Proceedings of the 7th IEEE International Conference on Tools with Artificial Intelligence, 318-325, 1995.

@© Institute of Electrical and Electronics Engineers, Inc. (IEEE).

Path Consistency Revisited

Moninder Singh*
Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104-6389

Abstract

One of the mawn factors limiting the use of path
consistency algorithms in real life applications is their
high space complexity. Han and Lee [5] presented a
path consistency algorithm, PC-4, with O(n3a®) space
complexity, which makes it practicable only for small
problems. I present a new path consistency algo-
rithm, PC-5, which has an O(n3a?) space complex-
ity while retaining the worst-case time complexity of
PC-4. Moreover, the new algorithm exhibits a much
better average—case time complexity. The new algo-
rithm is based on the idea (due to Bessiere [1]) that,
at any time, only a minimal amount of support has
to be found and recorded for a labeling to establish its
viability; one has to look for a new support only if
the current support is eliminated. I also show that
PC-5 can be improved further to yield an algorithm,
PC5++, with even better average-case performance
and the same space complexity.

1 Introduction

A large number of problems in Al can be posed as
special cases of the Constraint Satisfaction Problem
(CSP). In such a problem, the task specification can
be formulated to consist of a set of variables, a domain
for each variable and a set of constraints on these vari-
ables. A typical task is then to find an instantiation of
these variables (to values in their respective domains)
such that all the constraints are simultaneously satis-
fied.

Formally, a CSP can be defined as follows ([6, 8]):

N ={i,j,...} is the set of nodes, with |N| = n,
D ={b,c,...} is the set of labels, with |D| = a,
E = {(7)| (i,4) isan edge in N x N}, with
|E|=e,

D; = {b| b € D and (7,b) is admissible},

*This work was supported by the National Science Founda-
tion under grant # TR192-10030.

Ry is a unary relation, and (4,b) is admissible if
Rl(ia b)a
R is a binary relation, and (4,5) — (4, ¢) is admis-

sible if Ra(i,b, j,).

Most of the methods used to solve such problems
are based on some backtracking scheme, which can be
very inefficient with exponential run-time complexity
for most nontrivial problems. One of the reasons for
this is that backtracking suffers from “thrashing” [6]
i.e. search in different parts of the space keeps failing
for the same reasons. Mackworth [6] identified three
main causes for thrashing — node inconsistency, arc
inconsistency and path inconsistency.

A number of methods have been developed to sim-
plify constraint networks (before or during the search
for solutions) by removing values that lead to such
inconsistencies.

Node consistency can be achieved by checking the
unary predicate on each node and removing from its
domain values that do not satisfy this predicate [6].

Arc consistency involves binary constraints between
pairs of variables, and can be achieved by removing
values from the domains of each pair of variables that
violate the direct constraint between them. A num-
ber of algorithms have been developed for achieving
arc consistency in constraint networks including Mack-
worth’s AC-3 algorithm [6], Mohr and Henderson’s
AC-4 algorithm [8] and Bessiere’s AC-6 algorithm [1].

Path consistency implies that any node-value pair
of labelings (i,b) — (j, ¢) that is consistent with the
direct constraint between i and j i1s also allowed by
all paths between i and j. To achieve path consis-
tency in a constraint network, it is sufficient to make
all length-2 paths consistent since path consistency in
a complete graph is equivalent to path consistency of
all length-2 paths [10]. Once again, a number of algo-
rithms have been designed for achieving path consis-
tency in constraint networks. Mackworth’s PC-2 algo-
rithm [6], an improvement over Montanari’s PC-1 al-
gorithm [6, 10] has a worst case running time bounded
above by O(n®a®) [7]. Mohr and Henderson’s path

consistency algorithm [8], PC-3, uses the same ideas
to improve PC-2 as they had used to design AC-4, an
improvement over AC-3. However, Han and TLee [5]
showed that PC-3 is incorrect, and presented a cor-
rected version, PC-4, with a worst case time and space
complexity of O(n3a®). Chen [3] attempted to modify
PC4 in order to improve its average case performance
while retaining its worst case complexity. However, 1
shall show in Section 2 that this algorithm is incorrect.

I discuss the motivation for this research in Section
2, highlighting the problems with PC-4 and pointing
out the errors in Chen’s path consistency algorithm.
In Section 3, I present the PC-5 algorithm and an-
alyze its space and time complexity. In Section 4, I
show how PC-5 can be further improved to yield the
PCB5++ algorithm! while I present some experimental
results in Section 5.

2 Motivation

PC-4, Han & Lee’s corrected version of PC-3, has
an O(n3a®) space complexity. As noted by Mohr and
Henderson [8], the space complexity of the PC-3 algo-
rithm (and hence of PC-4) makes it practicable only
for small problems. Hence, it would be useful to re-
duce the space requirements of the PC-4 algorithm
while keeping the same worst-case time complexity.
Another problem with the PC-4 algorithm is that it
has to consider entire relations in order to construct its
data structures. Hence, in many problems where path
consistency will not remove many values, the initial-
ization step will be fairly time consuming. Therefore,
it is desirable to reduce the complexity of the initial-
ization phase.

Chen [3] attempted to modify the PC-4 algorithm
in order to improve its average-case time and space
complexity, while retaining its O(n3a®) worst-case
time and space complexity. Chen’s algorithm uses
Counter[(4, b, j, ¢),k] to record all supports for a la-
beling (7,b) — (j,¢) in the domain of a node k. If a
counter becomes zero, the corresponding labeling is
invalid and must be removed from the appropriate re-
lation. However, a labeling (4,b) — (j,¢) cannot be
eliminated from the corresponding relation R;;? un-
less all values in the domain of some node k have been
tested and found not to support the labeling. The
error I have found in Chen’s PC algorithm [3, proce-
dure PC, page 347] is that, in lines 26-31, a labeling
(7,0) — (k,d) can be eliminated from R;; before all

TWhile PC-5 is based on AC-6 [1], PC54++ can be regarded
as an extension to AC6++ [2].

2T use R;;(b,c) to represent the binary relation Ry(3,b, 4, ¢)
used earlier in the definition of a CSP (page 2).

values in 1); have been tested. A similar error follows
from lines 32-37. This can be seen by considering the
very simple constraint network of Figure 1.

<12 <13
2 <23 3

Figure 1: A counterexample to Chen’s PC algorithm

The domains of the three variables and the con-
straints between them are as shown. During the very
first iteration, Chen’s PC algorithm does the follow-
ing:

t—1; 72, k<3
b—1;, ¢—3;, d3

Tt then checks to see if the assignment (7, b) — (4, ¢) is
supported by (k,d). Since it is not, it sets R;;(b,c) =
False and Rj;(c,b) = False. While this is correct, the
algorithm goes further and also eliminates Ry3(1,3)
(i.e. Rig(b,d)) as well as R93(3,3) (i.e. Rjx(c,d)) be-
cause it concludes incorrectly that these assignments
also have no support. However, the algorithm has not
yet checked all the values in D; (i.e. Ds). The value
2 € D5 1s a support for both these assignments - in
fact, it 18 a solution to the problem. Chen’s PC al-
gorithm, however, incorrectly discarded the one and
only solution to the problem.

The new algorithm, PC-5, that I present here, re-
duces the space complexity to O(n3a?) (as compared
to O(n3a?®) of PC-4) while keeping the worst-case time
complexity of PC-4 (O(n®a®)). Moreover, PC-5 finds
only as much evidence as is needed to support a label-
ing (7,b) — (j,¢) as compared to PC-4 which finds all
supports. Hence, the average-case time complexity of
PC-5 should be substantially better than that of PC-4,
especially in problems where path-consistency removes
very few values. PC-5 can be further improved to yield
another algorithm, PC5++, which has an even better
average-case time complexity as compared to PC-5.

The main feature of Mohr and Henderson’s AC-
4 algorithm [8] was that it made the “support” of a
labeling (4,b) evident by storing the relevant support
information in an explicit data structure. They had
used the same idea in designing PC-3, as did Han and

Lee [5] in designing PC-4, the corrected version of PC-
3. Bessiere’s AC-6 algorithm [1] improves on AC-4
by reducing the space requirements while retaining its
(optimal) worst-case time complexity. T use the same
ideas as Bessiere to improve upon PC-4.

3 The PC-5 algorithm

As pointed out in section 2, PC-4 is based on the
notion of “support”. Aslong as a labeling (7,b)—(j, ¢)
(that is consistent with R;;) has supporting values®
on each of the variables k (adjacent to both ¢ and j
in the constraint graph), this labeling is consistent.
However, once there is a variable on which no remain-
ing value is consistent with this labeling, it must be
eliminated from the relation R;;, i.e. R;;(b,c) = false

and Rj;;(c,b) = false.

M — 0; Sipj. = 0; Waiting list — Empty list;
fori=1, n—1do
for j=i+4+1, n do
for k=1, n; k#1i k#jdo
for b € A; do
for ¢ € Aj such that R;;(b,c) = true do
begin
d—1,;
nextsupport(s, b, j, ¢, k, d, nosupport);
if nosupport then
begin
MIi, b, j,c] = 1; M[j,e,i,b] = 1,
R;j(b, c) = false; Rji(e, b) = false;
append(Waiting list, (4,5, j, ¢))
end
else
begin
append(Suea, (, <))
append(Sjcra, (7,0))
end
end

Figure 2: The PC-5 algorithm: the initialization phase

In order to make this support evident, the PC-4
algorithm assigns to each labeling (i,b) — (j,¢) a
counter[(4, b, j,¢), k]. This counter records the num-
ber of admissible pairs (i,b) — (k, d) that support the
binary relation R;;(b,c) where d is any admissible la-
bel at node k. Any time (4,b) — (k,d) or (j,¢) —
(k, d) is removed from the corresponding relation, the
support for (i,b) — (j,¢) at node k diminishes by
1. Hence counter[(7, b, j, ¢), k] and counter[(j, ¢, %, b), k]
are decremented by 1. If the counters become zero, the
labeling (¢, 5) — (4, ¢) is removed from R;;. In addition
to the counters, PC-4 also maintains sets .S;;;. which

3 A value d in Dy, is said to support the labeling (4,b) — (j,¢)
if R;(b,d) and Rj(c,d) are both valid.

contain members of the form (k,d), where R;;(b,d)
and Ry;(d,b) are supported by R;;(b,c). Whenever a
labeling (¢,6) —(j, ¢) is eliminated from R;;, this infor-
mation has to be propagated to the relations R;;(b, d)
and R;x(c, d) where (k,d) is a member of S;..

As noted by Bessiere [1], computing the number of
supports for each labeling (i,b) — (4, ¢) and recording
all of them implies an average-case time complexity
and space complexity both increasing with the number
of allowed pairs in the relations, since the number of
supports is proportional to the number of pairs allowed
in the concerned relations.

procedure nextsupport(?, b, j, ¢, k, var d, var nosupport)
begin
if d < last(Dy) then
begin
nosupport «— false
while ((M[é, b, k,d] or M[j,c, k,d])
and (d < last(Dy))) do
d—d+1;
if d < last(Dy) then
begin
while not (R;z(b,d) and R;i(c, d))
and not nosupport do
if d < last(Dy) then
d — next(d, Dy)
else
nosupport — true
end
else
nosupport «— true
end
else
nosupport «— true
end

Figure 3: The PC-5 algorithm: the nextsupport pro-
cedure

PC-5 rectifies this problem by determining and
storing only one support for each labeling. In the
initialization phase (Figure 2), the algorithm deter-
mines one support (the first one) for each labeling
(7,0) — (4, ¢) in the domain of a third node k (k is ad-
jacent to both 7 and j in the constraint graph). If no
such support is found, the assignment (,5) — (j, ¢) is
invalid. So this assignment is eliminated from the rela-
tions R;; and R;;. Moreover, this labeling is added to
the waiting list to be propagated. If, however, (k, d) is
found as the first support for this labeling on R;; and
Rjr, then (j,¢) is appended to Sjzrq (signifying that
R;;(be) is supported by R;x(b,d)). Similarly, (¢,5) is
appended to Sj.(k, d). If then, at a later stage, a label-
ing (i,b) — (k,d) is removed from R;j, the algorithm
tries to determine the next support for (i,b) — (j,¢)
in k as well as for (j,¢) — (k,d) in 4. The procedure

neztsupport (Figure 3) is used to find the first as well
as the next support of each labeling (i,) — (j, ¢) in the
domain of k. This procedure is based on the nextsup-
port procedure used in AC-6 [1].

while Waiting list # Emptylist do
begin
choose (k,d, 1, e) from the Waiting list and delete it;
for (j,¢) € Sgare do
begin
remove (j, ¢) from Sgg. and (k, d) from Sjqe;
if M[k,d,j,c]= 0 then
begin
next «— e; nextsupport(k, d, j, ¢, |, next, nosupport);
if nosupport then
begin
Mk, d, j,c] = 1; Mj.c,k,d] = 1;
append(Waiting list, (k, d, j,c));
Ryj(d, ¢) = false; Rjp(c,d) = false
end
else
begin
append(sk‘dlnez‘t: (.77 C)))
append(sjcln,emm (k7 d))
end
end
end
for (j,c) € Siexa do
begin
remove (j, ¢) from Sierq and (I,) from Sj.xq;
if M[l,e,j,¢] = 0 then
begin
next — d; nextsupport(l, e, j, ¢, k, next, nosupport);
if nosupport then
begin
Ml e, j,c] =1, M[j, ¢, le] = 1;
append(Waitinglist, (, e, 7, ¢));
Ry (e, c) = false; Rji(c,e) = false
end
else
begin
append(sleknem, (]; {3))5
append(Sosnests (1)
end
end
end
end

Figure 4: The PC-5 algorithm: the propagation phase

During the propagation phase (Figure 4), informa-
tion about the invalid labelings (recorded in the wait-
inglist) has to be propagated to all the nodes. TIf
(k,d,l, e) is removed from the waiting list, it means
that the labeling (k,d) — (I, €) is not valid; so all re-
lations supported by it (members of Siq.) are also
invalid and the algorithm must find the next support
for each one of these relations. So for each (j,¢) in
Skate, the algorithm tries to find the next support for

the labeling (k, d) — (4,¢) in D; as well as (I,e) — (j, ¢)
in Dy. If a support is found it is recorded in the rel-
evant S set; otherwise the labeling is eliminated from
the corresponding relations and is added to the wait-
ing_list to be propagated to the other nodes.

Space complexity

The matrix M requires O(n?a?) space where a is
the size of the largest domain and n is the number of
variables. Moreover, the sum of the size of the differ-
ent sets S5, is bounded by:

n X Z

(i,)ENXN

Ail x |4;] < n*a?

This is because each set S35, can be, at most, of size n
since 1t contains at most one support for the labeling
(7,0)—(J, ¢) in each node. Hence the space complexity
of the entire algorithm is O(n3a?) as compared to the
O(na®) space complexity of PC-4. Moreover, PC-5
does not use the counters used in PC-4.

Time complexity

The time complexity analysis of PC-5 is similar to
that of PC-4. In the initialization phase, the inner-
most for loop will be executed on the order of n3a?
since |D;| and |D;| are both of size O(a). More-
over, the inner loop requires a call to the procedure
nextsupport which computes a support for a labeling,
say (4,b) — (4, ¢), in the domain of a variable, say k,
starting at the current value. Hence, for each such as-
signment (of the form (i,b) — (j, ¢)), each value in Dy,
will be checked at most once. So the worst-case time
complexity of the initialization phase will be O(n3a?).

In the propagation phase, the while loop is exe-
cuted at most n?a” times since there are at most n2a?
sets of type Sizj.. Moreover, each of the for loops
is bounded by the size of Sig. which is of the order
n. Moreover, each for loop requires a call to the pro-
cedure nextsupport which, as shown above, requires
O(a) time. Hence, the worst-case time complexity of
the propagation phase is O(n3a?).

Hence, PC-5 has the same worst-case time complex-
ity as PC-4. Moreover, the average-case time complex-
ity of PC-5 is substantially better than that of PC-4
since it stops processing of a value assignment to an
edge just when it has proof that it is viable (i.e. the
first support).

4 The PC5++4 algorithm

It is possible to improve the average-case time com-
plexity of PC-5 by increasing the space requirements
slightly. The worst-case time and space complexities

still temain O(n%a?) and O(n3a?) respectively. The
improvement comes from the observation that each
time PC-5 determines a support d in Dy for the la-
beling (i,b) — (4, ¢), it in fact also finds a support (b
in D;) for (j,¢) — (k,d) as well as a support (¢ in
D;) for (i,b) — (k,d). By recording the supports at
this time, it is possible to avoid duplicating the ef-
fort in determining these supports at a later time.
The problem with this approach is that now the al-
gorithm must keep track of the position from which it
started checking for the first support. Note that PC-5
starts looking for a support from the very first value
in the domain; hence, it looks over the entire domain
and if it reaches the last element in the domain with-
out finding a support, 1t safely concludes that there
is no support for the labeling under consideration in
that domain. However, if we make the above men-
tioned modification, then when the support d in Dy
is found for a labeling (i,b) — (j, ¢), we also store the
fact that b in D; supports (j,¢) — (k,d) and ¢ in D;
supports (4,b) — (k,d). However, the labels preceding
b in D; as well as the labels preceding ¢ in D; have
not yet been checked to see if they support the label-
ings (j,¢) — (k,d) and (4,b) — (k, d), respectively. This
problem can be taken care of by using a data structure
Tag][(i,b,j,c),k] which records the first position in Dy,
where the algorithm started looking for the support of
a labeling (i,b) — (J, ¢).

The nextsupport procedure can be easily modified
to take this fact into account. Instead of stopping after
considering the last value in the domain, the procedure
continues examining the values from the first value
in the domain, and stops only when all values have
been checked once (it reaches the value from where it
started from i.e. Tag[(i,b,j,c),k]). Similarly, the ini-
tialization phase can be easily modified. Each time
the algorithm finds a support d in Dy for a labeling
(7,0)—(j, ¢), the algorithm also sets Tag[(j, ¢, k, d),i] =
b and Tag[(i, b, k,d), j] = ¢, unless the corresponding
Tag has already been set. Moreover, to ensure that
the algorithm does not attempt to find a support for
a labeling for which one has already been found, the
algorithm looks for a support for the labeling in the
domain of some node only if the corresponding Tag
has not yet been set. The propagation phase remains
the same as for PC-5. Complete details of the PC5++
algorithm are given in [9].

Since PC5++ requires only additional O(n3a?)
storage, the space complexity remains O(n%a?). The
procedure neztsupport still takes time O(a) (it exam-
ines each value in a domain at most once). Thus, the
worst-case time complexity of PC5++ is still O(n3a?).

5 Experimental Results

In order to compare the performance of PC-5 and
PC5++ to that of PC-4, I carried out a series of ex-
periments on a large spectrum of problems. For each
problem, T counted the number of constraint checks (to
compare the time complexity) and the number of sup-
ports recorded, i.e. size of the sets S;j;. (to compare
the space complexity). Although the performance of
the three algorithms was measured on the same sets
of problems, I present the results separately in order
to emphasize the improvement of PC5++ over PC-5
(which would not always be apparent if all results were
shown on the same figure).

No. of Constraint | No. of Supports
checks recorded
PC-4 1,682,560 1,326,250
PC-5 551,373 333,118
PCH++ 412,537 340,300

Table 1: Comparison of PC-4 with PC-5 and PCh++

on the zebra problem

The first experiment was done on the zebra prob-
lem [1, 4] which has similarities to some problems en-
countered in real life. T used the same encoding of
the problem as used by Dechter [4]. As can be seen
from Table 1, both PC-5 and PC5++ outperformed
PC-4 substantially both in terms of the number of
constraint checks as well as the number of supports
recorded (with PC54++ performing about 25% fewer
constraint checks than PC5).

Another problem on which I tested these algorithms
was the n-queens problem. As can be seen from Fig-
ure 5, both the space and time complexity of PC-4
deteriorates as the number of queens increases; PC-
5 performs markedly better. PC5++ performed even
better, performing between 16-38% fewer constraint
checks than PC-5 (Figure 6). Similar results were ob-
tained on a restricted n-queens problem where for one
column the queen was constrained to one position.

I also tested the algorithms on a variety of randomly
generated problems, with different values of

n, the number of variables

a, the number of values per variable

pe, the probability that a constraint R;; exists
between variables ¢ and j

pu, the probability that a pair (a,b) belongs to
a relation R;;

If two nodes did not have a constraint between
them, the constraint with the always “true” relation
was introduced between them. I generated twenty in-
stances of problems for each set of parameter values,

4500400 A
4000400 4

3500400 -

3000400 A
2500400 -
2000400
1500400 A

Number of constraint checks

1000400 A

500400 A

400

No. of queens

Number of supports recorded

3500000 -

3000000 A

2500000 A

2000000 -

1500000 -

1000000 -

500000 4

No. of queens

Figure 5: Comparison of PC-4 and PC-5 on the n-queens problem.

and averaged the results so as to get a more repre-
sentative picture of each class. Figures 7-12 show the
results of these experiments. A broken vertical line
shows the borderline between problems where wipe-
out is generally produced (located on the left of the
line) and problems where path-consistency is produced
(on the right of the line).

700000 -

600000 -
2
8 500000 1 ——PCS
5 —m—PC5+
=
§ 400000 A
2
S
% 300000 -
o
S
£ 200000
Zz
100000

No. of queens

Figure 6: Comparison of PC-5 and PC54++ on the
n-queens problem.

The space requirement of PC-4 increases very
rapidly with increasing pu (i.e. constraints become
weaker) as seen in Figures 7-9. The space require-
ments of PC-5 (as expected from the algorithm’s com-
plexity) are significantly lower.

Both PC-4 and PC-5 perform roughly the same
number of constraint checks when the constraints are
strong (pu is small) and wipe-out is produced (on the
left of the broken line). However, at higher values of
pu when path consistency is produced (right of the
broken line), the performance of PC-4 rapidly deteri-

orates whereas PC-5 performs substantially better.

As can be seen from Figures 10-12, PCh++ also
performed substantially better than PC-5 on all the
problems tested. PCh++ reduced the number of con-
straint checks performed by PC-5 by upto 23% in Fig-
ures 11 and 10 and upto 27% in Figure 12. The space
requirements were almost the same for all problems.

I also checked the statistical significance of the dif-
ference between PC-5 and PC5++ by performing a
paired i-test at a 99% confidence level. In each case,
there was no significant difference to the left of the
broken vertical line (i.e. when wipe-out is produced);
however, PCh++ performed statistically significantly
fewer constraint checks than PC-5 for problems which
have a solution (to the right of the broken vertical line)
and, thus, lead to a path consistent network. These
results are as one would expect — when the problem
has no solution, all algorithms will perform virtually
the same amount of work eliminating a large num-
ber of labelings from the relations; however, for prob-
lems where a solution exists, PC5+4 removes much
fewer labelings, performs significantly fewer constraint
checks and makes the network path consistent much
faster than does PC-5.

6 Conclusion

I have presented a new algorithm, PC-5, for achiev-
ing path consistency in constraint networks. The main
improvement of PC-5 over previous path consistency
algorithms is its reduced space complexity (O(n3a?)).
Moreover, it retains the O(n3a®) worst-case time com-
plexity of PC-4 while improving its average-case time
complexity, especially on networks with weak con-
straints. I further show that PC-5 can be modified to
yield another algorithm, PC5++4, which retains the

950000 -
850000 -
750000 -
650000 -
550000 -
450000 -
350000 -

Number of constraint checks

250000 -
150000 -

[
50000

0.05
0.15
025
035
045 4
0.55
0.65
0.75
0.85
0.95

pu

Number of supports recorded

900000 -
800000 -
700000 -
600000 -
500000 -
400000 -
300000 -
200000 4
100000 -

W

0.05
0.15
0.25
0.35
0.45
0.55
0.65
0.75
0.85
0.95

pu

Figure 7: PC-4 and PC-5 on randomly generated CNs with 20 variables having 5 possible values where pe = 0.3.

730000 -

630000 -

530000 -

430000 -

330000 -

230000 -

Number of constraint checks

1
1
1
1
1
1
|
1
1
1
1
1
1
1
1
1
I
130000 - 1
1

30000

w vy wy wy v v v w wy w
< - o «@ = \ e] *]
=] =3 o o =] =] o =] =3 o

pu

Number of supports recorded

600000 -

500000 -

400000 -

300000 -

200000 -

100000 -

08 - » B 8

0.05
0.15
0.25
0.35
045
0.55
0.65
0.75
0.85
0.95

pu

Figure 8: PC-4 and PC-5 on randomly generated CNs with 10 variables having 10 possible values where pe = 0.7.

O(n®a?) space complexity but exhibits even better
average case performance. T also present experimen-
tal results which show that both PC-5 and PC5++
vastly outperform PC-4 on all the problems tested
with PCH+4 performing better, as expected, than
PC-5.

Acknowledgements

The author would like to thank Prof. Bonnie Web-
ber for her helpful comments and suggestions for im-
proving the paper.

References

[1] C. Bessiere, Arc-consistency and arc-consistency

again, Artif. Intell. 65 (1) (1994) 179-190.

[2] C. Bessiere and J. Regin, An arc-consistency algo-
rithm optimal in the number of constraint checks,
in: Proceedings 6th IEEE Int. Conf. on Tools with
AT (1994) 397-403.

[3] Y. Chen, Improving Han and Lee’s path consis-
tency algorithm, in: Proceedings 3rd IEEE Int.
Conf. on Tools for AT (1991) 346-350.

[4] R. Dechter, Enhancement schemes for constraint
processing: backjumping, learning, and cutset de-
composition, Artif. Intell. 41 (1990) 273-312.

[6] C. Han and C. Lee, Comments on Mohr and Hen-
derson’s path consistency algorithm, Artif. In-

tell. 36 (1988) 125-130.

[6] A.K. Mackworth, Consistency in networks of re-
lations, Artif. Intell. 8 (1) (1977) 99-118.

[7] A.K. Mackworth and E.C. Freuder, The complex-
ity of some polynomial network consistency algo-
rithms for constraint satisfaction problems, Artif.

Intell. 25 (1985) 65-74.

[8] R. Mohr and T. Henderson, Arc and path consis-
tency revisited, Artif. Intell. 28 (1986) 225-233.

380000 -

330000 -

280000 +

230000 -

180000 +

130000 -

Number of constraint checks

005
0.15 4
025 4
3

045 4
055 4
065 -
075 4
085 4
095 4

pu, pc

300000 -
250000 -
=
L
=2
g
2 200000 -
§)
g
£ 150000 1
Z
=}
5 100000 |
£
=3
Z
50000 |
0 et ‘ ; ; ‘
" " P P " w " w " w
=] —]] < vl © o~ o =)
< (=) (=] (=] (=] (=] (=] (=] (=] (=]
pu, pc

Figure 9: PC-4 and PC-5 on randomly generated CNs with 15 variables having 5 possible values.

300000

275000

250000 ~

225000

200000

175000 -
150000 -

Number of constraint checks

125000 -

100000 -
L

75000

0.05

0.15

3

045

055 T----
0.65

075 -

0.85

095 -

Figure 10: PC-5 and PC54++ on randomly generated
CNs with 20 variables having 5 possible values where
pe=0.3.

[9] M. Singh, Efficient path consistency algorithms
for constraint satisfaction problems, Technical
Report MS-CIS-95-30, Dept. of Computer and
Information Science, University of Pennsylva-
nia, Philadelphia, PA. Available via anonymous
ftp from ftp.cis.upenn.edu:/pub/msingh/tech—
report—95-30.ps.Z.

[10] U. Montanari, Networks of constraints: funda-
mental properties and applications to picture pro-

cessing, Inf. Sci. 7 (1974) 95-132.

170000 -

150000

130000

110000

90000 -

70000 -

Number of constraint checks

0.05
0.15 4
0.25 4
0.35
045
0.55 -
0.65 -
0.75 4
0.85 -
0.95 4

Figure 11: PC-5 and PC54++ on randomly generated

CNs with 10 variables having 10 possible values where
pe=0.7.

130000 A

110000

90000 -

70000 -

Number of constraint checks

50000 -

30000 T T T T T —h— T 1
v vy e el v el v vy vy wv
S - I ISe] < ! ° ~ S)
=) S S S S S S S) S

pu, pc

Figure 12: PC-5 and PC54++ on randomly generated
CNs with 15 variables having 5 possible values.

