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CONSTRAINT SATISFACTION PROBLEMS

« A CSP consists of:

— a set of variables (V, V,...V,)

— a discrete domain (D,,D,...D,) for each variable

— a set of constraints on those variables - relations among variables
which represent a subset of the Cartesian product of the domains

D.xD,x...xD,
Binary constraints are posted between couples of variables

Solution of a CSP: an assignment of values to variables
consistent with problem constraints

E.Tsang: “Foundations of Constraint Satisfaction”
Academic Press, 1992.
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EXAMPLE: Map Coloring

« Aim: find an assignments of colours to zones s.t. no
two adjacent zones are coloured with the same colour

— variables V1, V2, V3, V4, V5: zones

— domains D1, D2, D3, D4, D5: [red, blue, green, yellow,pink]
— constraints: near(Vi, Vj) [ Vi zVj
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CONSTRAINT GRAPHS

A CSP can be represented by a constraint graph:
— variables <=  nodes
— constraints <=> (hyper)-arcs

*Feasible Solution:
[red,blue,green, yellow,pink]  [red,blue,green,yellow,pink] V1 = red
V2 = green
*\/3 = blue
*\/4 = yellow
V5 = pink

. ,7_\/ [red,blue,green, yellow,pink]
[red,blue,green, yellow,pink] Z

[red,blue,green,yellow,pink]
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CONSTRAINT OPTIMIZATION PROBLEMS

» A COP consists of:

— a set of variables (V;, V,...V,)

— a discrete domain (D,,D,...D,) for each variable

— a set of constraints on those variables - relations among variables
which represent a subset of the Cartesian product of the domains

D.xD,x...xD,
— an objective function f(Vy, V,...V,)

Solution of a COP: an assignment of values to variables consistent
with problem constraints, which optimizes the objective function
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EXAMPLE: Map Coloring

« Aim: find an assignments of colours to zones s.t. no
two adjacent zones are coloured with the same colour
MINIMIZING the number of colours used

— variables V1, V2, V3, V4, V5: zones

— domains D1, D2, D3, D4, D5: [red, blue, green, yellow,pink]
— constraints: near(Vi, Vj) [J Vi #V]
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CONSTRAINT GRAPHS

« A COP can be represented by a constraint graph:
— variables <=  nodes
— constraints <=> (hyper)-arcs

*Optimal Solution:
[red,blue,green, yellow,pink]  [red,blue,green,yellow,pink] V1 = red
/2 = green
*\/3 = blue
*\/4 = yellow
V5 = blue

. ,7_\/ [red,blue,green, yellow,pink]
[red,blue,green, yellow,pink] Z

[red,blue,green,yellow,pink]

AI*IA 99 Tutorial - Bologna September 99



CONSTRAINT MODELLING

Properties of constraints

— Declarative (invariant) relations among objects
e X>Y

— Addictive: the order of imposition does not matter
e X+Y<=Z X+Y>=Z

— Non-directional

e a constraint between X and Y can be used to infer information on
Y given information on X and viceversa.

— Rarely independent
» shared variables as communication mechanism
— Incremental operational behaviour
» each time new information available, the computation does
not start from scratch
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CONSTRAINT SOLVING

 Enumeration: backtracking algorithms

— Assign a tentative value and test the constraints
— Inefficiency due to the dimensions of the search space

— Trashing
« Constraint Propagation algorithms

— aimed at reducing the search space
— constraint propagation algorithms A PRIORI remove combinations of

assignments which cannot lead to a consistent solution
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BACKTRACKING ALGORITHMS

Intuitive way of solving CSP: backtracking algorithms

\

Trashing
Var = vaV Var = value2
e T ¢
A\ right choice

/

— 7
—~

failures
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PROPAGATION ALGORITHMS

Var = vay‘\Var= value?2
O o ¢

failure due right choice
fo propagation

Propagation algorithms:  avoid failures instead of
recovering from them

Based on the concept of consistency properties
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CONSISTENCY PROPERTIES

« NODE CONSISTENCY

— a network is node consistent if in each node domain each value

IS consistent with unary constraints

« ARC CONSISTENCY
— a hetwork is arc consistent if for each arc connecting variables Vi
and Vj for each value in the domain of Vi there exists a value in the
domain of Vj consistent with binary constraints

[1..10]

[1..10]

g@

Vi<7

—)

Not Node consistent
Not Arc consistent

[2..6] [1..5]
@@
V1i<7

Node consistent
Arc consistent
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ENFORCING CONSISTENCY PROPERTIES

* NODE CONSISTENCY: trivial

e ARC CONSISTENCY
— Many algorithms proposed
— AC1-AC2-AC3 [Mackworth AlJ (8), 77] [Montanari Inf.Sci (7), 74],
AC4 [Mohr, Henderson AlJ(28), 86], AC5 [Van Hentenryck, Deville and Teng AlJ(58),
92], ACG [Bessiere AlJ(65), 94], AC/ [Bessiere, Freuder, Regin AlJ(107), 99]
— Many variants: DAC [Detcher,Pearl IJCAI85]
MAC [Bessiere, Freuder, Regin, IJCAI95]
— Bound Consistency [Van Hentenryck, Saraswat, Deville TR Brown, CS-93-02, 93]

— Complexity: [Machworth, Freuder AlJ(25), 85], [Mohr, Henderson AlJ(28), 86],
[Detcher,Pearl AlJ (34), 88] [Han, Lee AlJ(36), 88], [Cooper AlJ (41), 89]

e PATH CONSISTENCY
— PC1-PC2 [Mackworth AlJ (8), 77]
— PC3 [Mohr, Henderson AlJ(28), 86]
— PC4 [Han, Lee AlJ(36), 88]
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INCOMPLETENESS of CONSISTENCY
ALGORITHMS

* NODE, ARC and PATH CONSISTENCY are in general not COMPLETE

* complete for some problems with particular structures
[Freuder JACM (29), 82], [Freuder JACM (32), 85]

e Complete algorithm: N-CONSISTENCY for N variable problems.
Exponential complexity
[Freuder CACM (21), 78], [Cooper AlJ (41), 89]

« Example:

V1 V2 .
Node + Arc consistent network

No feasible solutions exist
Z Zz
[1,2]
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SEARCH NEEDED

(P)
 After propagation:

— Solution Found @ @

— Failure
— Search space to be explored: divide Problem P into easier
Sub-problems

e Exploring the search space
— Variable selection: which is the next variable to assign ?
— Value selection: which value to assign next ?

e Search Strategies
— Static heuristics
— Dynamic heuristics
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SEARCH STRATEGIES: general criteria

e Variable Selection
— First Fail - Most Constraining Principle
— Select first more “difficult” variables

 Value Selection
— Least Constraining Principle
— Select first more “promising” values

* Problem dependent search strategies
— Branching rules ensuring that the set of resulting
subproblems patrtitions the original problem P

AI*IA 99 Tutorial - Bologna September 99

18



OVERVIEW

Constraint Satisfaction (Optimization) Problems
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CONSTRAINT (LOGIC) PROGRAMMING

 Aim: language for modelling and solving CSPs
and COPs

— Constraint: basic language structure
» declarative semantics
* notion of consistency-entailment-optimization
» operational semantics: propagation algorithms
e incrementality
» each constraint considered as a sub-problem

— Search strategies easily implementable
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CONSTRAINT PROGRAMMING
ORIGINS AND HISTORY

Earliest ideas: field of Al Constraint Satisfaction (‘60, ‘70)

— [Montanari Inf.Sci (7), 74], [Waltz,75]: constraints as matrices

— REF-ARF [Fikes PhD 68], ALICE [Lauriere AlJ (10) 78]: simple but
powertful constraint languages. Customized constraint solvers

— Early applications: graphics (SKETCHPAD [Sutherland, Spring Joint
Computer Conf. 63], ThingLab [Borning ACM Trans. Progr. Lang and Sys.
81]), circuit analysis (EL [Stallman,Sussman AlJ(9),77])

— CONSTRAINTS [Steels PhD 80], [Sussman, Steels AlJ(14), 80] first
explicit effort of developing a constraint language

— CLP [Jaffar, Lassez POPL87], [Jaffar, Maher JLP(19-20) 94]:
Logic Programming as Constraint Programming
 unification as constraint solving
» general framework CLP(X)
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CONSTRAINT PROGRAMMING
ORIGINS AND HISTORY

« Constraint languages
— CLP(R) [Jaffar et al. Trans. Progr. Lang and Sys. 92],
Prolog Il [Colmerauer CACM(33) 90], CHIP [Dincbas et al., JICSLP88],
CLP(PB) [Bockmayer ICLP95], Eclps® [Wallace et al. 97]
« Concurrent constraint languages (‘90)
— [Maher ICLP87] entailment as the heart of synchronisation mechanisms
— Concurrent Constraint Programming [Saraswat MIT Press 93]
— Oz [Smolka LNCS1000, 95], AKL [Carlson, Haridi, Janson ICLP 94],
CIAQO [Hermenegildo et al. PPCP94]
« Other programming languages constraint-based extensions
— ILOG [Puget SPICIS94], [Puget, Leconte ILPS95]: based on C++
— CHARME [Bull Corporation 90]
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FINITE DOMAIN CP

* One to one mapping with CSP concepts

* Problem modelling
— Variables range on a finite domain of objects of arbitrary type
— Constraints among variables
* mathematical constraints
» symbolic constraints
e Problem solving
— Propagation algorithms embedded in constraints
— Arc consistency as standard propagation
— More sophisticated propagation for global constraints
— Search strategies

AI*IA 99 Tutorial - Bologna September 99
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CP: PROBLEM MODELLING

 ONE to ONE mapping between CSP (COP) concepts and

CP syntactic structures

« A problem should be modelled in terms of

— Variables —>
— Domains —>
— Constraints =)

— Objective function (if any) ===

Problem entities

Possible Values

Relations among variables
Optimization Criteria
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CP: PROBLEM CONSTRAINTS

 Mathematical constraints: =, >, <, #, 2, <
— Propagation: arc-consistency

o Symbolic Constraints [Beldiceanu, Contejean, Math.Comp.Mod. 94]
— Embed more powerful propagation algorithms

— More concise formulation
» alldifferent([X L-X D

all variables have different values
« element(N,[X ,,..X _],Value)

the n-th element of the list should be equal to Value
» cumulative([S LS 40D 4,.D LR 4..R L)

used for capacity constraints
« disjunctive constraints
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CP: PROBLEM MODELLING (Example)

 Map Colouring

 map_colouring([V1,V2,V3,V4,V5]):-

V1::[red,green,yellow,blue,pink],
V2::[red,green,yellow,blue,pink],

V3::[red,green,yellow,blue,pink], »  variables & domains

V4::[red,green,yellow,blue,pink],
V5::[red,green,yellow,blue,pink], )
V1 V2, V1 #V3,V1 #£V4,V1 #V5,V2 #V3,
V2 £ZV4,V2 #V5,V3 #V4,V4 #V5,

Or alternatively

} constraints

alldifferent([V1,v2,V3,V4)),
alldifferent([V1,V2,V4,V5])).

AI*IA 99 Tutorial - Bologna September 99
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CP: PROBLEM SOLVING

* Notion of Consistency:
— Is the set of constraint consistent ?
— Does it exist a solution ?

« Constraint Propagation: inference mechanism
— Remove from domain inconsistent values
— Infer new constraints

e Search: branching strategies
— Variable selection
— Value selection

AI*IA 99 Tutorial - Bologna September 99
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CP: CONSISTENCY - ENTAILMENT

A set of constraint is CONSISTENT if it admits at least one solution

COMPLETE solvers are able to decide if the set of constraint is
satisfiable (real numbers)

INCOMPLETE solvers detect some form of inconsistency, but they are
not able to decide satisfiability (finite domains)

— the inconsistency is detected when one variable domain becomes empty

A set of constraint C ENTAILS a constraint c if; C = c. Some
solvers are based on entailment
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CONSTRAINT PROPAGATION

e Mathematical Constraints:
— Example 1
o X::[1..10], Y::[5..15], X>Y
Arc-consistency: for each value v of variable X, if a value for Y compatible with
constraints does not exists, v is deleted from the domain of X and vice versa.

e X::[6..10], Y::[5..9] after propagation
— Example 2

o X::[1..10], Y::[5..15], X=Y

e X::[5..10], Y::[5..10] after propagation
— Example 3

o X::[1..10], Y::[5..15], X £Y

 NoO propagation

AI*IA 99 Tutorial - Bologna September 99
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CONSTRAINT PROPAGATION

o Symbolic Constraints:

— Each Constraint has an associated propagation algorithm called
FILTERING ALGORITHM

— Complex propagation algorithms using also Operations Research
techniques

— Propagation ends when a state of quiescence is reached: the
constraint graph is stable

— Incremental propagation

AI*IA 99 Tutorial - Bologna September 99 30



CONSTRAINT PROPAGATION

Symbolic Constraint: example 1
— alldifferent ([X,,...X_])
all variables have different values
Declaratively equivalent to a set of binary constraints
alldifferent([X,,...X]) o X, #X,, X, # X,,.., X | %
Operationally more powerful constraints

X1::[1,2,3],%x2::[1,2,3],%X3::[1,2,3] ,X4::[1,2,3,4],

Arc consistency: NO PROPAGATION
Filtering algorithm [Regin AAAI94]: values 1 2 3 removed from x4

AI*IA 99 Tutorial - Bologna September 99
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CONSTRAINT PROPAGATION

e Symbolic Constraint: example 1 (continues)
e X1::1[1,2,3],X2::[1,2,3],X3::[1,2,3],X4::[1,2,3,4],
 Filtering algorithm: values 1 2 3 removed from x4

]

x1‘§

X2

Set of variables whose cardinality
is 3 ranging on the same set of

———

values whose cardinality is 3

< @

o

R X

: !

X4: : [}1/,/2,/3,4]

|

'Y
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CONSTRAINT PROPAGATION

« Symbolic Constraint: example 2
— element (N, [X,,...X ],Value)
the n-th element of the list should be equal to Value

e propagation from N to Value :
— N=1i - X, = Value
« propagation from Value to N and X, :

— Value= x - N=1 and X, =x or

N=2 and X,=x or....

N=m and X =x

AI*IA 99 Tutorial - Bologna September 99
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CONSTRAINT PROPAGATION

o Symbolic Constraint: disjunctive constraints

— suppose we have two different lessons to be given by the same
teacher. We have the starting times of the lessons: Listart and
L2Start and their duration burationl and bDuration2.

— Clearly, the two lessons cannot be scheduled at the same time:
Ll1Start + Durationl < L2Start
OR
L2Start + Duration2 < LlStart

— Two INDEPENDENT CSPs one for each size of the disjunction.

AI*IA 99 Tutorial - Bologna September 99
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CONSTRAINT PROPAGATION

« Symbolic Constraint: disjunctive constraints (2)

— Two INDEPENDENT CSPs one for each size of the disjunction: one
choice does not affect the other ==  Trashing

— Exponential number of problems:
N disjunction —> 2N Problems
« Main source of complexity in real world problems

— Solutions:
¢ constructive disjunction [Van Hentenryck, Saraswat, Deville, TR Brown 93]
 cardinality operator [P. Van Hentenryck, Y. Deville ICLP91]

* meta-constraints [Carlson, Haridi, Janson ILPS94], [Smolka LNCS1000, 95],
[Lamma, Mello, Milano JLP99]
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CONSTRUCTIVE DISJUNCTION

P. Van Hentenryck, V. Saraswat, Y. Deville,
Design, Implementation and Evaluation of the Constraint Language cc(FD),
Tech. Rep. Brown University, CS-93-02, 1993.

Exploits the disjunction to prune the search space
|ldea: add to the store constraints entailed by all possible alternatives

Example: x::[5..10], ¥::[7..11], Z::[1..20], (Z=X OR Z=Y)
— 2z=Xx would reduce the domain of z to [5..10]
— z=x would reduce the domain of z to [7..11]
— result of the constructive disjunction: z::[5..11]
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CARDINALITY OPERATOR

« Symbolic Constraint: cardinality operator

— #(1,u,[cy,..,c. 1) holds = the number k of constraints ¢, (1<i<n)
satisfiable is not less than 1 and no more
than u

— How to model disjunctive constraints with the cardinality operator

#(1,1, [L1Start+Durationl < L2Start, L2Start+Duration2 < LlStart])
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META-CONSTRAINTS

o Symbolic Constraint: meta-constraints

— Reified Constraints: each constraint is associated to a boolean variable
B. If B=1 the constraint holds, if B=0 the constraint does not.

—c < B

— How to model disjunctive constraints with reified constraint

B1 ::[0,1], B2::[0,1],
LlStart+Durationl < L2Start < B1,

L2Start+Duration2 < LlStart < B2,
Bl + B2 =1
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CONSTRAINT PROPAGATION

« Symbolic Constraint: example 3
— cumulative([S,,...S_ 1, [D,,...D ], [R;,...R]], L)

* S,,...S_are starting times (domain variables)
 D,,...D_are durations (domain variables)

* R, ...R_arerequired resources (domain variables)
L resource capacity limit (also time variant)

« Given the interval [min,max] where min = min. {S;}, max = max{s,+D.} - 1, the

cumulative constraint ensures that

max{ Ri}<L
JISjsisS j*Dj

AI*IA 99 Tutorial - Bologna September 99
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CONSTRAINT PROPAGATION

e Symbolic Constraint: example 3 (continues)
— cumulative([1,2,4],[4,2,3]1,[1,2,2],3)

resources

time

AI*IA 99 Tutorial - Bologna September 99
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CONSTRAINT PROPAGATION

e Symbolic Constraint: example 3 (continues)

— a propagation example used in the resource constraint is that
based on the obligatory parts

S min

< % >

S max

H_J
Obligatory part
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CONSTRAINT PROPAGATION

e Symbolic Constraint: example 3 (continues)

— another propagation example used in the resource constraint is
that based on the edge finding [Baptiste, Le Pape, Nuijten, IJCAI95]

Consider a unary resource and three activities.

s1 6
0 17
S2 4
1 11
S3 3
| 12
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CONSTRAINT PROPAGATION

e Symbolic Constraint: example 3 (continues)

S1 6
S 17
S2 4
1 11
S3 3
1 12

We can deduce that earliest start time of S1 is 8.

This is based on the fact that S1 must be scheduled after S2 and S3.

Global reasoning: suppose either S2 or S3 is scheduled after S1. Then the

maximum of the completion times of S2 and S3 is at least 13 (out of the domain
of S2 and S3).
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CONSTRAINT PROPAGATION

* Global reasoning: example 3 (continues)

Basic Theorem: [Carlier, Pinson, Man.Sci.95]

Let 0 be an activity and S a set of activities all to be scheduled on the same
unary resource (o not in S). The earliest start time is e, the sum of durations
Is D and the latest completion time C. If

e(S+{0}) + D(S+{o}) > C(S)

then no schedule exists in which o precedes any of the operations in S. This
implies that the earliest start time of o can be set to

max {e(S’) + D(S’)}.
(S'0S)

AI*IA 99 Tutorial - Bologna September 99
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CONSTRAINTS: general remarks

Symbolic Constraints are available in most CP tools

Local vs. Global reasoning == powerful propagation
Local vs. Global reasoning ==>computational effort Tradeoff
Generalization of frequently found constraints

Concise and easily understandable code

Symbolic constraints represent independent subproblems (relaxations
of the original problem)
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INTERACTIONS AMONG CONSTRAINTS

 Interact each other through shared variables in the constraint store

« Trigger propagation each time an event is raised on one variable X
— a change in the domain of X
— a change in the range of the domain of X
— assignment of variable X to a value

Variables & Domains

alldiff ([X1,..,Xk]) /X1
X2

::[1..100] \
::[1,5,9]

E> X3::[-30..40]
Xn::[15,40..60]
\ /

element (N, [X1,X5],6)

=
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INTERACTIONS AMONG CONSTRAINTS

* In general each variable is involved in many constraints.
Consequently, each change in variable domains as a result of
propagation may result in further propagations to other variables.

» Constraints agents view: during their lifetime they alternate between
suspended and waking states (triggered by events).

o Example:
4 )
X::[1..5],

X =Y + 1 Y::[1..5], ,

Z::[1..5]

= y \e
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INTERACTIONS AMONG CONSTRAINTS

X::[1..5],
Y::[1..5],
Z::[1..5]

Y QoD

=

A
R

* First propagationof X = Y + 1 yieldsto

-

-

X::[2..5]
Y::[1..4]
Z::[1..5]

~

X=Y+ 1is
suspended

J
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INTERACTIONS AMONG CONSTRAINTS

e Second propagationof ¥ = Z + 1 yieldsto

4 N
X::[2..5] Y=2+ 1S
Y::[2..4] suspended
Z::[1..3]

\ %

« The domain of Yhaschanged X = ¥ + 1 is awakened

e N
X::[3..5] X =Y + 1 is
Y::[2..4] suspended
Z::[1..3]

\_ A/
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INTERACTIONS AMONG CONSTRAINTS

e Third propagationof Z = X - 1 yieldsto

/
X::[]

Y::[2..4]
Z::[1..3]

-

~

J

FAILURE detected

The order in which constraints are considered (delayed and

awakened) does not affect the propagation results, BUT can affect

the performances of the algorithm.

AI*IA 99 Tutorial - Bologna September 99
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CONSTRAINTS: GENERAL STRUCTURES

Cumulative constraint on different examples

Scheduling (1): Tasks Al, A2, A3 sharing the same resource with
limited capacity. Duration on X and Resource use on Y

Capacity

>

Time

duration

AI*IA 99 Tutorial - Bologna September 99
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CONSTRAINTS: GENERAL STRUCTURES

Cumulative constraint on different examples

Scheduling (2): Limited number of resources per day = N. Day on X
and Resource number used on Y

Capacity (No matter where they are located within the day)
N
A2
A3
Al
0 :
1st day 2nd day Tlme
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CONSTRAINTS: GENERAL STRUCTURES

« Cumulative constraint on different examples

« Packing: Box whose dimensions are M x N. Pieces to be packed.

Y

N
A2

Al A3

0 M X
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REDUNDANT CONSTRAINTS

* Propagation is in general not complete: inconsistent values are left in
domains

 Redundant constraints can be useful for reducing the search space
even if they introduce some overhead (treadeoff).

* A redundant constraint C is one which is already entailed by other
constraints {C1...Ck}, but this entailment is not found by the constraint
solver due to its incomplete nature.
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REDUNDANT CONSTRAINTS (2)

Example: Magic sequence
Given a set of n+1 variables X,,...,X,. Each X should respect the
following constraints:

— 0 appears X, times in the solution

— 1 appears X; times

— n appears X, times.

magic_sequence([X,,..,X ]) : -
Xy,..n X, ::[0..n],
exactly (X,, [X,,.., X1, 0),
exactly (X,, [X,,.., X1, 1),

L 4

exactly (X, [X,,..,X,], n),

AI*IA 99 Tutorial - Bologna September 99
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REDUNDANT CONSTRAINTS (3)

Redundant constraint: note that the sum of all variables multiplied by
their value (index) is equal to the number of cells in the sequence.
Thus, variables satisfy the constraint:

© X+ 2*X, +.+ N*X_=N + 1

magic_sequence ([X,,.., X ]) : -
Xy,..., X, ::[0..n],
exactly (X,, [X,,.., X1, 0),
exactly (X, [X,,.., X1, 1),
exactly (X, [X,,.., X1, n),
X,+ 2*X, +.+ N*X_= N + 1,
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SEARCH

* Propagation is, in general, not complete. After propagation:

— Solution found = Stop
— Failure detected === packtracking

— Domains contain some values —— SEARCH

« SEARCH: Basic idea
— Divide the problem into subproblems and solve them independently

— Subproblems must partition the original problem

« AIM: maintain the search space as small as possible
— conventionally, left branches are explored first.
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SEARCH

' P

/ === Branching Strategy
GUESS
@ © O O

P1 P2 P3 P4... Pn

* Branching strategies define the way of partitioning the problem P into
easier subproblems P1, P2, ..., Pn.

 To each subproblem: apply again propagation. New branches can be
pruned thanks to the new information derived from the branching.
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SEARCH

Most popular branching in CP: labelling

« LABELLING:
— Select one VARIABLE
— Select one VALUE in its domain
— Assign the VALUE to the VARIABLE

« The order in which variables and values are chosen (i.e., the
search strategy) greatly affects the performances of the search
algorithm.

e Find good strategies
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SEARCH STRATEGIES: GENERAL CRITERIA

« VARIABLE CHOICE: more difficult variables first
— FIRST FAIL: select first the variable with the smallest domain

— MOST CONSTRAINING PRINCIPLE: select first the variable
involved in the greatest number of constraints

— HYBRID APPROACH: combination of the two

« VALUE CHOICE: more promising values first
— LEAST CONSTRAINING PRINCIPLE.

« PROBLEM DEPENDENT STRATEGIES
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SEARCH STRATEGIES: HOW TO CHOOSE

« Given the variety of problems, there do not exist definitive rules
for choosing the best strategy

 CRITERIA: the sooner the search strategy prunes branches of
the search space, the more efficiently it works

 PARAMETERS to be taken into account:
— computational time
— number of failures
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CP: PROBLEM MODELLING (Example)

 Map Colouring: complete code

 map_colouring([V1,V2,V3,V4,V5]):-
V1::[red,green,yellow,blue,pink],
V2::[red,green,yellow,blue,pink],
V3::[red,green,yellow,blue,pink], »  variables & domains
V4::[red,green,yellow,blue,pink],
V5::[red,green,yellow,blue,pink], )
V1 V2, V1 #V3,V1 #£V4,V1 #V5,V2 #V3,
V2 £ZV4,V2 #V5,V3 #V4,V4 #V5,
labelling([V1,V2,V3,V4,V5]).

constraints

search

— —

AI*IA 99 Tutorial - Bologna September 99

62



SEARCH SPACE

Vl::[red,green,yellow,blue,pink],
V2::[red,green,yellow,blue,pink],

Vli=red V3::[red,green,yellow,blue,pink],
VZ::[green,yellow,blue,pink], V4::[red,green,yellow,blue,pink],

V3::[green,yellow,blue,pink], V5::[red,green,yellow,blue,pink],
V4::[green,yellow,blue,pink],

V5::[green,yellow,blue,pink],

V2=green
V3::[yellow,blue,pink],
V4::[yellow,blue,pink],

Vb::[yellow,blue,pink],
V3=yellow
V4::[blue,pink],
Vb::[yellow,blue,pink],

V4=blue V4=pink
Vb::[yellow,pink], V5::[yellow,blue],
V5=yellow V5=pink
A
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OPTIMIZATION

« In some applications, we are not interested in a feasible solution
but in the OPTIMAL solution according to a given criterion

« ENUMERATION ==> |nefficient
— find all feasible solutions
— chose the best one

« Constraint Programming tools in general embed a simple form
of Branch and Bound

— each time a solution is found whose cost is C*, impose a constraint
on the remaining search tree, stating that further solutions (whose
cost is C) should be better than the best one found so far

c<cC*
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OPTIMIZATION

e QOperations Research (OR) has a long tradition in optimization
problems.

 OR Branch & Bound methods are based on the optimal solution
of a relaxation of the original problem ==> BOUND

— relaxation: same problem with some constraints relaxed

* Trend: embed OR techniques in CP for improving the
performances of the search algorithm
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CONSTRAINT PROGRAMMING TOOLS

— CLP(R) [Jaffar et al. Trans. Progr. Lang and Sys. 92],
— Prolog Il [Colmerauer CACM(33) 90],

— CHIP [Dincbas et al., JICSLP88],

— CLP(PB) [Bockmayer ICLP95],

— Ecl'ps® [Wallace et al.97], Conjunto [Gervet, Constraints(1), 97]
— Oz [Smolka JLP 91],

— AKL [Carlson, S.Haridi, S.Janson ILPS94],

— CIAO [Hermenegildo et al. PPCP94]

— ILOG [Puget SPICIS94], [Puget, Leconte ILPS95]

— CHARME [Bull Corporation 90]

— many others..........
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OVERVIEW

Constraint Satisfaction (Optimization) Problems
Constraint (Logic) Programming
— language and tools

Al Applications: modelling and solving

— Scheduling - Timetabling - Resource Allocation
— Routing

— Packing - Cutting

— Graphics - Vision

— Planning

Advantages and Limitations of CP: extensions
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Al APPLICATIONS: MODELLING and SOLVING

« We will focus on Constraint Programming on finite domains

* For each application, we will present a problem description, the
CP modelling and solving part.

« Applications discussed:
— Scheduling - Timetabling - Resource Allocation
— Routing > optimization
— Packing - Cutting
— Graphics - Vision feasibility
— Planning

>
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SCHEDULING - TIMETABLING -
RESOURCE ALLOCATION

e Three applications with analogous features/constraints:

— we will focus on scheduling. Same considerations for timetabling
and resource allocation (easier problem)

« Scheduling is probably one of the most successful applications
of CP to date

— flexibility
— generality
— easy code

 NP-complete problem studied by the Al community since 80s
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SCHEDULING: problem definition

» Scheduling concerns the assignment of limited resources
(machines, money, personnel) to activities (project phases,
manufacturing, lessons) over time

e Constraints

— temporal restrictions

» ordering among activities

* due dates - release dates
— resource capacity

« different types of resources

e consumable/renewable resources

e Optimization Criteria

* makespan

e resource balance

» lateness on due dates

e resource assignment cost
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SCHEDULING: Activities

* Decision variables:
— Activity start times
— Activity end times
— Activity resource assignments
— Alternative activities (alternative routing)

* Activity types:
— interval activity: cannot be interrupted
— breakable activity: can be interrupted by breaks
— preemptable activity: can be interrupted by other activities
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SCHEDULING: Resources

1. apacity
 Resource types:

— 1. Unary resources

— 2. Discrete resources

— 3. State resources

— 4. Energy resources

— 5. Stock 2.

Time

| |
Off | White | Red i Black 4
| | |

Ma.n-hrs

Time

Time
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SCHEDULING: Simple Example

e 6 activities: each activity described by a predicate
task (NAME , DURATION, LISTof PRECEDINGTASKS,MACHINE) .

task(j1,3,[],nl).
task(j2,8,[],nm).
task(j3,8,[j4,]5],nl).
task(j4,6,[], nR2).
task()5,3,[] 1], nR).
task(j6,4,[]1],nR).

 Machines are unary resources.

« A maximum ending time End is required.
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SCHEDULING: Simple Example

schedule (Data, End, TaksList) :-
makeTaskVariables (Data,End,TaskList),
precedence (Data, TaskList),
machines (Data, TaskList),
minimize (labelTasks (TaskList) ,End) .

makeTaskVariables([],_,[]) .
makeTaskVariables([task(N,D, , )IT],End, [Start|Var]) :-
Start::[0..End-D],
makeTaskVariables (T,End,Var) .

precedence ([task (N, ,Prec, ) |T], [Start|Var]):-
select preceding tasks(Prec,T,Var,PrecVars, PrecDurations),
impose_constraints(Start,PrecVars,PrecDurations),

precedence (T ,Var) .

impose constraints(_, [],[]).

impose constraints(Start, [Var|Other], [Dur|OtherDur]) : -
Var + Dur <= Start

impose_ constraints(Start,Other,OtherDur).
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SCHEDULING: Simple Example

machines (Data, TaskList) :-

tasks_sharing resource(Data, TaskList, SameResource,Durations),

impose cumulative (SameResource,Durations,Use) .

impose cumulative([],[],_ ).
impose cumulative ([ListSameRes|LSR], [Dur|D], [Use|U]) :-
cumulative (ListSameRes,Dur,Use, 1),

impose cumulative (LSR,D,U).

labelTasks ([]) . results in
labelTasks ([Task|Other]) : -

indomain (Task) ,

labelTasks (Other) .

cumulative([Startl,Start2,Start3],[3,8,8],[1,1,1],1)

cumulative([Start4,Start5,Start6],[6,3,4],[1,1,1]1,1)
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SCHEDULING: Optimal Solution

ml

Time

m2

Time
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SCHEDULING: Optimality

« minimize: finds the optimal solution (simple Branch & Bound)

« Minimization of the makespan: an heuristic which always selects
the task which can be assigned first and assigns to the task the
minimal bound is in general a good heuristics. As a choice point,
delay the task.

labelTasks ([]) .

labelTasks (TaskList) : -
find min start(TaskList,First,MinStart, Others),
label earliest(TaskList,First,MinStart,Others).

label earliest(TaskList,First,Min,Others) :- % schedule the task
First = Min,
labelTasks (Others) .

label earliest(TaskList,First,Min,Others):- % delay the task
First # Min,
labelTasks (TaskList) .
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TIMETABLING: problem definition

« Timetabling concerns the definitions of agenda (similar to
scheduling)

e Constraints

— temporal restrictions
e ordering among activities
* due dates - release dates
— resource capacity
» discrete resources
e Optimization Criteria
» cost/preferences
e resource balance
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TIMETABLING: ssimple example

4-Hours Slots - 1 to 4 Hours Courses
Two courses cannot overlap
A course must be contained in a single slot

Preferences are associated with
— Course-Slot assignments
— Maximize Sum of preferences

[ [ |
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TIMETABLING: code with redundant constraints

timetable (Data,Tasks,MaxTime,Costs) : -
define variable start(Tasks, MaxTime) ,
define variable singleHours (Data,SingleHours),
define variable courses3 4Hours (Data, Courses34Hours),
impose cumulative (Tasks),
alldifferent (SingleHours), .
alldifferent (Courses34Hours), :}_ redundant constraints

minimize (labelling(Tasks) ,Cost).

« Redundant variables:

~
— start times
_ linked each other:
— single hours S~
— courses lasting 3 or 4 hours exchange propagation results
iy
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TIMETABLING: optimality & search

e Search strategy: when coping with objective functions, we can
exploit information on costs for defining a good search strategy.

o Example:

— Choose the variable with max value of regret

» Regret: difference between the first and the second best on each row
of the cost matrix.

« Combination of regret and first-fail
— Choose the value associated with the minimum cost
« Example: based on the optimal solution of a relaxation
— Choose the variable with max value of regret
— Choose the solution of the relaxation
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ROUTING: problem definition

Routing concerns the problem of finding a set of routes to be
covered by a set of vehicles visiting a set of cities/customers
once starting and ending at one (n) depot(s).

Constraints
— temporal restrictions:

e time windows \

 maximal duration of a travel
— vehicle capacity
— customer demands
Optimization Criteria
e number of vehicles

e travel cost
e travel time
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ROUTING: problem definition

e Routing has been solved within OR community by using
— Branch & Bound approaches
— Dynamic Programming
— Local Search techniques
— Branch & Cut
— Column generation

* Routing has been solved within CP community by using
— Branch & Bound approaches

— Local Search techniques embedded in CP

« Basic component: Travelling Salesman Problem (TSP) and its
time constrained variant.
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TSP: problem definition

TSP is the problem of finding a minimum cost tour covering a
set of nodes once.
Qe—0

S

No subtours are allowed

TSPTW: Time windows are associated to each node. Early
arrival is allowed. Late arrival is not permitted

Even finding an Hamiltonian Circuit (no costs) is NP-complete
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TSP: CP mode

Variable associated to each node. The domain of each variable
contains possible next nodes to be visited

N nodes == N + 1 variables Next, (duplicate the depot)

Forall i Next, # i
nocycle ( [Next,,. Next_])
alldifferent ([Next,,. Next ])

Costc,, If Next; = j

In some models, we can find the redundant variables Prev indicating a
node predecessor.

AI*IA 99 Tutorial - Bologna September 99

85



TSP: code

tsp (Data,Next,Costs) : -
remove arcs_to_ self (Next),
nocycle (Next) ,
alldifferent (Next),
create objective (Next,Costs,Z),

minimize (labelling (Next) ,Z) .

nocycle: Symbolic constraint that ensures that no subtour is
present in the solution.

create objective! Creates cCosts Vvariables, imposes an
element constraint between the set of Next variables and costs
variables, and creates a variable z representing the objective
function summing costs corresponding to assignments
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TSP: results

 Pure CP implementations: still far from the state of the art OR
approaches.

 Integration of OR techniques in CP: better results
— local search
— optimal solution of relaxations
* Lagrangean relaxation

* Assignment Problem
e Minimum Spanning Arborescence

— search strategies based on these relaxations
» subtour elimination

« Addition of Time Windows in OR approaches requires to re-
write major code parts while in CP comes for free.
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CUTTING & PACKING: problem definition

| Packing concerns the placement of a number of squares (of
different sizes) in one or more larger boxes in such a way that
squares do not overlap and minimizing the empty space

| Cutting is the problem of finding cuts of a master piece in order
to obtain a given number of pieces with fixed dimensions,
minimizing residues

 Many variants:
— strip packing
— guillottine cuts
— rotations allowed
— 1 dimension - 2 dimensions - 3 dimensions - 4 dimensions
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2-D PACKING: CP model

* For each square to be packed, we have a couple of variables
representing the coordinates of the bottom-left point of the

square
hl Pieces:
X::[0..D-d]
(X’Y) d Y::[0..H-h]
" masterPiece or

bin

D
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2-D PACKING: CP model

Constraints:

— non overlapping constraints: given two squares whose coordinates are
(X1, Y1) and (X2, Y2) and dimensions D1, H1 and D2, H2 respectively

X1+D1l < X2 OR Y1+H1 < Y2 OR X2+D2 < X1 OR Y2+H2 < Y1

Very hard form of disjunction: no propagation even after
instantiation

Redundant constraints can help:

cumulative (Xcoordinates,XDimension, Ydimension, H)
cumulative (Ycoordinates, Y¥Dimension,Xdimension, D)
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PACKING: code

packing (Data,Xcoords,Ycoords,D,H) : -
create variables(Data,Xcoords, Ycoords,D, H),
state disjunctive (Data,Xcoords, Ycoords),
state cumulatives (Data,Xcoords,Ycoords,D, 6 H),
create objective (Xcoords,Ycoords,D,H,2Z),

minimize (label squares (Xcoords, Ycoords) ,h2).

create objective! Creates a variable representing the spare
space (or the number of bins if more than one is present)

label squares Selects bigger squares first and assigns the
coordinates in order to minimize spare space.
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MODEL BASED VISION
OBJECT RECOGNITION : definition

* Object recognition in model based vision concerns the problem
of recognizing an object in a scene given its model

* How to describe the model Both problems can be
« How to perform the mapping solved with constraints

« MODEL: Constraint graph
— Nodes: object parts
— Arcs (constraints): their relations

« RECOGNITION: Constraint satisfaction
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OBJECT RECOGNITION

 3-D OBJECT
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CONSTRAINT-BASED OBJECT RECOGNITION

* In order to recognize an object, a low level vision system should
extract from the image some visual features (surfaces/edges)

» Constraint satisfaction techniques can be applied in order to
recognize the object in the scene.

 The object is recognized if the extracted features satisfy the
constraints contained in the model.

« Constraints allow to reduce the search space to be explored.
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EXAMPLE

* Rectangle shape

Four straight edges (variables), parallel two by two, which
mutually touch themselves with a 90 degree angle ...

touch L

X3

X1

X4 X2 touch

X1 X4
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EXAMPLE (2)

0,0 21 35 36
©0 P 31_|34 |
/ - s Constraint Solver
20
7 8 24
575 4 7 18 1931 5 Visual Features:
16 AN e segments
14 a8 = 27
-, 125 Low level system
9
° (256,256)

rectangle CP model

touch (X1,X2), touch(X2,X3), touch(X3,X4), touch(X1l,X4),
perpend (X1,X2) , perpend(X2,X3), perpend(X3,X4), perpend(X1l,6X4),
same len(X2,X4), same len(X1l,X3), parallel(X2,X4), parallel (X1,X3)
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CP model: USER DEFINED CONSTRAINTS

rectangle CP model

recognize ([X1,X2,X3,X4]) : -
X1l,X2,X3,X4::[sl1l,s2,..,sn],
touch (X1,X2) , touch(X2,X3), touch(X3,X4), touch(X1l,X4),
perpend (X1,X2) , perpend (X2,X3), perpend(X3,X4), perpend(X1l,6X4),
same len(X2,X4), same len(X1,X3),
parallel (X2,X4) , parallel (X1,X3),
labeling ([X1,X2,X3,X4]) .

« Give the declarative and operational semantics of the constraints: segments
are described as facts: segment (name,X1,Y1,X2,Y2)

* In all CP languages there are tools that allow new constraints to be defined.

e An example in the CLP(FD) library of ECL'PS®

AI*IA 99 Tutorial - Bologna September 99 97



CP model: USER DEFINED CONSTRAINTS

touch (X1,X2) :-

dvar domain(X1,D1),
dvar domain (X2,D2),
arc _cons 1(D1,D2,Dlnew), 9% user defined propagation
(dom compare (>,D1l,Dlnew) -> dvar update(X1l,Dlnew); true),
arc_cons_2(Dlnew,D2,D2new), % user defined propagation
(dom compare (>,D2,D2new) -> dvar update(X2,D2new) ; true),
(var (X1) ,var (X2) ->

(make suspension (touch (X1,X2) ,3,Susp),

insert suspension((X1,X2), Susp, any of fd, £d))
; true),
wake.

« After the propagation, the constraint if not solved is suspended
and awaked each time an event any of £d on one of the
variables (x1,x2) happens.
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CP model: SYMMETRIES

Problem symmetries: arise when some permutations of the

variables map a solution onto another solution.

 One solution:
e X1 = sl
e X2 = s2
e X3 = s3
e X4 = s4

e X1 = s2
e X2 = s3
e X3 = s4
e X4 = sl

Other identical solutions:

X1l = s3
X2 = s4
X3 = sl
X4 = s2

X1
X2
X3
X4

Four segments forming a rectangle

s3
s4 s2
sl
s4 Time lost to look for already found
s1 solutions . Remove symmetries
s2 by imposing additional constraints

s3

[Freuder AAAI91], [Puget ISMIS93], [Crawford et al. KR96],
[Meseguer, Torras IJCAI99].
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Al PLANNING: definition

Planning concerns the problem of finding a chain of actions that
achieve a given goal starting from a well known initial state.
Actions are described with a set of preconditions (requirements)
and postconditions (effects)

Constraints

— Plan constraints
» temporal constraints (ordering)
» designation and co-designation constraints
e resource constraints
 domain dependent constraints

— Plan construction constraints
o threats
* open condition achievement

AI*1A 99 Tutorial - Bologna September 99 100



CONSTRAINTS ON THE PLAN

Temporal constraints
— qualitative ====p action A before action B
— guantitative ====p action A in [10..30]

Resource constraints
— consumable resources
— shared resources
— renewable resources

Domain-dependent constraints

— priority among resources

— destructive actions on object A always after any other
action on A
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CONSTRAINTS ON PLAN CONSTRUCTION

During the plan construction a set of decisions should be taken:
— threat resolution
— open condition achievement

e Good technique: least commitment. Decisions are delayed as
much as possible in order to perform only consistent choices.

 Passive postponement vs. active postponement

« Each decision is represented by a variable whose domain contains
possible solution to the pending decision. Constraints take into
account interaction among decisions.
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THREAT RESOLUTION

« Threat: conflict occurring when the effects of an action A threat the
preconditions of an action B

not hand_empty/

Get Brush \—"{ Paint ceiling |—»

return brush |_hand_empty

ceiling

ceiling

Get Brush return brush

Paint ladder

hand_empty ladder ladder

Robot with one hand: threat
a promotion: getBrushLadder < getBrushCeiling
b demotion: returnBrushCeiling < getBrushLadder
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THREAT RESOLUTION

 Variable associated with the threat:
— T1 :: [ getBrushLadder < getBrushCeiling,

returnBrushCeiling < getBrushLadder |

— Threat variables linked by:
» incompatibility constraints
» Subsumption constraints

— Example: if a threat T2 can be solved only by the constraint
getBrushCeiling < getBrushLadder, the only way of solving T1 becomes
returnBrushCeiling < getBrushLadder

* Propagation of consequences of the decisions. Reduction of the
search space and trashing avoided

 More complex solver: user defined constraints.
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PLANNERS based on CP/CSPs

ParcPlan [Lever, Richards, ISMIS94]

PlaNet [Barruffi, Milano ECAI98], [Barruffi et. Al. ECP99]
O-Plan [Tate, Drabble, Dalton, TR Univ. Edinburg 95]
Molgen [Stefik AlJ(16), 81]

DEVISER [Vere IJCAI85]

Descartes [Joslin PhD, 95], [Joslin, Pollac, EWSP96]
WatPlan [Yang, AlJ(58), 92]

SLNP [McAllester, Rosenblitt Nat.Conf Al 91]
FSNLP [Yang, Chan AIPS94]

Kambampati [TR Arizona State Univ. 96]

SIPE [Wilkins Al (22) 84]
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OTHER APPLICATIONS of CP

Constraint Databases
Spreadsheet
Robotics/Control
Diagnosis

Test data generation
Circuit Verification
Natural Language

Graphical Interfaces
Graphical Editors

Biology (DNA sequencing)
Qualitative reasoning
Temporal reasoning

SAT

Other LSCO problems

AI*1A 99 Tutorial - Bologna September 99 106



OVERVIEW

Constraint Satisfaction (Optimization) Problems

Constraint (Logic) Programming
— language and tools

Al Applications: modelling and solving

— Scheduling - Timetabling - Resource Allocation
— Routing
— Packing - Cutting

— Graphics - Vision
— Planning

Advantages and Limitations of CP: extensions
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ADVANTAGESOF CP

Easy problem modelling

Constraints provide a natural way of implementing
propagation rules

Flexible treatment of variants of original problems:
— easy introduction of new constraints
— transparent interaction with other constraints

Easy control of the search
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LIMITATIONS of PURE CP

e Optimization side not very effective

e Over-Constrained problems:
— no effective way of relaxing constraints
— hard/soft constraints

 Dynamic Changes:
— addition/deletion of variables
— addition/deletion of domain values
— addition/deletion of constraints
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CP EXTENSION FOR OPTIMIZATION

 Integration of OR techniques in CP tools:

— MP based solvers: 2LP [McAloon, Tretkoof PPCP94], OPL [Van
Hentenryck, 99], Planner [ILOG Planner Manual]

 Integration of CPLEX and XPRESS in FD solvers
— Integration of specialized algorithms for:

* computing bounds [Caseau, Laburthe ICLP97 and CP97],
e using reduced costs [Focacci, Lodi, Milano ICLP99 and CP99],

— Improvement of CP branch and bound
- [Rodosek, Wallace, Hajian Annals OR 97], [Caseau, Laburthe ICLP94

and JICSLP96], [Beringer, DeBacker, LP Formal Method and Pract.
Appl. 95]

— Integration of local search techniques

— [DeBacker, Furnon,Shaw CPAIOR99], [Caseau, Laburthe CPAIOR99],

[Gendreau, Pesant, Rousseau, Transp. Sci. 98]
— Integration of branch and cut in a logical setting

« [Bockmayr ICLP95], [Kasper PhD, 99] 110



CP EXTENSION FOR OVER-CONSTRAINED
PROBLEMS

+ HCSP:

— Implementation of CP solvers exploiting Hierarchical CSP
framework

— Meta programming
[A. Borning OOPSLAS87], [A. Borning et al. ICLP89], [M.Jamper PhD, 96]

CP EXTENSION FOR DYNAMIC CHANGES

e DCSP
» ATMS-based solvers
* |nteractive Constraint Satisfaction

} Complex data-structures

[R.Dechter, A.Dechter, AAAI88], [Verfaillie, Schiex AAAI94],
[Bessiere, AAAI91], [Lamma et al. IJCAI99]
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TO KNOW MORE.....

e Conferences:

— International Conference on Principles and Practice of Constraint
Programming CP

— International Conference on Practical Applications of Constraint
Technology PACT (this year PACLP)

— Logic programming conferences (ILPS - ICLP - JICSLP)
— Al Conferences (ECAI - AAAI - IJCAI)

— Operations research conferences (INFORMS - IFORS)
— New Workshop (CP-Al-OR)

 Book : K. Marriott and P. Stuckey

— Programming with constraints: An Introduction
— MIT Press
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TO KNOW MORE.....

e Journals:

— Constraint - An International Journal
— Al -LP - OR Journals

Industrial Applications:
— COSYTEC, ILOG, ECRC, SIEMENS, BULL

News group: comp.constraints

Mailing lists: CPWORLD@gmu . edu

Constraint Archive: http://www.cs.unh.edu/ccc/archive/
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