252

Constraint Satisfaction with a Multi-Dimensional Domain

Masazumi Yoshikawa

Shin-ichi Wada

C&C Systems Research Laboratories, NEC Qorporation
4-1-1 Miyazaki, Miyamae-ku, Kawasaki 216
JAPAN

Abstract

This paper presents a novel approach to
a class of constraint satisfaction problems
(CSPs). First, it defines Multi-Dimensional
Constraint Satisfaction Problem (MCSP),
which is a useful model applicable to many
scheduling problems. Second, it proposes
an approach for MCSPs. The approach em-
ploys both a general problem-solving method
and an automatic generation method for
problem-solving programs. The problem—
solving method is a combined method VYlth
backtracking and constraint propagation,
based on the features of MCSPs. The auto-
matic generation method analyzes the mean-
ing of constraints and generates a problem-
solving program, which is especially efficient
for the given problem. Finally, the proposed
approach is evaluated by several experiments
including scheduling applications and well-
known toy problems. Employing both the
two methods enables solving a hard MCSP
in a reasonable time, merely by describing it
in a declarative form.

1 INTRODUCTION

In recent years, a scheduling problem is increas-
ingly being viewed as a constraint satisfaction problem
(CSP) [Fox 1989]. The CSP has a simple well-defined
model and general problem-solving algorithms. Since
many scheduling problems can be formulated as CSPs,
they can be solved by these algorithms, in a general
way.

In order to solve a CSP, two classes of algorithms have
been developed. The first group involves backirackipg
algorithms and the second group involves gonstmznt
propagation algorithms. Backtracking algorithms are
guaranteed to solve any CSP, but they suffer from
thrashing [Nudel 1983]. On the other hand, several
network-based constraint propagation algorithms have

been developed, using the topology of constraint net-
works [Mackworth 1977, Freuder 1982, Freuder 1990].
They are guaranteed to solve a class of CSPs with
o {ree-like constraint network in polynomial time
[Mackworth 1985].

Recently, combined algorithms with backtracking
and constraint propagation have been developed
[Dechter 1988, Dechter 1990]. They use constraint
propagation on tree-like subgraphs of a constraint net-
work in order to reduce the search space for backtrack-
ing. They can solve any CSP and are efficient for tree-
like constraint networks. They have been the most
powerful algorithms to solve CSPs in a general way.

However, even with these algorithms, most scheduling
problems are hard problems. This is because, t.hey
have a disjoininess constraint, that prohibits assign-
ing a same value (resource) to more than one variable
(task). Since this constraint is concerned with every
combination of two variables, their constraint networks
become a complete graph, which is the most complex
one. In general, a CSP is the more difficult, if the
constraint network is the more complex [Zabih 1990].
This is the most critical difficulty for solving schedul-

ing problems in a general way.

In order to overcome this difficulty, the authors took
an approach from two points of view:

1. Since there is no algorithm which solves any CSPs
efficiently, a problem-solving method, basgd on
the features of the application problems, 18 I¢
quired.

9. The network-based algorithms use only the topo-
logical features of the constraints. However, fOﬁ
cusing on the meaning of constraints, there may
be more efficient ways to process them.

This paper presents a novel approach to a class ,05
CSPs. First, it defines Multi-Dimensional C’onstraml
Satisfaction Problem (MCSP), which is a useful mode

applicable to many scheduling problems. A declara-

tive framework to describe MCSPs is also presented‘
Second, it proposes an approach for MCSPs. The

Constraint Satisfaction with a Multi-Dimensional Domain

Variables: ¢ ‘ —n

[variable 1 | variable 2 | ... | variable N |
Domain: —j
value (1,1) | value (1,2) value (1, J)
value (2,1) | value (2,2) value (2, J)
i | value (Z,1) | value (I,2) value (I,J)

Figure 1: Multi-Dimensional Constraint Satisfaction
Problem

approach employs a general problem-solving method
for MCSPs and an automatic generation method for
problem-solving programs.

The problem-solving method is a combined method
with backtracking and constraint propagation. It is
an efficient method, based on the features of MC-
SPs. The automatic generation method generates a
problem-solving program, which is especially efficient
for the given problem. It analyzes constraints in a log-
ical form and selects efficient procedures, according to
the meaning of constraints.

Finally, the proposed approach is evaluated by experi-
ments including school curriculum scheduling, produc-
tion scheduling, work assignment problems, and sev-
eral well-known MCSP problems.

Employing the two methods enables solving a hard
MCSP in a reasonable time, merely by describing it in
a declarative form.

. The following section defines the MCSP and presents

the declarative framework to describe MCSPs. In Sec-
tion 3, the problem-solving method for MCSPs is pro-
posed. The automatic program generation method is
described in Section 4. Section 5 shows and discusses
the experimental results. A summary and conclusion
are given in Section 6.

2 PROBLEMS

As described in the previous section, most scheduling
problems belong to the most difficult class of CSPs.
Therefore, the authors focused their attention on a
class of CSPs, that is applicable to many schedul-
ing problems. This section defines Multi-Dimensional
Constraint Satisfaction Problem (MCSP) and presents
a declarative framework to describe MCSPs.

2.1 Multi-Dimensional Constraint
Satisfaction Problem

A CSP involves a set of N variables vy, ...,vn having
domains Dy, ..., Dy, where each D, defines the set of

(define-set area areal area2 area3 aread...)
(define-set color red blue green yellow)
(define~set-of-sets neighbors
(areal area2) (areal area3) (area2 area4)...)
(define-constraint exclusive-color
((area color) (areal colorl) (area2 color2))
(if (in-same-set-of neighbors areal area2)
(not (= colorli color2))
true))
10 (define-problem four-color-problem
11 (:variables area)
12 (:domain (color))
13 (:constraints exclusive-color))

W0 N O U W

Figure 2: Declarative Description of a Four Color
Problem

available values for the variable v,. An MCSP is a
CSP, in which the all domains are same. Namely, D; =
Dy=..=Dy.

For example, a Four Color Problem is an MCSP. It is
a problem to assign four colors on every bounded area
on a plane, satisfying the constraint that no area has
the same color as it’s neighboring area. This problem
has variables for every area, and a shared domain that
is the set of four colors.

Moreover, the domain may be represented by an I x J
array with two (or more) dimensions. Figure 1 illus-
trates the MCSP variables and domain.

For example, a school curriculum scheduling problem,
by which to assign a teacher and a time for every class-
room, is a two-dimensional MCSP. In this case, vari-
ables are given classrooms. The domain is represented
by an array with two dimensions corresponding to
teachers and times. Another example is a production
scheduling problem, that consists of N tasks, I pro-
duction machines, and J time-intervals in a scheduling
period.

Many other scheduling problems, such as work assign-
ment problems, can be formulated as MCSPs. Conse-
quently, MCSP is an important subclass of CSPs for
scheduling applications.

2.2 DECLARATIVE DESCRIPTION OF
MCSPS

This ‘section presents a declarative framework to de-
scribe MCSPs. An MCSP consists of a set of variables,
a multi-dimensional domain, and a set of constraints.

For example, the declarative description of a Four
Color Problem is presented in Fig. 2. Lines 1-2 define
the sets of variables and a domain. Lines 3-4 define a
class used in the constraint definition in lines 5-9. The
problem is defined in lines 10-13. The body (lines 7-
9) of the constraint definition is a logical form. The
meaning of the constraint definition is that:

253

Yoshikawa and Wada

For every pair of two different assign-

ments (area color)s, let the assignments be

(areal colori) and (area2 color2),

if areal and area?2 form a pair of neighbors,
colorl and color2 must be different,

otherwise OK.

Line 12 defines the shared domain for this MCSP. A
Four Color Problem has a one-dimensional domain (a
set color).

In case of school curriculum scheduling, the domain
may have two-dimensions (teachers and time in-
volved). The problem definition may be as follows:

(define~-problem school-scheduling
(:variables classroom)
(:domain (teacher time)) ;; 2-dimension
(:constraints ...))

The problem is to assign a value, in the two-
dimensional domain made up with the sets teacher
and time, to each variable in the set classroom, satis-
fying the all constraints specified in the :constraints
option.

3 A METHOD TO SOLVE MCSPS

As described in Section 1, most scheduling problems
belong to the most difficult class of CSPs. Therefore,
the authors developed an efficient method for MCSPs,
based on the MCSP features. This section describes
two MCSP features and proposes a problem-solving
method, based on the features.

3.1 FEATURES OF MCSPS

As mentioned in the preceding section, an MCSP has a
multi-dimensional (or single-dimensional) domain that
consists of a set of dimensions. In the case of a multi-
dimensional domain, the dimensions have independent
meanings in the application problem, e.g., teachers and
times. Therefore, many constraints refer to only one
dimension of the domain.

For example, a school curriculum scheduling problem
has the following constraints:

gscience~classroom—science-teacher
A science teacher must be assigned to a science
classxoom.

same-class-different-time
Different times must be assigned to two
classrooms of the same class.

Constraint science-classroom~-science-teacher
does not refer to the domain dimension time, but to
the other dimension teacher. On the other hand,
same-class-different-time refers to only time.

The constraints, which refer to only one domain di-
mension, are called one-dimensional constraints, while
other constraints are called multi-dimensional con-
straints.

Since domain dimensions have independent meanings,
most constraints are one-dimensional. This is an im-
portant feature of MCSPs. The proposed method is
based on this dimension independence of MCSPs,

Another MCSP feature is problem duality. Since an
MCSP has a two (or more) dimensional domain, the
problem is assigning a two-dimensional value (3, j) to
each variable v,. Therefore, it can be reformulated
into another CSP, in which a (one-dimensional) value
i is assigned to a variable vi, and j is assigned to vj,.
For example, since the school curriculum scheduling
problem is assigning a value (teacher,time) to each
classroom, it can be reformulated into another CSP
with 2V variables, N variables vi,, (classrooms) for I
values (teachers) and N variables vj, (classrooms)
for J values (times). This problem duality is also used
in the problem-solving method for MCSPs.

3.2 A PROBLEM-SOLVING METHOD
BASED ON MCSP FEATURES

The problem-solving method is based on the MCSP
features, dimension independence and problem dual-
ity.

The method decomposes an MCSP into three (or
more) subproblems, using problem duality. The sub-
problems are:

SP-M A subproblem, which is same as the original
MCSP, except that it has only multi-dimensional
constraints.

SP-I A subproblem, which corresponds to the dimen-
sion i, with N variables vi,, a domain with size
I, and one-dimensional constraints that refer to i.

In the school curriculum scheduling prob-
lem, it has N classrooms as variables, [
teachers as values, and one-dimensional con-
straints that refer to only teachers, eg,
science-classroom-science-teacher.

SP-J A subproblem, which corresponds to the dimen-
sion j, with N variables vj,, a domain with size
J, and one-dimensional constraints that refer to
J.
In the example, it has N classrooms as vari-
ables, J times as values, and one-dimensional
constraints that refer to only times, e.§.
same-class-different~time.

Then, the method assigns values to variables using 2
backtracking algorithm and a constraint propagation

~algorithm, as follows:

Constraint Satisfaction with a Multi-Dimenéional Domain

Backiracking I Constraint Propagation
(“JJ): . Instantiation (n,d) 3> n
] ""” % STTRLTR
X , 1o >
of » ol |x v i [
b4 X X {1 5%
: 2Lt ‘!uu 1 bl b !
olx lo Propagation \y
1| |«le o I)
Instant.iationA SP-M ’ SP-l
ey L]
Propagation :

Constiraint Propagation

(nd)

S
ik
- BEEELE
X/ O
WD
— SP-J

Figure 3: A Problem-Solving Method for MCSPs

1. A backtracking algorithm creates assignment on
subproblem SP-M, checking multi-dimensional
constraints.

2. A constraint propagation algorithm processes
one-dimensional constraints on subproblems SP-1
and SP-J. '

In the example, one-dimensional constraints
about times are propagated in SP-J.

.The constraint propagation is triggered when the back-

tracking assigns a value to a variable. The backtrack-
ing selects the candidate values for a variable according
to the constraint propagation results. Figure 3 illus-
trates the problem-solving method.

Here, it should be noticed that the problem-solving
method does not specify a certain backtracking al-
gorithm or a constraint propagation algorithm. Ex-
isting backtracking algorithms can be joined into
this method with small modification. Also, sev-
eral constraint propagation algorithms can be com-
bined in the problem-solving method. Current exper-
imentation uses a most-constraint min-conflicts back-
tracking algorithm, as described in [Keng 1989], and
a naive constraint propagation algorithm AC-3 in
[Mackworth 1977].

3.3 DISCUSSION

In order to evaluate the problem-solving method, how
existing CSP algorithms work on an MCSP must be
considered. Several efficient algorithms have been de-
veloped using the topology of constraint networks, e.g.,
[Freuder 1982], [Mackworth 1985], [Dechter 1988], and

[Dechter 1990]. They are applicable or efficient with
tree-like constraint networks. However, most schedul-
ing problems have a disjointness constraint that makes
a constraint network form a complete graph. Since they
belong to the most difficult class of CSPs [Zabih 1990],
these algorithms have few merits.

On the other hand, SP-I and SP-J in the proposed
problem-solving method have small domain sizes I and
J, while the domain size for the original MCSP is I'x J.
If we propagate e one-dimensional constraint edges on
an MCSP, using AC-3, then the complexity is O(eI3J3)
(See [Dechter 1988]). On the other hand, the com-
plexity on SP-I and SP-J is O(e;I® + ¢;J%), where ¢
and e; are number of edges on SP-I and SP-J, namely
e = ¢; + ¢;. Consequently, the proposed method dra-
matically decreases the computational time.

Here, it must be considered carefully that SP-I and
SP-J have only one-dimensional constraints. Since
MCSPs have dimension independence, most con-
straints are one-dimensional. However, if there are
heavy multi-dimensional constraints in an MCSP, the
proposed method has few merits. This is the limi-
tation of this method. An example of heavy multi-
dimensional constraints is the disjointness constraint,
which can be checked in a cheaper manner, using an
I x J array, as described in the next section.

In addition, the combination of local propagation and
backtracking (LPB) in [Guesgen 1989] is similar to the
proposed method, except that it does not use domain
dimensions.

4 AN AUTOMATIC PROGRAM
GENERATION METHOD

This section describes an automatic program gener-
ation method. The method analyzes the meaning
of given constraints and generates appropriate proce-
dures to process them. Then, it integrates them into a
program to solve the problem. First, a naive program
generation method is described. Then, a method to
refine a constraint process is proposed.

4.1 A NAIVE PROGRAM GENERATION
METHOD

The naive program generation method analyzes a
given constraint and generates a constraint process
procedure, as follows.

Step 1: A constraint is defined with a logical form.
For example, the exclusive-color constraint for a
Four Color Problem has the following form:

(if (in-same-set~of neighbors areal area2)
;; if areal and area2 is a neighbors pair.
(not (= colorl color2))
true)

255

256

Yoshikawa and Wada

'Step 2: What is prohibited by the constraint can be

represented by the negation of the logical form. The
logical form is negated and normalized into a conjunc-
tive normal form:

(and (in-same-set-of neighbors areal area2)
(= colori color2))

Step 3: The subforms for the conjunctive form (the
and form) are divided into two sets, variable-forms and
value-forms.

Variable-forms: Subforms, which refer to no domain
values (colors), but variables (areas).

(in-same-set-of neighbors areal area2)

Value-forms: Subforms, which refer to domain values
(colors), may also refer to variables (areas).

(= colori color2)

Step 4: Variable-forms restrict related (combinations
of) variables to those which satisfy them. The method
generates a procedure which associates the constraint
to the related variables, using the variable-forms. In
this example, the generated procedure creates con-
straint edges between all pairs of neighbors.

Step 5: Value-forms specify what (combinations of)
values are prohibited by the constraint. The method

generates a procedure which processes the constraint, -

using the value-forms. There are three kinds of con-
straint processes and the category is determined by
the problem-solving method, described in Section 3.

The three kinds of constraint processes are, domain-
value removal for unary constraints, constraint prop-
agation for one-dimensional binary constraints, and
constraint checking for multi-dimensional constraints.

In the case of one-dimensional binary constraints, the
value-forms are processed by constraint propagation.
The method generates the following propagation pro-
cedure:

PROC-N: For each available value2
(color2) value, if there is no available value
valuel (colori) such that the walue-form

= colorl color2) is evaluated to be false,
remove value2 (color2) value from the do-
main, otherwise do nothing.

Note that this is the same as the procedure REVISE
of AC-3. If an implementation uses another constraint
propagation algorithm, this procedure may be modi-
fied, according to the algorithm in use.

The constraint procedures, generated by the gener-

" ation method, are integrated into a problem-solving

program, that uses the problem-solving method, de-
scribed in Section 3. Current experimentation gener-
ates a program which preprocesses unary constraints
by domain-value removal, propagates one-dimensional

binary constraints on subproblems by AC-3, and checks
multi-dimensional constraints in a most-constraint
min-conflicts backtracking algorithm.

4.2 A CONSTRAINT PROCESS
REFINEMENT METHOD

As shown in the naive method, value-forms are used for
three kinds of constraint processes. In any case, they
are evaluated with certain values to determine whether
or not these values satisfy the constraint. Therefore,
the naive method repeats the evaluation many times.
On the other hand, considering the meaning of value-
forms, there are more efficient ways to process a con-
straint.

4.2.1 Local Refinement Method

The complexity of the naive procedure PROC-N
is O(I?), where I is the domain size. In the
exclusive~color example, since the value-form
(= colorl color2) prohibits colori and color2
from taking the same value, it can be propagated as
follows:

PROC-1: Check whether the available value
for waluel (colori) is unique or not. If
unique, remove the unique value from the do-
main of value2 (color2), otherwise do noth-
ing.

Using this procedure, the constraint can be propagated
in constant time when an implementation provides a
domain size counter for every variable.

For another example, a job-shop production schedul-
ing problem has a constraint that specifies the order-
ing among two tasks. The value-form of this constraint
may be (not (< timel time2)). An O(I) procedure,
to propagate the constraint, is:

PR.OC-2: Find the minimum available value
of waluel (timel), remove the values less-
than-or-equal-to the minimum value from the
domain of value2 (time2).

As shown in the examples, several common value-
forms have an efficient procedure to process them.
The refinement method provides such efficient pro-
cedures associated with a pattern for a value-form,
such as (= valuel value2). The refinement method
takes matching between a given value-form and pro-
vided patterns. If a matching pattern is found, then
the associated procedure is used in place of the naive
procedure. They are provided separately, according to
the three kinds of constraint processing.

Here, it should be noticed that procedures PROC-1
and PROC-2 depend on propagation algorithm AC-3.
These procedure must be modified, corresponding to
the propagation algorithm in use.

Constraint Satisfaction with a Multi-Dimensional Domain

-

[

4.2.2 Global Refinement Method

The method described above refines a propagation pro-
cess for one constraint edge. On the other hand, it is
possible to refine the propagation process for a set of
constraint edges into an efficient procedure. This re-
finement is accomplished in almost the same manner,
but it uses variable-forms, as ‘well as value-forms.

Consider the same-class-different-time constraint
for the school curriculum scheduling in Section 3. It
has a value-form and a variable- form as follows:

Variable-form:
(in~same-set-of classrooms-for-the~same-class
classroomi classroom?)
Value-forms:
(= timel time2)

The constraint propagation from one variable to all
the other variables in a classrooms-for-the~same-
class set is refined into a procedure:

PRQC-3: Check whether or not the avail-
able waluel (time1) value is unique. If
unique, remove the unique value from the
domains for all the other variables in a set
(classrooms-for-the-same-class), other-
wise do nothing.

This refinement reduces the complexity from O(mI?)
into O(m), where m is the size of a set.

As described in Section 3, thorough checking of a dis-
jointness constraint has large costs in the problem-
solving method. - The constraint checking can be re-
placed by the following procedure.

PROC-4: Provide an I x J Boolean array
that expresses the domain. Look up an array
entry in order to check the disjointness con-
straint. When backtracking assigns a value,
mark a corresponding array entry in order to
specify that the value is unavailable.

If there were no backtrack to assign values to all vari-
ables, PROC-4 reduces the total checking cost from
O(N3) into O(N?). This refinement is more effective
in general cases.

4.3 DISCUSSION

The effectiveness of the refinement method has already
been shown. Here, the novelty and limitation for this
method are discussed.

Guesgen’s CONSAT also provides a constraint
description language and a constraint compiler,
which improves constraint propagation processes
[Guesgen 1989]). The compiler eliminates checking
variables, which has no relation to a given constraint.
However, it does not refine the propagation process

with the related variables. The improvement of CON-
SAT compiler is similar to Step 4 of the naive program
generation method in Section 4.1.

The most close research to the refinement method is
an arc consistency algorithm AC-5 in [Deville 1991].
AC-5 uses the feature of functional and monotonic con-
straints in order to reduce the complexity. It is based
on almost the same idea as the localrefinement method
for constraint propagation, except that it does not
handle disequation constraints, such as disjointness.
Moreover, AC-5 does not include the global refinement
method or refinements for domain-value removal and
constraint checking,. '

It is trivial that this refinement method is effective
only when a value-form matches a provided pattern.
This is the limitations of the method.

5 EXPERIMENTAL RESULTS

This section evaluates the proposed approach with sev-
eral experiments including school curriculum schedul-
ing, production scheduling, work assignment, and sev-
eral well-known CSP problems (See Appendix).

The computational times used for a school curricu-
lum scheduling and a production scheduling problem
are shown in Table 1. For each problem, both a
two-dimensional and a one-dimensional formalization
are examined. A one-dimensional formalization rep-
resents the same problem as a two-dimensional one,
except that the two-dimensional domain is elongated
into a one-dimensional domain. This elongation causes
that the proposed problem-solving method works in

the same way as LPB in [Guesgen 1989] works (See-

Section 3.3). Therefore, a comparison between one-
dimensional and two-dimensional formalization shows
the improvement by using domain dimensions. Here,
the constraint process refinement method, proposed in
Section 4, is not used, except PROC-4 for the disjoint-
ness constraint. !

In the case of Problem A, using a multi-dimensional
domain causes almost 80 times the previous efficiency.
This marked result indicates the great effect of the
proposed problem-solving method. On the other
hand, the ratio is 1.78 for Problem B. This is be-
cause that Problem B is smaller than Problem A.
As discussed in Section 3, the complexity of prop-
agating one-dimensional constraints is O(eI®J3) vs.
O(e;I® + e;J®). Therefore, the method is more ef-
fective for a larger problem, namely larger values e, I,
and J. Consequently, the problem-solving method is
more effective for alarger and more tightly constrained
problem.

"This is because the one-dimensional curriculum
scheduling problem (Problem A’) can not be solved in four
days, without PROC-4.

257

Yoshikawa and Wada

Table 1: Experimental Results of the Problem-Solving Method

Problem a. Two-dims. | b. One-dim. | Ratio

(seconds) (seconds) | (b/a)
A,A’ | Curriculum Scheduling 1,921 151,900 79.04
B,B’ | Production Scheduling 3.94 7.01 1.78

Table 2: Experimental Results of the Constraint Process Refinement Method

Problem a. Refined | b. Naive | Ratio | Procedures
(seconds) | (seconds) | (b/a)
A | Curriculum Scheduling 866.60 | 30400 35.07 | PROC-2, 3, 4, etc.
B | Production Scheduling 3.73 47.71 | 12.79 | PROC-2, 4, etc.
C | Work Assignment 82.48 87.62 1.06 | PROC-1, 3, etc.
D | Work-Pattern Assignment 1.96 2.38 1.22 | PROC-1, etc.
E | 50-Queen 148.20 1110 7.49 | PROC-4, special proc.
F | Four Color Problem 217.60 598.60 2.80 { PROC-1.
G | Four Color Problem (no solution) 0.42 10.34 | 24.60 [PROC-1.
H | Zebra Problem 0.41 0.60 1.44 | PROC-3, etc.

Table 2 compares the computational times for the
same problem in two cases: one is when the constraint

process refinement method is applied, and only the

naive program generation method is used in the other
case. ? These results for each problem are taken from
exactly the same problem definition. The procedures
used in the refinement method are also listed in the
table.

One of the most remarkable results is that the PROC-4,
which refines checking the disjointness constraint, has
a great advantage (in Problem A, B, and E). Compar-
ing the results of D and H, since PROC-3 (in Prob-
lem H) is a global refinement procedure, the gains are
larger than a local refinement procedure PROC-1 in
Problem D. As discussed in Section 4.3, AC-5 does
not include the refinement of constraint checking and
global refinement method. Consequently, the proposed
refinement method is more effective than merely em-
ploying AC-5.

Consider the Four Color Problems (F and G). Since
the unique constraint is refined by PROC-1, the gains
for the refinement method are comparatively large. In
the case of Problem G, an arc consistency algorithm
as AC-3 proves that it has no solution without any
backtracking. Namely, almost all the time is spent
in constraint propagation. Therefore, the refinement
method causes a high efficiency.

In addition, it should be mentioned that the same pro-
cedures are used in several problems involving differ-
ent application fields. This means that the constraint

*Current experimentation uses a most-constraint min-
conflicts backtracking algorithm and a naive constraint
propagation algorithm AC-3.

process refinement method is applicable for many ap-
plications.

Although the constraint process refinement method
refines only a part of constraint processes, it hag
considerable merits for many application problems.
Moreover, it is very effective especially for hardly
constrained problems. Consequently, two proposed
methods enable solving a hard problem in a dramati-
cally efficient way. =

6 CONCLUSION

In this paper, a novel approach to a class of CSPs
is presented. First, it defines Multi-Dimensional Con-
straint Satisfaction Problem (MCSP), which is a useful
model applicable to many scheduling problems. Sec-
ond, it proposes an approach for MCSPs, focusing
on the features of MCSPs and the meaning of con-
straints. The approach employs a general problem-
solving method for MCSPs and an automatic genera-
tion method of problem-solving programs. Finally, the
proposed approach is evaluated by several experiments
including scheduling applications and well-known toy
problems. Employing these methods enables solving a
hard MCSP in a reasonable time, merely by describing
it in a declarative form.

Appendix: Test Problems

A A school curriculum scheduling problem is pre-
sented as an example. It has 160 variables (32
classrooms for every 5 classes) and 352 values
(11 teachers x 32 times). The constraints are,
science-classroom-~science-teacher,

Constraint Satisfaction with a Multi-Dimensional Domain

same-class-different-time, disjointness, a
constraint specifying continuous classrooms, a
constraint specifies that classrooms in the same
class and the same subjects must not be assigned
in the same day, etc.

A’ The same problem as A, except that the two-
dimensional domain (11 x 32) is elongated into
a one-dimensional domain (352).

B A job-shop production scheduling problem with 44
variables (tasks), 6 production machines x 10
time-intervals. It is a very simple test problem
developed for experimental purpose. It includes,
specification regarding off-days and scheduled ma-
chine maintenance, relation among a task and a
machine, due dates, task orderings, and a few con-
straints.

B’ The same problem as B, except that the two-
dimensional domain (6 x 10) is elongated into a
one-dimensional domain (60).

C A work assignment problem with 114 variables
(works) and one-dimensional domain (21 work-
ers). Since the time of a work is given, there are
no time dimension for the domain. Constraints
are, exclusive assignments for the same work time,
specification of workers’ available times, license
for workers, standard working time length, etc.

D The same problem as C, except that the 114 works
are preprocessed and combined into 22 work-
patterns.

E N-Queen problems. They have N variables (rows)
and a one-dimensional domain with N values
(columns).

F A Four Color Problem with 560 variables (areas),
4 values (colors), and 1583 pairs of neighboring
areas. It is a one-dimensional problem.

G A Four Color Problem. It has 152 variables (areas)
and 413 neighborings. Since the available set of
colors for each area is restricted, it has no solution.

H Zebra Problem in [Dechter 1990]. It is a
one-dimensional problem with 25 variables (5
cigarettes, b pets, b persons, 5 houses, and 5
drinks) and 5 values (positions). It has only one
solution.

Acknowledgments

The authors would like to express their thanks
to Tatsuo Ishiguro, Masahiro Yamamoto, Takeshi
Yoshimura, Masanobu Watanabe and Tomoyuki Fu-
jita for their encouragement in this work. Further,
they also thank Yoshiyuki Koseki for his valaable ad-
vice, ,

References

[Dechter 1988] R. Dechter and J. Pearl, “Network-
Based Heuristics for Constraint-Satisfaction
Problems”, Artificial Intelligence, Vol. 34, 1988,
pp. 1-38.

[Dechter 1990] R. Dechter, “Enhancement Schemes
for Constraint Processing: Backjumping, Learn-
ing, and Cutset Decomposition”, Artificial Intel-
ligence, Vol. 41, 1990, pp. 273-312.

[Deville 1991] Y. Deville and P.V. Hentenryck, “An
Efficient Arc Consistency Algorithm for a Class
of CSP Problems”, Proceedings of the Twelfth In-
ternational Joint Conference on Artificial Intelli-
gence, 1991, pp. 325-330.

[Fox 1989] M.S. Fox, N. Sadeh, and C. Baykan, “Con-
strained Heuristic Search”, Proceedings of the
FEleventh International Joint Conference on Ar-
tificial Intelligence, 1989, pp. 309-315.

[Freuder 1982] E.C. Freuder, “A Sufficient Condition
for Backtrack-Free Search”, Journal of the Asso-
ciation for Computing Machinery, Vol. 29, No. 1,
January 1982, pp.24-32.

[Freuder 1990] E.C. Freuder, “Complexity of K-Tree
Structured Constraint Satisfaction Problems”, In
Proceedings of the Eighth National Conference on
Artificial Intelligence, 1990, pp.4-9.

[Guesgen 1989] H.W. Guesgen, “A Universal Con-
straint Programming Language”, In Proceedings
of the Eleventh International Joint Conference on
Artificial Intelligence, 1989, pp. 60-65.

[Keng 1989] N. Keng and D.Y.Y. Yun, “A Plan-
ning/Scheduling Methodology for the Con-
strained Resource Problem”, In Proceedings of the
Eleventh International Joint Conference on Arti-
ficial Intelligence, 1989, pp. 998-1003.

[Mackworth 1977] A.K. Mackworth, “Consistency in
networks of relations”, Artificial Intelligence, Vol.
8, 1977, pp. 99-118.

[Mackworth 1985] A.K. Mackworth and E.C. Freuder,
“The Complexity of Some Polynomial Network
Consistency Algorithms for Constraint Satisfac-
tion Problems”, Artificial Intelligence, Vol. 25,
1985, pp. 65-74.

[Nudel 1983] B. Nudel, “Consistent-Labeling Prob-
lems and their Algorithms: Expected-
Complexities and Theory-Based Heuristics”, Ar-
tificial Intelligence, Vol. 21, 1983, pp. 135-178.

[Zabih 1990] R. Zabih, “Some Applications of Graph
Bandwidth to Constraint Satisfaction Problems”,
In Proceedings of the Eighth National Conference
on Artificial Intelligence, 1990, pp.46-51.

259

