
Efficient Message Passing and Propagation of Simple Temporal Constraints:
Results on Semi-Structured Networks

Hung H. Bui and Mabry Tyson and Neil Yorke-Smith∗

Artificial Intelligence Center, SRI International
333 Ravenswood Ave., Menlo Park, CA 94025, USA

{bui,tyson,nysmith}@AI.SRI.COM

Abstract

The familiar Simple Temporal Network (STN) is a widely
used framework for reasoning about quantitative temporal
constraints over variables with continuous or discrete do-
mains. The inference tasks of determining consistency and
deriving the minimal network are traditionally achieved by
graph algorithms (e.g., Floyd-Warshall, Johnson) or by it-
eration of narrowing operators (e.g., 4STP). However,
none of these existing methods exploit effectively the tree-
decomposition structure of the constraint graph of an STN.
Methods based on variable elimination (e.g., adaptive consis-
tency) can exploit this structure, but have not been applied to
STNs as far as they could, in part because it is unclear how
to efficiently pass the ‘messages’ over a set of continuous do-
mains. We first show that for an STN, these messages can
be represented compactly as sub-STNs. We then present an
efficient message passing scheme for computing the minimal
constraints of an STN. Analysis of this algorithm, Prop-STP,
brings formal explanation of the performance of the existing
STN solvers 4STP and SR-PC. Empirical results validate
the efficiency of Prop-STP, demonstrating performance com-
parable to 4STP, in cases where the constraint network is
known to have small tree-width, such as those that arise in
Hierarchical Task Network planning problems.

Introduction
Quantitative temporal constraints are essential for many
real-life planning and scheduling domains (Smith et al.
2000). Many systems adopt a Simple Temporal Network
(STN) (Dechter et al. 1991) to represent and reason over the
temporal aspects of such problems, associating time-points
with the start and end of actions, and modeling the temporal
relations by binary simple temporal constraints. We present
a general, efficient message passing scheme for propaga-
tion of such constraints, and evaluate its insights for semi-
structured networks that arise in HTN planning systems.

The central role of STNs in deployed planning systems
(Laborie and Ghallab 1995; Myers et al. 2002; Bresina et
al. 2005; Castillo et al. 2006) makes efficient inference
with STNs especially important. The two principal infer-
ence tasks, determining consistency of an STN and deriv-
ing its minimal network, can be achieved by enforcing path
consistency (PC) (Dechter et al. 1991). The common ap-
proach is to run an All-Pair Shortest Path graph algorithm

∗Corresponding author

on the distance graph of the STN. Algorithms such as Floyd-
Warshall (denoted F-W or PC-1) (time complexity Θ(N3)),
or Johnson (complexity Θ(N2 log N + NM), where M is
the number of edges in the constraint graph) can be used
(Cormen et al. 1990).

To achieve better efficiency, significant efforts have been
made to apply more sophisticated constraint propagation
techniques to STNs. Partial Path Consistency (PPC) (Bliek
and Sam-Haroud 1999) can be applied to a triangulated con-
straint graph rather than a complete graph and is sufficient
for backtrack-free reconstruction of all solutions. The state-
of-the-art 4STP (Xu and Choueiry 2003) is a specialized
solver based on PPC and operates over triangles of the tri-
angulated STN. If only consistency is required, but not the
minimal network, Directional Path Consistency (DPC) can
be used with time complexity O(Nw2), where w is the
induced tree-width along the node ordering used (Dechter
2003). Empirical comparisons on random STNs (Xu and
Choueiry 2003; Shi et al. 2004) show that 4STP outper-
forms PC-1, Johnson’s Algorithm (“Bellman-Ford”), and is
comparable to (on dense graphs) or outperforms (on sparse
graphs) DPC. Although the worst-case time complexity of
4STP, unstated in (Xu and Choueiry 2003), is not known,
it can be bounded by O(N3).

Despite the variety of methods, no dedicated STN solver
takes full advantage of the tree-decomposition of the STN
constraint graph, namely, the ability to decompose a con-
straint graph into a ‘tree’ of variable and constraint clusters
(Dechter and Pearl 1989). One exception is the specialized
solver SR-PC (Yorke-Smith 2005) that exploits the struc-
ture of STNs associated with plans in the Hierarchical Task
Network (HTN) planning paradigm (Erol et al. 1994). The
HTN planning process gives rise to STNs with the sibling-
restricted (SR) property. Such an SR-STN can be decom-
posed into a tree of smaller sub-STNs, mirroring the shape
of the hierarchical structure in the plan. SR-PC traverses
this tree, invoking an STN solver at each sub-STN. While
SR-PC shows strong empirical performance on SR-STN, it
does not operate on general STNs.

In contrast to STNs, tree-decomposition methods are of-
ten applied to the general Constraint Satisfaction Prob-
lem (CSP). These methods, such as variable elimination
(adaptive consistency) and cluster-tree elimination (CTE)
(Dechter 2003), operate by decomposing a triangulated con-
straint graph into a tree of variable clusters and solving the
sub-problem in each. Sophisticated decomposition-based



methods for the (discrete) CSP (e.g., (Jégou and Terrioux
2003)) have enjoyed success on appropriate problems (e.g.,
(Larrosa et al. 2005)); they can be seen as specializations of
CTE and other generic variable elimination methods.

In this paper we apply the ideas of such tree-
decomposition methods to the STN. Note that a direct ap-
plication of tree-decomposition methods to the STN is non-
trivial. Since the STN represents a CSP with continuous
variables, it is not clear how to represent the ‘messages’,
i.e., the sets of additional constraints resulting from elim-
inating some variables. We first show that, for an STN,
these messages can be represented compactly as sub-STNs.
We then present an efficient message-passing scheme, called
Prop-STP. Like4STP, Prop-STP requires the STN to be tri-
angulated; however, unlike 4STP, Prop-STP operates over
the set of maximal cliques of the triangulated constraint
graph. The time complexity of Prop-STP is O(Kw3) where
K is the number of cliques, and w is the induced tree-width
(the size of the largest clique minus 1). For STNs with
known and bounded tree-width (e.g., SR-STNs), Prop-STP
thus achieves linear time complexity, a substantial improve-
ment over the use of All-Pair Shortest Path algorithms. Em-
pirically, Prop-STP achieves the same level of performance
on structured SR-STNs as the specialized solver SR-PC.

For general STNs, triangulation can be carried out ef-
ficiently by greedy methods (Kjaerulff 1990). Empirical
results demonstrate that with a triangulation step, 4STP
outperforms earlier STN solvers (Shi et al. 2004; Xu and
Choueiry 2003). Our analysis of Prop-STP offers insight
into how to order the triangles in4STP, and also shows that
4STP’s complexity can be characterized in terms of the in-
duced tree-width. Experiments with semi-structured STNs
with limited tree-width indicate that Prop-STP performs at
least comparably with 4STP, even when provided with no
information about the STN structure. This indicates that it is
more efficient to operate on cliques rather than on triangles,
as anticipated by (Choueiry and Wilson 2006).

Background and Terminology
We begin with the background necessary for the message
passing scheme for STNs and the resulting Prop-STP algo-
rithm. We are concerned with relations among a set of vari-
ables {xi, i ∈ S}, each taking values from the domain Xi.
A relation R over S is simply a subset R ⊆

∏
i∈S Xi. The

index set S is called the scope of R. We make use of two
standard relational operators: projection and join. Denote
the projection of a relation R onto the index set V ⊆ S by
πVR, and the join of R1 and R2 by R1 ./ R2.

Simple Temporal Networks
A STN is represented by a set of variables {xi| i ∈ S},
representing time-points, with domain Xi = R1; a set of
interval unary constraints Ti ⊂ R, where Ti = {xi | xi ∈
[ai, bi]}; and a set of binary constraints Tij ⊂ R2, i < j

1While one can consider STNs with discrete domains, we focus
on the more difficult case of continuous domains. The theory in
this paper can be readily specialized to the discrete case, and the
algorithm we evaluate operates effectively for either case.

where Tij = {(xi, xj) | xi − xj ≤ −aij , xj − xi ≤ bij}.2
Generally, we assume that there are N variables, so S =
{1, . . . , N}. Given an STN T , its constraint graph G is an
undirected graph with vertices representing the variables; an
edge links xi and xj iff the binary constraint Tij exists.

We differentiate the constraints represented by T and the
relation they imply, denoted by sol(T ) and called the solu-
tion set of the STN. By definition, sol(T ) is a relation with
scope S that is the join of all the unary and binary constraints
Ti and Tij . Thus every solution in sol(T ) is an assignment
of values to time-points such that all constraints are satis-
fied. Relational operators such as join and projection can
be applied on the solution set with the usual set semantics.
An STN is consistent iff its solution set is non-empty. Two
STNs are equivalent (denoted T1 ≡ T2) iff their solution sets
are the same, while two STNs are equal (denoted T1 = T2)
iff they contain exactly the same set of constraints.

We introduce some useful operators that operate directly
on T . Let V be a subset of the variables. The subnetwork
of T restricted to V , denoted by TV , is the STN with scope
V and constraints Ti, Tij for i, j ∈ V . Any solution of T
of course will satisfy the constraints of TV , so πV sol(T ) ⊆
sol(TV ). When πV sol(T ) = sol(TV ), the STN is said to be
locally minimal on V . We next consider two STNs with dif-
ferent scopes S1, S2 and constraint graphs G1, G2. The join
of T1 and T2, denoted by T = T1∧T2, is the STN with scope
S1 ∪ S2 and constraint graph being the superimposition of
G1 and G2. All constraints in G1 (but not in G2) and in G2

(but not in G1) are taken from T1 and T2 respectively, and
all constraints in both G1 and G2 are the pairwise intersec-
tion between constraints of T1 and T2. It is straightforward
to show that sol(T1 ∧ T2) = sol(T1) ./ sol(T2).

An STN T has an equivalent minimal network represen-
tation T min whose constraints satisfy T min

i = π{i}sol(T ),
and T min

ij = π{i,j}sol(T ) for all i < j. Hence, T min is
locally minimal on {i} for all i, and on {i, j} for all pairs
(i, j). The constraint graph of T min is thus a complete
graph. Further, it has been shown that STNs are also binary
decomposable (Dechter et al. 1991), i.e., for every subset of
variables V , the projection πV sol(T ) is expressible as a bi-
nary constraint network. Further still, the minimal network
of πV sol(T ) is precisely T min

V , the minimal network of T ,
restricted to V . Thus for every V , πV sol(T ) = sol(T min

V ).
The minimalization operation to compute T min is the prin-
cipal inference task for STNs.

A weaker notion, the partial minimal network, is denoted
by T pmin and defined by the set of constraints T pmin

i =
π{i}sol(T ), and T pmin

ij = π{i,j}sol(T ) for all i < j and
(i, j) ∈ edges(G). The partial minimal network thus shares
the same constraint graph G with the original network, and
can be obtained from the minimal network T min by remov-
ing all binary constraints on edges that are not present in G.
If the constraint graph of T is triangulated, given T pmin,
every solution to T can be constructed backtrack-free.

2In some representations, such as the one used by (Xu and
Choueiry 2003), unary domain constraints are modelled as binary
relations to a distinguished temporal reference time-point, denoted
TR, which marks the start of time; thus, without loss of generality,
all constraints may be taken to have the binary form.



Variable and Clustering-Tree Elimination
Complementary to methods that solve a CSP based on the
iteration of narrowing operators, such as PC-1 and 4STP
(which can be seen as AC-3 operating over triangles (Xu
and Choueiry 2003)), an alternative method for the general
CSP is called adaptive consistency or variable elimination
(Dechter 2003). Given a general (binary) CSP T with scope
S, consider two sets of variables (called clusters), W and
V that together cover the constraint graph G (this means
W ∪ V = S and every edge in G belongs entirely in W or
in V ). If every path between W and V in G passes through
W ∩ V , we say that the two clusters are separated by their
separator W ∩V , denoted by sep(W,V ). It is then possible
to project onto W as follows:

πW sol(T ) = sol(TW ) ./ m(V,W ) (1)

where m(V,W ) = πsep(V,W )sol(TV ) is the message from
V to W . This operation effectively ‘eliminates’ all variables
in V −W . By eliminating the variables in a given order, we
can obtain the minimal constraints. The complexity of this
method thus hinges on the representation and the calculation
of the messages. Because of the difficulty in representing
the messages for variables with continuous domain, this idea
has not been applied to STNs whose domains are inherently
continuous (Dechter 2003, page 357).3

Cluster-Tree Elimination is a generalized variable elim-
ination method for computing the partial minimal network
T pmin for a triangulated constraint graph (Dechter 2003).
The algorithm works by decomposing the triangulated graph
G into a join-tree (or a junction-tree) over a set of variables
clusters {V1, . . . , VK} that cover the original graph G. The
vertices V1, . . . , VK of a join-tree have the property that, for
every tuple (i, j, k) s.t. j lies on the path between (i, k),
Vi ∩ Vk ⊂ Vj . Once a join-tree is constructed, messages
can be passed asynchronously among the clusters along its
edges. After a message has been passed in each direction
on every edge of the join-tree, the resulting network can be
shown to be locally minimal on every cluster Vi. Solving
the local networks at each cluster then yields all the minimal
constraints needed for the partial minimal network.

STN Propagation: Prop-STP
Variable Elimination for STNs
We now focus on the STN. First observe that, since every
STN is binary decomposable, its projection onto an arbitrary
subset of variables can be computed and represented by the
minimal network. Applying this to the calculation of the
message in variable elimination yields

m(V,W ) = πsep(V,W ) (sol(TV )) = sol
(
(TV )min

sep(V,W )

)
(2)

The message thus can be represented compactly and conve-
niently as the STN (TV )min

sep(V,W ), which is simply the min-
imal network of TV , restricted to the separator set. We call

3Sophisticated decomposition-based methods developed for the
general CSP, such as BTD (Jégou and Terrioux 2003), can be ap-
plied to the STN supposing discrete domains for the time-point
variables. However, by exploiting the highly structured nature of
simple temporal constraints, decomposition-based methods dedi-
cated to the STN have inherent advantage.

this the message STN, denoted by µ(V,W ). Using this com-
pact representation of the messages, we immediately obtain
an efficient variable elimination procedure. We omit proofs,
referring to (Bui et al. 2007).
Theorem 1. Consider an STN T and let V,W be two clus-
ters of variables that cover the constraint graph G. Suppose
that V and W are separated by sep(V,W ) = V ∩W . Then
the projection of T onto W , πW sol(T ), can be represented
by the solution of the STN

(TW ∧ µ(V,W )) (3)

The above expression involves only a minimalization op-
eration on TV and a simple restriction to the separator set.
Any of the STN solvers described earlier that produces the
minimal network can be used for the former operation.4
The constraint graph of the STN (TV )min

sep(V,W ) is a com-
plete graph over sep(V,W ) (because minimalization creates
a complete constraint graph). So unless T is also com-
plete over sep(V,W ), the operation in (3) will introduce
new edges to the original constraint graph of T .

Message Passing for STNs
Once we have a compact representation of the messages, the
cluster-tree elimination algorithm can be applied immedi-
ately to compute the partial minimal network T pmin. Let us
assume that we are given a join-tree J over a set of clusters
V1, . . . , VK that cover the original constraint graph G. In
some cases, such a join-tree can be found from the structure
of G, as in the case of sibling-restricted STNs, or it can be
found by first triangulating G and then extracting the set of
maximal cliques of the resulting triangulated graph.

The standard message passing scheme used in cluster-tree
elimination (Dechter 2003) computes a message from a clus-
ter Vi to a neighbouring cluster Vj , using the messages Vi re-
ceived from its other neighbours. Representing the message
from Vi to Vj by the message STN µi,j , we obtain

µi,j =

24TVi ∧

0@ ^
k∈neighbour(i),k 6=j

µk,i

1A35min

sep(Vi,Vj)

To compute each message requires a minimalization op-
eration over one cluster. After computing all such messages,
we must go through each cluster and minimalize it (with the
neighbour messages included). Since there are 2(K − 1)
messages, the total is 2(K − 1) + K = 3K − 2 minimaliza-
tion operations. At the conclusion, we obtain the minimal
domain T min

i for all i, but only T min
ij for those (i, j) that

belong to the same cluster. Since any edge in G must belong
to one of the clusters, we obtain the partial minimal network.

An Improved Propagation Scheme
We can exploit specific properties of STN to make the mes-
sage passing scheme more efficient. In the above, one mini-
malization operation is needed for each message. However,
binary decomposability of STNs implies that all possible
projections of T onto an arbitrary subset of its variables can

4PPC-based methods such as4STP can also be used. However
the subgraph in the separator must be complete, and the subgraph
in V must be triangulated.



M

HF

C

A

J K

D

B

E

L

G

ABC

E

B

BDE

D

ELM

C

CFGH

DJK

Figure 1: Left: STN; right: join-tree of clusters.

Algorithm 1 Prop-STP
1: T 0 = T
2: for i = 1, . . . ,K − 1 do { First Pass }
3: T i = lmin(T i−1, Vi)
4: end for
5: for i = K . . . 2K − 1 do { Second Pass }
6: T i = lmin(T i−1, V2K−i)
7: end for
8: return T 2K−1

be computed in a single minimalization operation. Thus, we
can rearrange the order of message passing so that one min-
imalization operation can compute multiple messages. Fur-
thermore, as we show below, it is possible to eliminate the
need to store the messages all together.

First, given the join-tree J , a cluster ordering V1, . . . , VK

is termed valid if whenever Vj lies on the path from Vi to
VK then j ≥ i. Such a valid ordering can easily be created
by choosing an arbitrary cluster to be VK and treating it as
the root of J . A valid cluster ordering then lists clusters that
are further away from the root first, and root cluster last.

Next, we define a simple operation on STNs, termed local
minimalization, which takes a subnetwork and replaces it
with its minimal network. To be precise, given a subset of
variables V , a local minimalization on V returns the STN
lmin(T , V ) = T ∧ (TV )min. Since (TV )min ≡ TV , it is
trivial to see lmin(T , V ) ≡ T (since, if T1 is a sub-STP of
T2, then T1 ∧ T2 ≡ T2). Note that this operation makes the
constraint subgraph in V complete.
Lemma 2. Let T ′ = lmin(T , V ). If T is locally minimal
on some W ⊆ S then so is T ′.
Lemma 3. For any P ⊂ V such that P separates V − P
and V̄ = S − V , T ′ is locally minimal on V̄ ∪ P .

Note that as long as we can find a separator P that is a
proper subset of V , then V̄ ∪P is a proper subset of S. Thus,
while the original STN T is (of course) locally minimal on
S, the new STN T ′ is locally minimal on a proper subset of
S. By repeatedly applying the same kind of operation, we
can obtain the minimal constraints.

We call this algorithm Prop-STP; pseudo-code is shown
in Alg. 1. We now show that this algorithm returns all the
minimal constraints of the original network.
Theorem 4. At the end of Prop-STP, T 2K−1 is locally
minimal on every cluster Vk; furthermore, the subnetwork
T 2K−1

Vk
is a minimal network. As a result, T 2K−1 is locally

minimal on every variable i, and on every pair of variables
{i, j} for all (i, j) belonging to the same cluster.

Example. Fig. 1 depicts an STN arising from a hierarchi-
cal planning problem. The edges labeled with letters refer
to tasks; each models the duration between the start and
end time-points of that task. For example, letter A refers
to two time-points (variables) Astart and Aend. The other
edges model precedence constraints between parent and
child tasks, together with a representative sample of other
temporal constraints. The STN has the sibling-restricted
property, which provides a simple clustering of the variables
to yield the join-tree J shown on the right. The separators
of each cluster are depicted in the rectangular boxes. On
this STN, the first pass of Alg. 1 processes the clusters in an
order such as DJK, ELM , BDE, CFGH , ABC. Hence
the cluster ABC is the root of the join-tree. The second pass
processes CFGH , BDE, ELM , DJK. A single lmin op-
eration on BDE in the second pass effectively computes the
two messages to DJK and ELM at once. At the end, we
obtain the minimal subnetwork for each cluster, and thus the
partial minimal network for the whole STN.

Analysis of the New Algorithm
Instantiations of Prop-STP can be implemented using dif-
ferent STN sub-solvers to perform the lmin operation. For
example, using PC-1 (Floyd-Warshall) leads to Prop-PC1-
STP. Since there are precisely 2K − 1 lmin operations,5
each with complexity O(w3), the overall complexity of
Prop-PC1-STP is O(Kw3).

Since Prop-STP effectively completes the constraint
graph within each cluster Vi, the resulting global constraint
graph is triangulated. In practice, one can triangulate G
in the initialization phase; if so, the constraint graph is al-
ready complete within each cluster. In this case, Prop-STP
returns the partial minimal network T pmin of the triangu-
lated G. Like other algorithms that work on triangulated
graphs, such as PPC and 4STP, Prop-STP does not return
the full minimal network. However, T pmin is sufficient for
a triangulated graph since every solution can be constructed
backtrack-free from the partial minimal network.

It is interesting to examine the behaviour of our algorithm
when we use 4STP as the sub-solver at each cluster (al-
though this is not likely to result in a performance improve-
ment since the subgraph at each cluster is already complete).
In this case, Prop-4-STP will process triangles in G, one
by one, but following the order imposed by our propagation
scheme: all triangles within each cluster are processed until
stabilized before moving on to triangles in another cluster.

5Improvement can be made by keeping track of which clusters
have not been changed after the lmin operations in the first pass, so
that in the second pass we need not perform lmin on them again.



Figure 2: Landmark STNs, as consistency varies.

As noted by (Xu and Choueiry 2003), the order in which tri-
angles are processed has a crucial effect on the performance
of 4STP. The improved order of triangle processing in our
algorithm also agrees with the intuition of the authors of the
4STP algorithm and others (Choueiry and Wilson 2006).

Experimental Results
We undertook experiments to investigate the behaviour of
Prop-STP. We investigate the performance as the structure
and size of the STN vary, and we compare Prop-STP against
the existing STN solvers SR-PC and 4STP to gain insight
into their relative strengths. Since Prop-STP is designed to
leverage structure in the network, in the form of a tree de-
composition, we develop benchmarks based on structured
STNs arising from Hierarchical Task Network (HTN) plans.

Sibling-Restricted STNs
HTN planning assumes a hierarchical flow, with high-level
tasks being decomposed progressively into collections of

lower-level tasks through the application of matching meth-
ods with satisfied preconditions. In a sibling-restricted STN,
constraints may occur only between parent tasks and their
children, and between sibling tasks. This restriction on what
STN constraints may exist between plan elements is inher-
ent to HTN planning models; in particular, there is no way
in standard HTN representations to specify temporal con-
straints between tasks in different task networks (Erol et al.
1994). The specialized STN solver SR-PC (Yorke-Smith
2005) transverses a tree of sub-STNs that correspond to the
decompositions in the HTN plan. Because the STNs thus
considered are small, compared to the global STN corre-
sponding to the whole plan, the overall amount of work to
enforce PC is much less.

Despite its success on benchmark problems from the PAS-
SAT plan authoring system (Myers et al. 2002), SR-PC has
two drawbacks. First, standard HTN representations have
been extended to support limited coordination between dif-
ferent task networks via landmark variables (Castillo et al.
2006) that allow synchronization of key events in the plan.



Figure 3: Landmark STNs, as depth varies.

SR-PC can accommodate, awkwardly, a small number of
such landmark variables and their corresponding constraints.
Second, although not exhibited in practice, SR-PC has poor
and weakly characterized worst-case theoretical complexity.

The small tree-width w of an SR network means that
Prop-STP will be particularly efficient for this class of STNs,
provided we can find an optimal or near-optimal decompo-
sition of the constraint graph G of the global STN into a
join-tree, and a cluster ordering over this tree. Fortunately,
there is a natural decomposition based on each parent task
T and its children Ti. Namely, we form into a cluster the
start and end time-point variables of task T and all its Ti,
and all temporal relations between them (including those be-
tween the children). Fig. 1 illustrates this clustering. Since
task networks typically comprise a handful of tasks, the size
of each cluster is small. Therefore, performing minimaliza-
tion on each cluster, as done in Prop-STP, is anticipated to
be much more efficient than computing the minimal network
for the global STN. In general, if we consider a task network
represented by a balanced tree with depth d and branching
factor f (hence the number of nodes is O(fd)), the com-
plexity of Prop-STP is O(f2fd) (the join-tree has O(fd−1)
clusters, each with sizeO(f)). We also note that an SR STN
has no articulation points.Because each task in the HTN cor-
responds to two variables, as can be seen in Fig. 1, the con-
straint graph is biconnected and decomposes only via sep-
arator sets of cardinality at least two. This hampers algo-
rithms that seek articulation points, whether explicitly such
as F-W+AP, or implicitly, such as 4STP.6

Experiments with Semi-Structured STNs
To validate the concept of Prop-STP, we implemented the
algorithm within the PASSAT HTN plan authoring system.
Our first Prop-STP implementation was written in Lisp to

6Observe that Prop-STP can work on the untriangulated con-
straint graph with this clustering. To apply a generic STN solver
such as 4STP in this case requires triangulation of the whole
constraint graph G, which in general introduces many new edges
(many more than the total in all the completed G(i)).

Figure 4: Landmark STNs, as landmark ratio varies.

allow a fair comparison with the existing Lisp-based imple-
mentations of SR-PC and 4STP, and to allow integration
with the PASSAT system. However, as reported in the pre-
liminary results in (Bui et al. 2007), this implementation
of the three algorithms suffered from excessive CPU run-
times, an artifact due to the simplistic memory handling of
our Lisp environment. Hence we developed a second imple-
mentation of the algorithms in Java; direct integration with
PASSAT was not attempted.

The benchmark networks we employed were created by a
generator that yields STNs akin to those produced by PAS-
SAT, from random plans with a uniform tree of tasks, as de-
scribed in (Yorke-Smith 2005). The generation parameters
include plan size (specified by HTN depth and mean branch-
ing factor), constraint likelihood, constraint tightness, ratio
of time-points that are landmarks, and STN consistency.

The experiments were conducted on a 2GHz Pentium M
with 2GB RAM, using Java 1.6. A timeout of 10 minutes
was enforced. Unless stated, the results average 50 runs,
and error bars depict 95% confidence intervals.

The algorithms we report are PC-1 as a baseline, 4STP
(with and without triangulation time), and Prop-STP. 4STP
source code was kindly made available by its authors. When
landmarkratio is 0, the STN is SR, and SR-PC can be
applied. We verified that Prop-STP behaves as SR-PC in
this case, when given the decomposition of the network; its
runtime and constraint checks equal those of SR-PC.

We gave the same networks to 4STP and Prop-STP, and
did not provide any additional information about structure
to Prop-STP. Information about the STN’s construction
from the HTN structure and landmark variables would en-
able decomposition with the addition of a minimal number
of triangulation fill and cluster completion edges. Prop-STP
would benefit from this information (which is not pertinent
to 4STP); thus, we held back Prop-STP from its full po-
tential. This decision allows us to compare Prop-STP in the
‘worst case’ and assess its behaviour on STNs where the
structure is not known a priori. Throughout, the same trian-
gulation heuristics are used for all algorithms.



We experimented with two variants of Prop-STP, one us-
ing PC-1 and the other using 4STP as the STN sub-solver.
Recall that in Alg. 1, the subgraph at each cluster is a com-
plete clique, and that such dense graphs are those most
favourable to PC-1 (Shi et al. 2004).

We recorded two metrics: first, the total CPU runtime
in ms for each algorithm variant,7 and second, the counted
number of constraint checks.

Consistency. Fig. 2 varies the consistency of the generated
STN from 5 to 100%, for problems of mean depth 5 and
mean branching factor 3.5 (approximately 500 nodes), and
landmarkratio of 5%. Note that the y-axis scale varies
between the graphs. PC-1 is the most sensitive to the con-
sistency of the network, taking considerably longer for con-
sistent STNs than for inconsistent but, curiously, performing
fewer constraint checks for the former. There is little to dis-
tinguish between 4STP, Prop-PC1-STP, and Prop-4-STP
in terms of runtime when triangulation time is excluded;
when included,4STP is slightly slower. In terms of counted
operations, all three perform more constraint checks for con-
sistent STNs. 4STP is the most sensitive to consistency,
Prop-PC1-STP the least, and Prop-4-STP blends the two,
as could be expected.

Problem size. Fig. 3 varies STN size, in terms of un-
derlying plan depth, from 3 to 6; consistency is 50%,
landmarkratio is 5%, and mean branching factor is 4.
The size of the STN grows exponentially with depth. PC-1
and 4STP suffer from timeout or memory exhaustion re-
spectively.8 Fig. 3 includes data only for those instances
for which every algorithm succeeded; we exclude data for
depths 7 and 8, where often only Prop-STP succeeded. Even
in the limited data presented, we see all algorithms increas-
ingly exponentially with depth, i.e., polynomially in prob-
lem size. As in Fig. 2, we observe that the runtime metrics
for 4STP and Prop-STP are similar, while 4STP employs
more constraint checks.

Structure. Fig. 4 varies the landmark ratio from 0 to 20%,
for problems of depth 5 and consistency of 50%. A low
value for landmarkratio corresponds to a structured (more
SR-like) STN; a higher value corresponds to a more unstruc-
tured STN, closer to a general random network. A value
even of 10% leads to a very dense network after triangula-
tion. Note again the y-axis scales.

While PC-1 is largely insensitive to the landmarkratio
parameter (network consistency being more significant),
4STP and Prop-STP exhibit greater runtime as structure de-
creases. Most clearly this is seen in runtime excluding tri-
angulation and in counted operation: the triangulation time
masks the underlying computational effort. The reason that
Prop-STP does not perform significantly better than 4STP

7The recorded time for Prop-STP’s ‘no triangulation’ variant
still includes the time to complete each cluster.

8The difficulty for 4STP is not the triangulation of G as much
as storing the list of all triangles; in contrast, although we make
Prop-STP naively work over the same triangulated graph G′, only
G′ itself is required, not the list of all triangles.

lies in our giving it no information about network structure.
As observed earlier, Prop-4-STP (in particular) explains the
theoretical performance of 4STP with optimal triangle or-
dering. Since we apply both methods to the same triangu-
lated graph with the same heuristics, we should expect to
observe similar performance in practice in this case.

Discussion
The picture that emerges for semi-structured STNs is that
Prop-STP performs comparably with the state-of-the-art
solver 4STP. The empirical findings confirm that it scales
polynomially with problem size. The more structured the
network, the better the relative performance, and the better
still if Prop-STP is informed about network structure, as in
the experiments reported in (Bui et al. 2007) for SR-STNs.
Given no structure, Prop-STP performs best on sparse net-
works, since a tree decomposition is more amenable in gen-
eral the fewer the edges in the triangulated graph. Empiri-
cally, on our benchmark semi-structured STNs, the join-tree
uncovered has average cluster size approximately equal to
the 1 + branchingfactor. Approximately described, the
behaviour of Prop-4-STP exhibits characteristics of the two
solvers from which it is composed.

It is worth noting that our implementation of Prop-STP
contains no effort to optimize the network decomposition,
nor leverage reuse of, for example, triangulated clusters.
The benefit of the set of smaller sub-problems that Prop-STP
tackles comes at the cost of computing the decomposition
into clusters and exchanging the messages between them;
the number and size of the separator sets is key. A care-
fully engineered implementation can be expected to re-
duce the runtime by a constant factor. Thus the pattern
for relative CPU times reported above can be expected to
match the pattern for counted operations: a modest run-
time advantage including triangulation time for Prop-STP
over4STP provided that the network has sufficient structure
(i.e., landmarkratio is small). This is true even though we
provide no structural information to Prop-STP.

The tree-decomposition and clustering that benefits
Prop-STP on sparse and structured networks is expected to
hinder it on dense and unstructured networks. For complete-
ness, we experimented on general STNs, randomly created
by the generator of (Xu and Choueiry 2003). The results, not
reported here, indeed suggest that the computational over-
head of Prop-STP puts it at a disadvantage compared to
4STP in terms of runtime. We also confirm the results in the
literature that 4STP is most effective for sparse networks
(Shi et al. 2004). As in the case of structured networks, we
find that Prop-PC1-STP is relatively insensitive to the con-
strainedness, while the behaviour of Prop-4-STP is again a
blend of the two solvers from which it is composed.

Conclusion and Future Work
This paper considers a new method, Prop-STP, for solv-
ing Simple Temporal Networks in the case of continuous
as well as discrete variable domains. In contrast to meth-
ods based on graph algorithms or on iteration of narrowing
operators, our algorithm is based on an efficient message
passing scheme over the join-tree of the network. The com-
plexity of Prop-STP depends on the minimalization opera-



tor, i.e., the STN solver used to enforce path consistency on
sub-problems. Thus consistency and the minimal constraints
of an STN (from which solutions can be derived backtrack-
free) can be determined with complexity O(Kw3) or bet-
ter, where K is the number of cliques and w is the induced
tree-width. For STNs with known and bounded tree-width,
Prop-STP thus achieves linear time complexity. The new
propagation scheme provides formal explanation of the per-
formance of the existing STN solvers 4STP and SR-PC.
For4STP, the scheme also provides an efficient triangle or-
dering based on the join-tree clusters.

Our motivation comes from the sibling-restricted STNs
that arise in HTN planning problems. Prop-STP is well-
suited to such STNs because these problems (1) have a small
tree-width w, and (2) the SR structure leads to a simple
way to decompose the network into a join-tree. Prop-STP
generalizes the best-known solver, SR-PC, for this class
of problems. It avoids the poor worst-case complexity of
SR-PC, and it can accommodate landmark variables in SR-
STNs. At the same time, empirical results have validated
that Prop-STP retains the efficiency of SR-PC on problems
that the latter can solve. Moreover, they indicate that even
in the absence of any structural information, Prop-STP par-
allels the performance of 4STP on semi-structured STNs.

More than validation of an alternate algorithmic approach,
a further contribution of this paper is insight into the be-
haviour of SR-PC and 4STP. Nonetheless, a carefully en-
gineered implementation of Prop-STP can be recommended
for sparse STNs (even unstructured) and structured STNs
where a near-optimal tree decomposition and cluster order-
ing is known a priori or can be determined by automated
analysis of the network.

Planning practitioners have long sought efficient tempo-
ral reasoning in planning systems. Besides exploiting struc-
ture in the temporal network underlying a plan, in a different
and complementary vein, the casual structure of the plan can
also be leveraged to reduce the effort of temporal propaga-
tion (Castillo et al. 2006). The most important direction for
future work, however, is to employ Prop-STP in incremental
STN solving, where time-points and constraints are added or
removed incrementally; incremental STN solving arises nat-
urally in planning. The challenge is to adapt Prop-STP, as
other algorithms have been adapted, to efficiently solve the
modified STN, given the result of computation from solving
the previous STN.

An interesting avenue to explore is the quality of the de-
composition versus the time for its computation (Jégou et al.
2005). Quality can be characterized not only in terms of the
size of the join-tree and its clusters — according to which
metrics, an optimal decomposition is simple to derive — but
also in terms of the total effort, cumulative over decompo-
sition time and subsequent solving. What if Prop-STP were
to operate over a ‘non-optimal’ decomposition with, for in-
stance, larger clusters than the ‘optimal’?

Another interesting avenue is to consider temporal con-
straint networks that have preferences associated (Khatib et
al. 2001). The challenge in applying variable elimination
to STNs with preferences is to compactly represent the mes-
sages and tractably compute the minimialization operator,
especially over continuous preference domains, as we have
done in the case of STNs without preferences.

Acknowledgment. We gratefully thank Berthe Choueiry, Karen
Myers, and Bart Peintner for discussions and insights, the review-
ers for their comments, and the participants of the AAAI’07 Work-
shop on Spatial and Temporal Reasoning, where a preliminary re-
port of this work was presented.

References
C. Bliek and D. Sam-Haroud. Path consistency on triangulated
constraint graphs. In Proc. of IJCAI’99, 1999.
J. Bresina, A. K. Jónsson, P. Morris, and K. Rajan. Activity plan-
ning for the Mars exploration rovers. In Proc. of ICAPS’05, 2005.
H. H. Bui, M. Tyson, and N. Yorke-Smith. Efficient message pass-
ing and propagation of simple temporal constraints. In Proc. of
AAAI 2007 Workshop on Spatial and Temporal Reasoning, 2007.
L. Castillo, J. Fdez-Olivares, and F. Palao O. García-Pérez. Effi-
ciently handling temporal knowledge in an HTN planner. In Proc.
of ICAPS’06, 2006.
B. Y. Choueiry and N. Wilson. Personal communication, Febru-
ary 2006.
T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algo-
rithms. McGraw-Hill, 1990.
R. Dechter and J. Pearl. Tree clustering schemes for constraint-
processing. Artificial Intelligence, 38(3):353–366, 1989.
R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks.
Artificial Intelligence, 49(1–3), 1991.
R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.
K. Erol, J. Hendler, and D. Nau. Semantics for hierarchical task-
network planning. Technical Report CS-TR-3239, University of
Maryland, 1994.
P. Jégou and C. Terrioux. Hybrid backtracking bounded by tree-
decomposition of constraint networks. Artificial Intelligence,
146(1):43–75, 2003.
P. Jégou, S. Ndiaye, and C. Terrioux. Computing and exploiting
tree-decompositions for solving constraint networks. In Proc. of
CP’05, 2005.
L. Khatib, P. Morris, R. A. Morris, and F. Rossi. Temporal con-
straint reasoning with preferences. In Proc. of IJCAI’01, 2001.
U. Kjaerulff. Triangulation of graphs: Algorithms giving small
total state space. Technical Report R90-09, Aalborg University,
Denmark, 1990.
P. Laborie and M. Ghallab. Planning with sharable resource con-
straints. In Proc. of IJCAI’95, 1995.
J. Larrosa, E. Morancho, and D. Niso. On the practical use of
variable elimination in constraint optimization problems: ‘Still-
life’ as a case study. J. Artificial Intelligence Research, 23:421–
440, 2005.
K. L. Myers, M. W. Tyson, M. J. Wolverton, P. A. Jarvis, T. J.
Lee, and M. desJardins. PASSAT: A user-centric planning frame-
work. In Proc. of the Third Intl. NASA Workshop on Planning and
Scheduling for Space, 2002.
Y. Shi, A. Lal, and B. Y. Choueiry. Evaluating consistency al-
gorithms for temporal metric constraints. In Proc. of AAAI-04,
2004.
D. E. Smith, J. Frank, and A. K. Jónsson. Bridging the gap
between planning and scheduling. Knowledge Eng. Review,
15(1):47–83, 2000.
L. Xu and B. Y. Choueiry. A new efficient algorithm for solving
the simple temporal problem. In Proc. of TIME’03, 2003.
N. Yorke-Smith. Exploiting the structure of hierarchical plans in
temporal constraint propagation. In Proc. of AAAI-05, 2005.


