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Abstract

We present a new approach to optimal rectangle packing, an
NP-complete problem that can be used to model many sim-
ple scheduling tasks. Recent attempts at incorporating artifi-
cial intelligence search techniques to the problem of rectangle
packing have focused on a CSP formulation, in which partial
assignments are defined to be the fixed placement of a sub-
set of rectangles. Our technique takes a significant departure
from this search space, as we instead view partial assignments
as subsets of relative pairwise relationships between rectan-
gles. This approach recalls the meta-CSP commonly con-
structed in constraint-based temporal reasoning, and is thus a
candidate for several pruning techniques that have been de-
veloped in that field. We apply these to the domain of rect-
angle packing, and develop a suite of new techniques that ex-
ploit both the symmetry and geometry present in this partic-
ular domain. We then provide experimental results demon-
strating that our approach performs competitively compared
to the previous state-of-the-art on a series of benchmarks,
matching or surpassing it in speed on nearly all instances.
Finally, we conjecture that our technique is particularly ap-
propriate for problems containing large rectangles, which are
difficult for the fixed-placement formulation to handle effi-
ciently.

Introduction
The problem of rectangle packing is one that has drawn at-
tention from several diverse fields of computer science. For
instance, in the context of scheduling, it can be used to rep-
resent scenarios where jobs require a fixed amount of time
and resources, which compose the two dimensions of a sin-
gle rectangle. The task of packing many such rectangles into
an enclosing space, so as to minimize the width, height, or
area of this space, allows for the minimization of makespan,
resources needed, or total wasted resource. In VLSI design,
rectangles represent actual physical modules that need to be
placed in a spatial arrangement such that no two modules
overlap.

One of the more recent approaches (Korf 2003) has cast
optimal rectangle packing as a constraint satisfaction prob-
lem (CSP). In this formulation, a variable is created for each
rectangle, whose legal values are the positions that rectan-
gle could occupy without exceeding the boundaries of the
enclosing space. In addition, there is a binary constraint
between each pair of rectangles, requiring that they do not
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overlap. To solve this CSP, Korf developed a backtracking
algorithm, where each partial assignment is defined to be
the fixed placement of a subset of rectangles. By obtaining
lower bounds on the amount of wasted space at each node in
the search, an efficient algorithm is constructed, which was
later refined (Korf 2004) into the fastest known algorithm
for optimal rectangle packing.

In this paper, we present a new approach to rectangle
packing. Specifically, we cast the problem of optimally
packing a set of rectangles with fixed orientations as a meta-
CSP. In this formulation, we create a meta-variable for each
pair of rectangles, whose values are the four pairwise re-
lationships (i.e., above, below, left of, right of) that pre-
vent that pair from overlapping. As such, commitment to
the exact placement of any rectangle is not established un-
til a consistent solution has been generated. In this regard,
our approach resembles graph-based methods for optimal
rectangle packing (Onodera, Taniguchi, & Tamaru 1991),
which have previously been unable to cope with more than a
small handful of rectangles. The key difference in our meta-
CSP formulation is the introduction of modern artificial-
intelligence search techniques that greatly increase the effi-
ciency of exploring this alternative space. Some of these are
drawn from literature on constraint-based temporal reason-
ing (Dechter, Meiri, & Pearl 1991; Stergiou & Koubarakis
1998; Tsamardinos & Pollack 2003), while others are en-
tirely new techniques that exploit the symmetry and geom-
etry present in this particular domain. We combine these
methods to create the BLUEBLOCKER solver, and provide ex-
perimental results demonstrating that our approach performs
competitively compared to the previous state-of-the-art on a
series of benchmarks. Finally, we conjecture that our tech-
nique is particularly appropriate for problems containing
large rectangles, which are difficult for the fixed-placement
formulation to handle efficiently.

Background
Rectangle Packing
Consider the following problem: we are given a set of N
jobs, where each job j requires a specific number of workers
(or machines) mj and a specific amount of uninterrupted
processing time pj . Assuming that all workers are paid the
same salary and work the same hours, one may wish to find
a schedule that minimizes the total cost of labor (which is
proportional to the product of number of workers and the
total hours worked).

93



This problem can be approximated as a rectangle pack-
ing problem.1 Specifically, each job can be represented by a
rectangle, with width wj being equal to the time required pj ,
and height hj being equal to the required number of work-
ers mj . Minimizing the total labor cost is then equivalent to
finding an enclosing rectangle of dimensions W ×H whose
total area is minimal. We refer to this as the Minimal Bound-
ing Box Problem. The decision variant of this, where the di-
mensions of the enclosing space are specified, we refer to as
the Containment Problem.

Previous work on rectangle packing has primarily focused
on generating approximate or suboptimal solutions, using
techniques such as genetic algorithms and simulated anneal-
ing. To facilitate these approaches, a number of data struc-
tures have been developed to represent a layout of rectangles
including sequence pairs (Murata et al. 1995), BSG struc-
tures (Nakatake et al. 1996), and O-Trees (Guo, Cheng, &
Yoshimura 1999). We omit the details of such structures, as
they are largely unrelated to our formulation.

The first line of research to consider optimal two-
dimensional compactions of rectangles (Onodera,
Taniguchi, & Tamaru 1991) applied a branch-and-bound
approach, using a graph algorithm to maintain consistency
at each step of the backtracking search. Extensions of
this method have been largely avoided, as it was shown to
handle no more than six rectangles tractably. More recently,
an algorithm using the O-Tree representation was able
to surpass this record by efficiently handling up to nine
rectangles (Chan & Markov 2004).

Rectangle Packing as a CSP
One of the more distinctive approaches to rectangle packing
(Korf 2003) applied artificial intelligence search techniques
with great success. In this work, rectangle packing is mod-
eled as a binary constraint satisfaction problem. There is a
variable for each rectangle, whose legal values are the po-
sitions it could occupy without exceeding the boundaries of
the enclosing space. In addition, there is a binary constraint
between each pair of rectangles that they cannot overlap.

To solve this CSP, a backtracking algorithm is used. At
each node in the search, a rectangle is given a fixed posi-
tion within the enclosing space. This is accomplished by
“drawing” the rectangle (or an outline of the rectangle) onto
a bitmap representing the entire area. For example, one such
partial assignment is depicted in Figure 1. Here, two rect-
angles (in fact, squares) have been given assignments. The
upper-left corner of the 6×6 square has been placed at (0, 0),
and the upper-left corner of the 5×5 square has been placed
at (6, 0). Suppose we have four more squares remaining,
with dimensions 4×4, 3×3, 2×2, and 1×1; by visual in-
spection, it is clear that this particular partial assignment is
a dead-end, as there is no place for the 4×4 square to go.

To make this search efficient, a number of powerful tech-
niques were developed to prune large portions of the search
space. These techniques rely almost entirely on the abil-
ity to compute the number of remaining empty cells in the
enclosing space that will necessarily be wasted for a given

1Richard Korf brought to our attention that the rectangle pack-
ing formulation turns out to be a bit more constraining, as it re-
quires the group of workers assigned to each job to be “contiguous”
along an artificial ordering.

6 5

Figure 1: The original CSP search space

partial assignment. As an example, suppose the 5×5 square
had not yet been placed in the above figure. Clearly, the
only squares that can fit beneath the 6×6 block are those
with dimensions 1×1 and 2×2. Thus, of those twelve unit
cells, at least 12 − 12 − 22 = 7 must remain wasted in any
extension of this partial assignment. Since the sum of the
areas of all the rectangles is 91, and the enclosing rectangle
is 8 × 12 = 96, and 91 + 7 > 96, this partial assignment
cannot lead to a consistent solution. In Korf’s system, this
procedure is performed by slicing the empty space into one-
dimensional strips and solving a relaxation of a related bin
packing problem to determine a lower bound on the wasted
space in polynomial time.

The above approach solves the Containment Problem; to
address the Minimal Bounding Box Problem, the algorithm
is used as a black box within an outer loop that iterates on
possible dimensions of the enclosing space. This general
approach was later refined (Korf 2004) to produce a solver
faster than any other known engine (although the current im-
plementation is capable of solving only square packing in-
stances). Even the original results (Korf 2003), which are
roughly a magnitude slower, are staggering compared to all
previous attempts at optimal two-dimensional compaction.
To date, no other solver has been able to match or even come
close to the performance exhibited by Korf’s methods.

Rectangle Packing as a Meta-CSP
In this section, we construct an alternative formulation for
determining whether or not a set of rectangles with fixed ori-
entations can be packed into a given enclosing space. Let pa-
rameters (wi, hi) denote the dimensions (width and height)
of rectangle i, and let the variables (xi, yi) denote the po-
sition of the upper left corner of rectangle i with respect to
the upper left corner of the enclosing rectangle.2 Our goal
is to find an assignment to all coordinates (xi, yi) such that
(1) each rectangle is entirely contained within the enclosing
rectangle of dimensions W × H , and (2) no two rectangles
overlap. The first set of constraints is achieved by:

2Extensions to 3 or more dimensions are easily accomplished
by introducing additional rectangle parameters (e.g., a depth dj)
and additional coordinate variables (e.g., a zj coordinate).
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Solve-Meta-CSP(A, U )
If (U = �)

return success
Ci,j ← select-variable(U ), U ′ ← U − {Ci,j}
For each disjunct dikj of D(Ci,j)

A′ ← A ∪ {Ci,j ← dikj}
If (consistent(A′))

If (Solve-Meta-CSP(A′, U ′) = success)
return success

return failure

Figure 2: An algorithm for solving the meta-CSP

0 ≤ xi, 0 ≤ yi for 1 ≤ i ≤ N
xi + wi ≤ W for 1 ≤ i ≤ N
yi + hi ≤ H for 1 ≤ i ≤ N

We will refer to these as the containment constraints. The
second requirement, precluding overlap between a pair of
rectangles i and j, is achieved by a set of disjunctive con-
straints of the following form:

{diLj : xi + wi ≤ xj} ∨ (i is to the left of j)
{diRj : xj + wj ≤ xi} ∨ (i is to the right of j)
{diAj : yi + hi ≤ yj} ∨ (i is above j)
{diBj : yj + hj ≤ yi} (i is below j)

1 ≤ i < j ≤ N

We refer the set of such constraints as the non-overlap con-
straints. Each inequality (or disjunct) has been given a label,
such as diLj , for reference. We will generally refer to the
first pair of inequalities as the horizontal disjuncts, and the
second pair as the vertical disjuncts.

This encoding lends itself to a meta-CSP formulation.
Here, instead of directly considering assignments to the vari-
ables xi, xj , yi, and yj , we create a meta-variable Ci,j

for each non-overlap constraint between any pair of rect-
angles i and j. The domain D(Ci,j) is simply the set
{diLj , diRj , diAj , diBj}, representing the various alterna-
tives (corresponding to left, right, above, below) one has
for satisfying that non-overlap constraint. A complete as-
signment in the meta-CSP thus involves a selection of a sin-
gle disjunct for each non-overlap constraint.3 Figure 2 pro-
vides pseudocode for a simple backtracking algorithm that
will solve this meta-CSP. The input variable A is the set of
assignments to meta-variables, and initially contains all con-
tainment constraints with their singleton assignments; input
variable U is the set of unassigned meta-variables, and ini-
tially contains all non-overlap constraints.

The idea of constructing a meta-CSP was first proposed to
solve the Binary Temporal Constraint Satisfaction Problem
(or Binary TCSP) (Dechter, Meiri, & Pearl 1991), and has
since also been applied to the Disjunctive Temporal Prob-
lem (DTP) (Stergiou & Koubarakis 1998). DTPs permit ar-
bitrary disjunctions of temporal constraints, i.e., linear in-
equalities of the form x − y ≤ b, where x and y are real-
or integer-valued variables, and b is a constant. Since each
of the constraints in our meta-CSP formulation can be rear-
ranged to fit this form, our construction is actually a special

3The containment constraints can be regarded as meta-variables
as well, though since they can take only a single value, we omit
them in our discussion.
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Figure 3: The meta-CSP search space

case of a DTP.4

Within the meta-CSP formulation, the constraints are im-
plicitly defined by the underlying semantics of the disjuncts:
in particular, the values (disjuncts) assigned to each meta-
variable must be mutually consistent. Recall that each value
is a linear inequality (e.g., xi + wi ≤ xj). The consistency
of a set S of such inequalities can be determined by first
constructing its distance graph, a graph that includes a node
for each (object-level) variable (e.g., xi, xj , etc.) and an
arc with weight −b from xj to xi whenever xi + b ≤ xj is
in S. Then S is consistent if and only if its distance graph
has no negative cycles, which can be determined in poly-
nomial time by computing its all-pairs shortest path (APSP)
matrix and checking that there are no negative values along
the main diagonal. A fixed-placement solution can be ex-
tracted directly from the rows of this matrix (Dechter, Meiri,
& Pearl 1991). This approach bears considerable resem-
blance to the single-source shortest path techniques used
in some previous approaches to rectangle packing (Liao &
Wong 1983).

The meta-CSP search space has several advantages over
the original CSP formulation – for instance, the size of nei-
ther the rectangles nor the enclosing space has an effect on
the runtime of our algorithm. In contrast, these are likely
to greatly impact the performance of the approach in (Korf
2003; 2004), not only because they determine the number
of possible locations for each rectangle, but also because
the original CSP requires maintenance of a bitmap repre-
sentation of the enclosing space when placing rectangles
and performing wasted space calculations. Secondly, sev-
eral types of additional shapes and constraints beyond those
of the original formulation (Young, Ho, & Chu 2002) can be
encoded and imposed effortlessly in our meta-CSP as edges
in the distance-graph, whereas additional consistency checks
would be required to handle such constraints in the original
CSP.

One disadvantage to this alternative search space is that
it is significantly harder to visualize than Korf’s. We have
made an attempt to depict it in Figure 3, which again as-

4Simple algebra suffices to convert the constraints into the ap-
propriate form: for example, xi + wi ≤ xj is equivalent to
xi − xj ≤ −wi.
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sumes square blocks with side lengths of 1, 2, . . . , 6. None
of the rectangles shown has been given a fixed location – in
effect, one can imagine that they are floating freely in the en-
closing space. However, in this particular assignment, there
are three pairs of rectangles whose relative spatial relation-
ships have been chosen; namely, {(4, 5), (5, 2), (3, 1)}. This
corresponds to the following partial assignment:

C4,5 ← {d4L5 : x4 + 4 ≤ x5}
C2,5 ← {d2B5 : y5 + 5 ≤ y2}
C1,3 ← {d1R3 : x3 + 3 ≤ x1}

As our objective is to determine whether the set of rectangles
will fit into the enclosing space, this partial assignment will
lead to one of two things: either (1) a consistent solution,
with all N(N − 1)/2 non-overlap constraints receiving an
assignment, or (2) a dead-end, where all extensions of this
partial assignment induce a negative cycle in underlying dis-
tance graph. In the latter case, the backtracking search will
then systematically attempt other partial assignments (per-
haps with C1,3 receiving the disjunct {d1B3 : y3 + 3 ≤ y1})
until consistency is achieved or search is exhausted.

Traditional Meta-CSP Pruning Techniques
As noted earlier, there have been previous attempts at using
a graph-based approach to rectangle packing, but they were
largely abandoned in the early 1990’s because of their in-
ability to scale; in particular, they could not tractably solve
problems containing more than six rectangles.5 However, in
the past decade, a great deal of effort has been devoted to
the development of efficient meta-CSP pruning techniques
for temporal constraint satisfaction, and this work can be
applied to the meta-CSP formulation of rectangle packing.
Some of these pruning techniques resemble methods orig-
inally developed for finite-domain CSPs, while others are
unique to the meta-CSP. In this section, we present three
powerful techniques that have been recently employed by
the DTP solver Epilitis (Tsamardinos & Pollack 2003), and
apply them to our meta-CSP formulation of rectangle pack-
ing. As in (Korf 2004), we will typically use examples in-
volving squares to illustrate these techniques, although (non-
rotatable) rectangles can be handled in an identical fashion.

Forward Checking
Forward checking is one of the simplest and most effective
pruning mechanisms for dead-end detection in CSPs, and it
can be applied to our meta-CSP as well. It works by exam-
ining each as-yet unassigned meta-variable, removing val-
ues that are inconsistent with the current partial assignment.
Whenever the domain of a variable is reduced to �, back-
tracking may be invoked. Previous graph-based algorithms
for rectangle packing did not make use of this technique,
although it is today used in virtually every CSP system.

As an example, suppose that we have an enclosing rect-
angle with a width of 12 and a height of 8, as in Figure 1.
We are given the task of packing squares of dimensions 1×1
through 6×6. Note that even before any non-overlap con-
straints have been given assignments, the vertical disjuncts

5Although computer hardware has advanced considerably since
these tests were performed, it is still unlikely that the algorithms
would be able to handle problems containing more than seven rect-
angles using modern technology (since the size of the search space
grows exponentially with the number of blocks).

belonging to C4,6 are in conflict with the containment con-
straints. This is because there is no way to stack the 4×4
square either above or below the 6×6 square within a space
of height 8. Thus, these vertical disjuncts can be removed
from the domain of C4,6.

Now, suppose we require the 5×5 square to be placed
somewhere to the right of both the 4×4 and 6×6 squares.
This corresponds to the following partial assignment:

C4,5 ← {d5R4 : x4 + 4 ≤ x5}
C5,6 ← {d5R6 : x6 + 6 ≤ x5}

This renders both of the horizontal disjuncts for constraint
C4,6 unavailable, since a width of at least 15 would be
needed to displace these three blocks horizontally. Since the
domain of C4,6 has now been obliterated, this partial assign-
ment can be abandoned entirely.

To check whether the current partial assignment can be
extended by a particular disjunct, one could simply apply an
all-pairs shortest path algorithm (such as Floyd-Warshall) in
O(|X|3) time, where |X| is the number of variables. Fortu-
nately, the presence of a precomputed APSP matrix allows
a disjunct vi + b ≤ vj to be tested for consistency in O(1)
time by ensuring that the length of the shortest path from vi

to vj is no less than b.

Removal of Subsumed Variables
Consider once again a rectangle packing problem that in-
volves the placement of squares having dimensions 1×1
through 6×6. Suppose we require the 5×5 square to be
placed below the 4×4 square and above the 6×6 square,
which involves the following assignments:

C4,5 ← {d4A5 : y4 + 4 ≤ y5}
C5,6 ← {d5A6 : y5 + 5 ≤ y6}

If we ignore the dimensions of the enclosing space, there
are exactly three disjuncts available for the constraint C4,6.6

For instance, we could place the 4×4 square to the left of the
6×6 square, a decision reflected by the assignment C4,6 ←
{d4L6 : x4 + 4 ≤ x6}.

However, it so happens that the current partial assignment
already satisfies the non-overlap constraint between the 4×4
and 6×6 squares. Specifically, the expressions y4 + 4 ≤ y5

and y5 + 5 ≤ y6 can be composed transitively to obtain
the expression y4 + 9 ≤ y6.7 Surely if such a condition
holds, then so does the (weaker) vertical disjunct {d4A6 :
y4 +4 ≤ y6}. In other words, our current partial assignment
has already placed the 4×4 above the 6×6 square. As a
result, we can immediately make the assignment C4,6 ←
{d4A6 : y4 + 4 ≤ y6}. Furthermore, we can safely prune all
other potential disjuncts for constraint C4,6 when we return
to this decision point, as they only serve to constrain the
problem further.

The aforementioned technique is an example of what has
been called removal of subsumed variables in temporal con-
straint literature (Oddi & Cesta 2000), although the tech-
nique was discovered in the domain of rectangle packing al-
most a full decade earlier (Onodera, Taniguchi, & Tamaru
1991). As in the case of forward-checking, the presence

6One of the four disjuncts (specifically, d4B6) has been re-
moved via forward checking.

7(y4 + 4 ≤ y5) ∧ (y5 + 5 ≤ y6) ⇒ (y4 + y5 + 4 + 5 ≤
y5 + y6) ⇒ y4 + 9 ≤ y6
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Figure 4: An illustration of semantic branching

of an all-pairs shortest path distance matrix makes it pos-
sible to check in O(1) whether a particular meta-variable is
subsumed (i.e., already satisfied, as a result of the assign-
ments made so far). Specifically, if there exists a disjunct
vi + b ≤ vj such that the shortest path from vj to vi has
length less than −b, the disjunct can be assigned to its re-
spective constraint immediately.

Semantic Branching
Consider, as before, a rectangle packing problem that in-
volves the placement of squares having dimensions 1×1
through 6×6. Suppose we are faced with the situation shown
in Figure 4(a), which maps to the partial assignment below:

C5,6 ← {d5B6 : y6 + 6 ≤ y5}
C4,6 ← {d4L6 : x4 + 4 ≤ x6}

Imagine that we attempt all possible extensions to this par-
tial assignment and are unable to find a solution. At this
point, a new disjunct will be attempted to satisfy constraint
C4,6. For instance, we might require the 4×4 square to be
placed above the 6×6 square, corresponding to the assign-
ment C4,6 ← {d4A6 : y4 +4 ≤ y6}. This partial assignment
may or may not lead to a feasible solution, but one thing is
known for certain – if there is a consistent extension to this
partial assignment, it will not be one where the 4×4 square
is both above and entirely to the left of the 6×6 square. How
do we know this? Suppose the contrary is true, and that the
4×4 could be placed to the left of the 6×6 square. If this
were the case, then such a solution would have been found
already when the disjunct {d4L6 : x4 + 4 ≤ x6} had been
attempted.

Since we know that the disjunct {d4L6 : x4+4 ≤ x6} will
never hold in any solution extending our new partial assign-
ment, we can explicitly add its negation (i.e., x4 + 4 > x6)
to the set of constraints.8 The geometrical interpretation of
this additional constraint is shown as a dashed arrow in Fig-
ure 4(b); essentially, we are requiring the right-hand side of
the 4×4 square to be placed beyond the left-hand side of the

8To keep all constraints of the same form, we would actually
add the slightly tighter constraint x4 +3 ≥ x6 (or x6−3 ≤ x4) in-
stead. Since the coordinates are all required to take integral values,
the soundness and completeness of the procedure are preserved.

6×6 square. The benefit of adding such a constraint is that it
will tighten the path lengths stored in the distance graph and
thus aid in pruning dead-ends earlier. In general, if an exten-
sion A ∪ {C ← d} of a partial assignment A fails, one can
enforce the negation of d (i.e., ¬d) for any other extension
of A, such as A ∪ {C ← d′}. If this second extension fails,
both ¬d and ¬d′ can be enforced, and so on. This technique
is referred to as semantic branching in temporal constraint
literature in (Armando, Castellini, & Giunchiglia 1999). To
our knowledge, no optimal rectangle packing solver has yet
made use of this powerful innovation.

Domain-Specific Techniques
The techniques presented thus far can be applied to a broad
range of meta-CSP formulations. However, the geometry
and symmetry present in rectangle packing permit the use
of additional domain-specific techniques. In this section, we
develop two new such techniques, and also improve a previ-
ously developed domain-specific ordering heuristic.

Dynamic Symmetry Breaking
The problem of exploiting symmetry in constraint satisfac-
tion problems has gained increased attention over the past
few years. Its application to the domain of rectangle packing
has been examined only recently (Chan & Markov 2003);
however, the majority of techniques developed in that line
of research are instance-specific, requiring some rectangles
to share a common width or height. The original CSP search
space (Korf 2004) is able to perform a very simple operation
to exploit symmetry while preserving optimality, by ensur-
ing that the center of the largest rectangle is never placed
outside the upper-left quadrant of the enclosing space.

Not surprisingly, issues of symmetry arise in our search
space as well. For instance, suppose that our first meta-CSP
assignment places the 6×6 square above the 5×5 square,
and the subsequent search space is fully explored recur-
sively. Afterward, the algorithm might attempt the opposite
relationship, placing the 6×6 square below the 5×5 square.
Such an attempt is clearly useless, as every partial assign-
ment in this subproblem can be mapped to a correspond-
ing equivalent assignment in the previous subproblem. The
same redundancy would exist if one were to try both hori-
zontal relationships. Note that this symmetry holds even if
the blocks in our example were not squares but rather strict
rectangles. Thus, one option to combat symmetry is to re-
move one horizontal disjunct and one vertical disjunct from
the domain of a single constraint – the first one to be exam-
ined – before executing the meta-CSP search.9

However, it so happens that the symmetry we have just de-
scribed is only a special case of a more general phenomenon.
Consider the scenario in Figure 5(a), which reflects the par-
tial assignment:

C5,6 ← {d5B6 : y6 + 6 ≤ y5}
C4,5 ← {d4B5 : y5 + 5 ≤ y4}
C3,6 ← {d3L6 : x3 + 3 ≤ x6}

After exploring this subproblem, the constraint C3,6 might
instead receive the assignment {d3R6 : x6 + 6 ≤ x3}, as

9Though it is not required that this constraint be the first to re-
ceive an assignment, it typically will help in reducing the search
space visited.
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Figure 5: An illustration of symmetric assignments

shown in Figure 5(b). By visual inspection, these two as-
signments are isomorphic, but note that such symmetry will
not be pruned with the simple technique discussed previ-
ously. That preprocessing trick only serves to prune alter-
nate assignments for C5,6.

As a result, we introduce a new technique that performs a
test during search to check whether an assignment is sym-
metric to one previously considered, similar in spirit to
the approach proposed in (Gent & Smith 2000) for general
CSPs. Specifically, suppose that a given partial assignment
A exclusively contains assignments {C ← d} where each
disjunct d is a vertical disjunct. If the next extension of this
partial assignment A∪{C′ ← d′} includes a horizontal dis-
junct d′, then that disjunct’s horizontal “sibling” d′′ may be
safely pruned once the algorithm has backtracked to this de-
cision point. In other words, the extension A ∪ {C′ ← d′′}
will not be explored. This same technique can also be ap-
plied when a vertical assignment is attempted after a se-
ries of horizontal decisions. In our example, the disjunct
{d3L6 : x3 + 3 ≤ x6} is the first horizontal disjunct to be
chosen, so its partner {d3R6 : x6 + 6 ≤ x3} can be pruned.
Such a procedure is sound, since all pruned partial assign-
ments are mirrored by isomorphic partial assignments that
have been previously considered.

Detecting Cliques of Displacement
One of the disadvantages of the meta-CSP formulation of
rectangle packing is that some of the geometric information
is lost in the encoding. As an example, consider the prob-
lem of packing squares of dimensions 1×1 through 10×10
into an enclosing space of size 10×44. The area of this en-
closing space (440 square units) appears to be sufficiently
large, as the sum of the areas of the blocks is only 385. The
algorithm can make several assignments without reaching a
dead-end – for instance, consider Figure 6(a), where squares
6×6 through 10×10 are given pairwise relationships that
place them in decreasing order of size. However, there is
no way to relate the 5×5 square with the 6×6 square (or any
other larger square) that would allow it to fit. As a result,
this partial assignment must be abandoned. Backtracking
will then continue to find similar partial assignments, such
as those depicted in Figure 6(b-c). Even if symmetric as-
signments are pruned, 60 such permutations of blocks will
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Figure 6: Dead ends encountered in the meta-CSP search

be reached before failure is ultimately discovered. The prob-
lem here is that no pair of squares having dimensions 5×5
through 10×10 can be displaced horizontally within a width
of 10, and thus they must all be laid out in a sequence, re-
quiring a height of at least 45.

To discover conflicts such as this earlier within the meta-
CSP search, we introduce a new technique that allows our
solver to exploit the geometry of the rectangle packing do-
main. This method requires the existence of a structure
we refer to as a horizontal (or vertical) displacement graph,
which we maintain incrementally at each step in the search.

Definition: A horizontal (or vertical) displacement graph
GH

D (or GV
D) contains N vertices, one for each rectangle.

Furthermore, it contains an undirected edge Ei,j between
any pair of vertices i and j if either of the following condi-
tions holds:
• The meta-variable Ci,j has been assigned one of its hori-

zontal (or vertical) disjuncts.

• Forward checking has removed both vertical (or horizon-
tal) disjuncts from the domain of Ci,j .�

In essence, each edge in the horizontal (or vertical) displace-
ment graph represents a pair of rectangles that will be dis-
placed horizontally (or vertically) in any subsequent solu-
tion. In fact, a clique in the displacement graph represents
an entire set of such rectangles, all of which must be placed
in some total ordering along a single dimension. As a result,
a lower bound on the height of the enclosing space needed to
pack the N rectangles can be obtained by finding the max-
imum weighted clique C in the vertical displacement graph
– that is, a clique that maximizes the expression:

i∈C∑

i

hi

where hi is the height of rectangle i. A lower bound on the
width can be calculated in a similar way. In our example of
10 squares, the containment constraints render the horizontal
disjuncts for the following meta-variables inapplicable:

C1,10 C2,10 C3,10 C4,10 C5,10 C6,10 C7,10

C8,10 C9,10 C2,9 C3,9 C4,9 C5,9 C6,9

C7,9 C8,9 C3,8 C4,8 C5,8 C6,8 C7,8

C4,7 C5,7 C6,7 C5,6
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and thus forward checking removes them before search be-
gins. Once the corresponding edges are inserted into the
vertical displacement graph, a clique is found containing the
vertices {5, 6, 7, 8, 9, 10}. The heights of these rectangles
sum to 45, and since this is larger than the height of the en-
closing space, failure is detected without expanding even a
single search node.

Since maximal clique detection is itself an NP-complete
problem (Garey & Johnson 1979), we instead implement a
greedy procedure that finds (potentially suboptimal) cliques
in polynomial time. To find a clique C in a displacement
graph (let us assume the horizontal displacement graph,
GH

D ), the procedure makes two passes; the first pass begins
by adding the rectangle with the largest width to C. It then
examines the remaining rectangles in decreasing order of
width, adding rectangle i to C provided that there exists an
edge Ei,j between i and every rectangle j in C. The second
pass does the same, except that it begins with the rectangle
with the smallest width that is connected to an edge in GH

D ,
and then works upwards. Of the two cliques that are gener-
ated, the one with the higher total weight is used to estimate
the lower bound. This procedure takes advantage of the fact
that the optimal clique often contains rectangles with neigh-
boring widths.

Our clique detection mechanism subsumes a related tech-
nique used in the fixed placement formulation (Korf 2004).
In that work, the rectangles are sorted in decreasing order by
height. The list is then scanned in order, and the widths of
the rectangles are summed until a rectangle is reached that
can be placed above the previous rectangle. A lower bound
on the width required is the smaller of this sum and the max-
imum width of any rectangle. This procedure is performed
once for a particular enclosing space, and is not repeated
after search begins. The advantage to our approach is that
it can compute more accurate lower bounds that arise from
spatial arrangements induced during search, and is therefore
not limited to estimations based solely on the dimensions of
the enclosing space.

Variable and Value Ordering Heuristics
It is well known that a constraint satisfaction engine can per-
form quite poorly in the absence of good heuristics. There
are generally two heuristics that one is concerned with;
namely, the variable ordering heuristic (sometimes referred
to as the branching schedule) and the value ordering heuris-
tic. For the case of rectangle packing, (Onodera, Taniguchi,
& Tamaru 1991) hints at a simple, static variable ordering
heuristic that imposes pairwise relationships between large
blocks early on. Since the manner in which these constraints
are satisfied is likely to have a larger impact on the resulting
placement than constraints involving pairs of smaller rectan-
gles, the heuristic is essentially a variation on the traditional
most constrained variable first heuristic. We formalize their
heuristic as follows:

• Select the meta-variables that maximize min(wi ×
hi, wj × hj), where i and j are the rectangles in the vari-
able’s scope.

• Of these, select randomly from the set of meta-variables
that maximize max(wi × hi, wj × hj).

An example of this heuristic is shown in Figure 7, which
illustrates the order in which meta-variables would be se-

5×5 4×4 3×3 2×2 1×1
6×6 1 2 4 7 11
5×5 3 5 8 12
4×4 6 9 13
3×3 10 14
2×2 15

Figure 7: A simple, static meta-variable ordering heuristic
for a 6 instance square packing problem

lected for a problem involving squares of dimensions 1×1,
..., 6×6. Here, the first meta-variable that would receive an
assignment is C5,6, followed by C4,6 and C4,5, and so on.

However, suppose that the domain of some uninstanti-
ated constraint Ci,j has been reduced to a single disjunct
d as a result of forward checking. In such a case, there is
no benefit in considering other constraints earlier than Ci,j ,
since any consistent solution extending this partial assign-
ment (if one exists) must necessarily include the assignment
{Ci,j ← d}. Consequently, we propose a small but im-
portant modification to this heuristic; specifically, we take
the approach of immediately making an assignment to any
meta-variable whose domain has been reduced to a single-
ton, making our heuristic a dynamic one. This resembles the
unit clause propagation technique commonly used in mod-
ern SAT solvers (Moskewicz et al. 2001).

As for the value ordering heuristic, we randomly choose
among those disjuncts that require the minimal increase in
area. In the event of a tie, we choose the disjunct with the
least amount of slack10 as to produce tighter packings.

Minimizing Area
At this point, we have given a formulation of the Contain-
ment Problem, and have developed a variety of techniques
to make search within this space efficient. As with Korf’s
approach, one of the options we have for extending our al-
gorithm to solve the Minimal Bounding Box Problem is to
iteratively attempt enclosing spaces of smaller and smaller
area, using this constraint satisfaction engine as a subrou-
tine. However, the search trees for the resulting sequence
of meta-CSPs will share a significant amount of structure,
which we would like to exploit to improve efficiency.

Thus, we will instead perform a single branch-and-bound
backtracking search through the space of partial assign-
ments, ensuring that the area of the enclosing space not ex-
ceed that of the minimum area found thus far. This is the
approach taken in previous graph-based methods (Onodera,
Taniguchi, & Tamaru 1991). Specifically, suppose that the
current lower bounds on the width and height of the enclos-
ing space are wl and hl. If the area of the current best so-
lution is A, we can enforce upper bounds on the width and
height by introducing these constraints:

W ≤ �A/hl�
H ≤ �A/wl�

If either of these two constraints cannot be imposed, the cur-
rent partial assignment may be abandoned, as it cannot lead

10The slack of a disjunct vi +b ≤ vj is calculated by subtracting
b from the length of the shortest path from vi to vj in the distance
graph.
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# Rect. Optimal BloBB ’04 Clautiaux ’04 Korf ’04 BLUEBLOCKER ’06
(N ) Dimen. Implementation Implementation Implementation Implementation
6 9 × 11 0 0 0 0
7 7 × 22 0 0 0 0
8 14 × 15 0 0 0 0
9 15 × 20 23 1 0 0
10 15 × 27 5:12 3 0 0
11 19 × 27 25:16 4 0 0
12 23 × 29 7:45:49 13 0 0
13 22 × 38 79:21:46 23 0 0
14 23 × 45 1:03 0 0
15 23 × 55 1:57 1 1
16 27 × 56 10:05 2 3
17 39 × 46 14:49 10 10
18 31 × 69 31:33 1:08 1:29
19 47 × 53 72:53:18 8:15 4:11
20 34 × 85 13:32 15:03
21 38 × 88 1:35:08 1:32:01
22 39 × 98 6:46:15 4:51:23
23 64 × 68 36:54:50 29:03:49
24 56 × 88 213:33:00 146:38:48

Figure 8: Experimental results for minimum-area rectangles than contain all consecutive squares from 1×1 up to N×N

to a solution of smaller area. One can also backtrack when-
ever the product of these upper bounds (which is equal to the
upper bound of the area) is less than the total combined area
of the rectangles.

It should be noted that the branch-and-bound approach is
an anytime algorithm, since search can be interrupted at any
time to extract the best solution that has been found so far.

Experimental Results

To test our algorithm, we begin with a set of square pack-
ing benchmarks proposed in (Korf 2004). Specifically, we
consider the task of packing a set of N squares of sizes 1×1
up to N×N into a rectangle of minimum area. One benefit
of this suite of test cases is that it provides a set of increas-
ingly difficult instances, each easily specified by a single pa-
rameter. However, we also use them because they facilitate
comparison with Korf’s solver, which is hardcoded to han-
dle these particular test cases, and cannot solve problems
that contain either rectangles or squares of nonconsecutive
sizes.11

It should be noted that there is nothing about the tech-
niques we have developed that makes the problem of square
packing any easier than that of packing oriented rectangles.
However, since all blocks are squares, the enclosing space of
any consistent solution can be rotated 90◦ to obtain an iden-
tical enclosing space of opposite dimensions. As a result,
we can exploit this final dimension of symmetry by consid-
ering only one pairwise relationship between the largest pair
of squares. Korf performs an equivalent operation by requir-
ing the height of any enclosing space considered to be no
greater than its width.

11As of the time of this writing, only the compiled version of
Korf’s solver was made available to the authors, and hence we
could not make modifications to handle other cases.

Comparison of Solvers

In Figure 8 we present the runtimes of four solvers that are
capable of optimal rectangle packing, including our own.
The leftmost column reports the number of rectangles in
the instance, and the neighboring column reports the opti-
mal dimensions for that instance. Runtime is reported in
hours, minutes, and seconds. Blank cells indicate instances
where the computation time exceeded a time-out limit of
ten days. Our experiments were conducted in Linux on a
2.2GHz Opteron processor with 8GB of RAM.

The first package (named BloBB) is a recent develop-
ment in the VLSI community (Chan & Markov 2004) that
makes use of an O-Tree data structure as its representation
of a partial assignment. BloBB, like our solver, is a topo-
logical packer, in that its search space is one where a lay-
out is described using relative relationships between rectan-
gles rather than fixed positions. Among topological packers,
BloBB was the first to optimally pack up to nine rectangles,
surpassing the previous record of six. It also has several ad-
ditional features that are not showcased in our experiments,
such as the ability to handle soft blocks (whose dimensions
are not necessarily fixed), as well as a hierarchical mode that
can find high quality sub-optimal solutions rather quickly. In
our experiments, we confirm that BloBB can indeed find op-
timal solutions to problems containing up to nine rectangles
tractably, after which it begins to run out of steam.

The second algorithm is also a rather new technique
(Clautiaux, Carlier, & Moukrim 2004) that builds on ideas
in operations research literature, where this problem is
known as the two-dimensional orthogonal packing prob-
lem (2OPP). The approach is best described as a two stage
branch-and-bound procedure, where an outer loop computes
assignments to the x-coordinates of each rectangle, and an
inner loop attempts to find consistent assignments to the y-
coordinates. The algorithm is limited to solving the Contain-
ment Problem, and so to minimize area, we repeatedly call
this algorithm for enclosing spaces of smaller and smaller
area, using the same techniques as Korf’s outer solver (Korf
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# Rect. Increment Parameter
(N ) M = 10 M = 50 M = 200
15 0 0 0
16 2 1 1
17 8 7 7
18 42 25 25
19 3:25 2:58 2:58
20 17:07 11:05 11:05
21 55:11 44:56 44:56

Figure 9: Experimental results for
BLUEBLOCKER on squares of nonconsec-
utive sizes

Techniques Number of Rectangles (N )
R B S C 11 12 13 14 15 16 17
� � � � 0.00 0.05 0.11 0.19 0.85 2.80 9.74
� � � 0.01 0.04 0.12 0.22 0.97 3.25 11.44

� � � 0.02 0.04 0.14 0.24 1.06 3.85 14.11
� � 0.01 0.06 0.15 0.26 1.21 4.51 16.43

� � � 0.01 0.05 0.20 0.36 1.54 5.03 18.72
� � 0.01 0.07 0.25 0.42 1.77 5.88 22.12

� � 0.01 0.07 0.26 0.44 1.93 7.09 27.43
� 0.02 0.08 0.28 0.46 2.23 8.24 32.16

� � � 0.01 0.06 0.31 1.01 7.07 40.10 260.01
� � 0.02 0.08 0.40 1.40 10.95 61.09 380.87
� � 0.02 0.12 0.58 1.99 13.84 77.43
� 0.02 0.14 0.77 2.79 21.58

� � 0.40 0.81 2.54 37.48
� 0.51 1.08 3.47 46.14

� 0.76 1.46 4.91 71.30
0.99 1.97 6.78 86.30

Figure 10: Contributions of techniques to BLUEBLOCKER’s performance

2004). The approach fares reasonably well on problems as
large as eighteen squares, but suffers on larger instances.

The third solver is the latest refinement to the original
CSP formulation, and was used to generate the most recently
published results (Korf 2004). As we alluded to earlier, these
runtimes are unprecedented. As many as eighteen blocks
can be packed in under two minutes using this algorithm,
twice the number that can be handled by BloBB, and three
times the number that the original graph-based method can
manage. It has generally been believed that Korf’s unique
fixed-placement search space, in combination with a collec-
tion of powerful wasted space calculations, is what makes
such results possible.

The final solver is ours, which we give the name
BLUEBLOCKER. As explained in the preceding sections, our
algorithm employs an entirely different search space than
does Korf’s, and thus it does not make use of his wasted-
space calculations. Yet, as shown in the table, ours can also
handle problems with eighteen rectangles or less in under
two minutes. For problems larger than this, the performance
of our solver is consistently competitive with Korf’s, achiev-
ing superior results on five of the six remaining instances.

Ability to Scale with Rectangle Size
The benchmarks reported on in Figure 8 represent a very
small and specific family of rectangle packing problems. In
fact, we contend that the nature of these test cases makes
them particularly amenable to the approach taken in Korf’s
solver. Recall that it uses a bitmap representation of the
enclosing space when placing rectangles and computing
wasted cells. Thus, its performance should be highly depen-
dent on the size of the rectangles and of the dimensions of
the enclosing spaces attempted. For instance, the placement
of the 2×2 square requires 4 updates to this bitmap, whereas
a square of size 200×200 would require 796 such updates
(since only the pixels along the perimeter of the square need
to be drawn). As the squares in the current benchmarks
never approach this size, the original CSP search space is
saved a great deal of bookkeeping.

This seemingly small detail can become a rather impor-
tant issue when the application in question requires a high

degree of precision. In scheduling applications, one may
need to express that job j1 requires 2 units of processing
time, whereas job j2 requires 2.01 units (perhaps due to a
small setup time). To accurately represent these sizes us-
ing integral dimensions, one must encode the corresponding
rectangles with larger widths of 200 and 201 units respec-
tively, increasing their size by a significant amount. Similar
complications arise often in VLSI design, where modules
can easily differ slightly in size.

In contrast, our meta-CSP approach operates indepen-
dently of rectangle size. To demonstrate this, we employ
a new set of benchmarks, where in addition to the number
of squares N , we define an increment parameter M to be
the amount by which consecutive squares differ in size. For
instance, the setting N = 3 and M = 10 corresponds to
the set of squares {1 × 1, 11 × 11, 21 × 21}.12 In Figure 9
we report the performance of our solver with N ∈ [15, 21]
and M ∈ {10, 50, 200}. While the number of rectangles
still has a dramatic impact on runtime, the presence of larger
squares clearly has no negative effect. In fact, performance
actually improves when M is increased from 10 to 50; this
is likely due to the fact that it becomes easier to find room
for the 1×1 square as the remaining squares grow in size.
When M jumps from 50 to 200, no change in performance
is observed at all. We suspect that to solve these test cases
within the original CSP search space would require runtimes
that are at least an order of magnitude slower. Unfortunately,
we cannot verify this empirically since, as mentioned earlier,
the existing implementation of Korf’s solver is hardcoded to
solve only the first set of benchmarks.

Relative Contributions of Techniques
In our final experiment, we study the contributions of our
various meta-CSP pruning techniques to the performance of
the BLUEBLOCKER solver. Specifically, we allow removal of
subsumed variables (R), semantic branching (B), symmetry
breaking (S), and displacement clique detection (C) to be
enabled or disabled individually. In Figure 10 we present

12Note that the original benchmarks are a special case of this
generalization with M = 1.

101



the runtimes (in seconds) of each of the resulting sixteen
possible configurations on a subset of the original bench-
marks. These configurations are sorted according to their
performance on the N = 14 test case, which has been bold-
faced for reference.

The fastest configuration requires all techniques to be en-
abled (as one would hope) while the slowest makes use of
none of them. Of the four techniques, semantic branch-
ing has by far the greatest effect, as it is enabled in each
of the top eight configurations. When semantic branching
is enabled, symmetry breaking has the next largest impact;
however, this is not the case when semantic branching is
disabled, where instead removal of subsumed variables be-
comes more important. Detection of cliques in the displace-
ment graphs has the smallest effect, although its impact is
certainly not negligible. For instance, it consistently reduces
runtime by at least 15% for the N = 17 test case. In sum-
mary, we find that each technique makes a substantial and
positive individual contribution, and that best performance is
obtained when these techniques are combined collectively.

Future Work
Our approach opens the door to several promising avenues
of continued research. For instance, our current formulation
cannot handle unoriented rectangles, which can be rotated
90◦ in any solution. Although the standard meta-CSP is un-
able to capture such flexibility, we suspect that our recent
addition of conditional bounds and finite-domain constraints
to DTPs (Moffitt, Peintner, & Pollack 2005) can be used to
allow for this extension. Furthermore, the application of soft
constraints to DTPs (Peintner & Pollack 2004) might prove
to be useful in this domain, especially if objectives other
than area are to be considered. Above all else, we hope that
this newly discovered connection between temporal reason-
ing and rectangle packing will serve to stimulate discussion
between researchers across neighboring disciplines.

Conclusion
In this paper, we have presented a new approach to optimal
rectangle packing. Specifically, we have cast the problem
of packing a set of rectangles with fixed orientations as a
meta-CSP, in which partial assignments are subsets of rel-
ative pairwise relationships between rectangles. In doing
so, we have resurrected a graph-based technique that was
previously capable of dealing with only a small handful of
rectangles. By combining existing pruning techniques found
in constraint-based temporal reasoning with a suite of new
domain-specific methods, we have created the BLUEBLOCKER

solver, which has been shown to perform competitively com-
pared to the previous state-of-the-art CSP formulation.
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