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Activity-Based Search
for Black-Box Constraint Programming Solvers

L. Michel! and P. Van Hentenryck?

! University of Connecticut, Storrs, CT 06269-2155
2 Optimization Research Group, NICTA, Victoria Research Laboratory
The University of Melbourne, VIC 3010, Australia

Abstract. Robust search procedures are a central component in the de-
sign of black-box constraint-programming solvers. This paper proposes
activity-based search which uses the activity of variables during propaga-
tion to guide the search. Activity-based search was compared experimen-
tally to impact-based search and the WDEG heuristics but not to solu-
tion counting heuristics. Experimental results on a variety of benchmarks
show that activity-based search is more robust than other heuristics and
may produce significant improvements in performance.

1 Introduction

Historically, the constraint-programming (CP) community has focused on devel-
oping open, extensible optimization tools, where the modeling and the search
procedure can be specialized to the problem at hand. This focus stems partially
from the roots of CP in programming languages and partly from the rich mod-
eling language typically found in CP systems. While this flexibility is appealing
for experts in the field, it places significant burden on practitioners, reducing its
acceptance across the wide spectrum of potential users. In recent years, the CP
community devoted increasing attention to the development of black-box con-
straint solvers. This new focus was motivated by the success of Mixed-Integer
Programming (MIP) and SAT solvers, which are typically black-box systems.
As such, they allow practitioners to focus on modeling aspects.

This research is concerned with one important aspect of black-box solvers:
the implementation of a robust search procedure. In recent years, various pro-
posals have addressed this issue. Impact-based search (IBs) [12] is motivated by
concepts found in MIP solvers such as strong branching and pseudo costs. Sub-
sequent work about solution counting can be seen as an alternative to impacts
[10] that exploits the structure of CP constraints. The weighted degree heuristic
(WDEG) [1] inspired by [2] is a direct adaptation of the SAT heuristic VSIDS[7]
to CSPs that relies on failures data to define the variable ordering.

This paper proposes Activity=BasednSearchin(ABS), a search heuristic that
recognizes the central role of constraint propagation in constraint programming
systems. Its key idea is to associate with each variable a counter which measures
the activity of a variable during propagation, i.e., how often (but not how much)
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it gets filtered by constraint propagation. This measure is updated systemati-
cally during search and initialized by a probing process. ABS has a number of
advantages compared to earlier proposals. First, it does not deal explicitly with
variable domains which complicates the implementation and runtime require-
ments of IBS. Second, it does not instrument constraints which is a significant
burden in solution counting heuristics. Third, it naturally deals with global con-
straints, which is not the case of WDEG since all variables in a failed constraint
receive the same weight contribution although only a subset of them may be
relevant to the conflict. ABS was compared experimentally to IBS and WDEG on
a variety of benchmarks. The results show that ABS is the most robust heuristic
and can produce significant improvements in performance over IBS and WDEG,
especially when the problem complexity increases.

The rest of the paper is organized as follows. Sections 2 and 3 review the IBS
and WDEG heuristics. Section 4 presents ABS. Section 5 presents the experimental
results and Section 6 concludes the paper.

2 Impact-Based Search

Impact-based search was motivated by the concept of pseudo-cost in MIP solvers
and it associates with a branching decision z = a a measure, called the impact,
of how effectively it shrinks the search space.

Formalization Let P = (X, D,C) be a CSP defined over variables X, domains
D, and constraints C. Let D(x;) denote the domain of variable z; € X and
|D(z;)| denote the size of this domain. A trivial upper-bound on the size of the
search space of S(P) is given by the product of the domain sizes:

s(py =[] ID@)]

reX

At node k, the search procedure receives a CSP P,_; = (X, D1, Ck_1), where
Cr—1 = C U {eg,c1,¢2,-+,cp—1} and ¢; is the constraint posted at node i.
Labeling a variable x with value a € Dy_1(z) € Dx) adds a constraint z = a
to Ci_1 to produce, after propagation, the CSP Py, = (X, Dy, Cy).

The contraction of the search space induced by a labeling x = a is defined as

S(P)

I(m:a)zl—m

I(x = a) = 1 when the assignment produces a failure since S(P;) = 0 and I(z =
a) ~ 0 whenever S(Py) ~ S(Pj_1), i.e., whenever there is almost no domain
reduction. Following [12], an estimate of the impact of the labeling constraint
x = a over a set of search tree nodes I can be defined as the average over

S(P,
, Yrer 1 — sl
I(x =a) = K]




Actual implementations (e.g., [9]) rely instead on

- Iy(z=a) (a=1)+I(zx=na)

where « is a parameter of the engine and the subscripts in Iy and I; denote

the impact before and after the update. Clearly, a = 1 yields a forgetful strat-

egy (only the last impact is kept), & = 2 gives a running average that decays

past impacts over time, while o > 2 favors past information over most recent

observations. Both [12] and the more recent [6] adopt a pure averaging scheme.
The (approximate) impact of a variable x at node k is defined as

I(x) = — ZaEDk(I) (1 —I(z = a)) = ZaeDk(z) (I_(ﬂﬁ =a)— 1)

Namely, when all the I(z = a) are nearing 0 (no impacts) Z(x) goes towards
—|Dy(z)| and when all the I(x = a) are nearing 1, Z(x) goes to 0. Recently,
Kadioglu et. al [6] suggest to exploit variance of I(x = a) to further improve the
effectiveness of IBS by using the formula

ARFy(z) = I(z) + B - \/VAR(z).3

To obtain suitable estimates of the assignment and variable impacts at the
root node, IBS simulates all the ) |D(x)| possible assignments. For large
domains, domain values are partitioned in blocks. Namely, for a variable x, let
D(x) = U_B; with BN B; = 0 Vi,j : i # j € 1..b. The impact of a value
a € B; (i € 1..b) is then set to I(x = a) = I(z € B;). With partitioning, the
initialization costs drop from |D(x)| propagations to b propagations (one per
block). The space requirement for IBs is ©(> . |D(x)|), since it stores the
impacts of all variable/value pairs.

The Search Procedure 1BS defines a variable and a value selection heuristic. IBS
first selects a variable x with the largest impact, i.e., z € argMax, xZ(x). It then
selects a value a with the least impact, i.e., a € argMinveD(z)f(x = v). Neither
argMax,, ¢ xZ(x) nor argMin, ¢ p(,) I ( = v) are guaranteed to be a singleton and,
in case of ties, IBS breaks the ties uniformly at random. As any randomized search
procedure, IBS can be augmented with a restart strategy. A simple restarting
scheme limits the number of failures in round 7 to [; and increases the limit
between rounds to [, = p-l; where p > 1.

3 Kadioglu et. al referred to [12] for the definition of Z(z) but they use the formula
ERF(z)=1-— Za&D(z) I(x = a) instead in the text with ERF(z) replacing Z(z).
As soon as the domain sizes start to differ, the two definitions produce different
recommendations with ERF(z) exhibiting a strong bias towards variables with large
domains. Their experimental results seem to be based on the definition of Z(x) from
[12], the ERF formula producing poor results when used instead of Z.



3 The WDEG Heuristic

WDEG maintains, for each constraint, a counter (weight) representing the num-
ber of times the constraint has failed, i.e., the constraint removed all values in
the domain of one of its variables during propagation. The weighted degree of
variable x is defined as

Qdeg(T) = Z weight[c] s.t. © € vars(c)z A |[FutVars(c)| > 1
ceC

where FutVars(c) is the set of uninstantiated variables in ¢. WDEG only defines
a variable selection heuristic: It first selects a variable x with the smallest ratio
%. All the weights are initialized to 1 and, when a constraint fails, its
weight is incremented. The space overhead is @(|C|) for a CSP (X, D, C). Note
that upon restarts the weights are not reset to 1 and restarting WDEG therefore

exhibits learning as well.

4 Activity-Based Search

ABs is motivated by the key role of propagation in constraint programming
solvers. Contrary to SAT solvers, CP uses sophisticated filtering algorithms to
prune the search space by removing values that cannot appear in solutions. ABS
exploits this filtering information and maintains, for each variable x, a measure
of howreftentherdomainof @isreduced during the search. The space requirement
for this statistic is ©(|X|). ABS can optionally maintain a measurerof how much
activityrcanvberimputedrtoreachrassignmentsizr=nra in order to drive a value-
selection heuristic. If such a measure is maintained, the space requirement is
proportional to the number of distinct assignments performed during the search
and is bounded by O(>__ . |D(x)|). ABS relies on a decaying sum to forget the
oldest statistics progressively, using an idea from VSIDs. It also initializes the
activity of the variables by probing the search space.

ABs is simple to implement and does not require sophisticated constraint
instrumentation. It scales to large domains without special treatment and is
independent of the domain sizes when the value heuristic is not used. Also, ABS
does not favor variables appearing in failed constraints, since a failure in a CP
system is typically the consequence of many filtering algorithms.

Formalization Given a CSP P = (X, D,C), a CP solver applies a constraint-
propagation algorithm F' after a labeling decision. F' produces a new domain
store D’ C D enforcing the required level of consistency. Applying F' to P
identifies a subset X’ C X of affected variables defined by

Ve e X’ : D'(z) C D(z);
Ve e X\ X' : D'(z) = D(z).
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The activity of x, denoted by A(x), is updated at each node k of the search tree
regardless of the outcome (success or failure) by the following two rules:

Ve e X st. |[D(z)] >1:A(z) = A(z) - v
Vo e X' cA(r) = A(z) + 1

where X' is the subset of affected variables and v is a decay parameter satisfying
0 <~ < 1. The decay only affects free variables since otherwise it would quickly
erase the activity of variables labeled early in the search.

The activity of an assignment & = a at a search node k is defined as the
number of affected variables in'| X’ |'when applying F' on C U {z = a}, i.e.,

Ag(z =a) = |X'|.

As for impacts, the activity of x = a over the entire tree can be estimated by
an average over all the tree nodes seen so far, i.e., over the set of nodes K. The
estimation is thus defined as

Alz =a) = 2kex ﬁél(x =a)

Once again, it is simpler to favor a weighted sum instead

-  Ap(z=a) (a—1)+ Ay(z = a)

where the subscripts on A capture the estimate before and after the update.

The Search Procedure ABS defines a variable ordering and possibly a value or-
dering. It selects the variable x with the largest rationd(@)/|D(@)} i-e., the
most active variable per domain value (A(z) alone would yield a bias towards
variables with large domains). Ties are broken uniformly at random. When
a value heuristic is used, ABS selects a value a with the least activity, i.e.,
a € argMin, Dm[l(m = v) as IBs would. The search procedure can be aug-
mented with restarts. The activities can be used “as-is” to guide the search after
a restart. It is also possible to reinitialize activities in various ways, but this
option was not explored so far in the experimentations.

Initializing Activities ABS uses probing to initialize the activities. Consider a
path 7 going from the root to a leaf node k£ in a search tree for the CSP P =
(X, D,C). This path 7 corresponds to a sequence of labeling decisions (z¢ =
Vg, X1 = V1, +, X = V) in which the jth decision labels variable x; with v; €
Dj(z;). If X; C X is the subset of variables whose domains are filtered as a
result of applying F' after decision x; = vj, the activity of variable = along path
7 is defined as A7 (x) = A7 (x) where

0
Af(z) = AT ((r)+1ereX;(1<j<k
Af(x) = A7 (x)  ea¢X;(1<j<k)

~—
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A™(z) = 0 if x was never involved in any propagation along = and A™(z) = k if
the domain of x was filtered by each labeling decision in 7. Also, A™(z) = A(z)
when v =1 (no aging) and path 7 is followed.

Now let us now denote II the set of all paths in some search tree of P. Each
such path 7 € IT defines an activity A™(z) for each variable x. Ideally, we would
want to initialize the activities of x as the average over all paths in 17, i.e.,

Zwen A" (z) .

Hate) ==

ABs initializes the variables activities by sampling IT to obtain an estimate of
the mean activity gia(x) from a sample II C II. More precisely, ABS repeatedly
draws paths from II. These paths are called probes and the j* assignment
x; = v; in a probe p is selected uniformly at random as follows: (1) x; is a free
variable and (2) value v; is picked from D;(z;). During the probe execution,
variable activities are updated normally but no aging is applied in order to ensure
that all probes contribute equally to pia(xz). Observe that some probes may
terminate prematurely since a failure may be encountered; others may actually
find a solution if they reach a leaf node. Moreover, if a failure is discovered at
the root node, singleton arc-consistency [11] has been established and the value
is removed from the domain permanently.

The number of probes is chosen to provide a good estimate of the mean
activity over the paths. The probing process delivers an empirical distribution
A(z) of the activity of each variable z with mean jis(z) and standard deviation
g a(x). Since the probes are i.i.d., the distribution can be approximated by a nor-
mal distribution and the probing process is terminated when the 95% confidence
interval of the t-distribution, i.e., when

[tia(®) — to.05,n—1 024\/(5)7#}1(@ + 10.05,n—1 U;‘\/(g)]

is sufficiently small (e.g., within 6% of the empirical mean) for all variables x
with n being the number of probes,

Observe that this process does not require a separate instrumentation. It uses
the traditional activity machinery with v = 1. In addition, the probing process
does not add any space requirement: the sample mean (is(x) and the sample
standard deviation o4(x) are computed incrementally, including the activity
vector AP for each probe as it is completed. If a value heuristic is used the
sampling process also maintains A(x = a) for every labeling decision z = a
attempted during the probes.

5 Experimental Results

5.1 The Experimental Setting

The Configurations All the experiments were done on a Macbook Pro with a core
i7 at 2.66Ghz running MacOS 10.6.7. IBS, WDEG, and ABS were all implemented



in the COMET system [4]. Since the search algorithms are in general randomized,
the empirical results are based on 50 runs and the tables report the average (yr)
and the standard deviation or of the running times in seconds. A timeout of
5 minutes was used and runs that timeout were assigned a 300s runtime. In
the following, several variants of IBS are evaluated. IBS04 refers to the original
version from [12]. IBS refers to the version found in [9] with a blending parameter
a = 8. IBs-L1 and IBs-L2 are based on the “lucky” versions (“lucky” prefers
variables with large standard deviation) from [6] with 8 = —1 (respectively,
B = —2) in the definition of ARF;(z). For ABs the values @ = 8, v = 0.999 (slow
aging), and § = 20% (the confidence interval for probing) are used throughout.
Experimental results on the sensitivities of these parameters are also reported.
For every heuristic, the results were obtained for three strategies, namely: no
restarts (IVR), fast restarting (p = 1.1) and slow restarting (p = 2). Space
limitations force us to only show the best variant for IBS and WDEG but all
restarting variants were evaluated. The initial failure limit is set to 3 - | X]|.

Search Algorithms The search algorithms were run on the exact same models,
with a single line changed to select the search procedure. In our experiments,
IBS does mot partition the domains when initializing the impacts and always
computesrtherimpactsiexactly? Both the variable and value heuristics break ties
randomly. In WDEG, no value heuristic is used: the values are tried in the sequen-
tial order of the domain. Ties in the variable selection are broken randomly. All
the instances are solved using the same parameter values as explained earlier.
No comparison with model-counting heuristic is provided, since these are not
available in publicly available CP solvers.

Benchmarks The experimental evaluation uses five benchmarks that have been
widely studied, often by different communities. The multi-knapsack and magic
square problems both come from the IBS paper [12]. The progressive party has
been a standard benchmark in the local search, mathematical-programming,
and constraint programming communities, and captures a complex, multi-period
allocation problem. The nurse rostering problem [13] originated from a math-
programming paper and constraint programming was shown to be a highly effec-
tive and scalable approach. The radiation problem is taken from the 2008 MiniZ-
inc challenge [8] and has also been heavily studied. The Costas array was used
to evaluate the variance-enhanced IBS [6]. These benchmarks typically exploit
many features of constraint programming systems including numerical, logical,
reified, element, and global constraints.

5.2 The Core Results

Multi-Knapsack This benchmark is from [12]. The satisfaction model uses an
arithmetic encoding of the binary knapsacks (not a global constraint) where
the objective is replaced by a linear equality with a right-hand-side set to the
known optimal value. All the constraints use traditional bound-consistency al-
gorithms for filtering linear constraints. A second set of experiments considers
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Fig. 1. Knapsack, no-restart, decision variant (left) and Optimization variant (right).

B CSP CcOoP [ Bench [ CSP [ COP |
Bench[Model (D) [o(DY F| w(T)[o(T)] F| B [Model [ e(M]oc(M]F| u(M] o(M]F|
1-2 ABs|NR 0.01| 0.01|50| 0.97| 0.13|50| [1-4[TBS[R(2) 0.20| 0.1|50{199.53| 69.35|45

ABs|R(2) | 0.01| 0.01|50| 0.74| 0.08|50 WDEG|NR, | 0.17| 0.09]50(112.95| 33.57|50
IBS|NR 0.01 0]50| 36.61|15.19|50 WDEG|R(2)| 0.25| 0.17[50|195.32| 36.50(48
Iss|R(2) | 0.01 0|50| 18.84| 5.98|50| |1-5|ABS|NR 0.78| 0.26|50| 53.67| 13.37|50
WDEG|NR 0| 0[50 0.52| 0.14|50 ABs|R(2) 0.84| 0.46|50| 38.68| 5.26(50
WDEG|R(2) 0 0[50] 0.60] 0.11|50 IBs|NR 2.1 1.22(50|148.89|106.74|38
1-3 ABS|NR 0.04| 0.01|50| 2.03| 0.27[50 IBs|R(2) 2.42| 1.43|50(101.53| 83.29(45
ABs|R(2) | 0.04| 0.01|50| 1.85| 0.20(50 WDEG|NR 1.97| 0.99(50(300.01 0| 0
IBs|NR 0.02| 0.01|50| 14.45| 8.63|50 wpEG|R(2)| 3.98| 2.12|50[300.01 0| 0
IBs|R(2) 0.03| 0.01|50| 14.01|10.15|50| [1-6[ABS|NR 14.48| 7.55(50
WDEG|NR | 0.01| 0.01(50 2| 0.47|50 ABs|R(2) 19.81[12.66|50
WDEG|R(2)| 0.01| 0.01|50| 2.55| 0.72|50 Ies|NR 54.97|29.56 |50
1-4 ABS|NR 0.13| 0.03|50| 26.16| 7.71|50 IBs04|R(2)| 56.23|54.33|49
ABs|R(2) | 0.16| 0.05|50| 16.35| 2.11|50 wDEG|NR |233.61|81.65|28
IBs|NR 0.15| 0.07(50{200.96(41.91|50 WDEG|R(2)|289.37(31.61| 7

Table 1. Experimental Results on Multi-Knapsack.

the optimization variant. The COP uses n global binary knapsack constraints
(binaryKnapsackAtmost in COMET) based on the filtering algorithm in [15].
These benchmarks contain up to 50 variables.

Figure 1 is a pictorial depiction of the behavior of the three search algorithms
with no restarts. The chart on the left shows the decision variant while the right
chart shows the optimization variant. The stacked bar chart uses a relative scale
where the height of the bar is the normalized sum of the running time of all three
algorithms and the length of each segment is its normalized running time. Note
that adjacent bars correspond to different totals. The left chart clearly show that,
as the difficulty of the problem increases, the quality of WDEG sharply decreases
and the quality of ABS significantly improves. On the harder instances, ABS
is clearly superior to IBS and vastly outperforms WDEG. The right chart was
produced in the same fashion and illustrates that IBS has the best improvement
as instance size increases while ABS always finishes first.

Table 1 gives the numerical results for instances 1 — 2 to 1 — 6. The first
column specifies the instance, while the remaining columns report the average
run times, the standard deviations, and the number of runs that did not time-out.
The results are given for no-restart and slow-restart strategies for all heuristics.
On the decision instance 1 — 6, WDEG often fails to find a solution within the
time limit and, in general, takes considerable time. ABSralways finds solutions
and is about 5 times faster than IBS for the no-restart strategy which is most
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effective on the decision variant. On the optimization variant, WDEG cannot solve
instance 1 —5 in any of the 50 runs and IBS does not always find a solution. ABs,
in contrast, finds a solution in all 50 runs well within the time limit. The best
performers on the largest instance among the 4 variants of IBs are IBs04 ([12])
when restarting slowly and the a-weighted IBs ([9]) when not restarting. The
COP variant for 1-6 is not reported as none of the algorithms proved optimality
in the allotted time. Note that, with R = 2, ABS finds the optimum within the
time budget. While IBS-L1 and IBs-L2 did better than IBS04, neither overtook
the a-weighted version of IBS. In all cases, ABS is the strongest performer in
this group.

In summary, on this benchmark, WDEG is vastly outperformed by IBS and
ABs as soon as the instances are not easy. ABS is clearly the most robust heuristic
(it always finishes within the time limit) and produces significant improvements
in performance on the most difficult instances, both in the decision and opti-
mization variants.

Magic Square This benchmark is also from [12] and the model is based on a
direct algebraic encoding with 2 - n linear equations for the rows and columns
(the square side is n), 2 linear equations for the diagonals, one alldifferent
constraint (not enforcing domain consistency) for the entire square, 2 - n binary
inequalities to order the elements in the diagonals, and two binary inequalities
to order the top-left corner against the bottom-left and top-right corners. Table
2 report results for squares of size 7 to size 10. The F' column in Table 2 reports
the number of successful runs (no timeout).

On magic squares, WDEG is completely dominated by IBS and ABS: It has
poor performance and is not robust even on the simpler instances. The best
performance for IBS and ABS is obtained using a fast restart, in which case
ABs and IBSs are virtually indistinguishable (We report the best IBS only, but all
variants are really close). IBs is more effective than ABS with slow or no restarts.

Progressive Party The progressive party problem [14] is a constraint satisfaction
problem featuring a mix of global constraint and has been used frequently for
benchmarking CP, LS, and MIP solvers. The instance considered here is the 2—8
instance with 29 guests, 8 periods and 13 hosts, i.e., 232 variables with domains
of size 13. The goal is to find a schedule for a social event taking place over k
time periods subject to constraints on the sizes of the venues (the boats), sizes
of the group, and social constraints (two groups cannot meet more than once
and one group cannot go back to the same boat more than once). The model
relies on multiple global alldifferent, multi-knapsacks and arithmetic constraints
with reifications. This model breaks the search in & phases (one per period) and
uses the black-box heuristic within each period.

The results are given in Table 3 and include all versions of IBS. ABS is the
overall best performer on this benchmark with the most successes within the time
limit, the smaller standard deviation and the best running times. IBS04 manages
a tiny advantage with restarting but exhibits a larger deviation in those cases.
The “lucky” version do not overtake the a-weighted version. ABS is also clearly
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ABs|R(1.1) | 32404.9| 2.59| 2.18|50

WDEG|R (1.1)[4144754.2|146.25|142.82(30
WDEG|R(2) [218408.26| 8.03| 42.77|49
8 |[ABS|NR 154783.76| 7.52| 42.36(49
ABs|R(1.1) 5084.18| 0.48| 0.24[50

ABs|R(2) 5941.92) 048] 0.37\501| |\ iR (o) 43621.08| 3.24| 5.04[50
Iss|NR 1889.4| 0.21| 0.16[50 :

: ) IBSO4|NR  |509230.94| 27.90| 83.36|46
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WDEG|R(1.1) - -
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Table 2. Experimental Results on Magic Squares.

Row Labels n(C)| w(T)| o(T)| F||Row Labels w(C)| pw(T)] o(T)| F
ABs|NR 153848.80(46.49| 90.24|45][IBs|[NR 932028.14(100.74|129.24|36
ABs|R(1.1) | 2338.18| 4.91| 0.87|50||IBs|R(1.1) | 16873.54| 4.91| 2.03|50
ABs|R(2) 4324.88| 5.47| 2.10|50||IBs|R(2) 28242.14| 5.74| 4.85|50

IBsO4|NR  [971906.60(93.50|130.17|37||wpEG|NR  [405027.32| 93.91|128.18|37
I1BSO4[R(1.1)| 11150.64| 3.56| 1.21|50||wpEG|R(1.1)| 14424.60| 3.49| 2.79(50
IBsO4|R(2) | 18376.48| 4.07| 2.87|50||wprc|R(2) | 19594.12| 4.00| 4.50|50

Table 3. Experimental Results on the Progressive Party 2 — 8.

superior to WDEG when no restarts are used but is slightly slower than WDEG
when slow or fast restarts are used.

Nurse Rostering This benchmark is taken from [13] and is a rostering prob-
lem assigning nurses to infants in an hospital ward, while balancing the work-
load. The multi-zone model can be found in Listing 1.2 in [13]. The custom
search procedure is removed and replaced by a call to one of the generic searches
(IBS,ABS,WDEG). Table 4 reports the performance results for the three heuris-
tics and 3 restarting strategies on the one-zone instances (z1-z5,28). Note that
the custom procedure in [13] relies on a dynamic-symmetry breaking on values
and sophisticated variable/value ordering. Results for WDEG beyond z5 are not
reported as it times out systematically. As before, column F' reports the number
of runs that finish (out of 50), C reports the number of choice points and the T
columns reports the mean and standard deviation of the running time.

WDEG exhibits extremely poor performance and robustness on this bench-
mark. ABS is clearly the most robust procedure as it solves all instances in all
its runs for all the restarting strategies. It is also significantly faster than IBs on
z4 and z8 but slower on z5. The fastest IBS variant changes depending on the
restarting strategy. When not restarting, the “lucky” variant takes the top honor
with 165 seconds on average and 50 runs. Without restarts, ABS terminates the
same task in 3.5 seconds on average with the same perfect success score.



B [Model n(C)| p(T)|o(T)| F||B [Model n(C)| p(T)|o(T)| F

21| ABS|NR 282.12] 0.02| 0.00|50]|[z3|WpEG]NR _ |4679035.24|300.00| 0.00] 2
ABs|R(1.1) 235.52| 0.02| 0.01|50|| |wpEc|R(1.1)|5517976.00(/300.00| 0.00| 0
ABS|R(2) 267.58| 0.02| 0.01|50|| |wpEc|R(2) |4812533.43|300.00| 0.00| 2
Iss|NR 1113.26| 0.07| 0.01|50|[z4[ABS|NR 30221.04] 1.41] 0.09]50
Iss|R(1.1) 1028.38| 0.08| 0.01|50|| |ABs|R(1.1) | 257205.36| 11.60| 0.21|50
Is|R(2) 820.52| 0.07| 0.01]50| |ABs|R(2) 54855.60| 2.53| 0.08|50
WDEG|NR 45043.22| 1.77| 0.08|50|| |IBS|NR 2782779.16|106.84|29.95(50

WDEG|R(1.1)| 63783.44| 2.46| 0.17|50 IBs|R(1.1) |7388602.08/300.00| 0.00| 2
WDEG|R(2) 47162.36] 1.87| 0.08|50 IBs|R(2) 5880894.18|237.20(40.04 |48

22| ABS|NR 15223.02| 2.42| 0.65|50|| |wpEG|NR |6386541.00({300.00| 0.00| 0
Ars|R(1.1) | 372174.98| 19.49| 9.03|50|| |wpEG|R(1.1)|5707406.00(300.00| 0.00| 0
ABs|R(2) 98057.72| 5.03| 2.53|50|| |wpEG|R(2) [5000897.00{300.00| 0.00| 0
Iss|NR 82182.32| 3.84| 0.91|50|[z5[ABS|NR 344187.52| 17.89] 3.91|50
Ies|R(1.1) | 656035.56| 24.86| 7.60|50|| |ABs|R(1.1) |3899344.36|185.81|38.09|50
Is|R(2) 177432.42| 6.78| 1.96|50|| |ABs|R(2) 902142.38| 43.40|12.82|50
wDEG|NR  |6361685.84/300.00| 0.00| 1| |IBs|NR 114692.60| 6.26| 4.16(50
wpEG|R(1.1)|5372380.94(300.00| 0.00| 3|| |IBs|R(1.1) | 423636.56| 24.30| 6.80|50
WwDEG|R(2) |4944998.26|300.00| 0.00| 1|| |IBs|R(2) 176624.20| 9.79| 5.59|50

z3|ABS|NR 326902.20| 23.32|10.88|50][z8|ABS|NR 59314.68| 3.52] 0.18]50

ABs|R(1.1) [1944533.10|139.55|81.15|50 ABs|R(1.1) 599777.70| 36.04| 3.70|50
ABS|R(2) 488344.88| 35.26(25.40(50 ABS|R(2) 119224.04| 7.00| 0.53|50

Iss|NR 214032.16| 14.96| 4.45(50|| |IBs|R(1.1) [8501205.52|296.51|15.42| 5
Ies|R(1.1) | 893297.88| 62.27(12.23|50|| |IBS|R(2) 3918758.98|146.10(44.69|47
Is|R(2) 287935.30| 19.62| 7.01|50|| |IBs-L2|NR |2549952.84|165.46|53.22|50

Table 4. Experimental Results on Nurse Rostering.
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Table 5. Description of the Radiation Instances.

Radiation This last benchmark is a constrained optimization problem for radia-
tion therapy taken from the 2008 MiniZinc challenge [8]. The objective is to find
a setup of a radiation therapy machine to deliver a desired radiation intensity
to a tumor. The problem uses algebraic constraint and the formulation can be
found in the mini-zinc repository [5]*. The search procedure must deal with all
the variables at once, i.e., the search was not manually broken down in phases
as is done in the MiniZinc model. In 2008, several solvers were unable to solve
most instances in a reasonable amount of time as seen in [5], which indicates the
difficulty of the instances. The instance sizes are specified in Table 5. A row gives
a term for each array in the problem with its size and the size of the domains
while the last column is the corresponding value. Instance 9 has one variable
with domain size 175 and 104333 variables of size 37.

Table 6 reports the results for 5 instances. ABS clearly dominates IBS on
all instances and IBS cannot solve the largest instance within the time limit for
any restarting strategy. WDEG performs well in general on this benchmark. It is
faster than ABS on the largest instance with restarts, but slower without. Both
WDEG and ABS are effective on this problem and clearly superior to IBS.

Costas Array This benchmark was used in [6] for the evaluation of the variance-
enhanced IBS and was therefore included here as well. Lack of space prevents us

4 In this model, the time that the beam is on is a variable and must be optimized too.



B[Model n(C)| w(T)|o(T)| F||B [Model w(C)| p(T)|o(T)| F

6 [ABS|NR 14934.94| 1.99] 0.65[50|(8 [IBS|R(2) 88117.48| 9.36| 1.34|50
ABs|R(1.1) 10653.36| 1.49| 0.39|50 WDEG|NR 38591.42| 2.90| 0.58|50
ABS|R(2) 10768.98| 1.50| 0.44|50|| |wpEG|R(1.1)| 20396.80| 1.72| 0.39(50
IBs|NR 65418.78| 6.89| 0.72|50 WDEG|R(2) 6907.14| 0.55| 0.12]50
IBs|R(1.1) 86200.18| 8.60| 0.98|50((9 |ABS|NR 40339.62| 5.79| 3.36|50
IBs|R(2) 67003.40| 7.07| 0.70|50 ABs|R(1.1) 20599.88| 3.21| 0.35|50
WDEG|NR 23279.70| 1.77| 0.41|50 ABs|R(2) 14101.00f 2.28| 0.51|50
WDEG|R(1.1)| 3798.00| 0.30| 0.12{50 IBs|NR 85205.62| 9.70| 0.61|50
WDEG|R(2) 2918.68| 0.23| 0.08|50 IBs|R(1.1) 141311.76| 14.40| 3.03|50

7 |[ABsS|NR 17434.30| 2.73| 1.84|50 IBs|R(2) 92431.06| 10.34| 0.60(50
ABs|R(1.1) 8481.62| 1.53| 0.35|50 WDEG|NR 90489.62| 7.33| 1.35(50
ABS|R(2) 9229.80| 1.62| 0.51|50|| |wpEG|R(1.1)| 48641.80| 4.49| 1.73|50
IBs|NR 90055.32(10.42| 0.44|50 WDEG|R(2) 12806.06| 1.20| 0.58|50
IBs|R(1.1) [161022.24|15.93| 6.43|50|[10[ABS|NR 210181.18| 34.56|17.00|50
IBs|R(2) 98742.94|11.13| 1.73|50 ABs|R(1.1) |102777.38| 17.19| 3.53|50
WDEG|NR 7868.16| 0.65| 0.24|50|| |ABs|R(2) 50346.82| 9.10| 1.65|50
WDEG|R(1.1)| 2762.26| 0.24| 0.10{50 IBs|NR 2551543.8/300.01| 0.00| O
WDEG|R(2) | 2824.00| 0.24] 0.12|50|| |Ips|R(1.1) |2504564.1|300.01| 0.00| 0

8 [ABS|NR 33916.58| 4.31| 1.04|50 IBs|R(2) 2525199.8|300.01| 0.00| O
ABs|R(1.1) 48638.90| 6.01| 0.89|50 WDEG|NR 629073.46| 60.09|39.47|49
ABs|R(2) 18294.96| 2.46| 0.52|50|| |wpEc|R(1.1)[232572.16| 27.88| 2.28|50
IBs|NR 84329.16| 8.98| 1.08|50 WDEG|R(2) 47175.04| 5.60| 1.30|50
IBs|R(1.1) |187346.80(16.94| 4.97|50

Table 6. Experimental Results on Radiation Benchmarks.

from including a detailed table and we briefly summarize the results for size 15.
Without restarts, ABS is about 3 times faster than the best IBS variant (10.7s
vs. 30.9s) while ABs is only slightly ahead of WDEG which terminates in 17s on
average. With restarts, the three heuristics improve with WDEG closing the gap
on ABS and even taking the lead with slow restarts. IBS also improves, but it
remains about 3 times slower than ABS regardless of the restarting speed.

Summary On this collection of benchmarks, ABS is clearly the most robust and
effective heuristic. It is robust across all benchmarks and restarting strategies
and is, in general, the fastest. WDEG has significant robustness and performance
issues on the multi-knapsack, magic square, and nurse rostering benchmarks.
IBs has some robustness issues on radiation, some rostering instances, and the
optimization variant of the large knapsack problems. It is in general significantly
less efficient than ABS on the knapsack, rostering, and radiation benchmarks.

5.3 Sensitivity Analysis

Criticality of the Variable Ordering Table 7 reports the performance of activity-
based search when no value ordering is used on the radiation benchmarks. The
value heuristic simply tries the value in increasing order as in WDEG. The results
indicate that the value selection heuristic of ABS does not play a critical role
and is only marginally faster/more robust on the largest instances.

Sensitivity to the Sample Size Figure 2 illustrates graphically the sensitivy of
ABS to the confidence interval parameter ¢ used to control the number of probes
in the initialization process. The statistics are based on 50 runs of the non-
restarting strategy. The boxplots show the four main quartiles for the running
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B[Method w(C)|pn(T)|o(T)| S||B [Method n(C)| w(T)|a(T)| S
6 [ABS|NR 11224.80( 1.48| 0.58]50((8 [ABS|R(2) 16708.46| 2.23| 0.47|50
ABs|R(1.1)|18803.18| 2.30| 0.86|50|[9 [ABS[NR 36534.92| 5.06| 1.18|50
ABS|R(2) [12248.46| 1.57| 0.43|50 ABS|R(1.1)| 46948.84| 6.76| 1.99|50
7 |[ABS|INR 7147.90| 1.27| 0.39|50 ABS|R(2) 23600.68| 3.46| 1.02|50
ABs|R(1.1)[12161.34| 1.92| 0.68|50|[10|ABS|[NR 213094.82(33.70| 9.23|50
ABs|R(2) '[10926.12| 1.74] 0.54]50|| |ABs|R(1.1)|239145.34|40.75| 7.55|50
8 |ABS|INR 27702.00| 3.53| 0.78(50 ABs|R(2) 87626.36|14.87| 4.14|50
ABs|R(1.1)[63755.24| 7.80| 2.27|50

Table 7. The Influence of the Value Ordering On radiation.
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Fig. 2. Sensitivity to the Sample Size as Specified by 9.

time (in seconds) of ABS with ¢ ranging from 0.8 down to 0.05. The blue line
connects the medians whereas the red line connects the means. The circles be-
yond the extreme quartiles are outliers. The left boxplot shows results on msq-10
while the right one shows results on the optimization version of knap1-4.

The results show that, as the number of probes increases (i.e.,  becomes
smaller), the robustness of the search heuristic improves and the median and
the mean tend to converge. This is especially true on knapi-4, while msq-10
still exhibits some variance when § = 0.05. Also, the mean decreases with more
probes on msq-10, while it increases on knap1-4 as the probe time gets larger.
The value § = 0.2 used throughout seem to be a reasonable compromise.

Sensitivity to v (Aging) Figure 3 illustrates the sensitivity to aging. The two
boxplots are showing the distribution of running times in seconds for 50 runs of
msq-10 (left) and knap1-4 (right). What is not immediately visible on the figure
is that the number of timeouts for msq-10 increases from 0 for v = 0.999 to 9
for v = 0.5. Overall, the results seem to indicate that slow aging is desirable.

5.4 Some Behavioral Observations

Figure 5 depicts striking behavior of ABS and IBS on radiation #9 under all
three restarting strategies. The x axis is the running time in a logarithmic scale
and the y axis is the objective value each time a new upper bound is found.
The three 'bottom’ curves depict the performance of ABS, while the three ’top’
curves correspond to IBS. ABS quickly dives to the optimal solution and spends
the remaining time proving optimality. Without restarts, ABS hits the optimum
within 3 seconds. With restarts, it finds the optimal within one second and the
proof of optimality is faster too. IBS slowly reaches the optimal solution but
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proves optimality quickly. Restarts have a negative effect on IBS. We conjecture
that the reduction of large domains may not be such a good indicator of progress.

Figure 4 provide interesting data about activities on radiation #9. It gives
the frequencies (an histogram of activity with buckets of size 0.2) of activity
levels at the root, and plots the activity levels for all variables. (Only those
not fixed by singleton arc-consistency). The figures highlight that the probing
process isolates a small subset of the variables with very high activity levels. It
is tempting to conjecture that this benchmark has backdoors [16] or good cycle-
cutsets [3] that ABS was able to discover, but more experiments are needed to
confirm or disprove this conjecture.

6 Conclusion

Robust search procedures is a central component in the design of black-box
constraint programming solvers. This paper proposed activity-based search, the
idea of using the activity of variables during propagation to guide the search.
A variable activity is incremented every time the propagation step filters its
domain and is aged. A sampling process initializes the variable activities prior



to search. ABS was compared experimentally to IBS and WDEG on a variety of
benchmarks. The experimental results have shown that ABS was significantly
more robust than both IBS and WDEG on these benchmarks and often produces
significant performance improvements.
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