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Abstract

Graph colorability (COL), is a typical constraint satisfaction problem to which phase transition phenomena (PTs), are important
in the computational complexity of combinatorial search algorithms. PTs are significant and subtle because, in the PT region,
extraordinarily hard problem instances are found, which may require exponential-order computational time to solve. To clarify PT
mechanism, many studies have been undertaken to produce very hard instances, many of which were based on generate-and-test
approaches. We propose a rather systematic or constructive algorithm that repeats the embedding of 4-critical graphs to arbitrarily
generate large extraordinarily hard 3-colorability instances. We demonstrated experimentally that the computational cost to solve
our generated instances is of an exponential order of the number of vertices by using a few actual coloring algorithms and constraint
satisfaction algorithms.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Graph colorability (COL) as well as propositional satisfiability (SAT) is a typical constraint satisfaction problem,
which has been studied from the viewpoint of computational complexity and search algorithms. Both of these com-
binatorial search problems are also very interesting as subjects of heuristics [2]. Many research reports discuss the
computational complexity of COL [2–4,6,7,10,14,15,21–24]. Examples of possible candidates of order parameters that
explain the mechanism making COLs extraordinarily hard include the 3-paths of Vlasie [22,23], the minimal unsolvable
subproblem (MUS) of Mammen and Hogg [14], and the frozen developments of Culberson and Gent [4]. Since most
of them are based on generate-and-test approaches, i.e., randomly generated instances, however, it may be difficult to
inevitably obtain very hard instances.

Instead of traditional generate-and-test approaches, we propose a constructive approach producing graph 3-colorablity
instances (3COLs) that are extraordinarily hard for actual coloring algorithms. Instances generated by our procedure
(1) are themselves 4-critical, (2) contain no near-4-cliques (n4c’s; 4-cliques with 1 edge removed) as subgraphs, and
(3) are quasi-regular, i.e., have the degree of every vertex limited to 3, 4, or 5.

It is significant and useful to exploit such a method generating hard instances in giving some insights into the nature
of hard instances and empirical evaluation of search algorithms.
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In Section 2, after describing the definition of 3COLs and their phase transition phenomena, we explain characteristic
structures for hard 3COL instances. In Section 3, we first propose seven graph structures for generating very hard
instances, which we found by trial-and-error. We then give a generation algorithm using them. In Section 4, we show
experimental results comparing the difficulty of our generated instances with that of randomly generated instances for
some search algorithms.

2. Graph 3-colorability and 4-critical graphs

2.1. The graph 3-colorability problem

Let G = (V , E) be a graph to be colored, where V and E correspond to the set of vertices and edges. Let n = |V | and
m = |E|. COL is an interesting example of a constraint satisfaction problem (CSP), where an edge (i, j) ∈ E stands
for the constraint that prohibits assigning the same color, or value, to vertices, or variables, i and j. 3COL, or COL
with 3 colors available, has been in particular widely studied [2,4,6,11,14–16,22–25]. Phenomena similar to physical
phase transitions are generally observed in CSPs, where search cost follows an easy–hard–easy pattern as a function
of constraint density [3]. The region where median search cost becomes the most time-consuming lies very close to
the cross-over point, at which half the instances are solvable and half unsolvable. This sort of phenomena is called
primary PT.

An interesting region also exists at a slightly lower constraint density than that of primary PT, in which exceptionally
hard instances (EHIs) [7,11,21] tend to occur, although most are solved easily. It is called secondary PT. For 3COLs
with 100 vertices or less, primary PT and secondary PT are observed at � = 4.5.4.6, and � = 3.3.3.4, where � is the
average degree of the graph, i.e., � = 2m/n, which corresponds to the doubled constraint density.

When 3COL instances are generated randomly, most EHIs in the secondary PT region are unsolvable [11]. Mammen
and Hogg [14] have shown that the smallest minimal unsolvable subproblem is very large in hard unsolvable CSP
instances. Vlasie [22] reports that hard instances tend to maintain regularity in vertex degrees, i.e., variance of vertex
degrees is as small as possible. Despite some clarification of EHI properties, we have yet to develop fully direct methods
that invariably generate EHIs.

2.2. Generation of large 4-critical graphs

A hard non-3-colorable graph necessarily contains a large size of 4-critical subgraphs [4,14].

Definition 1. A graph, G, is 4-critical if G itself is non 3-colorable, i.e., its chromatic number is 4, but any proper
subgraph, G′(⊂ G), is 3-colorable.

K4, 4-clique, is the smallest non-3-colorable graph (Fig. 1(a)). K4 is 4-critical because removing an arbitrary edge
from it makes a 3-colorable graph, which we call an n4c (Fig. 1(b)) [4]. The n4c implicitly contains an interesting
constraint, say constraint (x, w) called a frozen pair [4], that claims the colors for x and w must be the same. Let
Fig. 2(a) be a part of a 4-critical graph, where the degree of vertex i, deg(i), is 3. Introduce an operation, embed_K4(i, j),
where an n4c (Fig. 1(b)) which is the near graph of K4 is added in place of edge (i, j) merging i and x and connecting j
and w. After one embedding operation (Fig. 2(b)), deg(i) becomes 4 while three new vertices with degree 3 are added.

Fig. 1. Characteristic structures of 3COL.
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Fig. 2. Embedding operator embed_K4(i, j): (a) a 4-critical graph (part); (b) embedding completed.

This increments the number of vertices with degree 4 by 1, the number of vertices with degree 3 by 2, and the number of
edges by 5. Note that 4-criticality is maintained because the constraint above, constraint (i, w), remains after embedding
while u and v are not adjacent to other vertices.

Starting with K4 as the initial graph, arbitrarily large 4-critical instances are constructed by repeating embed_K4(i, j)

recursively to meet the many known conditions EHIs may have to satisfy: (1) constructed graphs are quasi-regular [22]
and unsolvable [11], (2) any constructed graph itself is a minimal unsolvable subproblem [4,14], and (3) constraint
densities of graphs are all in the secondary PT region [11]. In fact, the complexity of the instances, to which the
backtracking algorithm with Brélaz heuristics is applied, is of an exponential order of the number of vertices [16].1

However, the graphs which are generated by embed_K4(i, j) always leave at least 2 n4c’s as subgraphs. Techniques
similar to Smallk coloring program [19] can easily solve the instances because they lead to chains of collapse, i.e.,
reduction of the graph by merging two vertices in frozen pairs, showing immediately that the instance is non-3-colorable.
Thus, large 4-critical subgraphs are necessary for hard 3COL instances, but being only large is not sufficient [4,16].

3. The constructive generation algorithm

3.1. New 4-critical graphs with no n4c’s

To overcome the drawback of embed_K4(i, j) described in Section 2.2, it is significant to introduce a set of original
n4c-free 4-critical graphs, which are independent of each other in the sense that no graph is a subgraph of any other,
to generate hard instances [16–18]. Fig. 3 gives seven such graphs that we found by trial-and-error, in each of which is
termed MUGnt , where MUG stands for “minimal unsolvable graph”, n means the number of vertices included, and t
is used to identify the type if necessary. Detailed structures are listed in Table 1,where m is the number of edges and ni

denotes the number of vertices with degree i, i.e., n=n3 +n4 +n5. All graphs are quasi-regular graphs, i.e., the degree
of every vertex is 3, 4, or 5, in all of which graphs except for MUG12a and MUG12b have the degree of every vertex
only limited to 3 or 4. Let us discuss the minimality of MUGnt . For n�3, there are no MUGs because all possible
graphs are 3-colorable. MUG4, which is an alias of K4, is thus the minimal MUG but contains n4c’s as subgraphs.
Exhaustively analyzing graph structures, we found that all MUGs generated for 5�n�8, as well as MUG4, contain 1
or more n4c’s. Thus, the minimal n4c-free MUG is MUG9 shown in Fig. 3(a).

In Section 2.2, we generate larger 4-critical graphs by repeatedly applying embed_K4(i, j) to the initial graph, K4.
In other words, this operation embeds the near graph of a MUG, i.e., the graph where one edge is removed from the
MUG, to the MUG. Thus, we can naturally extend the embedding operation, embed_K4(i, j), to embed_MUGnt (i, j)

by embedding the near graph of one of seven MUGs in Fig. 3. These operations are the same as Hajós join construction
[9,12] except that both vertices to be merged should have the degree of 3.

Proposition 1. When embed_MUGnt (i, j) is applied to a 4-critical graph, the result remains 4-critical.

1 Our experiments [16] showed that solvable instances derived by removing one edge arbitrarily from 4-critical graphs described above also
requires exponential-order computational cost against the Brélaz algorithm.
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Fig. 3. 4-critical n4c-free graphs: (a) MUG9 (n = 9, m = 16); (b) MUG10 (n = 10, m = 18); (c) MUG11a (n = 11, m = 20); (d) MUG11b
(n = 11, m = 19); (e) MUG12a (n = 12, m = 22); (f) MUG12b (n = 12, m = 22); (g) MUG12c (n = 12, m = 21).

Table 1
Numbers of components per n4c-free 4-critical graph

MUGnt n m n = n3 + n4 + n5

n3 n4 n5

MUG9 9 16 4 5 0
MUG10 10 18 4 6 0
MUG11a 11 20 4 7 0
MUG11b 11 19 6 5 0
MUG12a 12 22 5 6 1
MUG12b 12 22 7 2 3
MUG12c 12 21 6 6 0
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Fig. 4. The 3COL instance generator, where the argument k gives the number of times to apply the embedding operation.

Proposition 2. When embed_MUGnt (i, j) is applied to a quasi-regular graph, quasi-regularity is maintained by
embed_MUGnt (i, j), i.e., the degree of every vertex is limited to 3, 4, or 5. In particular, when nt is 9, 10, 11a, 11b, or
12c, the degree of every vertex is only limited to 3 or 4.

Proposition 3. Let the graph contain m edges and n(=n3 +n4 +n5) vertices, where ni denotes the number of vertices
with degree i. The number of vertices with degree 3, 4, and 5 increases by n3 − 2, n4 + 1, and n5. The total number of
vertices increases by n − 1, and edges by m − 1.

3.2. The algorithm

Starting with a 4-critical graph as the initial graph, we construct arbitrarily large 4-critical graphs, i.e., including an
arbitrary number of vertices, by repeating embedding. Fig. 4 gives the procedure “graph-generator (k)” which repeats
embedding operations k times randomly. If one of the seven graphs in Fig. 3 is assigned initially to Ginit at (1) in
Fig. 4, and is chosen at (2) in Fig. 4, then the graph-generator can produce 4-critical and quasi-regular graphs with
no n4c’s as subgraphs. Fig. 5 gives an example of the 3COL instance generated after four embedding operations, i.e.,
graph-generator (4) is applied, where, starting with MUG10 as the initial graph, Ginit , (Fig. 5(a)), embed_MUG9 is
first applied to Ginit (Fig. 5(b)) and the graph shown in Fig. 5(c) is finally derived as a result.

4. Experiments

4.1. Experimental results

We test the difficulty of 3COL instances generated by our procedure “graph-generator (k)” where all MUGnt ’s are
used to generate n4c-free 4-critical graphs. For eight cases from k = 5 to k = 12, 300 3COL instances are generated at
each case, i.e., a total of 2400 generated instances. These instances are applied to the backtracking algorithm with Brélaz
heuristics [2] and Smallk coloring program [19], called Brélaz algorithm and Smallk shortly. In Brélaz algorithm, 1200
instances from k = 5 to k = 8 are used for testing. The number of assignments of colors to vertices is counted as search
cost until the colorability is determined. In Smallk, all 2400 instances are used for testing and the number of “Search
nodes” in it is measured as search cost. Both algorithms are implemented in C on a PC with 1 GHz of Pentium III and
512 Mbytes of RAM.
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Fig. 5. Example of graph-generator-produced 3COL instance, whose subgraph composed of striped nodes shows the initial graph, Ginit : (a) the
initial graph, Ginit ; (b) embed_MUG9 is first applied to Ginit ; (c) the graph derived after 4 times of embed_MUGnt .

Fig. 6 gives results for search costs and CPU time, where “Average” shows the variation in average search cost and
CPU time for each k as a function of the average number of vertices for each k. Smallk is more sophisticated than
Brélaz algorithm, but both search cost and CPU time clearly exhibit exponential growth.2

Fig. 7 gives results on “3-colorable” instances derived by removing one edge from 3COL instances used in Fig. 6. In
Fig. 7(b), results for instances whose CPU time is less than 0.01 s are plotted at “1E-03”. Although these results vary
more widely than results in Fig. 6, “3-colorable” instances also appear to require exponential-order computational cost.

We tested the difficulty of other 3COL instances generated by repeatedly embedding only one type of the n4c-free
4-critical graph the same as the initial graph, Ginit , i.e., generated instances are derived by setting a limit to the same
MUGnt at both (1) and (2) in Fig. 4. Using each of the seven MUGs in Fig. 3, for three cases of k = 6, 7, and 8, 50
instances are generated at each case. All instances generated by using each of MUG9, MUG10, MUG11a, MUG11b,
and MUG12c have the degree of every vertex limited to 3 or 4. Instances generated by using each of MUG12a and

2 Compared to the results of Culberson and Gent [4], our instances seem to be much harder than their threshold graphs, although the complexity
of their graphs exhibit exponential growth.
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Fig. 6. Experimental results on 3COL instances generated by our procedure: (a) search cost; (b) CPU time.

MUG12b include some vertices whose degree is 5. Table 2 summarizes results, where Max, Mean, Median, and Min give
statistics of search cost when each instance is solved using Smallk. As with results for Fig. 6(a), very hard instances can
be generated. In particular, it is much harder for Smallk to solve instances generated by using only MUG11b compared
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Fig. 7. Experimental results on “3-colorable instances”: (a) search cost; (b) CPU time.

to other instances with the almost same number of vertices. MUG12b-based instances, in which variance of vertex
degrees is larger than others, appear to be easiest to solve.

We also conduct experiments on randomly generated instances. For 33 cases from � = 3.0 to � = 5.0 at the intervals
of 0.2 in n = 100, 200, and 300, 10,000 instances are randomly generated at each case, i.e., a total of 3.3 million
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Table 2
Experimental results on the instances generated by embedding only one type of the n4c-free MUG

k MUG n Max Mean Median Min

6 MUG9 57 2565 1035 919 223
MUG10 64 18,143 9302 8155 3413
MUG11a 71 30,039 12,233 10,884 3453
MUG11b 71 601,986 282,030 279,329 74,974
MUG12a 78 61,520 18,155 15,582 1713
MUG12b 78 13,233 2635 2168 95
MUG12c 78 7646 4161 4513 342

7 MUG9 65 11,423 3391 2646 919
MUG10 73 119,034 42,402 37,411 14,836
MUG11a 81 151,179 58,951 58,971 13,734
MUG11b 81 5,269,203 2,537,279 2,315,360 734,768
MUG12a 89 445,767 90,121 69,288 6384
MUG12b 89 33,607 7111 4151 357
MUG12c 89 179,858 22,842 17,752 4573

8 MUG9 73 43,767 13,423 11,103 2586
MUG10 82 421,315 181,848 175,198 55,927
MUG11a 91 899,150 279,396 220,238 67,427
MUG11b 91 33,401,977 16,816,160 15,190,974 7,618,986
MUG12a 100 1,983,599 556,850 441,649 74,526
MUG12b 100 335,671 35,558 15,985 2252
MUG12c 100 1,148,454 74,985 49,633 3061

k, MUG, and n show the number of times to apply the embedding operation, the graph used at both (1) and (2) in Fig. 4, and the number of vertices
in generated instances, respectively, and max, mean, median, and min correspond to search cost in Smallk.

Fig. 8. Experimental results on randomly generated instances.

generated instances, each of which is solved using Smallk. In Brélaz algorithm also, 1.1 million instances with n=100
are used. As shown in Fig. 8, it is obvious that the hardness of our instance set cannot be compared with that of this huge
set of randomly generated instances, where, in Smallk, it is only 2.6 and 103 s to determine the colorability of each
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Fig. 9. Experimental results on CBJ and GBJ: (a) search cost; (b) CPU time.

hardest instance with 200 and 300 vertices at � = 4.8, whereas it requires hundreds of seconds on average in solving
our instances with even 100 vertices in Fig. 6.

4.2. Discussion

Experiments confirmed that our method stably and invariably produces very hard instances whose computational
cost is of an exponential order of the number of vertices, n. Researchers adopting generate-and-test approaches found
that conditions under which hard instances tend to occur are as follows: (1) their constraint density is near the phase
transition region, (2) the smallest minimal unsolvable subproblem [14] is very large compared to the instances size,
(3) their structure is homogeneous, i.e., quasi-regular. It seems reasonable that instances produced by our method meet
all these conditions. Because our instances contain no n4c’s, most of the frozen pairs [4] are hidden from the surface,
which makes our instances hard to solve even for sophisticated algorithms such as Smallk [19].

We still do not know theoretically why our instances become extraordinarily hard. The ultimate question may be
whether our instances are really inherently hard for any other search algorithms. Our instances are 4-critical, meaning
deletion of an arbitrary edge changes them to 3-colorable. It also means our instances approach the narrow line between
solvable and unsolvable. Experiments affirmed that our method produces solvable hard instances also lying on that line.
On the other hand, each of our proposed n4c-free MUGs in Fig. 3 is not triangle free, which seems to be a key issue
for 3COL. It may be necessary to find triangle-free MUGs for generating harder solvable/unsolvable instances. We
may also need to extend our embedding operation by exploiting known hard structures, e.g., pigeonhole [8], pebbling
[1] graphs, etc. Even if we use these structures in our constructive generation algorithm, however, we must take care
so that we can generate as 4-critical instances as possible because the lack of 4-criticality can make 3COL instances
easier to solve.

Let us move on to a significant issue probably associated with heuristics. Fig. 3 introduces only seven n4c-free
4-critical graphs independent of each other. To produce harder instances, it is indispensable to increase such graphs
which are raw materials for our constructive generation method. It is also necessary to ensure that independent n4c-free
MUGs exist infinitely. Although we surmise that there are arbitrarily large ones, we still do not know how to generate
them systematically. If we find such a method, however, the fact itself may affirm the existence of heuristics. It may
hypothetically be the important problem led to the ultimate conclusion to prove whether there are other n4c-free MUGs
which cannot be generated even by using any method to systematically generate independent n4c-free MUGs.
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Fig. 10. Experimental results on FCCBJ and FCGBJ: (a) search cost; (b) CPU time.
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Fig. 11. Experimental results on BMCBJ and FCarc: (a) search cost; (b) CPU time.

4.3. Difficulty for CSP algorithms

To confirm whether our instances are inherently hard, we conduct other experiments, using some well-known
CSP algorithms. We apply six major CSP solvers, that is, conflict-directed backjumping (CBJ) [20], graph-based
backjumping (GBJ) [5], forward checking with CBJ (FCCBJ) [20], forward checking with GBJ (FCGBJ), backmarking
with CBJ (BMCBJ) [20], and arc consistency forward checking with simple backtracking (FCarc) [13], to the same
instance set as experiments on Brélaz algorithm in Section 4.1, i.e., 1200 instances from k = 5 to k = 8.

Figs. 9–11 give experimental results. As well as results of Brélaz algorithm and Smallk in Fig. 6, the computational
cost for solving our instances also appears to be quite nearly exponential in the number of vertices even for these CSP
solvers, showing that our instances may be intrinsically hard for several search algorithms.
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5. Conclusion

We have proposed a constructive algorithm to generate extraordinarily hard instances for graph 3-colorability, which
recursively repeat self-embedding operations of our proposed n4c-free MUGs. Instances generated by our method are
4-critical and contain no n4c’s, to hide a structural weakness that heuristics would be able to exploit. Using Brélaz
algorithm, Smallk, and some well-known CSP solvers, we experimentally showed that the complexity of our 3COL
instances is of an exponential order of the number of vertices. Our future works should consist of developing a systematic
method to arbitrarily produce many MUGs independent of each other to construct hard instances, clarifying whether
heuristics exist that cope with these instances.
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