
Minimal Forward Checking

M. J. Dent R. E. Mercer

Department of Computer Science
University of Western Ontario

London, ONT N6A 5B7

Abstract

Forward Checking (FC) is a highly regarded com-
plete search algorithm used t o solve Constraint Sat-
isfaction Problems. In this paper a lazy variant of
FC called Minimal Forward Checking (MFC) is intro-
duced. MFC is a natural marriage of incremental FC
and Backchecking. Given a variable selection heuristic
which does not depend on domain size MFC’s worst
case performance on any CSP instance is the num-
ber of constraint checks performed by FC. Experiments
using hard random problems are presented which show
that M F C outperforms F C especially for problems with
large domain sizes and/or a large number of variables.

1 Introduction

Many problems in Artificial Intelligence and Oper-
ations Research can be expressed as Constraint Sat-
isfaction Problems (CSPs)[4, 8, 151. A CSP is repre-
sented with a set of variables] a set of finite discrete
domains for those variables, and a set of constraints
over those variables. In this paper we restrict our at-
tention to binary CSP’s where all the constraints are
of arity 2. The general problem is to find a satisfy-
ing assignment of values to variables under the given
constraints. CSP problems are NP-complete. This
paper presents the design and empirical analysis of
a new CSP search algorithm called Minimal Forward
Checking (MFC) which improves on the performance
of a very popular CSP search algorithm called Forward
Checking (FC).

Many studies have found that FC is a useful algo-
rithm for solving CSPs[5, 3, 7, 15, 121. FC performs a
limited lookahead which is designed to help the back-
tracking search find and avoid failures earlier. When
FC attempts to give a value to a variable it filters all
values inconsistent with this value from the domains
of variables not yet instantiated. If a “future” domain

Department of Computer Science
University of Western Ontario

London, ONT N6A 5B7

becomes empty then the current attempted instanti-
ation is an inconsistent choice and the filtered values
are returned to their respective domains. FC’s effi-
ciency is usually attributed to this ability of detecting
inconsistencies earlier in the search tree with less arc
consistency checking per node than other more com-
plicated arc consistency algorithms[3, 71. However, FC
may not be efficient for problems with larger domain
sizes and a large number of variables. Early failures
in the search tree may make much of FC’s consistency
checking redundant[6].

MFC is based on the observation that FC attempts
to instantiate a new variable only when there is at least
one value in each future domain that is consistent with
all the variables that have been instantiated. MFC
is a lazy version of FC that finds and maintains one
consistent value in every future domain, “suspending”
forward checks until they are required by the search.
In this way MFC avoids searching (possibly large) do-
mains for consistent values unless it has to. This con-
cept is similar to Bessihre’s idea of maintaining one
supporting value in his full arc consistency algorithm

The cost of incorporating laziness into FC is three-
fold. First, MFC needs to maintain a temporary
record of successful and unsuccessful checks against
each domain value. The record of successful checks
is needed as MFC does not know which values are
“past’’ consistent as FC does. The record of a con-
straint check is erased when the variable that caused
the constraint check is uninstantiated. FC has a simi-
lar record but only in terms of unsuccessful constraint
checks. The space complexity of the record for MFC is
O(n2m) and for FC it is O(nm) where n is the number
of variables and m is the size of the largest domain.
The second cost is the added complexity of code nec-
essary to perform the partial search. If the cost of a
constraint check is no more than the cost of a table
lookup it may be better to use FC for smaller prob-
lems. The overhead of the algorithm would outweigh

AC-6[11.

432
1063-6730194 $4.00 0 1994 IEEE

Berthe Choueiry

the usefulness of avoiding constraint checks. The third
cost is that MFC partially disables variable selection
heuristics which depend on domain size. MFC does
not know the true filtered size of the future domains.

The benefit of using MFC is that in the worst case,
MFC performs the same amount of constraint check-
ing as FC given that both instantiate variables in
the same order (i.e. with the same variable selection
heuristic not depending on domain size) and that the
domains are ordered. There are CSP domains where
the variable selection heuristic based on domain size is
inappropriate. For example, certain types of schedul-
ing problems[lO] and N-ary CSPs. Our experiments
show that MFC consistently performs many fewer con-
straint checks than FC on hard random problems. If
the cost of a constraint check is significant then MFC
is a better choice.

Section 2 presents an overview and example of the
FC and MFC algorithms, section 3 describes experi-
mental results and section 4 gives conclusions and fu-
ture work. A complete description of the MFC algo-
rithm can be found in [2].

2 Minimal Forward Checking

Assume that the variable instantiation order,
V I , . . . , v i , . . . , vn, is the order in which variables are
chosen to be given a value. The current variable,
vi, is the variable to be instantiated and di is the cur-
rent domain. The instantiated variables v1, . . . , vi-l

are called the past variables and the uninstantiated
variables v i+l , . . . , v, are called the future variables.
The past-connected variables are the past variables
that are connected by a constraint to the current vari-
able vi , and the future-connected variables are the
future variables that are connected by a constraint to
the current variable vi. Similar terminology is used to
refer to the domains.

In this paper we divide the algorithms into a for-
ward labeling move used to find an instantiation for
the current variable and a backward unlabeling move
used to undo a formerly successful instantiation. We
assume that the two functions are called within the
context of a backtracking search. A full descrip-
tion of the FC algorithm is available in a number of
papers[3, 7, 121. The forward labeling move of FC,
called fc-label, takes as input the index of the vari-
able to be instantiated and the indices of the future-
connected variables. Fc-label searches through the
current domain attempting to find an acceptable value
for the current variable. At each attempted instantia-
tion it removes and records all values inconsistent with

Figure 1: Execution of Forward Checking

the attempted instantiation in the future-connected
domains. If a future-connected domain is made empty
the forward check is undone by replacing the values
removed from the future-connected domains and the
next value is considered. If the forward check is suc-
cessful the current attempted instantiation is accept-
able and fc-label returns true. If no value can be suc-
cessfully instantiated fc-label returns false. The un-
labeling move of FC is called when the search can no
longer move forward. Fc-unlabel takes as input the in-
dex of the last successfully instantiated variable, say
vi , and undoes the forward check previously done for
the current value of vi and removes the value of vi
from the current domain of vi. The unlabeling move
records this removed value as being inconsistent with
the value of vi-1. If there are more values to choose
from vi’s domain the search can move forward again,
otherwise fc-unlabel is called again with the index of
vi-1.

Consider the following graph colouring CSP: 01 =

0 4 = {g,b,r}, where the constraints restrict pairs
of variables from { V I , . . . ,214) to be assigned different
colours. Figure 1 outlines the search performed by
FC. The checkmarks (4 show successful constraint
checks and the (x) marks show unsuccessful con-
straint checks. In step 1, v1 is assigned the value
red and FC goes through the future-connected do-
mains (0 2 , &, and 0 4) looking for inconsistent val-
ues. The value red in 0 4 is found to be inconsistent
and is removed. The search now moves forward as
there are consistent values in every future-connected

{r(ed)), 0 2 = {g(reen),o(range)), 0 3 = {b(lue),g),

433

T

mfc-label(i,past-vars,future-vars) past-consistent(i,past-vars)

consistent + False
FOR v[i] + EACH ELEMENT OF current-domain[i]
WHILE not consistent DO

IF past-consistent(i,past-vars) THEN
consistent + min-forward-check(i,future-vars,

past-vars)
IF not consistent THEN

undo-min-forward-check(i)
k - {index of previous variable}
remember-unsuccessful-check(k,i)

k c {index of previous variable}
remember-unsuccessful-check(k,i)

ELSE

IF not consistent THEN
current-domain[i] +- rest(current-domain[i])
previous-checks[i] t rest(previous-checks[i])

RETURN(consistent)

Figure 2: mfc-label

domain (step 2). Variable w2 is assigned the value
green and the future-connected domains are checked.
The values green in both 0 3 and 0 4 are inconsistent
and are removed. Variable w3 is assigned the value
blue and a forward check is done. FC finds that the
value blue in 0 4 is inconsistent with the value cho-
sen for w3. As there are no further elements in 0 4

and 0 3 fc-unlabel is called to backtrack the search to
w2. The value blue is returned to domain Dq, and the
value green is returned to domain 0 3 and domain Dq.
Variable w2 is then assigned the value orange (step 4).
FC checks the future-connected domains and finds no
inconsistent values. In step 5, wg is assigned the value
blue and FC removes the value blue from the domain
of D4. Finally, step 6 shows the solution. FC per-
formed a total of 18 constraint checks.

MFC mimics the search of FC by maintaining only
one value consistent with the past variables in ev-
ery future domain. If the value being maintained be-
comes inconsistent with the current attempted instan-
tiation a new value is found that is consistent with
the past variables. The incremental nature of MFC
implies that a record of both successful and unsuc-
cessful constraint checks must be maintained. MFC
records the variables involved in a constraint check,
wi and v j (i < j) , the value in the domain of wj that
was checked against, and the result of the check. This
record can be implemented as an array or as a set
of assertions or by using list structures. The labeling

ok-result c True
unchecked-past-vars +-

{calculate past-vars not yet checked against
current value of i from record
(in instantiation order)}

FOR m +- EACH ELEMENT OF unchecked-past-vars
WHILE ok-result DO

ok-result +- check(m,i)
IF ok-result THEN

ELSE
remember-successful-check(m,i)

remember-unsuccessful-check(m,i)
RETURN (ok-result)

Figure 3: past-consistent

move for MFC (mfc-label) is very similar to that for
FC (see Figure 2). The algorithm is presented using
a pseudo-code developed by Nadel and Prosser[7, 121.
Mfc-label takes the index of the current variable to
instantiate and the indices of the past-connected and
future-connected variables. There are two major dif-
ferences from fc-label.

The first difference is that the remaining elements
in the current domain of vi other than the first are not
guaranteed to be consistent with the past-connected
variables and must be tested if the first value is not
acceptable. Function past-consistent (see Figure 3)
ensures that the current attempted instantiation is
consistent with the past-connected variables that have
not yet been checked with it. A call to past-consistent
has the effect of waking up previously delayed forward
checks. Function past-consistent is actually perform-
ing Backchecking [3] which is the counterpart to FC in
that it performs and remembers checks looking back-
wards into the search.

The second major difference is that the forward
check for MFC, called min-forward-check (see Fig-
ure 4), only finds the first consistent value in each
future-connected domain. Min-forward-check ensures
that the first value in each future-connected domain is
consistent with past connected variables for the future
domain that it is looking at . If the current first value
is past consistent, a check is performed to see if it is
consistent with the attempted instantiation for wi. If it
is consistent min-forward-check moves on to the next
future-connected domain. If it is not consistent min-
forward-check loops and tests the next value in the
domain. Min-forward-check returns true if it is able to

434

min-forward-check(i,future-vars, past-vars)

ok-result + True
FOR k + EACH ELEMENT OF future-vars
WHILE ok-result DO

ok-result t False
past-vars-k + {calculate current past-vars for k}
FOR v[k] +- EACH ELEMENT OF current-domain[k]
WHILE not ok-result DO

IF past-consistent(k,past-vars-k) THEN
ok-result +- check(i,k)
IF not ok-result THEN

ELSE
remember-unsuccessful-check(i, k)

remember-successful-check(i, k)
IF not ok-result THEN

current-domain[k] t rest(current-domain[k])
previous-checks[k] rest (previous-checks[k])

RETURN(ok-result)

Figure 4: min-check-forward

find one past consistent value in each future-connected
domain or false otherwise. Mfc-label returns true if it
is able to instantiate the current variable, false oth-
erwise. The unlabeling function is very similar to fc-
unlabel. When a variable vi is uninstantiated, the
values that were unsuccessfully checked against are re-
placed in their respective domains and all records of
checks against future-connected domains are erased.

Figure 5 outlines the search performed by MFC
on our example CSP. Domain values are shown with
lists of instantiated variables with which they have
been checked. Some variables in the lists have su-
perscripts (J) and (x) denoting respectively success-
ful and unsuccessful constraint checks performed in
the current search step. If a domain value has not
been checked, no list is shown. In step 1, VI is as-
signed the value red and a minimal forward check is
performed. The first consistent value in each future-
connected domain is found (in this case the first value
in each of the domains). In step 2, v2 is assigned
the value green and another minimal forward check
is performed. The value blue in domain 0 3 is con-
sistent with v2 but the value green in domain 0 4 is
inconsistent. Min-forward-check searches through 0 4

(by unsuspending previous forward checks) searching
for a past consistent value (in this case blue) doing
the constraint checks in the instantiation order. As
there are still consistent values in each future domain,
the search moves forward and 213 is assigned the value

blue. However, a minimal forward check shows that no
value in domain 0 4 is consistent. Value blue is incon-
sistent with v3 and an unsuspension of a forward check
shows that the value red is inconsistent with V I . The
search backtracks to 213 and attempts to find another
consistent value but the unsuspension of the forward
checks for the value green show it to also be incon-
sistent (step 4). Also in this step notice that domain
value blue is returned to domain 0 4 as it is no longer
inconsistent with vg. In step 5, the value orange in
domain 0 2 is found to be past consistent with V I . In
steps 6 and 7 the search moves forward as MFC finds
the first value consistent in each future-connected do-
main. Step 8 shows the solution to the CSP found by
MFC. MFC performed 15 constraint checks compared
to the 18 that FC performs on the same problem.

MFC mimics FC’s search avoiding constraint checks
until necessary. When the variable selection strategy
depends on domain size or domains are unordered,
MFC may perform more constraint checks than FC.
However when the variable selection heuristic does not
depend on domain size and domains are ordered the
following theorem holds.

Theorem 1 For any CSP, assuming that the variable
selection order is the same and that the domains are
ordered, Minimal Forward Checking’s worst case per-
formance in terms of constraint checks is the number
of constraint checks performed b y Forward Checking.

3 Experiments

A series of experiments was performed with ran-
domly generated hard binary CSPs. Each CSP is char-
acterized by a 4-tuple < n, m,pl,p2 > where n is the
number of variables, m is the size of every domain,
p l is the probability of a constraint existing between
two variables, and pa is the probability that a pair of
values in a constraint are inconsistent. It has been re-
cently shown in [13, 141 that it is possible to generate
random CSP’s that are significantly harder than most
random instances. The expected number of solutions
to a particular CSP can be calculated as:

E(So1n) = mn(l - pz)n(n-1)P1/2

Prosser and Smith both conjecture that the hardest
random CSP problems occur when the expected num-
ber of solutions is 1 (especially as n gets larger). They
reason that problems which have an expected number
of solutions less than 1 will be over-constrained and
therefore easier to prove unsatisfiable and, conversely,

435

Berthe Choueiry

Figure 5: Execution of Minimal Forward Checking

problems with an expected number of solutions greater
than 1 will be under-constrained and therefore easier
to satisfy. Given values for n, m, and p l , and assum-
ing that the expected number of solutions for a hard
problem is 1, one can calculate a value for pa from the
above equation.

In our experiments we varied n in { 10,15,20}, m in
{5,10}, andp, in {0.2,0.25,. . . , l .O}. For each setting of
the three parameters 20 random CSPs were created in
a manner following [13, 141. To create a random CSP,
a graph was created by randomizing an enumeration of
all possible edges and taking the first p l n (n - 1)/2 as
edges in the random graph. Unlike [13, 141 the graphs
were unacceptable if they were not connected (discon-
nected graphs can be solved separately and are there-
fore not representative of a problem with n variables).
Then, for each pair of variables that were connected
by an edge a constraint was formed by randomizing an
enumeration of the cross-product of the two domains
and taking the first p2m2 as unacceptable pairs.

MFC and FC were run on the random problems
using both a static (given) variable selection order
(MFC-NORM, FC-NORM) and a variable selection
order based on smallest domain size (MFC-VAR, FC-
VAR). As mentioned in the introduction, the variable
selection order based on smallest domain size was not
expected to perform very well with MFC as MFC does

not know the true size of the future domains.
It is customary to compare CSP algorithms by

the number of constraint checks that are performed
in solving CSP instances. Constraint checks are an
unbounded quantity in that they may only be table
lookups or they may be something much more com-
plicated. Timing results are not reliable as they may
be changed by different implementations. Many pa-
pers comparing CSP algorithms have used either the
mean or the median of the number of constraint checks
performed over multiple CSP instances to compare al-
gorithms. Both methods have problems with outliers.
It is not unusual for an occasional hard problem to be
generated. Using the mean gives too much weight to
the outlier (it usually dominates all other instances)
and comparisons are meaningless. Using the median
more than likely ignores how the algorithms fared on
those hard problems. We have chosen to use the geo-
metric mean of the number of constraint checks per-
formed on each instance. The geometric mean is not
as susceptible to outliers yet it doesn’t entirely dis-
count them either. The geometric mean seems to be a
better indicator of average performance when outliers
are a problem (it is used in other fields [9] for the same
purpose).

Partial results of the experiments are displayed in
Figure 6 and Figure 8. Comparisons with m = 5 are

436

6.5 I I

n = 15
n = 20

B
0
t 72.5 66.2

68.8 61.6 54.2
-

6 -

5.5 -

'fc-norm-10-10' -6 -
'fc-norm-15-10' -- - 'mfc-norm-15-10' ---

'mfc-norm-20-10' A-.-
'fc-norT-20-10' -a--

2
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pl

Figure 6: Comparison of the log of the geometric mean
of constraint checks performed by MFC-NORM and
FC-NORM varied by pl

omitted. Along the x-axis are the values for p l and
along the y-axis is the log (base 10) of the geometric
mean of the number of constraint checks. Each point
represents the log of the geometric mean of the num-
ber of constraint checks performed in solving the 20
random CSP instances. The key at the bottom right
corner displays the algorithm name, n, m, and the line
associated with that run.

In the first graph (Figure 6) MFC-NORM appears
to perform almost uniformly better than FC-NORM.
As the size of the problems increases the difference be-
tween the graphs becomes larger. As the distance be-
tween the graphs is logarithmic, the almost constant
distance between the graphs is actually a multiplier
for the number of Constraint checks. For example,
the distance between MFC-NORM and FC-NORM
for n = 10, m = 10 is approximately 0.137 which
is log10(1.37). This means that the geometric average
number of constraint checks performed by FC-NORM
is 1.37 times the number of constraint checks per-
formed by MFC-NORM. The graphs with m = 5 have
the same characteristics as those displayed. Figure 7
shows the performance of MFC-NORM in terms of
the percentage of constraint checks performed by FC-
NORM. One extra data point for n = 20, m = 15, pl
in {0.2,0.25,. . . ,0.5} is added. There are two trends
observable in Figure 7. The first is that as the domain
size increases for every n, MFC-NORM is increasingly
more efficient than FC-NORM. The second trend is
that MFC-NORM becomes increasingly more efficient
than FC-NORM as the number of variables increases.

In the second graph (Figure 8), MFC-VAR appears
to do better or the same as FC-VAR. MFC-VAR's

I m = 5 I m-10 I m = 1 5
n = 10 I 76.9 I 72.9 I -

Figure 7: Percentage of FC-NORM'S constraint checks
performed by MFC-NORM

performance appears to worsen as the size (both n
and m) of the problems grows larger. The choice of
an incorrect variable appears to be more critical for
larger problems.

5.5 , I

B
8

j!j
0
L

U)

e
m p
1

5

4.5

4

3.5

3

2.5

2
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P1

Figure 8: Comparison of the log of the geometric mean
of constraint checks performed by MFC-VAR and FC-
VAR varied by p l

4 Conclusions and Future Work

Our experiments have shown that MFC is increas-
ingly more efficient than FC for randomly generated
hard problems with large domain sizes and/or a large
number of variables given a variable selection heuristic
not dependent on domain size. Our experiments also
show that using MFC with a variable selection heuris-
tic based on domain size is inappropriate for larger
problems.

There are two reasons why MFC is better than FC
in terms of constraint checks. The first is that for
every minimal forward check that fails the delayed
forward checks in the future-connected variables be-
tween the current variable and the variable whose do-
main become empty are not performed. The second
reason is that sections of the search tree that have

43 7

not been backtracked over may have delayed forward
checks that are avoided.

Our future work lies in improving MFC’s search to
avoid unnecessary constraint checks using the extra
information that it has. The MFC algorithm as pre-
sented in this paper mimics the search of FC. How-
ever if we sacrifice the explicit comparison to FC we
can exploit the extra information to avoid some redun-
dant searches. For example, if a value for the current
variable vi causes some future domain dj to become
empty, instead of recording that vi is inconsistent with
vi-1 we could record i t as inconsistent with the deep-
est variable that can change d,. This would ensure
that MFC never instantiates vi to that value as long
as that value would empty the future-connected do-
main d,. This optimization of FC can be seen as a
form of partial Backmarking and is described in de-
tail in [ll]. A second optimization missing in MFC is
the addition of a intelligent backtracking component.
If the search jumps back to the source of a failure
instead of the previously instantiated variable the de-
layed forward checks for the variables between will be
avoided. Finally we would like to improve the perfor-
mance of MFC-VAR by learning when it is critical to
completely check a domain.

Acknowledgements

The authors would like to thank Pat Prosser for
his code and advice, and Eugene Freuder, Christian
Bessigre, Ted Elcock, Mei Wei, and the anonymous
referees for their comments. This research is funded
by the Institute for Robotics and Intelligent Systems
(a Canadian Network of Centres of Excellence) Project
B-5 and NSERC Grant 0036853.

References

C. Bessi6re and M.-0. Cordier. Arc-Consistency
and Arc-Consistency Again. In Proceedings
AAAI-93 , 1993.

M. Dent and R. Mercer. Minimal Forward Check-
ing. Technical Report UWO-CSD-374, University
of Western Ontario, 1993.

R. Haralick and G. Elliot. Increasing Tree Search
Efficiency for Constraint Satisfaction Problems.
Artificial Intelligence, 14:263-313, 1980.

A. Mackworth. Constraint Satisfaction. In 2nd
Edition of the Encyclopedia of Artificial Intelli-

gence, pages 285-293. Wiley & Sons, New York,
1992.

[5] J . McGregor. Relational Consistency Algo-
rithms and their Application in Finding Subgraph
and Graph Isomorphisms. Information Sciences,
19:229-250, 1979.

[6] B. Nadel. Tree Search and Arc Consistency in
Constraint Satisfaction Algorithms. In L. Kana1
and V. Kumar, editors, Search in Artificial Intel-
ligence, pages 287-342. Springer-Verlag, 1988.

[7] B. Nadel. Constraint Satisfaction Algorithms.
Computational Intelligence, 5:188-224, 1989.

[8] B. Nadel and J . Lin. Automobile Transmis-
sion Design as a Constraint Satisfaction Problem:
Modeling the Kinematic Level. Artificial Intelli-
gence in Engineering Design Analysis and Man-
ufacturing (AIEDAM), 5(3), 1991.

[9] D. Patterson and J. Hennessy. Computer Archi-
tecture: a Quantitative Approach. Morgan Kauf-
mann, 1990.

[lo] P. Prosser. A Reactive Scheduling Agent. In Pro-
ceedings IJCAI-89, pages 1004-1009, 1989.

[ll] P. Prosser. Forward Checking with Backmark-
ing. Technical Report AISL-48-93, University of
Strathclyde, 1993.

[12] P. Prosser. Hybrid Algorithms for the Con-
straint Satisfaction Problem. Computational In-
telligence, 9(3):268-299, 1993.

[13] P. Prosser. Binary Constraint Satisfaction Prob-
lems: Some are Harder than Others. In Proceed-
ings ECAI-94, 1994.

[14] B. Smith. Phase Transition and the Mushy Re-
gion in Constraint Satisfaction Problems. In Pro-
ceedings ECAI-94, 1994.

[15] P. Van Hentenryck. Constraint Satisfaction in
Logic Programming. MIT Press, 1989.

438

