This idea is close to the elimination technique proposed in [5]
and has been revisited in [25].

More generally, a concept of redundant clause can be defined as follows.

Definition 6 (Redundant clause [2])
A clause c belonging to a CNF formula Σ is redundant iff Σ\{c} � c.

From a practical computational point of view, looking for redundant clauses
amounts to proving that Σ ∧ ¬c is inconsistent. Accordingly, it should not be
searched for such clauses in the general case. However, it is possible to limit the
search effort, e.g. by looking for implicates clauses or literals by unit propaga-
tion [16].

Definition 7 (u-redundant clause)
A clause c from a CNF formula Σ is u-redundant iff the unsatisfiability of
Σ ∧ ¬c can be obtained using unit propagation, only (i.e. Σ\{c} �

Unit
c).

Clearly, the set of u-redundant clauses of a CNF formula is a subset of the set
of redundant clauses of this formula. Using Example 4, the relationship between
both nf-blocked and u-redandant clauses can be illustrated :
– nf-blocked clauses can be non u-redundant. (See clause c1 in Example 4)
– u-redundant clauses can be non nf-blocked. (In the same example, if the

initial CNF formula is extended with a clause c6 : (a∨¬d) and c7 : (¬a∨¬d),
then clause c1 becomes u-redundant but is not nf-blocked anymore).

– Clauses can be u-redundant and nf-blocked at the same time. (In the same
example, extending the initial CNF formula with both clauses c′6 : (b ∨ c)
and c′7 : (b ∨ ¬c), clause c1 remains nf-blocked and becomes u-redundant)
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Limited Form of Resolution Many recent efficient implementations of DPLL
[4] contain a preprocessing step introducing limited-length resolvents (the max-
imal length being generally fixed to 2), which increases the performance of the
solver. However, the number of resolvents possibly introduced in this way can
be prohibitive. Accordingly, we propose to limit the introduction of clauses to
resolvents allowing clauses to be eliminated.

Definition 8 (Subsuming resolvent)
Let Σ be a CNF formula, a subsuming resolvent is a resolvent from two
clauses from Σ that subsumes at least one clause of Σ.

Taking subsuming resolvents into account entails at least two direct useful
consequences from a computational point of view. First, the subsuming resolvent
is a shorter clause. Indeed, a subsuming clause is shorter than the subsumed one.
From a practical point of view, we just need to eliminate one or some literals
from the subsumed clause to get the subsuming one. Secondly, the elimination
of such literals in the clause can lead to the suppression of a variable, or make
it a unit literal or a pure literal. In all three cases, the search space is clearly
reduced accordingly.

Example 5
Clauses (a ∨ b ∨ c) and (a ∨ ¬c) generate the resolvent (a ∨ b), which subsumes
the ternary clause and allows the literal c to be eliminated.

5 Implementation and Experimental Results

In this section, some preliminary -but significant- experimental results are pre-
sented. All algorithms have been programmed in C under Linux. All experimen-
tations have been conducted using a 1 Ghz Pentium III processor, with 256 MB
RAM, under Mandrake Linux 8.2.

Before we implemented the solver, we addressed the a priori feasibility of
the equations extraction technique, at least w.r.t. standard benchmarks. Indeed,
although it is naturally expected that gates do exist in such benchmarks, these
gates have never been exhibited. Moreover, despite the fact that the use of
the partial graphs limits the number of syntactical tests to be performed, the
extraction technique could appear too much time-consuming from a practical
point of view.

The results given in Table 1 answer these issues for benchmarks from the last
SAT competitions [6,1,22,23]. For every tested instance, we have listed:
– the number of clauses (#C) and of variables (#V ) of the initial instance;
– the number of discovered gates, using two separate categories: equivalence

(# ⇔) and ∨ and ∧ gates (# ∨ ∧);
– the size of the set Γ of remaining clauses (#CΓ & #VΓ );
– the time spent by the extraction process.
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Table 1. Number of extracted equations and time spent for the extraction

instance #C #V # ⇔ # ∨ ∧ #CΓ #VΓ time(s)

par8-1-c 254 64 56 15 30 31 0.00
par8-1 1149 350 135 15 30 31 0.07
par16-1-c 1264 317 270 61 184 124 0.08
par16-1 3310 1015 560 61 184 124 0.25
par32-1-c 5254 1315 1158 186 622 375 0.38
par32-1 10277 3176 2261 186 622 375 0.64
barrel5 5383 1407 1065 152 1163 430 0.3
barrel6 8931 2306 1746 254 2013 821 0.53
barrel7 13765 3523 2667 394 3195 1337 0.96
barrel8 20083 5106 3864 578 4763 2158 1.80
ssa7552-125 3523 1512 1033 154 1270 501 0.33
ssa2670-130 3321 1359 859 254 1352 530 0.26
ssa0432-001 1027 435 225 43 244 124 0.1
bf1355-348 7271 2286 1082 383 3533 962 0.46
dubois100 800 300 200 0 0 0 0.05
2dlx cc mc ex bp f2 bug091 55424 5259 0 4053 7575 5214 4.50
dlx1 c 1592 295 0 209 139 291 0.01
dlx2 cc bug18 19868 2047 0 1567 1312 2039 0.92
dlx2 cc 12812 1516 0 1063 1137 1508 0.39
1dlx c mc ex bp f 3725 776 0 542 378 755 0.05
2dlx ca mc ex bp f 24640 3250 0 2418 1627 3223 0.94
2dlx cc mc ex bp f 41704 4583 0 3534 2159 4538 2.88

The results from Table 1 are really promising since they show that there
exist many gates in many classes of benchmarks and that the time spent to
find them is negligible (far less than 1 second, including the time spent to load
the instance). Moreover, the size of the set Γ of remaining clauses after the
extraction process is reduced in a significant manner (on average, the number
of clauses is divided by a factor ranging from 2 to 10) and can even be zero for
certain types of instances (e.g. Dubois100).

However, the set of variables from Γ and of the equations are not disjoint.
We thus then focused on determining the number of variables that are really
non defined, i.e. the variables that are never output ones. Table 2 provides the
number of non defined variables (or input variables #Vnd) for several instances,
notably for “parity” instances. These instances were selected because solving
them is recognized as a challenge in the research community about SAT [24].
The results are quite surprising since only 32 variables are not defined w.r.t. the
3176 ones in the par32-1 instance. This means that the truth value of the 3144
other variables depends only on these 32 variables obtained by the extraction
technique. Accordingly, the search space is reduced from 23176 to 232 !

These abstraction and simplification techniques have been grafted as a pre-
processing step to the DPLL procedure [4], using a branching heuristics à la
Jeroslow-Wang [11]. This algorithm, called LSAT runs a DPLL-like algorithm
on Γ and checks during the search process if the current interpretation being
built does not contradict any detected gate. In the positive case, a backtrack
step is performed. This new algorithm has been compared with the last versions



196 Richard Ostrowski et al.

Table 2. Number of undefinable variables

instance #C #V #VΓ #Vnd time(s)

par8-1 1149 350 31 8 0.00
par16-1 3310 1015 124 16 0.05
par32-1 10277 3176 375 32 0.10
ssa0432-001 1027 437 106 63 0.00
ssa2670-140 3201 1327 444 196 0.01
ssa7552-001 3614 1534 408 246 0.02
bf2670-001 3434 1393 439 210 0.02
bf1355-160 7305 2297 866 526 0.06
bf0432-001 3668 1040 386 294 0.02
2dlx cc mc ex bp f2 bug091 55424 5259 5214 1170 4.45
dlx1 c 1592 295 291 82 0.01
dlx2 cc bug18 19868 2047 2039 477 0.92
dlx2 cc 12812 1516 1508 448 0.38
1dlx c mc ex bp f 3725 776 755 214 0.0
2dlx ca mc ex bp f 24640 3250 3223 807 0.97
2dlx cc mc ex bp f 41704 4583 4538 1012 2.87

of the most efficient SAT solvers, namely Satz [17], EqSatz [18], Zchaff [27].
The obtained results are given in Table 3 (time is given in seconds)1.

These results show that LSAT is really more efficient that those solvers for
many instances. Moreover, LSAT solves some instances in less than 1 second,
whereas the other solvers took more than 16 minutes to give an answer.

6 Future Work

This work opens promising paths for future research. Indeed, the current version
of the LSAT solver is just a basic prototype that runs a DPLL procedure on the
remaining clauses and checks that the current interpretation does not contradict
the other equations. Clearly, such a basic prototype can be improved in several
directions. First, it would be interesting to develop DPLL-specific branching
heuristics that take all the equations into account (and not only the remaining
clauses). It would also be interesting to explore how the algorithm could exploit
the intrinsic properties of each type of equation.
In this paper, the simplification process of ∧, ∨ gates and clauses has been de-
scribed, but not yet implemented in the current LSAT version. On many classes
of formulas (e.g. formal verification instances) containing a large part of such
gates, we attempt further improvements using such simplification properties.
More generally, it might be useful to extend this work to the simplification and
resolution of general Boolean formulas. Finally, this work suggests that to model
real-world problems, one might directly use more general and extended boolean
formulas.
1 In the table, > n means that the instance could not be solved within n seconds.
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Table 3. Comparison of LSAT, Satz, EqSatz and Zchaff

instance #C #V SAT Satz EqSatz Zchaff LSAT

par8-1 1149 350 yes 0.05 0.01 0.01 0.01
par8-2 1149 350 yes 0.04 0.01 0.01 0.01
par8-3 1149 350 yes 0.07 0.01 0.01 0.01
par8-4 1149 350 yes 0.09 0.01 0.01 0.01
par8-5 1149 350 yes 0.05 0.01 0.01 0.01
par16-1 3310 1015 yes 8.96 0.19 0.47 0.05
par16-2 3310 1015 yes 0.48 0.20 0.88 0.05
par16-3 3310 1015 yes 16.79 0.22 4.07 0.02
par16-4 3310 1015 yes 11.15 0.17 0.82 0.06
par16-5 3310 1015 yes 1.59 0.18 0.41 0.03
par32-1-c 5254 1315 yes ¿1000 540 ¿1000 6
par32-2-c 5254 1315 yes ¿1000 24 ¿1000 28
par32-3-c 5254 1315 yes ¿1000 1891 ¿1000 429
par32-4-c 5254 1315 yes ¿1000 377 ¿1000 16
par32-5-c 5254 1315 yes ¿1000 4411 ¿1000 401
par32-1 10227 3176 yes ¿1000 471 ¿1000 27
par32-2 10227 3176 yes ¿1000 114 ¿1000 7
par32-3 10227 3176 yes ¿1000 4237 ¿1000 266
par32-4 10227 3176 yes ¿1000 394 ¿1000 3
par32-5 10227 3176 yes ¿1000 5645 ¿1000 471
barrel5 5383 1407 no 86 0.38 1.67 0.19
barrel6 8931 2306 no 853 0.71 8.29 0.55
barrel7 13765 3523 no ¿1000 0.96 21.55 6.23
barrel8 20083 5106 no ¿1000 1.54 53.76 412
dubois10 80 30 no 0.03 0.08 0.01 0.01
dubois20 160 60 no 26.53 0.03 0.01 0.01
dubois30 240 90 no ¿1000 0.05 0.01 0.01
dubois50 400 150 no ¿1000 0.08 0.01 0.01
dubois100 800 300 no ¿1000 0.06 0.06 0.01
Urquhart3 578 49 no ¿1000 ¿1000 190 0.02
Urquhart4 764 81 no ¿1000 ¿1000 ¿1000 0.03
Urquhart5 1172 125 no ¿1000 ¿1000 ¿1000 0.06
Urquhart15 11514 1143 no ¿1000 ¿1000 ¿1000 0.42
Urquhart20 18528 1985 no ¿1000 ¿1000 ¿1000 0.64
Urquhart25 29670 3122 no ¿1000 ¿1000 ¿1000 1.05

7 Conclusion

In this paper, a technique of extraction of equations of the form y = f(x1, . . . , xn)
with f ∈ {∨,∧,⇔} from a CNF formula has been presented. This extraction
technique allows us to rewrite the CNF formula under the form of a conjunction
of equations. These equations classify variables into defined ones and undefined
ones. The defined variables can be interpreted as the output of the logical gates
discovered by the extraction process, and allow us to reduce the search space in
a significant way very often. Another contribution of this paper was the intro-
duction of various simplification techniques of the remaining equations. In their
turn, these latter techniques allow us to eliminate variables, reducing the search
space again. These new techniques of extraction and simplification have been
grafted as a pre-processing step of a new solver for SAT: namely, LSAT. This
solver proves extremely competitive w.r.t. the best current techniques for several
classes of structured benchmarks.
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