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Abstract

The Simple Temporal Network (STN) is a widely used frame-
work for reasoning about quantitative temporal constraints
over variables with continuous or discrete domains. De-
termining consistency and deriving the minimal network
are traditionally achieved by graph algorithms (e.g., Floyd-
Warshall, Johnson) or by iteration of narrowing operators
(e.g.,4STP). However, none of these existing methods ex-
ploit effectively the tree-decomposition structure of the con-
straint graph of an STN. Methods based on variable elimina-
tion (e.g., adaptive consistency) can exploit this structure, but
have not been applied to STNs, in part because it is unclear
how to efficiently pass the ‘messages’ over a set of continuous
domains. We first show that for an STN, these messages can
be represented compactly as sub-STNs. We then present an
efficient message passing scheme for computing the minimal
constraints of an STN. Analysis of the new algorithm,Prop-
STP, brings formal explanation of the performance of the ex-
isting STN solvers4STP and SR-PC. Preliminary empirical
results validate the efficiency of Prop-STP in cases where the
constraint network is known to have small tree-width, such as
those that arise in Hierarchical Task Network planning prob-
lems.

Introduction
Quantitative temporal constraints are essential for many
real-life planning and scheduling domains (Smithet al.
2000). Many systems adopt a Simple Temporal Network
(STN) (Dechteret al. 1991) to represent and reason over the
temporal aspects of such problems, associating time-points
with the start and end of actions, and modeling the temporal
relations by binary simple temporal constraints. We present
a general, efficient message passing scheme for propagation
of such constraints.

The central role of STNs in deployed planning systems
(Myers et al. 2002; Castilloet al. 2006) makes efficient
inference with STNs especially important. The two princi-
pal inference tasks, determining consistency of an STN and
deriving its minimal network, can be achieved by enforcing
path consistency (PC) (Dechteret al. 1991). The common
approach is to run an All-Pair Shortest Path graph algorithm
on thedistance graphof the STN. Algorithms such asFloyd-
Warshall(denoted F-W or PC-1) (time complexityΘ(N3)),
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or Johnson(complexityΘ(N2 log N + NM), whereM is
the number of edges in the constraint graph) can be used
(Cormenet al. 1990).

To achieve better efficiency, significant efforts have been
made to apply more sophisticated constraint propagation
techniques to STNs.Partial Path Consistency(PPC) (Bliek
and Sam-Haroud 1999) can be applied to a triangulated con-
straint graph rather than a complete graph and is sufficient
for backtrack-free reconstruction of all solutions. The state-
of-the-art4STP(Xu and Choueiry 2003) is a specialized
solver based on PPC and operates over triangles of the tri-
angulated STN. If only consistency is required, but not the
minimal network,Directional Path Consistency(DPC) can
be used with time complexityO(Nw2), wherew is the
induced tree-width along the node ordering used (Dechter
2003). Empirical comparisons on random STNs (Xu and
Choueiry 2003; Shiet al. 2004) show that4STP outper-
forms PC-1, Johnson’s Algorithm (“Bellman-Ford”), and is
comparable to (on dense graphs) or outperforms (on sparse
graphs) DPC. The complexity of4STP, unstated in (Xu
and Choueiry 2003), is not known, but can be bounded by
O(N3).

Despite the variety of methods for solving STNs, no
dedicated STN solver takes full advantage of the tree-
decomposition of the STN constraint graph (i.e., the ability
to decompose a constraint graph into a ‘tree’ of variable and
constraint clusters (Dechter and Pearl 1989)). One exception
is the specialized solver SR-PC (Yorke-Smith 2005) that ex-
ploits the structure of STNs associated with plans in the Hi-
erarchical Task Network (HTN) planning paradigm (Erolet
al. 1994). The HTN planning process gives rise to STNs
with thesibling-restricted(SR) property. Such an SR-STN
can be decomposed into a tree of smaller sub-STNs, mirror-
ing the shape of the hierarchical structure in the plan. SR-PC
traverses this tree, invoking an STN solver at each sub-STN.
While SR-PC shows strong empirical performance on SR-
STN, it does not operate on general STNs.

In contrast to STNs, tree-decomposition methods are of-
ten applied to the general Constraint Satisfaction Prob-
lem (CSP). These methods, such asvariable elimination
(adaptive consistency)andcluster-tree elimination(Dechter
2003), operate by decomposing a triangulated constraint
graph into a tree of variable clusters and solving the sub-
problem in each.



In this paper we apply the ideas of such tree-
decomposition methods to the STN. We note that a direct
application of tree-decomposition method to the STN is non-
trivial. Since the STN represents a CSP withcontinuous
variables, it is not clear how to represent the ‘messages’,
i.e., the sets of additional constraints resulting from elim-
inating some variables. We first show that, for an STN,
these messages can be represented compactly as sub-STNs.
We then present an efficient message passing scheme, called
Prop-STP. Like 4STP, our Prop-STP requires the STN to
be triangulated. However, unlike4STP, our algorithm oper-
ates over the set of maximal cliques of the triangulated con-
straint graph. The time complexity of Prop-STP isO(Kw3)
whereK is the number of cliques, andw is the induced tree-
width (the size of the largest clique minus1). For STNs with
known and bounded tree-width (e.g., SR-STNs), Prop-STP
thus achieves linear time complexity, a substantial improve-
ment over the use of All-Pair Shortest Path algorithms. We
demonstrated this empirically by showing that on structured
SR-STNs, Prop-STP achieves the same level of performance
as the specialized solver SR-PC, while greatly outperform-
ing4STP.

For general STNs, triangulation can be carried out effi-
ciently by greedy methods (Kjaerulff 1990). The results of
(Shiet al. 2004; Xu and Choueiry 2003) demonstrate empir-
ically that with a triangulation step,4STP outperforms cur-
rent STN solvers. Our analysis of Prop-STP offers insight
into how to order the triangles in4STP, and also shows
that 4STP’s complexity can be characterized in terms of
the induced tree-width. Our preliminary experiments with
randomly generated STNs indicate that Prop-STP often per-
forms better than4STP, thus, showing that it is more effi-
cient to operate on cliques rather than on triangles (as antic-
ipated by (Choueiry and Wilson 2006)).

The next section presents necessary background on STNs
and variable elimination. The following sections introduce
our message passing scheme for STNs and the resulting
Prop-STPalgorithm. We present a proof of its correctness
and analyze its theoretical complexity. Finally, we present
preliminary empirical validation of Prop-STP on SR STNs.

Background
We are concerned with relations among a set of variables
{xi, i ∈ S}, each taking values from the domainXi. A
relationR over S is simply a subsetR ⊆

∏

i∈S Xi. The
index setS is called thescopeof R. We make use of two
standard relational operators, namely, projection and join.
The projection of a relationR onto the index setV ⊆ S is
denoted byπV R, and the join ofR1 andR2 is denoted by
R1 ./ R2.

Simple Temporal Networks
An STN is formally represented by a set of variables{xi| i ∈
S}, representing time-points, with domainXi = R

1; a set of

1While one can consider STNs with discrete domains, we focus
on the more difficult case of continuous domains. The theory in
this paper can be readily specialized to the discrete case, and the
algorithm we present operates effectively for either case.

interval unary constraintsTi ⊂ R whereTi = {xi | xi ∈
[ai, bi]}; and a set of binary constraintsTij ⊂ R

2, i < j

whereTij = {(xi, xj) | xi − xj ≤ −aij , xj − xi ≤ bij}.2

Generally, we assume that there areN variables, soS =
{1, . . . , N}. Given an STNT , its constraint graphG is an
undirected graph with vertices representing the variables; an
edge linksxi andxj iff the binary constraintTij exists.

We differentiate the constraints represented byT and the
relation they imply, denoted bysol(T ) and called thesolu-
tion setof the STN. By definition,sol(T ) is a relation with
scopeS that is the join of all the unary and binary constraints
Ti andTij . Thus every solution insol(T ) is an assignment
of values to time-points such that all constraints are satis-
fied. Relational operators such as join and projection can
be applied on the solution set with the usual set semantics.
An STN isconsistentiff its solution set is non-empty. Two
STNs are equivalent (denotedT1 ≡ T2) iff their solution sets
are the same, while two STNs are equal (denotedT1 = T2)
iff they contain exactly the same set of constraints.

We introduce some useful operators that operate directly
on T . Let V be a subset of the variables. The subnetwork
of T restricted toV , denoted byTV , is the STN with scope
V and constraintsTi, Tij for i, j ∈ V . Any solution ofT
of course will satisfy the constraints ofTV , soπV sol(T ) ⊆
sol(TV ). WhenπV sol(T ) = sol(TV ), the STN is said to be
locally minimalonV . We next consider two STNs with dif-
ferent scopesS1, S2 and constraint graphsG1, G2. Thejoin
of T1 andT2, denoted byT = T1∧T2, is the STN with scope
S1 ∪ S2 and constraint graph being the superimposition of
G1 andG2. All constraints inG1 (but not inG2) and inG2

(but not inG1) are taken fromT1 andT2 respectively, and
all constraints in bothG1 andG2 are the pairwise intersec-
tion between constraints ofT1 andT2. It is straightforward
to show thatsol(T1 ∧ T2) = sol(T1) ./ sol(T2).

An STN T has anequivalentminimal network represen-
tationT min whose constraints satisfyT min

i = π{i}sol(T ),
andT min

ij = π{i,j}sol(T ) for all i < j. Hence,T min is
locally minimal on{i} for all i, and on{i, j} for all pairs
(i, j). The constraint graph ofT min is thus a complete
graph. Further, it has been shown that STNs are alsobinary-
decomposable(Dechteret al. 1991), i.e., for every subset of
variablesV , the projectionπV sol(T ) is expressible as a bi-
nary constraint network. Further still, the minimal network
of πV sol(T ) is preciselyT min

V , the minimal network ofT ,
restricted toV . Thus for everyV , πV sol(T ) = sol(T min

V ).
Theminimalizationoperation to computeT min is the prin-
cipal inference task for STNs.

A weaker notion, thepartial minimal network,is denoted
by T pmin and defined by the set of constraintsT pmin

i =

π{i}sol(T ), andT pmin
ij = π{i,j}sol(T ) for all i < j and

(i, j) ∈ edges(G). The partial minimal network thus shares
the same constraint graphG with the original network, and

2In some representations, such as the one used by (Xu and
Choueiry 2003), unary domain constraints are modeled as binary
relations to a distinguishedtemporal referencetime-point, denoted
TR, which marks the start of time; thus, without loss of generality,
all constraints may be taken to have the binary form.



can be obtained from the minimal networkT min by remov-
ing all binary constraints on edges that are not present inG.
If the constraint graph ofT is triangulated, givenT pmin,
every solution toT can be constructed backtrack-free.

Variable and Clustering-Tree Elimination
Complementary to methods that solve a CSP based on the
iteration of narrowing operators, such as PC-1 and4STP
(which can be seen as AC-3 operating over triangles (Xu
and Choueiry 2003)), an alternative method for the general
CSP is calledadaptive consistencyor variable elimination
(Dechter 2003). Given a general (binary) CSPT with scope
S, consider two sets of variables (calledclusters), W and
V that together cover the constraint graphG (this means
W ∪ V = S and every edge inG belongs entirely inW or
in V ). If every path betweenW andV in G passes through
W ∩ V , we say that the two clusters are separated by their
separatorW ∩V , denoted bysep(W,V ). It is then possible
to project ontoW as follows:

πW sol(T ) = sol(TW ) ./ m(V,W ) (1)

wherem(V,W ) = πsep(V,W )sol(TV ) is themessagefrom
V to W . This operation effectively ‘eliminates’ all variables
in V −W . By eliminating the variables in a given order, we
can obtain the minimal constraints. The complexity of this
method thus hinges on the representation and the calculation
of the messages. Because of the difficulty in representing
the messages for variables with continuous domain, this idea
has not been applied to STNs whose domains are inherently
continuous (Dechter 2003, page 357).

Cluster-Tree Eliminationis a generalized variable elim-
ination method for computing the partial minimal network
T pmin for a triangulated constraint graph (Dechter 2003).
The algorithm works by decomposing the triangulated graph
G into a join-tree(also known asjunction-tree) over a set of
variables clusters{V1, . . . , VK} that cover the original graph
G. The verticesV1, . . . , VK of a join-tree have the property
that, for every tuple(i, j, k) such thatj lies on the path be-
tween(i, k), Vi ∩ Vk ⊂ Vj . Once a join-tree is constructed,
messages can be passed asynchronously among the clusters
along the edge of the join-tree. After two messages have
been passed, one in each direction, on every edge of the
join-tree, the resulting network can be shown to be locally
minimal on every clusterVi. Solving the local networks at
each cluster then yields all the minimal constraints needed
for the partial minimal network.

STN Propagation
Variable Elimination for STNs
We now focus on the STN. First observe that, since every
STN is binary decomposable, its projection onto an arbitrary
subset of variables can be computed and represented by the
minimal network. Applying this to the calculation of the
message in variable elimination yields

m(V,W ) = πsep(V,W ) (sol(TV )) = sol
(

(TV )min
sep(V,W )

)

(2)

The message thus can be represented compactly and conve-
niently as the STN(TV )min

sep(V,W ), which is simply the min-
imal network ofTV , restricted to the separator set. We call
this themessage STN, denoted byµ(V,W ). Using this com-
pact representation of the messages, we immediately obtain
an efficient variable elimination procedure:
Theorem 1. Consider an STNT and letV,W be two clus-
ters of variables that cover the constraint graphG. Suppose
thatV andW are separated bysep(V,W ) = V ∩W . Then
the projection ofT ontoW , πW sol(T ), can be represented
by the solution of the STN

(TW ∧ µ(V,W )) (3)

Proof. Substitute (2) into (1) and usesol(T1 ∧ T2) =
sol(T1) ./ sol(T2).

The above expression involves only a minimalization op-
eration onTV and a simple restriction to the separator set.
Any of the STN solvers described earlier that produces the
minimal network can be used for the former operation.3

The constraint graph of the STN(TV )min
sep(V,W ) is a com-

plete graph oversep(V,W ) (because minimalization creates
a complete constraint graph). So unlessT is also com-
plete oversep(V,W ), the operation in (3) will introduce
new edges to the original constraint graph ofT .

Message Passing for STNs
Once we have a compact representation of the messages, the
cluster-tree elimination algorithm can be applied immedi-
ately to compute the partial minimal networkT pmin. Let us
assume that we are given a join-treeJ over a set of clusters
V1, . . . , VK that cover the original constraint graphG. In
some cases, such a join-tree can be found from the structure
of G, as in the case of sibling-restricted STNs, or it can be
found by first triangulatingG and then extracting the set of
maximal cliques of the resulting triangulated graph.

The standard message passing scheme used in cluster-tree
elimination (Dechter 2003) computes a message from a clus-
terVi to a neighbouring clusterVj , using the messagesVi re-
ceived from its other neighbours. Representing the message
from Vi to Vj by the message STNµi,j , we obtain

µ
i,j =

��TVi
∧ �� �

k∈neighbour(i),k 6=j

µ
k,i����min

sep(Vi,Vj)

To compute each message requires a minimalization op-
eration over one cluster. After computing all such mes-
sages, we must go through each cluster and minimalize each
one (with the neighbour messages included). Since there
are 2(K − 1) messages to compute, we need a total of
2(K − 1) + K = 3K − 2 minimalization operations. At
the end, we obtain the minimal domainT min

i for all i, but
only T min

ij for those(i, j) that belong to the same cluster.
Since any edge inG must belong to one of the clusters, we
obtain the partial minimal network.

3PPC-based methods such as4STP can also be used; however,
the subgraph in the separator must be complete, and the subgraph
in V must be triangulated.
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Figure 1: Illustration of the separator setP .

An Improved Propagation Scheme
We can exploit specific properties of STN to make the mes-
sage passing scheme more efficient. In the above, one mini-
malization operation is needed for each message. However,
binary decomposability of STNs implies that all possible
projections ofT onto an arbitrary subset of its variables can
be computed in a single minimalization operation. Thus we
can rearrange the order of message passing so that one min-
imalization operation can compute multiple messages. Fur-
thermore, as we show below, it is possible to eliminate the
need to store the messages all together.

First, given the join-treeJ , a cluster orderingV1, . . . , VK

is termedvalid if wheneverVj lies on the path fromVi to
VK thenj ≥ i. Such a valid ordering can easily be created
by choosing an arbitrary cluster to beVK and treating it as
theroot of J . A valid cluster ordering then lists clusters that
are further away from the root first, and root cluster last.

Next, we define a simple operation on STNs, termedlocal
minimalization, which takes a subnetwork and replaces it
with its minimal network. To be precise, given a subset of
variablesV , a local minimalization onV returns the STN
lmin(T , V ) = T ∧ (TV )min. Since(TV )min ≡ TV , it is
trivial to seelmin(T , V ) ≡ T (since, ifT1 is a sub-STP of
T2, thenT1 ∧ T2 ≡ T2). Note that this operation makes the
constraint subgraph inV complete.

Lemma 2. Let T ′ = lmin(T , V ). If T is locally minimal
on someW ⊆ S then so isT ′.

Proof. Observe that T ′ constraints are tighter, so
πW sol(T ) = πW sol(T ′) ⊆ sol(T

′

W ) ⊆ sol(TW ).
So if πW sol(T ) = sol(TW ) then we must have equality,
which implies thatT

′

is also locally minimal onW .

Lemma 3. For anyP ⊂ V such thatP separatesV − P
andV̄ = S − V , T ′ is locally minimal onV̄ ∪ P .

Proof. For an illustration of the setsV , V̄ andP , see Figure
1. Let W = V̄ ∪ P , so thatP = sep(V,W ). Now by
Theorem 1,πW sol(T ) = sol

(

(TW ) ∧ (TV )min
P

)

. In this
equality, the LHS is the same asπW sol(T ′). In the RHS,
(TW ) ∧ (TV )min

P is the same asT
′

W . ThusπW sol(T ′) =

sol(T
′

W ) soT
′

is locally minimal onW .

Note that as long as we can find a separatorP that is a
proper subset ofV , thenV̄ ∪P is a proper subset ofS. Thus,
while the original STNT is (of course) locally minimal on

Algorithm 1 Prop-STP

1: T 0 = T
2: for i = 1, . . . ,K − 1 do { First Pass }
3: T i = lmin(T i−1, Vi)
4: end for
5: for i = K . . . 2K − 1 do { Second Pass }
6: T i = lmin(T i−1, V2K−i)
7: end for
8: returnT 2K−1

S, the new STNT ′ is locally minimal on a proper subset of
S. By repeatedly applying the same kind of operation, we
can obtain the minimal constraints.

We call this algorithmProp-STP; pseudo-code is shown
in Algorithm 1. We now show that this algorithm returns all
the minimal constraints of the original network.

Theorem 4. At the end of Prop-STP,T 2K−1 is locally
minimal on every clusterVk; furthermore, the subnetwork
T 2K−1

Vk
is a minimal network. As a result,T 2K−1 is locally

minimal on every variablei, and on every pair of variables
{i, j} for all (i, j) belonging to the same cluster.

Proof. We proceed by induction on the number of clusters
K in the join-tree. The base case is trivial, so assume the
theorem holds for any join-tree withK − 1 clusters.

Let S1 =
⋃

i≥2 Vi. SinceV1 must be a leaf node inJ , if

we letP = V1∩S1 thenP separatesV1−P from V 1. Thus
by Lemma 3,T 1 is locally minimal onV 1 ∪ P = S1.

Let T ′ = T 1
S1

be the subnetwork ofT 1 over S1 andJ ′

be the join-treeJ minus the clusterV1. Observe thatJ ′

hasK − 1 clusters and the orderingV2, . . . , VK is a valid
one forJ ′. Running Prop-STP onJ ′ would produce the
STNT 2K−2

S1
. Applying the inductive hypothesis, we obtain

that T 2K−2
S1

is locally minimal on allVi, i ≥ 2, as well
as on every variable and pair of variables contained within
these clusters. Observe thatT 2K−2 is locally minimal on
S1 (sinceT 1 is, and using Lemma 2), so the projection of
T 2K−2 onto Vi (i ≥ 2) is the same as the projection of
T 2K−2

S1
. It follows thatT 2K−2 itself is locally minimal on

all Vi, i ≥ 2, and on all variables and pairs of variables
within these clusters, and so isT 2K−1 (Lemma 2).

It remains to show thatT 2K−1 is also locally minimal
on V1 and the subnetworkT 2K−1

V1
is a minimal network.

By Theorem 1,πV1
sol(T 2K−2) is the solution of the STN

T 2K−2
V1

∧ (T 2K−2
S1

)min
P . Examining the separatorP , we

see that it must be a subset of someVi, i ≥ 2, so the rea-
soning in the previous paragraph implies that the subnet-
work T 2K−2

P is already a minimal one, that isT 2K−2
P =

(T 2K−2
S1

)min
P . Thus,πV1

sol(T 2K−2) is the solution of the

STNT 2K−2
V1

∧ T 2K−2
P = T 2K−2

V1
. Therefore,T 2K−2 is lo-

cally minimal onV1, and so isT 2K−1. Finally, the lastlmin
operation is invoked onV1, so after thatT 2K−1 is locally
minimal on every variable and pair of variables inV1.
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Figure 2: Left: STN; right: join-tree of clusters

Example Figure 2 depicts an STN arising from a hierar-
chical planning problem. The edges labeled with letters re-
fer to tasks; each such edge models the duration between
the start and end time-points of that task. For example, let-
ter A refers to two time-points (variables)Astart andAend.
The other edges model precedence constraints between par-
ent and child tasks, together with a representative sample
of other temporal constraints. The STN has the sibling-
restricted property, which provides a simple clustering of
the variables to yield the join-treeJ shown on the right.
The separators of each cluster are depicted in the rectangu-
lar boxes on the edges. On this STN, the first pass of Al-
gorithm 1 processes the clusters in an order such asDJK,
ELM , BDE, CFGH, ABC. Hence the clusterABC is
the root of the join-tree. The second pass processesCFGH,
BDE, ELM , DJK. A singlelmin operation onBDE in
the second pass effectively computes the two messages to
DJK andELM at once. At the end, we obtain the minimal
subnetwork for each cluster, and thus the partial minimal
network for the whole STN.

Analysis of the New Algorithm
Different variants of Prop-STP can be implemented using
different STN subsolvers to perform thelmin operation.
For example, using PC-1 (Floyd-Warshall) leads toProp-
PC1-STP. Since there are precisely2K − 1 lmin opera-
tions,4 each with complexityO(w3), the overall complexity
of Prop-PC1-STP isO(Kw3).

Since Prop-STP effectively completes the constraint
graph within each clusterVi, the resulting global constraint
graph is triangulated. In practice, one can triangulateG in
the initialization phase, and if so, the constraint graph is
already complete within each cluster. In this case, Prop-
STP returns the partial minimal network of the triangu-
lated G. Like other algorithms that work on triangulated
graph, such as PPC and4STP, our Prop-STP does not re-
turn the full minimal network. However, this is sufficient for
a triangulated graph since every solution can be constructed
backtrack-free from its partial minimal network.

It is interesting to examine the behavior of our algorithm
when we use4STP as the subsolver at each cluster (al-
though this is not likely to result in a performance improve-
ment since the subgraph at each cluster is already complete).

4Improvement can be made by keeping track of which clusters
have not been changed after thelmin operations in the first pass, so
that in the second pass we need not performlmin on them again.

In this case,Prop-4-STPwill process triangles inG, one
by one, but following the order imposed by our propagation
scheme: all triangles within each cluster are processed until
stabilized before moving on to triangles in another cluster.
As noted by (Xu and Choueiry 2003), the order in which tri-
angles are processed has a crucial effect on the performance
of 4STP. The improved order of triangle processing in our
algorithm also agrees with the intuition of the authors of the
4STP algorithm and others (Choueiry and Wilson 2006).

Experimental Results
We investigate the performance of Prop-STP on two bench-
marks: structured STNs arising from Hierarchical Task Net-
work (HTN) plans, and random unstructured STNs.

Sibling-Restricted STNs

HTN planning assumes a hierarchical flow, with high-level
tasks being decomposed progressively into collections of
lower-level tasks through the application of matching meth-
ods with satisfied preconditions. In asibling-restrictedSTN,
constraints may occur only between parent tasks and their
children, and between sibling tasks. This restriction on what
STN constraints may exist between plan elements is inher-
ent to HTN planning models; in particular, there is no way
in standard HTN representations to specify temporal con-
straints between tasks in different task networks (Erolet al.
1994). The specialized STN solver SR-PC (Yorke-Smith
2005) transverses a tree of sub-STNs that correspond to the
decompositions in the HTN plan. Because the STNs thus
considered are small, compared to theglobal STN corre-
sponding to the whole plan, the overall amount of work to
enforce PC is much less.5

Despite its success on benchmark problems from the PAS-
SAT plan authoring system (Myerset al. 2002), SR-PC
has two drawbacks. First, standard HTN representations
have been extended to support coordination between dif-
ferent task networks vialandmark variables(Castilloet al.
2006) that allow synchronization of key events in the plan.
SR-PC can accommodate a limited number of such land-
mark variables and their corresponding constraints, but only

5Observe that not only does SR-PC impose no additional limita-
tions on the expressiveness of HTNs, but also that the SR condition
guarantees we can propagate on the tree of sub-STNs and lose no
information compared to propagating with the whole global STN:
hence the algorithm SR-PC is sound and complete.
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Figure 3: Random SR STNs (left); Random general STNs (right)

awkwardly. Second, although not exhibited in practice, SR-
PC has poor and weakly characterized worst-case theoretical
complexity.6

The small tree-widthw of an SR network means that
Prop-STP will be particularly efficient for this class of STNs,
provided we can find an optimal or near-optimal decompo-
sition of the constraint graphG of the global STN into a
join-tree, and a cluster ordering over this tree. Fortunately,
there is a natural decomposition based on each parent taskT

and its childrenTi. Namely, we form into a cluster the start
and end time-point variables of taskT and all itsTi, and all
temporal relations between them (including those between
the children). Figure 2 illustrates this clustering. Sincetask
networks typically comprise a handful of tasks, the size of
each cluster is small. Therefore, performing minimalization
on each cluster, as done in Prop-STP, is much more efficient
than computing the minimal network for the global STN. In
general, if we consider a task network represented by a bal-
anced tree with depthd and branching factorf (hence the
number of nodes isO(fd)), the complexity of Prop-STP is
O(f2fd) (the join-tree hasO(fd−1) clusters, each with size
O(f)). We also note that an SR STN has no articulation
points.7 Because each task in the HTN corresponds to two
variables, as can be seen in Figure 2, the constraint graph
is biconnected and decomposes only via separator sets of
cardinality at least two. This hampers algorithms that seek
articulation points, whether explicitly such asF-W+AP, or
implicitly, such as4STP.

Prop-STP also allows us to explain the strong perfor-
mance of SR-PC in practice, compared to its poor worst-case
theoretical complexity. Implicitly, SR-PC works over the
natural join-tree for SR STNs. Its recursion through the tree
of sub-STNs corresponds to a certain, albeit non-optimal, set
of minimalization operations on the clusters. We infer that
the number of iterationsλ(Π) of the loop in Algorithm 1 of
(Yorke-Smith 2005) is bounded by 1, not 2, explaining the

6For uniform tree-shaped random SR STNs with a depth ofd,
a mean branching factor off , the expected time complexity of SR-
PC, using PC-1 as the subsolver, isΘ(f4fd) (Yorke-Smith 2005).

7This is true even when the STN is represented without unary
constraints, i.e., there is no temporal referenceTR that connects to
every time-point. In fact, planning systems such as PASSAT use
unary constraints in the STN representation, which precludes any
possibility of finding articulation points in the STN.

empirical observation that SR-PC does not reconsider sib-
ling sub-STNs once all other siblings have been processed.

Prop-STP on SR STNs
To validate the concept of Prop-STP, we implemented the
algorithm within the PASSAT HTN plan authoring system.
Figure 3 (left) compares Prop-STP with PC-1 as the sub-
solver, SR-PC with PC-1, and4STP (with triangles queued
at end of the queue) on SR STNs.8 The STNs were ex-
tracted from random plans with a uniform tree of tasks, as
described in (Yorke-Smith 2005). The figure shows run-
time (in seconds) as the mean branching factor of the HTN
plan increases (with depth fixed to five), representing ran-
dom problems with increasing tree-width. It indicates that
Prop-STP, which is not restricted to this specialized classof
STNs, is as efficient as SR-PC on this specialized class. As
expected,4STP exhibits a poorer performance, since, with
the triangle orderings of (Xu and Choueiry 2003), it is un-
able to exploit the SR structure to decompose the constraint
graph, nor the triangle ordering Prop-STP infers from the
join-tree. At the highest branching factors, the STNs are
largely over-constrained and thus inconsistent; all threeal-
gorithms detect this situation easily.

Prop-STP on Random STNs
We next report preliminary experimental results in compar-
ing the performance of Prop-STP and4STP on random
STNs. We experimented with two variants of Prop-STP, one
using PC-1 and the other using4STP as the STN subsolver.
The randomly generated STNs are produced by the genera-
tor of (Xu and Choueiry 2003).9 Figure 3 (right) compares
the algorithms on STNs with 30 time-points as the number
of constraints varies from a sparse to a complete graph (and
so the problems from under-constrained, through the critical
region, to over-constrained). The results confirm those in the
literature that4STP is most effective for sparse networks
(Shi et al. 2004). Prop-PC1-STP is relatively insensitive to
the constrainedness, while the performance of Prop-4-STP
is a blend of the two solvers from which it is composed.

8The experiments were conducted on a Sun Blade 1500 with 2
GB RAM, using Allegro Lisp 6.2; the results average 100 runs.

9Both the generator and the4STP source code to were kindly
made available to us by their authors.



Overall, we observe that PC-1 is somewhat more effective
as a subsolver than4STP within the Prop-STP framework
which may be attributed to the subnetworks (clusters) being
complete.

Our current Prop-STP implementation is written in Lisp
to allow a fair comparison with the existing Lisp-based im-
plementations of4STP and SR-PC, and to allow integration
with the PASSAT planning system. Although our reported
CPU times agree qualitatively with previous experiments re-
ported in (Xu and Choueiry 2003), on the absolute scale, our
CPU runtimes are generally higher, especially for networks
with a large number of edges or triangles. We attribute this
artifact to the simplistic memory handling of our Lisp envi-
ronment. We are currently working on the reimplementation
of the algorithms in Java to facilitate a direct and meaning-
ful comparison with PC-1 and other STN solvers. Even with
the current implementation, however, ourrelativecompari-
son of Prop-STP,4STP, and SR-PC is valid.

Conclusion
We have presented a new method,Prop-STP, for solving
Simple Temporal Networks. In contrast to methods based on
graph algorithms or on iteration of narrowing operators, our
algorithm is based on an efficient message passing scheme
over the join-tree of the network. The complexity of Prop-
STP depends on the minimalization operator, i.e. the STN
solver used to enforce path consistency on subproblems.
Thus consistency and the minimal constraints of an STN
(from which solutions can be derived backtrack-free) can
be determined with complexityO(Kw3) or better, where
K is the number of cliques andw is the induced tree-width.
For STNs with known and bounded tree-width, Prop-STP
thus achieves linear time complexity. The new propagation
scheme provides formal explanation of the performance of
the existing STN solvers4STP and SR-PC. For4STP, the
new algorithm also provides an efficient triangle ordering
based on the join-tree clusters.

Our motivation comes from the sibling-restricted STNs
that arise in HTN planning problems. Prop-STP is well-
suited to such STNs because these problems (1) have a small
tree-widthw, and (2) the SR structure leads to an easy way
to decompose the network into a join-tree. Prop-STP gener-
alizes the best-known solver, SR-PC, for this class of prob-
lems. It avoids the poor worst-case complexity of SR-PC,
and it can accommodate landmark variables in SR STNs.
At the same time, empirical results validate that Prop-STP
retains the efficiency of SR-PC on problems which the lat-
ter can solve. For general STNs, our preliminary empiri-
cal results on a benchmark of randomly generated networks
indicate that Prop-STP outperforms4STP, except for the
sparest networks. Prop-STP with PC-1 as the subsolver is
empirically more effective overall than with4STP as the
subsolver as the problem size increases.

In our future work, we plan to perform a more thorough
empirical evaluation of Prop-STP and other solvers on gen-
eral STNs, as well as on STNs that are “almost” sibling-
restricted. We also plan to explore the practical use of Prop-
STP in an HTN planning system with support for landmark
variables. Another direction for future work is to employ

Prop-STP in incremental STN solving, where time-points
and constraints are added or removed incrementally.
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