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Abstract 

Forward Checking (FC)  is a highly regarded com- 
plete search algorithm used t o  solve Constraint Sat- 
isfaction Problems. In this paper a lazy variant of 
FC called Minimal Forward Checking (MFC)  is intro- 
duced. MFC is a natural marriage of incremental FC 
and Backchecking. Given a variable selection heuristic 
which does not depend on  domain size MFC’s worst 
case performance on any CSP instance is the num- 
ber of constraint checks performed by FC. Experiments 
using hard random problems are presented which show 
that M F C  outperforms F C  especially for problems with 
large domain sizes and/or a large number of variables. 

1 Introduction 

Many problems in Artificial Intelligence and Oper- 
ations Research can be expressed as Constraint Sat- 
isfaction Problems (CSPs)[4, 8, 151. A CSP is repre- 
sented with a set of variables] a set of finite discrete 
domains for those variables, and a set of constraints 
over those variables. In this paper we restrict our at- 
tention to binary CSP’s where all the constraints are 
of arity 2. The general problem is to find a satisfy- 
ing assignment of values to variables under the given 
constraints. CSP problems are NP-complete. This 
paper presents the design and empirical analysis of 
a new CSP search algorithm called Minimal Forward 
Checking (MFC) which improves on the performance 
of a very popular CSP search algorithm called Forward 
Checking (FC). 

Many studies have found that FC is a useful algo- 
rithm for solving CSPs[5, 3, 7, 15, 121. FC performs a 
limited lookahead which is designed to help the back- 
tracking search find and avoid failures earlier. When 
FC attempts to give a value to a variable it filters all 
values inconsistent with this value from the domains 
of variables not yet instantiated. If a “future” domain 
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becomes empty then the current attempted instanti- 
ation is an inconsistent choice and the filtered values 
are returned to their respective domains. FC’s effi- 
ciency is usually attributed to this ability of detecting 
inconsistencies earlier in the search tree with less arc 
consistency checking per node than other more com- 
plicated arc consistency algorithms[3, 71. However, FC 
may not be efficient for problems with larger domain 
sizes and a large number of variables. Early failures 
in the search tree may make much of FC’s consistency 
checking redundant[6]. 

MFC is based on the observation that FC attempts 
to instantiate a new variable only when there is at least 
one value in each future domain that is consistent with 
all the variables that have been instantiated. MFC 
is a lazy version of FC that finds and maintains one 
consistent value in every future domain, “suspending” 
forward checks until they are required by the search. 
In this way MFC avoids searching (possibly large) do- 
mains for consistent values unless it has to. This con- 
cept is similar to Bessihre’s idea of maintaining one 
supporting value in his full arc consistency algorithm 

The cost of incorporating laziness into FC is three- 
fold. First, MFC needs to maintain a temporary 
record of successful and unsuccessful checks against 
each domain value. The record of successful checks 
is needed as MFC does not know which values are 
“past’’ consistent as FC does. The record of a con- 
straint check is erased when the variable that caused 
the constraint check is uninstantiated. FC has a simi- 
lar record but only in terms of unsuccessful constraint 
checks. The space complexity of the record for MFC is 
O(n2m) and for FC it is O(nm) where n is the number 
of variables and m is the size of the largest domain. 
The second cost is the added complexity of code nec- 
essary to perform the partial search. If the cost of a 
constraint check is no more than the cost of a table 
lookup it may be better to use FC for smaller prob- 
lems. The overhead of the algorithm would outweigh 
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the usefulness of avoiding constraint checks. The third 
cost is that MFC partially disables variable selection 
heuristics which depend on domain size. MFC does 
not know the true filtered size of the future domains. 

The benefit of using MFC is that in the worst case, 
MFC performs the same amount of constraint check- 
ing as FC given that both instantiate variables in 
the same order (i.e. with the same variable selection 
heuristic not depending on domain size) and that the 
domains are ordered. There are CSP domains where 
the variable selection heuristic based on domain size is 
inappropriate. For example, certain types of schedul- 
ing problems[lO] and N-ary CSPs. Our experiments 
show that MFC consistently performs many fewer con- 
straint checks than FC on hard random problems. If 
the cost of a constraint check is significant then MFC 
is a better choice. 

Section 2 presents an overview and example of the 
FC and MFC algorithms, section 3 describes experi- 
mental results and section 4 gives conclusions and fu- 
ture work. A complete description of the MFC algo- 
rithm can be found in [2]. 

2 Minimal Forward Checking 

Assume that the variable instantiation order, 
V I , .  . . , v i , .  . . , vn, is the order in which variables are 
chosen to be given a value. The current variable, 
vi, is the variable to be instantiated and di is the cur- 
rent domain. The instantiated variables v1, . . . , vi-l 

are called the past variables and the uninstantiated 
variables v i+l ,  . . . , v, are called the future variables. 
The past-connected variables are the past variables 
that are connected by a constraint to the current vari- 
able vi ,  and the future-connected variables are the 
future variables that are connected by a constraint to 
the current variable vi. Similar terminology is used to 
refer to the domains. 

In this paper we divide the algorithms into a for- 
ward labeling move used to find an instantiation for 
the current variable and a backward unlabeling move 
used to undo a formerly successful instantiation. We 
assume that the two functions are called within the 
context of a backtracking search. A full descrip- 
tion of the FC algorithm is available in a number of 
papers[3, 7, 121. The forward labeling move of FC, 
called fc-label, takes as input the index of the vari- 
able to be instantiated and the indices of the future- 
connected variables. Fc-label searches through the 
current domain attempting to find an acceptable value 
for the current variable. At each attempted instantia- 
tion it removes and records all values inconsistent with 

Figure 1: Execution of Forward Checking 

the attempted instantiation in the future-connected 
domains. If a future-connected domain is made empty 
the forward check is undone by replacing the values 
removed from the future-connected domains and the 
next value is considered. If the forward check is suc- 
cessful the current attempted instantiation is accept- 
able and fc-label returns true. If no value can be suc- 
cessfully instantiated fc-label returns false. The un- 
labeling move of FC is called when the search can no 
longer move forward. Fc-unlabel takes as input the in- 
dex of the last successfully instantiated variable, say 
vi ,  and undoes the forward check previously done for 
the current value of vi and removes the value of vi 
from the current domain of vi. The unlabeling move 
records this removed value as being inconsistent with 
the value of vi-1. If there are more values to choose 
from vi’s domain the search can move forward again, 
otherwise fc-unlabel is called again with the index of 
vi-1. 

Consider the following graph colouring CSP: 01 = 

0 4  = {g,b,r}, where the constraints restrict pairs 
of variables from { V I ,  . . . ,214) to be assigned different 
colours. Figure 1 outlines the search performed by 
FC. The checkmarks (4 show successful constraint 
checks and the ( x )  marks show unsuccessful con- 
straint checks. In step 1, v1 is assigned the value 
red and FC goes through the future-connected do- 
mains ( 0 2 ,  &, and 0 4 )  looking for inconsistent val- 
ues. The value red in 0 4  is found to be inconsistent 
and is removed. The search now moves forward as 
there are consistent values in every future-connected 

{r(ed)), 0 2  = {g(reen),o(range)), 0 3  = {b(lue),g), 

433 

T 



mfc-label(i,past-vars,future-vars) past-consistent(i,past-vars) 

consistent + False 
FOR v[i] + EACH ELEMENT OF current-domain[i] 
WHILE not consistent DO 

IF past-consistent(i,past-vars) THEN 
consistent + min-forward-check(i,future-vars, 

past-vars) 
IF not consistent THEN 

undo-min-forward-check(i) 
k - {index of previous variable} 
remember-unsuccessful-check( k,i) 

k c {index of previous variable} 
remember-unsuccessful-check( k,i) 

ELSE 

IF not consistent THEN 
current-domain[i] +- rest(current-domain[i]) 
previous-checks[i] t rest(previous-checks[i]) 

RETURN(consistent) 

Figure 2: mfc-label 

domain (step 2). Variable w2 is assigned the value 
green and the future-connected domains are checked. 
The values green in both 0 3  and 0 4  are inconsistent 
and are removed. Variable w3 is assigned the value 
blue and a forward check is done. FC finds that the 
value blue in 0 4  is inconsistent with the value cho- 
sen for w3. As there are no further elements in 0 4  

and 0 3  fc-unlabel is called to backtrack the search to 
w2. The value blue is returned to domain Dq, and the 
value green is returned to domain 0 3  and domain Dq. 
Variable w2 is then assigned the value orange (step 4). 
FC checks the future-connected domains and finds no 
inconsistent values. In step 5, wg is assigned the value 
blue and FC removes the value blue from the domain 
of D4. Finally, step 6 shows the solution. FC per- 
formed a total of 18 constraint checks. 

MFC mimics the search of FC by maintaining only 
one value consistent with the past variables in ev- 
ery future domain. If the value being maintained be- 
comes inconsistent with the current attempted instan- 
tiation a new value is found that is consistent with 
the past variables. The incremental nature of MFC 
implies that a record of both successful and unsuc- 
cessful constraint checks must be maintained. MFC 
records the variables involved in a constraint check, 
wi and v j  (i < j ) ,  the value in the domain of wj that 
was checked against, and the result of the check. This 
record can be implemented as an array or as a set 
of assertions or by using list structures. The labeling 

ok-result c True 
unchecked-past-vars +- 

{calculate past-vars not yet checked against 
current value of i from record 
(in instantiation order)} 

FOR m +- EACH ELEMENT OF unchecked-past-vars 
WHILE ok-result DO 

ok-result +- check(m,i) 
IF ok-result THEN 

ELSE 
remember-successful-check( m,i) 

remember-unsuccessful-check( m,i) 
RETURN (ok-result) 

Figure 3: past-consistent 

move for MFC (mfc-label) is very similar to that for 
FC (see Figure 2). The algorithm is presented using 
a pseudo-code developed by Nadel and Prosser[7, 121. 
Mfc-label takes the index of the current variable to 
instantiate and the indices of the past-connected and 
future-connected variables. There are two major dif- 
ferences from fc-label. 

The first difference is that the remaining elements 
in the current domain of vi other than the first are not 
guaranteed to be consistent with the past-connected 
variables and must be tested if the first value is not 
acceptable. Function past-consistent (see Figure 3) 
ensures that the current attempted instantiation is 
consistent with the past-connected variables that have 
not yet been checked with it. A call to past-consistent 
has the effect of waking up previously delayed forward 
checks. Function past-consistent is actually perform- 
ing Backchecking [3] which is the counterpart to FC in 
that it performs and remembers checks looking back- 
wards into the search. 

The second major difference is that the forward 
check for MFC, called min-forward-check (see Fig- 
ure 4), only finds the first consistent value in each 
future-connected domain. Min-forward-check ensures 
that the first value in each future-connected domain is 
consistent with past connected variables for the future 
domain that it is looking at .  If the current first value 
is past consistent, a check is performed to see if it is 
consistent with the attempted instantiation for wi. If it 
is consistent min-forward-check moves on to the next 
future-connected domain. If it is not consistent min- 
forward-check loops and tests the next value in the 
domain. Min-forward-check returns true if it is able to 
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min-forward-check(i,future-vars, past-vars) 

ok-result + True 
FOR k + EACH ELEMENT OF future-vars 
WHILE ok-result DO 

ok-result t False 
past-vars-k + {calculate current past-vars for k} 
FOR v[k] +- EACH ELEMENT OF current-domain[k] 
WHILE not ok-result DO 

IF past-consistent(k,past-vars-k) THEN 
ok-result +- check(i,k) 
IF not ok-result THEN 

ELSE 
remember-unsuccessful-check(i, k) 

remember-successful-check(i, k) 
IF not ok-result THEN 

current-domain[k] t rest(current-domain[k]) 
previous-checks[k] rest (previous-checks[k]) 

RETURN(ok-result) 

Figure 4: min-check-forward 

find one past consistent value in each future-connected 
domain or false otherwise. Mfc-label returns true if it 
is able to instantiate the current variable, false oth- 
erwise. The unlabeling function is very similar to fc- 
unlabel. When a variable vi is uninstantiated, the 
values that were unsuccessfully checked against are re- 
placed in their respective domains and all records of 
checks against future-connected domains are erased. 

Figure 5 outlines the search performed by MFC 
on our example CSP. Domain values are shown with 
lists of instantiated variables with which they have 
been checked. Some variables in the lists have su- 
perscripts (J) and ( x )  denoting respectively success- 
ful and unsuccessful constraint checks performed in 
the current search step. If a domain value has not 
been checked, no list is shown. In step 1, VI is as- 
signed the value red and a minimal forward check is 
performed. The first consistent value in each future- 
connected domain is found (in this case the first value 
in each of the domains). In step 2, v2 is assigned 
the value green and another minimal forward check 
is performed. The value blue in domain 0 3  is con- 
sistent with v2 but the value green in domain 0 4  is 
inconsistent. Min-forward-check searches through 0 4  

(by unsuspending previous forward checks) searching 
for a past consistent value (in this case blue) doing 
the constraint checks in the instantiation order. As 
there are still consistent values in each future domain, 
the search moves forward and 213 is assigned the value 

blue. However, a minimal forward check shows that no 
value in domain 0 4  is consistent. Value blue is incon- 
sistent with v3 and an unsuspension of a forward check 
shows that the value red is inconsistent with V I .  The 
search backtracks to 213 and attempts to find another 
consistent value but the unsuspension of the forward 
checks for the value green show it to also be incon- 
sistent (step 4). Also in this step notice that domain 
value blue is returned to domain 0 4  as it is no longer 
inconsistent with vg. In step 5, the value orange in 
domain 0 2  is found to be past consistent with V I .  In 
steps 6 and 7 the search moves forward as MFC finds 
the first value consistent in each future-connected do- 
main. Step 8 shows the solution to the CSP found by 
MFC. MFC performed 15 constraint checks compared 
to the 18 that FC performs on the same problem. 

MFC mimics FC’s search avoiding constraint checks 
until necessary. When the variable selection strategy 
depends on domain size or domains are unordered, 
MFC may perform more constraint checks than FC. 
However when the variable selection heuristic does not 
depend on domain size and domains are ordered the 
following theorem holds. 

Theorem 1 For any CSP,  assuming that the variable 
selection order is the same and that the domains are 
ordered, Minimal Forward Checking’s worst case per- 
formance in terms of constraint checks is the number 
of constraint checks performed b y  Forward Checking. 

3 Experiments 

A series of experiments was performed with ran- 
domly generated hard binary CSPs. Each CSP is char- 
acterized by a 4-tuple < n,  m,pl,p2 > where n is the 
number of variables, m is the size of every domain, 
p l  is the probability of a constraint existing between 
two variables, and pa is the probability that a pair of 
values in a constraint are inconsistent. It has been re- 
cently shown in [13, 141 that it is possible to generate 
random CSP’s that are significantly harder than most 
random instances. The expected number of solutions 
to  a particular CSP can be calculated as: 

E(So1n) = mn(l - pz)n(n-1)P1/2 

Prosser and Smith both conjecture that the hardest 
random CSP problems occur when the expected num- 
ber of solutions is 1 (especially as n gets larger). They 
reason that problems which have an expected number 
of solutions less than 1 will be over-constrained and 
therefore easier to prove unsatisfiable and, conversely, 
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Figure 5: Execution of Minimal Forward Checking 

problems with an expected number of solutions greater 
than 1 will be under-constrained and therefore easier 
to satisfy. Given values for n,  m, and p l ,  and assum- 
ing that the expected number of solutions for a hard 
problem is 1,  one can calculate a value for pa from the 
above equation. 

In our experiments we varied n in { 10,15,20}, m in 
{5,10}, andp, in {0.2,0.25,. . . , l .O}. For each setting of 
the three parameters 20 random CSPs were created in 
a manner following [13, 141. To create a random CSP, 
a graph was created by randomizing an  enumeration of 
all possible edges and taking the first p l n ( n  - 1)/2 as 
edges in the random graph. Unlike [13, 141 the graphs 
were unacceptable if they were not connected (discon- 
nected graphs can be solved separately and are there- 
fore not representative of a problem with n variables). 
Then, for each pair of variables that were connected 
by an edge a constraint was formed by randomizing an 
enumeration of the cross-product of the two domains 
and taking the first p2m2 as unacceptable pairs. 

MFC and FC were run on the random problems 
using both a static (given) variable selection order 
(MFC-NORM, FC-NORM) and a variable selection 
order based on smallest domain size (MFC-VAR, FC- 
VAR). As mentioned in the introduction, the variable 
selection order based on smallest domain size was not 
expected to  perform very well with MFC as MFC does 

not know the true size of the future domains. 
It is customary to compare CSP algorithms by 

the number of constraint checks that are performed 
in solving CSP instances. Constraint checks are an 
unbounded quantity in that they may only be table 
lookups or they may be something much more com- 
plicated. Timing results are not reliable as they may 
be changed by different implementations. Many pa- 
pers comparing CSP algorithms have used either the 
mean or the median of the number of constraint checks 
performed over multiple CSP instances to  compare al- 
gorithms. Both methods have problems with outliers. 
It is not unusual for an occasional hard problem to  be 
generated. Using the mean gives too much weight to 
the outlier (it usually dominates all other instances) 
and comparisons are meaningless. Using the median 
more than likely ignores how the algorithms fared on 
those hard problems. We have chosen to use the geo- 
metric mean of the number of constraint checks per- 
formed on each instance. The geometric mean is not 
as susceptible to outliers yet it doesn’t entirely dis- 
count them either. The geometric mean seems to  be a 
better indicator of average performance when outliers 
are a problem (it is used in other fields [9] for the same 
purpose). 

Partial results of the experiments are displayed in 
Figure 6 and Figure 8. Comparisons with m = 5 are 
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Figure 6: Comparison of the log of the geometric mean 
of constraint checks performed by MFC-NORM and 
FC-NORM varied by pl 

omitted. Along the x-axis are the values for p l  and 
along the y-axis is the log (base 10) of the geometric 
mean of the number of constraint checks. Each point 
represents the log of the geometric mean of the num- 
ber of constraint checks performed in solving the 20 
random CSP instances. The key at the bottom right 
corner displays the algorithm name, n, m, and the line 
associated with that run. 

In the first graph (Figure 6) MFC-NORM appears 
to perform almost uniformly better than FC-NORM. 
As the size of the problems increases the difference be- 
tween the graphs becomes larger. As the distance be- 
tween the graphs is logarithmic, the almost constant 
distance between the graphs is actually a multiplier 
for the number of Constraint checks. For example, 
the distance between MFC-NORM and FC-NORM 
for n = 10, m = 10 is approximately 0.137 which 
is log10(1.37). This means that the geometric average 
number of constraint checks performed by FC-NORM 
is 1.37 times the number of constraint checks per- 
formed by MFC-NORM. The graphs with m = 5 have 
the same characteristics as those displayed. Figure 7 
shows the performance of MFC-NORM in terms of 
the percentage of constraint checks performed by FC- 
NORM. One extra data point for n = 20, m = 15, pl  
in {0.2,0.25,. . . ,0.5} is added. There are two trends 
observable in Figure 7. The first is that as the domain 
size increases for every n,  MFC-NORM is increasingly 
more efficient than FC-NORM. The second trend is 
that MFC-NORM becomes increasingly more efficient 
than FC-NORM as the number of variables increases. 

In the second graph (Figure 8), MFC-VAR appears 
to do better or the same as FC-VAR. MFC-VAR's 

I m = 5  I m-10  I m = 1 5  
n = 10 I 76.9 I 72.9 I - 

Figure 7: Percentage of FC-NORM'S constraint checks 
performed by MFC-NORM 

performance appears to worsen as the size (both n 
and m) of the problems grows larger. The choice of 
an incorrect variable appears to be more critical for 
larger problems. 
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Figure 8: Comparison of the log of the geometric mean 
of constraint checks performed by MFC-VAR and FC- 
VAR varied by p l  

4 Conclusions and Future Work 

Our experiments have shown that MFC is increas- 
ingly more efficient than FC for randomly generated 
hard problems with large domain sizes and/or a large 
number of variables given a variable selection heuristic 
not dependent on domain size. Our experiments also 
show that using MFC with a variable selection heuris- 
tic based on domain size is inappropriate for larger 
problems. 

There are two reasons why MFC is better than FC 
in terms of constraint checks. The first is that for 
every minimal forward check that fails the delayed 
forward checks in the future-connected variables be- 
tween the current variable and the variable whose do- 
main become empty are not performed. The second 
reason is that sections of the search tree that have 
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not been backtracked over may have delayed forward 
checks that are avoided. 

Our future work lies in improving MFC’s search to  
avoid unnecessary constraint checks using the extra 
information that it has. The MFC algorithm as pre- 
sented in this paper mimics the search of FC. How- 
ever if we sacrifice the explicit comparison to  FC we 
can exploit the extra information to avoid some redun- 
dant searches. For example, if a value for the current 
variable vi causes some future domain dj to become 
empty, instead of recording that vi is inconsistent with 
vi-1 we could record i t  as inconsistent with the deep- 
est variable that can change d,. This would ensure 
that MFC never instantiates vi to that value as long 
as that value would empty the future-connected do- 
main d,. This optimization of FC can be seen as a 
form of partial Backmarking and is described in de- 
tail in [ll]. A second optimization missing in MFC is 
the addition of a intelligent backtracking component. 
If the search jumps back to the source of a failure 
instead of the previously instantiated variable the de- 
layed forward checks for the variables between will be 
avoided. Finally we would like to improve the perfor- 
mance of MFC-VAR by learning when it is critical to 
completely check a domain. 
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