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Abstract

The Simple Temporal Network (STN) is a widely used frame-
work for reasoning about quantitative temporal constraints
over variables with continuous or discrete domains. De-
termining consistency and deriving the minimal network
are traditionally achieved by graph algorithms (e.g., Floyd-
Warshall, Johnson) or by iteration of narrowing operators
(e.g., ASTP). However, none of these existing methods ex-
ploit effectively the tree-decomposition structure of the con-
straint graph of an STN. Methods based on variable elimina-
tion (e.g., adaptive consistency) can exploit this structure, but
have not been applied to STNs, in part because it is unclear
how to efficiently pass the ‘messages’ over a set of continuous
domains. We first show that for an STN, these messages can
be represented compactly as sub-STNs. We then present an
efficient message passing scheme for computing the minimal
constraints of an STN. Analysis of the new algorithpnop-

STR brings formal explanation of the performance of the ex-
isting STN solversASTP and SR-PC. Preliminary empirical
results validate the efficiency of Prop-STP in cases where the
constraint network is known to have small tree-width, such as
those that arise in Hierarchical Task Network planning prob-
lems.

Introduction

Quantitative temporal constraints are essential for many
real-life planning and scheduling domains (Sméh al.

2000). Many systems adopt a Simple Temporal Network
(STN) (Dechteet al. 1991) to represent and reason over the
temporal aspects of such problems, associating time-<oint
with the start and end of actions, and modeling the temporal
relations by binary simple temporal constraints. We presen

or Johnson(complexity®(N?2log N + N M), where M is
the number of edges in the constraint graph) can be used
(Cormenet al. 1990).

To achieve better efficiency, significant efforts have been
made to apply more sophisticated constraint propagation
techniques to STN<Partial Path Consistenc{PPC) (Bliek
and Sam-Haroud 1999) can be applied to a triangulated con-
straint graph rather than a complete graph and is sufficient
for backtrack-free reconstruction of all solutions. Thetet
of-the-art ASTP (Xu and Choueiry 2003) is a specialized
solver based on PPC and operates over triangles of the tri-
angulated STN. If only consistency is required, but not the
minimal network,Directional Path ConsistencfDPC) can
be used with time complexity)(Nw?), wherew is the
induced tree-width along the node ordering used (Dechter
2003). Empirical comparisons on random STNs (Xu and
Choueiry 2003; Shet al. 2004) show thatASTP outper-
forms PC-1, Johnson’s Algorithm (“Bellman-Ford”), and is
comparable to (on dense graphs) or outperforms (on sparse
graphs) DPC. The complexity oASTP, unstated in (Xu
and Choueiry 2003), is not known, but can be bounded by
O(N?3).

Despite the variety of methods for solving STNs, no
dedicated STN solver takes full advantage of the tree-
decomposition of the STN constraint graph (i.e., the abilit
to decompose a constraint graph into a ‘tree’ of variable and
constraint clusters (Dechter and Pearl 1989)). One e>arepti
is the specialized solver SR-PC (Yorke-Smith 2005) that ex-
ploits the structure of STNs associated with plans in the Hi-
erarchical Task Network (HTN) planning paradigm (Eeol
al. 1994). The HTN planning process gives rise to STNs

a general, efficient message passing scheme for propagationyjith the sibling-restricted(SR) property. Such an SR-STN

of such constraints.

The central role of STNs in deployed planning systems
(Myers et al. 2002; Castilloet al. 2006) makes efficient
inference with STNs especially important. The two princi-
pal inference tasks, determining consistency of an STN and
deriving its minimal network, can be achieved by enforcing
path consistency (PC) (Dechtetral. 1991). The common
approach is to run an All-Pair Shortest Path graph algorithm
on thedistance graplof the STN. Algorithms such d@doyd-
Warshall(denoted F-W or PC-1) (time complexi€(N?)),
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can be decomposed into a tree of smaller sub-STNs, mirror-
ing the shape of the hierarchical structure in the plan. 8R-P

traverses this tree, invoking an STN solver at each sub-STN.
While SR-PC shows strong empirical performance on SR-

STN, it does not operate on general STNs.
In contrast to STNs, tree-decomposition methods are of-

ten applied to the general Constraint Satisfaction Prob-

lem (CSP). These methods, suchasiable elimination
(adaptive consistencygndcluster-tree eliminatiofDechter

2003), operate by decomposing a triangulated constraint
graph into a tree of variable clusters and solving the sub-

problem in each.



In this paper we apply the ideas of such tree- interval unary constraint¥; C R where7; = {z; | z; €
decomposition methods to the STN. We note that a direct [a;, b;]}; and a set of binary constraints; C R?, i < j
application of tree-decomposition method to the STNis non- where7;; = {(z;, ;) | #; — 2; < —a;j, ¥; — x; < b;;}.2
trivial. Since the STN represents a CSP withntinuous Generally, we assume that there a@evariables, saS =
variables, it is not clear how to represent the ‘messages’, {1,..., N}. Given an STNZ, its constraint graphG is an
i.e., the sets of additional constraints resulting frormeli undirected graph with vertices representing the variables
inating some variables. We first show that, for an STN, edge linksz; andz; iff the binary constrainf;; exists.
these messages can be represented compactly as sub-STNs. e differentiate the constraints represented’bgnd the
We then present an efficient message passing scheme, callede|ation they imply, denoted byol(7") and called thesolu-

Prop-STP Like ASTP, our Prop-STP requires the STN to
be triangulated. However, unlike STP, our algorithm oper-
ates over the set of maximal cliques of the triangulated con-
straint graph. The time complexity of Prop-STRI$K w?)
whereK is the number of cliques, andis the induced tree-
width (the size of the largest clique mini)s For STNs with
known and bounded tree-width (e.g., SR-STNs), Prop-STP
thus achieves linear time complexity, a substantial imgrov
ment over the use of All-Pair Shortest Path algorithms. We
demonstrated this empirically by showing that on struature

tion setof the STN. By definitionsol(7) is a relation with
scopesS that is the join of all the unary and binary constraints
7; and7;;. Thus every solution iBol(7) is an assignment

of values to time-points such that all constraints are satis
fied. Relational operators such as join and projection can
be applied on the solution set with the usual set semantics.
An STN isconsistentff its solution set is non-empty. Two
STNs are equivalent (denot&d = 7,) iff their solution sets

are the same, while two STNs are equal (den@tee- 75)

iff they contain exactly the same set of constraints.

SR-STNSs, Prop-STP achieves the same level of performance  \ye introduce some useful operators that operate directly

as the specialized solver SR-PC, while greatly outperform-
ing ASTP.

For general STNs, triangulation can be carried out effi-
ciently by greedy methods (Kjaerulff 1990). The results of
(Shiet al. 2004; Xu and Choueiry 2003) demonstrate empir-
ically that with a triangulation ste@\STP outperforms cur-
rent STN solvers. Our analysis of Prop-STP offers insight
into how to order the triangles id\STP, and also shows
that ASTP’s complexity can be characterized in terms of
the induced tree-width. Our preliminary experiments with
randomly generated STNs indicate that Prop-STP often per-
forms better tham\STP, thus, showing that it is more effi-
cient to operate on cliques rather than on triangles (as-anti
ipated by (Choueiry and Wilson 2006)).

The next section presents necessary background on STNs

and variable elimination. The following sections introduc

our message passing scheme for STNs and the resulting

Prop-STPalgorithm. We present a proof of its correctness
and analyze its theoretical complexity. Finally, we présen
preliminary empirical validation of Prop-STP on SR STNs.

Background

We are concerned with relations among a set of variables
{z;, i € S}, each taking values from the domak). A
relationR over .S is simply a subseR C HieS X;. The
index setS is called thescopeof R. We make use of two
standard relational operators, namely, projection andl. joi
The projection of a relatiofR onto the index set’ C S'is
denoted byry R, and the join ofR,; and R is denoted by

R1 < Ras.

Simple Temporal Networks
An STNis formally represented by a set of variables| i €
S}, representing time-points, with domatfy = R; a set of

YWhile one can consider STNs with discrete domains, we focus
on the more difficult case of continuous domains. The theory in

on7. LetV be a subset of the variables. The subnetwork
of 7 restricted toV/, denoted by7y,, is the STN with scope

V' and constraintg;, 7;; for ¢,5 € V. Any solution of 7

of course will satisfy the constraints @, somy sol(7) C
sol(Ty). Whenmy sol(T) = sol(7y ), the STN is said to be
locally minimalon V. We next consider two STNs with dif-
ferent scopes’, S, and constraint graphG;, Gs. Thejoin

of 7; and7;, denoted byl = 7; A75, is the STN with scope
S U Sz and constraint graph being the superimposition of
G1 andG,. All constraints inG; (but not inGs) and inGo
(but not inG,) are taken frontZ; and7; respectively, and
all constraints in botltz; andG- are the pairwise intersec-
tion between constraints @i and7;. It is straightforward

to show thatsol(7; A 73) = sol(71) < sol(73).

An STN 7 has arequivalentminimal network represen-
tation7 """ whose constraints satis®™"" = m;;s0l(7T),
and 77" = my; jys0l(T) for all i < j. Hence, 7™ is
locally minimal on{:} for all 7, and on{i, j} for all pairs
(i,7). The constraint graph of ™ is thus a complete
graph. Further, it has been shown that STNs arelzilsary-
decomposabl@echteret al. 1991), i.e., for every subset of
variablesV, the projectionry sol(7) is expressible as a bi-
nary constraint network. Further still, the minimal netor
of my s0l(T) is preciselyZ;7*", the minimal network off,
restricted tol/. Thus for every, my sol(7) = sol(T;7™").
The minimalizationoperation to comput& ™" is the prin-
cipal inference task for STNs.

A weaker notion, theartial minimal networkjs denoted
by 7P™ and defined by the set of constrairfs™"" =
mysol(T), andTE™" = my; jys0l(T) foralli < j and
(i,7) € edges(G). The partial minimal network thus shares
the same constraint graggh with the original network, and

2In some representations, such as the one used by (Xu and
Choueiry 2003), unary domain constraints are modeled as binary
relations to a distinguishee@mporal referencéme-point, denoted

this paper can be readily specialized to the discrete case, and the TR, which marks the start of time; thus, without loss of generality,

algorithm we present operates effectively for either case.

all constraints may be taken to have the binary form.



can be obtained from the minimal netwdfk**” by remov-
ing all binary constraints on edges that are not prese@t in
If the constraint graph of is triangulated, givery ?™",
every solution tdZ” can be constructed backtrack-free.

Variable and Clustering-Tree Elimination

The message thus can be represented compactly and conve-
niently as the STNTV)ZZZEMW)’ which is simply the min-
imal network of7y,, restricted to the separator set. We call
this themessage STNenoted by(V, W). Using this com-
pact representation of the messages, we immediately obtain

an efficient variable elimination procedure:

Complementary to methods that solve a CSP based on the Theorem 1. Consider an STN™ and letV, W be two clus-

iteration of narrowing operators, such as PC-1 d®TP
(which can be seen as AC-3 operating over triangles (Xu
and Choueiry 2003)), an alternative method for the general
CSP is callecadaptive consistenaoyr variable elimination
(Dechter 2003). Given a general (binary) CERvith scope

S, consider two sets of variables (calleblistery, W and

V' that together cover the constraint gragh(this means

W UV = S and every edge itr belongs entirely il or

in V). If every path betweell” andV in G passes through
W NV, we say that the two clusters are separated by their
separatorV NV, denoted byep(WW, V). Itis then possible

to project ontd¥V as follows:

mwsol(T) = sol(Tw ) < m(V, W) 1)
wherem (V, W) = myepv,wys0l(Ty) is themessagdrom

V to W. This operation effectively ‘eliminates’ all variables
in V — . By eliminating the variables in a given order, we
can obtain the minimal constraints. The complexity of this
method thus hinges on the representation and the calaulatio
of the messages. Because of the difficulty in representing
the messages for variables with continuous domain, thés ide

ters of variables that cover the constraint gra@gh Suppose
thatV andW are separated byep(V, W) =V NW. Then
the projection of7 onto W, mw sol(7), can be represented
by the solution of the STN

(Tw A p(V, W)

Proof. Substitute (2) into (1) and useol(7; A T3) =
sol(7T7) < sol(7T3). O

The above expression involves only a minimalization op-
eration on7y, and a simple restriction to the separator set.
Any of the STN solvers described earlier that produces the
minimal network can be used for the former operafion.
The constraint graph of the STWV)ZZ:EV,W) is a com-
plete graph ovesep(V, W) (because minimalization creates
a complete constraint graph). So unléssis also com-
plete oversep(V, W), the operation in (3) will introduce
new edges to the original constraint graplyof

3

Message Passing for STNs
Once we have a compact representation of the messages, the

has not been applied to STNs whose domains are inherently cluster-tree elimination algorithm can be applied immedi-

continuous (Dechter 2003, page 357).

Cluster-Tree Eliminatioris a generalized variable elim-
ination method for computing the partial minimal network
TPmin for a triangulated constraint graph (Dechter 2003).
The algorithm works by decomposing the triangulated graph
G into ajoin-tree (also known agunction-treg over a set of
variables cluster§V, . .., Vi } that cover the original graph
G. The verticedr, ..., Vi of a join-tree have the property
that, for every tupléi, j, k) such thatj lies on the path be-
tween(i, k), V; NV}, C V;. Once a join-tree is constructed,

messages can be passed asynchronously among the cluste

along the edge of the join-tree. After two messages have

been passed, one in each direction, on every edge of the

join-tree, the resulting network can be shown to be locally
minimal on every clustel;. Solving the local networks at
each cluster then yields all the minimal constraints needed
for the partial minimal network.

STN Propagation
Variable Elimination for STNs

We now focus on the STN. First observe that, since every
STN s binary decomposable, its projection onto an arljitrar

ately to compute the partial minimal netwdf®™". Let us
assume that we are given a join-tr€eover a set of clusters
Vi,..., Vi that cover the original constraint gragh In
some cases, such a join-tree can be found from the structure
of G, as in the case of sibling-restricted STNs, or it can be
found by first triangulating= and then extracting the set of
maximal cliques of the resulting triangulated graph.

The standard message passing scheme used in cluster-tree
elimination (Dechter 2003) computes a message from a clus-
terV; to a neighbouring clustér;, using the messagés re-
/seived from its other neighbours. Representing the message
from V; to V; by the message ST/, we obtain

min
TVi A /\ uk,i
keneighbour(i),k#j

To compute each message requires a minimalization op-
eration over one cluster. After computing all such mes-
sages, we must go through each cluster and minimalize each
one (with the neighbour messages included). Since there
are 2(K — 1) messages to compute, we need a total of
2(K — 1) + K = 3K — 2 minimalization operations. At
the end, we obtain the minimal domaiii™ for all 4, but

2V
pn =

sep(Vi,Vj)

subset of variables can be computed and represented by theonly Ti;m‘” for those(i, j) that belong to the same cluster.

minimal network. Applying this to the calculation of the
message in variable elimination yields

)

MV, W) = Taepivy (s0U(T)) = sol ((Tv)2tbtyan)

Since any edge i’ must belong to one of the clusters, we
obtain the partial minimal network.

3pPPC-based methods suchaSTP can also be used; however,
the subgraph in the separator must be complete, and the subgraph
in V- must be triangulated.



Algorithm 1 Prop-STP
1.7°=T

cfori=1,..., K —1 do{First Pass}
T!=Imin(T1 V)

end for

fori=K...2K — 1 do{Second Pass }
Tt = Zmin(’fi_l, VgKfi)

end for

: return7 2K -1

N RWN

Figure 1: lllustration of the separator det

i S, the new STNZ is locally minimal on a proper subset of

An Improved Propagation Scheme S. By repeatedly applying the same kind of operation, we
We can exploit specific properties of STN to make the mes- can obtain the minimal constraints.
sage passing scheme more efficient. In the above, one mini- We call this algorithmProp-STP pseudo-code is shown
malization operation is needed for each message. However, in Algorithm 1. We now show that this algorithm returns all
binary decomposability of STNs implies that all possible the minimal constraints of the original network.
projections of/” onto an arbitrary subset of its variables can oK1
be computed in a single minimalization operation. Thus we 1heorem 4. At the end of Prop-STPT is locally
can rearrange the order of message passing so that one min—m'”'ml""l_ on every clusteV}; furthermore, the subnetwork
imalization operation can compute multiple messages. Fur- 7y, is a minimal network. As a resulf;*” " is locally
thermore, as we show below, it is possible to eliminate the Minimal on every variablé, and on every pair of variables
need to store the messages all together. {i, 7} forall (i, j) belonging to the same cluster.

First, given the join-treg7, a cluster ordering’, . .., Vi
is termedvalid if wheneverV; lies on the path fronV; to . .
Vi thenj > i. Such a valid ordering can%asily br;Vcreated Proof. We proceed by induction on the number of clusters
by choosing an arbitrary cluster to b& and treating it as K in the join-tree. Thg pase caseé IS trivial, so assume the
theroot of 7. A valid cluster ordering then lists clusters that ~theorem holds for any join-tree with —1 clusters.
are further away from the root first, and root cluster last. Let Sy = U;», Vi- SinceVy must be a leaf node igy, if

Next, we define a simple operation on STNs, terroedl we letP =V, NS, thenP separate$; — P from V1. Thus
minimalization which takes a subnetwork and replaces it by Lemma 37" is locally minimal onV; U P = S;.
with its minimal network. To be precise, given a subset of Let 7/ = Tsll be the subnetwork of ! over S; and J’
variablesV’, a local minimalization ori” returns the STN be the join-tree7 minus the clustel;. Observe that7’
Imin(T,V) = T A (Ty)™". Since(Ty)™" = Ty, itis hasK — 1 clusters and the ordering, . .., Vi is a valid
trivial to seelmin(7,V) = T (since, ifTy is asub-STP of  one for 7. Running Prop-STP o7’ would produce the
Ty, thenT} A Ty = T5). Note that this operation makes the STN 7—52le2' Applying the inductive hypothesis, we obtain

constraint subgraph i ?omplete. _ o that 732 is locally minimal on allV;, i > 2, as well
Lemma 2. Let7’ = Imin(7,V). If T is locally minimal as on every variable and pair of variables contained within
on soméV C S then soisT”. these clusters. Observe tHAEX~2 is locally minimal on
S; (sinceT! is, and using Lemma 2), so the projection of

, . .
Proof. Observe that 7’/ constraints are tighter, so T2K=2 onto V7, (i > 2) is the same as the projection of

gW‘?fOI(T) et W_VVSOZZ(?) t%] sol(Tyy) tgh SOZ(TW)I-.t 7252 It follows that7 2%~ itself is locally minimal on

0 1t mw so (7) = e (Zw) then we must have equality, — 4ji'y;, i > 2, and on all variables and pairs of variables
which implies that7" is also locally minimal orit. O within these clusters, and soT&5~1 (Lemma 2).

Lemma 3. For any P  V such thatP separates/ — P It remains to show thaff'zi:l i§ also .Io.cally minimal
andV = S — V, 7" is locally minimal onV/ U P. on Vi and the subnetworky is a minimal network.

. . _ . By Theorem 1y, sol(7T25-2) is the solution of the STN
Proof. For an illustration of the sefg, V and P, see Figure T‘gK—Q A (T;K—Q)jgm_ Examining the separataP, we

1. LetW = V UP, sothatP = sep(V,W). Now by see that it must be a subset of sofjei > 2, so the rea-

Theorem 1w sol(T) = sol ((Tw) A (Ty)™). In this soning in the previous paragraph implies that the subnet-

equality, the LHS is the same asy sol(7”). In the RHS, work Tng—2 is already a minimal one, that IEIEK‘Q _

(Tw) A (Tv)p™ is the same agy,. Thusmw sol(7”) = (T3K=2)pin. Thus,my, sol(T2K~2) is the solution of the
[(7;,) s07 is locally minimal oniV. O - - - —2

sol(Tyy) y STN TV?IK_ IANTRET? = T@}K 2, Ther.efore,T2K 2 s lo-
Note that as long as we can find a separdtahat is a  Ccally minimal onV;, and so is7 2% 1. Finally, the lastmin

proper subset of , then? U P is a proper subset ¢f. Thus, operation is invoked oi¥;, so after that7 =" " is locally

while the original STNT is (of course) locally minimal on ~ Minimal on every variable and pair of variablesiin [
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Figure 2: Left: STN; right: join-tree of clusters

Example Figure 2 depicts an STN arising from a hierar-
chical planning problem. The edges labeled with letters re-

In this caseProp-A-STPwill process triangles iz, one
by one, but following the order imposed by our propagation

fer to tasks; each such edge models the duration betweenscheme: all triangles within each cluster are processeald unt
the start and end time-points of that task. For example, let- stabilized before moving on to triangles in another cluster

ter A refers to two time-points (variableg); ... and A¢,,4.

As noted by (Xu and Choueiry 2003), the order in which tri-

The other edges model precedence constraints between parangles are processed has a crucial effect on the performance
ent and child tasks, together with a representative sample of ASTP. The improved order of triangle processing in our

of other temporal constraints. The STN has the sibling-
restricted property, which provides a simple clustering of
the variables to yield the join-treg shown on the right.

The separators of each cluster are depicted in the rectangu-

lar boxes on the edges. On this STN, the first pass of Al-
gorithm 1 processes the clusters in an order such 4%/,
ELM, BDE, CFGH, ABC. Hence the clusteABC is
the root of the join-tree. The second pass proceS9e§ H,
BDE, ELM, DJK. A singlelmin operation onBDFE in

algorithm also agrees with the intuition of the authors ef th
ASTP algorithm and others (Choueiry and Wilson 2006)

Experimental Results

We investigate the performance of Prop-STP on two bench-
marks: structured STNs arising from Hierarchical Task Net-
work (HTN) plans, and random unstructured STNs.

the second pass effectively computes the two messages toSibling-Restricted STNs

DJK andELM atonce. At the end, we obtain the minimal
subnetwork for each cluster, and thus the partial minimal
network for the whole STN.

Analysis of the New Algorithm

Different variants of Prop-STP can be implemented using
different STN subsolvers to perform thein operation.
For example, using PC-1 (Floyd-Warshall) leadsPtop-
PC1-STP Since there are preciseB/i — 1 Imin opera-
tions;! each with complexity? (w?), the overall complexity

of Prop-PC1-STP i©(Kw?).

Since Prop-STP effectively completes the constraint
graph within each clustér;, the resulting global constraint
graph is triangulated. In practice, one can triangu@tm
the initialization phase, and if so, the constraint graph is
already complete within each cluster. In this case, Prop-
STP returns the partial minimal network of the triangu-
lated G. Like other algorithms that work on triangulated
graph, such as PPC addSTP, our Prop-STP does not re-
turn the full minimal network. However, this is sufficientfo
a triangulated graph since every solution can be consttucte
backtrack-free from its partial minimal network.

It is interesting to examine the behavior of our algorithm
when we useASTP as the subsolver at each cluster (al-
though this is not likely to result in a performance improve-

ment since the subgraph at each cluster is already complete)

“Improvement can be made by keeping track of which clusters
have not been changed after thein operations in the first pass, so
that in the second pass we need not performin on them again.

HTN planning assumes a hierarchical flow, with high-level
tasks being decomposed progressively into collections of
lower-level tasks through the application of matching meth
ods with satisfied preconditions. Irstbling-restrictedSTN,
constraints may occur only between parent tasks and their
children, and between sibling tasks. This restriction oatwvh
STN constraints may exist between plan elements is inher-
ent to HTN planning models; in particular, there is no way
in standard HTN representations to specify temporal con-
straints between tasks in different task networks (Etall.
1994). The specialized STN solver SR-PC (Yorke-Smith
2005) transverses a tree of sub-STNs that correspond to the
decompositions in the HTN plan. Because the STNs thus
considered are small, compared to tjlebal STN corre-
sponding to the whole plan, the overall amount of work to
enforce PC is much leSs.

Despite its success on benchmark problems from the PAS-
SAT plan authoring system (Myemst al. 2002), SR-PC
has two drawbacks. First, standard HTN representations
have been extended to support coordination between dif-
ferent task networks viandmark variablegCastilloet al.
2006) that allow synchronization of key events in the plan.
SR-PC can accommodate a limited number of such land-
mark variables and their corresponding constraints, biyt on

SObserve that not only does SR-PC impose no additional limita-
tions on the expressiveness of HTNs, but also that the SR condition
guarantees we can propagate on the tree of sub-STNs and lose no
information compared to propagating with the whole global STN:
hence the algorithm SR-PC is sound and complete.
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awkwardly. Second, although not exhibited in practice, SR- empirical observation that SR-PC does not reconsider sib-
PC has poor and weakly characterized worst-case thedretica ling sub-STNs once all other siblings have been processed.
complexity®

The small tree-widthw of an SR network means that
Prop-STP will be particularly efficient for this class of SN
provided we can find an optimal or near-optimal decompo-
sition of the constraint graptir of the global STN into a
join-tree, and a cluster ordering over this tree. Fortugate
there is a natural decomposition based on each pareriTtask
and its childreril';. Namely, we form into a cluster the start
and end time-point variables of ta3kand all itsT};, and all
temporal relations between them (including those between
the children). Figure 2 illustrates this clustering. Sitesk

Prop-STP on SR STNs

To validate the concept of Prop-STP, we implemented the
algorithm within the PASSAT HTN plan authoring system.
Figure 3 (left) compares Prop-STP with PC-1 as the sub-
solver, SR-PC with PC-1, anfiSTP (with triangles queued

at end of the queue) on SR STRisThe STNs were ex-
tracted from random plans with a uniform tree of tasks, as
described in (Yorke-Smith 2005). The figure shows run-
time (in seconds) as the mean branching factor of the HTN
: / . plan increases (with depth fixed to five), representing ran-
networks typically comprise a handful of tasks, the size of 4om problems with increasing tree-width. It indicates that
each cluster is small. Therefore, performing minimal@ati  prop-STP, which is not restricted to this specialized otdss
on each cluster, as done in Prop-STP, is much more efficient gTns s as efficient as SR-PC on this specialized class. As
than computing the minimal network for the global STN. In  eynected ASTP exhibits a poorer performance, since, with
general, if we consider a task network represented by a bal- {he triangle orderings of (Xu and Choueiry 2003), it is un-
anced tree with deptti dand branching factof (hence the able to exploit the SR structure to decompose the constraint
nqubedr of nodes i®)(f)), th% clomplexny of Prop-STPis  graph, nor the triangle ordering Prop-STP infers from the
O(f=f°) (the join-tree ha®)(f~") clusters, each with size  jqin ree. At the highest branching factors, the STNs are

O(f)). We also note that an SR STN has no articulation |argely over-constrained and thus inconsistent; all thrlee
points! Because each task in the HTN corresponds to two gorithms detect this situation easily.

variables, as can be seen in Figure 2, the constraint graph
is biconnected and decomposes only via separator sets ofpyop-STP on Random STNs

cardinality at least two. This hampers algorithms that seek
articulation points, whether explicitly such &sW+AP, or
implicitly, such asASTP.

Prop-STP also allows us to explain the strong perfor-

mance of SR-PC in practice, compared to its poor worst-case

theoretical complexity. Implicitly, SR-PC works over the
natural join-tree for SR STNs. Its recursion through the tre
of sub-STNs corresponds to a certain, albeit non-optinaal, s
of minimalization operations on the clusters. We infer that
the number of iteration&(II) of the loop in Algorithm 1 of
(Yorke-Smith 2005) is bounded by 1, not 2, explaining the

®For uniform tree-shaped random SR STNs with a deptth, of
a mean branching factor ¢gf the expected time complexity of SR-
PC, using PC-1 as the subsolver@isf* f) (Yorke-Smith 2005).
"This is true even when the STN is represented without unary
constraints, i.e., there is no temporal referefidethat connects to
every time-point. In fact, planning systems such as PASSAT use

unary constraints in the STN representation, which precludes any

possibility of finding articulation points in the STN.

We next report preliminary experimental results in compar-
ing the performance of Prop-STP adeSTP on random
STNs. We experimented with two variants of Prop-STP, one
using PC-1 and the other usidgSTP as the STN subsolver.
The randomly generated STNs are produced by the genera-
tor of (Xu and Choueiry 2003).Figure 3 (right) compares
the algorithms on STNs with 30 time-points as the number
of constraints varies from a sparse to a complete graph (and
so the problems from under-constrained, through the atitic
region, to over-constrained). The results confirm thoskeén t
literature thatASTP is most effective for sparse networks
(Shiet al. 2004). Prop-PC1-STP is relatively insensitive to
the constrainedness, while the performance of RkeSTP

is a blend of the two solvers from which it is composed.

8The experiments were conducted on a Sun Blade 1500 with 2
GB RAM, using Allegro Lisp 6.2; the results average 100 runs.

Both the generator and th®STP source code to were kindly
made available to us by their authors.



Overall, we observe that PC-1 is somewhat more effective
as a subsolver thaASTP within the Prop-STP framework
which may be attributed to the subnetworks (clusters) being
complete.

Our current Prop-STP implementation is written in Lisp
to allow a fair comparison with the existing Lisp-based im-
plementations ofASTP and SR-PC, and to allow integration
with the PASSAT planning system. Although our reported
CPU times agree qualitatively with previous experimerts re
ported in (Xu and Choueiry 2003), on the absolute scale, our
CPU runtimes are generally higher, especially for networks
with a large number of edges or triangles. We attribute this
artifact to the simplistic memory handling of our Lisp envi-
ronment. We are currently working on the reimplementation
of the algorithms in Java to facilitate a direct and meaning-
ful comparison with PC-1 and other STN solvers. Even with
the current implementation, however, aafative compari-
son of Prop-STRASTP, and SR-PC is valid.

Conclusion
We have presented a new methd&tpp-STR for solving
Simple Temporal Networks. In contrast to methods based on
graph algorithms or on iteration of narrowing operators, ou

algorithm is based on an efficient message passing scheme

over the join-tree of the network. The complexity of Prop-
STP depends on the minimalization operator, i.e. the STN
solver used to enforce path consistency on subproblems.
Thus consistency and the minimal constraints of an STN
(from which solutions can be derived backtrack-free) can
be determined with complexity)(Kw?) or better, where
K is the number of cliques and is the induced tree-width.
For STNs with known and bounded tree-width, Prop-STP
thus achieves linear time complexity. The new propagation
scheme provides formal explanation of the performance of
the existing STN solver&STP and SR-PC. FohSTP, the
new algorithm also provides an efficient triangle ordering
based on the join-tree clusters.

Our motivation comes from the sibling-restricted STNs
that arise in HTN planning problems. Prop-STP is well-

suited to such STNs because these problems (1) have a small

tree-widthw, and (2) the SR structure leads to an easy way
to decompose the network into a join-tree. Prop-STP gener-
alizes the best-known solver, SR-PC, for this class of prob-
lems. It avoids the poor worst-case complexity of SR-PC,
and it can accommodate landmark variables in SR STNs.
At the same time, empirical results validate that Prop-STP
retains the efficiency of SR-PC on problems which the lat-
ter can solve. For general STNs, our preliminary empiri-
cal results on a benchmark of randomly generated networks
indicate that Prop-STP outperforrdsSTP, except for the
sparest networks. Prop-STP with PC-1 as the subsolver is
empirically more effective overall than withSTP as the
subsolver as the problem size increases.

In our future work, we plan to perform a more thorough
empirical evaluation of Prop-STP and other solvers on gen-
eral STNs, as well as on STNs that are “almost” sibling-
restricted. We also plan to explore the practical use of Prop
STP in an HTN planning system with support for landmark
variables. Another direction for future work is to employ

Prop-STP in incremental STN solving, where time-points
and constraints are added or removed incrementally.
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