INFORMATION SCIENCES 19, 229-250 (1979) 229

Relational Consistency Algorithms and
Their Application in Finding Subgraph and Graph Isomorphisms

J. J. McGREGOR

Department of Applied Mathematics and Computing Science,
University of Sheffield, Sheffield, S10 2TN, England

Communicated by Azriel Rosenfeld

ABSTRACT

The determination of subgraph and graph iscmorphisms is an important application for
the algebraic manipulation of networks of binary constraints. Simplified and streamlined
arc consistency and tree search algorithms are introduced, and experimental results show
substantial reduction in timings compared with previous algorithms for determining
isomorphisms. Several path consistency algorithms, including a new one, have been timed
experimentally on isomorphism problems, and found not to be cost effective despite their
theoretical appeal. The importance of this result is enhanced by the absence of previously
published experimentation with path consistency. A theoretical study of the new path
consistency algorithm provides insight into the experimental results.

l. INTRODUCTION

The paper of Cherry and Vaswani [2] on relational constraints was ahead of
its time in 1961. At last, relational consistency is being recognized as a basic
problem that underlies many practical problems, for instance in picture
processing [14].- Another possible applications area is automatic correction of
errors in text [17], which a few years ago might not have been viewed as a
relational consistency problem. Kowalski [9] suggests a mechanism for select-
ing clauses for resolution in a theorem prover which uses a relational con-
sistency algorithm for eliminating unprofitable lines of search. Mackworth [11]
mentions other application areas.

The present paper will show that relational consistency algorithms can
readily be specialized to find subgraph or graph isomorphisms. Graph isomor-
phism or subgraph isomorphism problems arise in, for example, chemical
information retrieval [10, 15] and scene analysis {5]. The subgraph isomorphism

©Elsevier North Holland, Inc., 1979 0020-0255 /79 /09229-22801.75

230 J. J. McGREGOR

problem is known to be NP complete [1, 3], which implies that the general
relational consistency problem is also NP complete. Karp [8] has conjectured
that no algorithms exist which solve NP complete problems in polynomial
time, Nevertheless the present work aims to achieve a significant and useful
flattening of the early part of the time growth curve for consistency algorithms.

Now that more applications are emerging for consistency algorithms, it
becomes more important to perfect them in detail. It also becomes important
to appreciate that existing algorithms in diverse problem areas are in fact
members of the same family, thus enabling general improvements in con-
sistency algorithms to be particularized to such individual problem areas. This
task of consolidation has been started by Mackworth [11], and the present
paper continues it by enhancing the efficiency of arc consistency algorithms,
particularly when used during backtracking. A new path consistency algorithm
is also described.

Because of its generality and intuitive appeal, path consistency has been
subject to several recent theoretical investigations [12, 11) but without publica-
tion of experimental results. We remedy this situation by reporting experimen-
tal timings obtained by applying all our algorithms to graph and subgraph
isomorphism problems.

2. CONSTRAINT SATISFACTION PROBLEM

Our problem is to determine the induced relation, that is, the subset of the
Cartesian product D, X D, X - - - X D, whose elements satisfy a given collection
of unary and binary constraints. Although it may be sufficient, in some
practical applications, to select just one value from each of Dy, D,,...,D, so as
to satisfy the constraints, we shall be concerned with the general problem of
enumerating the induced relation.

A unary constraint is a predicate P; such that P,(x) is true iff x € D, satisfies
the constraint. Thus P, specifies a subset of D,. A binary constraint P;; is a
predicate such that P,(x,y) is true iff x €D, and y € D; satisty the constraint.
P,; defines a relation on D; and D. There may not be constraints defined for
all domains or pairs of domains. The set of defined binary constraints
constitute a network G such that (i,j))Earcs(G) iff a binary constraint P;; is
defined. We assume that

(ViJ,x.y) { Py(x,y)=Fy(»y, x)}.
(if) €ares(G)

Occasionally it will be convenient to assume the existence of a P; for all
domains D; and of a P; for all pairs of domains D, and D;. Where no

RELATIONAL CONSISTENCY ALGORITHMS 231

constraint P, is defined we take P,(x)=true for all x €D, and where no binary
constraint P,; is defined we take P,(x,y)=true for all values xE€ D; and y € D,.

In an appendix we present a simple constraint satisfaction problem which
can be used to illustrate the behavior of the algorithms discussed in the ensuing
sections.

3. MACKWORTH’S DEFINITIONS OF CONSISTENCY

Figure 1 shows a backtrack search algorithm which outputs all combina-
tions of values, one from each of D,,D,,...,D, that satisfy a given set of unary
and binary constraints. Despite the elimination from consideration of large
proportions of the search space by the test at line 6, such a search can be
extremely inefficient. Mackworth [11] illustrates this and defines three types of
consistency which can hold within a network of relations. Values which are
inconsistent according to these definitions can be eliminated before being
explored by a backtrack search. Mackworth’s definitions are

(A) Node consistency. Node i is node consistent iff for any value x€ D,
P(x) holds.

(B) Arc consistency. Arc (i,j) is arc consistent iff for any value x €D, such
that P(x), there is a value y € D; such that P(y) and P,(x,y).

1. k:=1; mark all elements of D, as untried;

2. repeat

3. if there are any untried elements in D, then

4. begin

5. set x, to one of them and mark this value in D, as tried;
6. if P(xIA(Nicic Pu(xi, %)) then

7. begin :

8. if k= n then output (x,,x;,* - x,)

9. else
10. begin
1. k:=k+1; mark all elements of D, as untried
12. end
13. end
14. end
15. else
16. ki=k-1
17. until k=0

Fig. 1. The basic backtracking algorithm.

232 J. J. McGREGOR

(C) Path consistency. A path of length m through the nodes (i, &1, ceesim) 18
path consistent iff for any values x€D,; andy €D, such that P; (x) and P, (»)
and P;; (x,) there is a sequence of values z,ED,-|,.--,Zm—1EDi,_‘ such that

@) P;(z,) and ... and P, _(zn-1)
(i) Py, (x,2)) and P, ; (21,22 and ... and P,

',,,_,i,,,(zm—p)’)-

A network can easily be made node consistent by removing from each D, any
element x such that P(x) is false, and we will assume throughout the rest of
the paper that this is done before any further processing takes place. We defer
consideration of path consistency until Sec. 10 and will at first deal only with
arc consistency.

4. IMPROVED ARC CONSISTENCY ALGORITHMS

Figure 2 shows a basic procedure which achieves arc consistency in a
network which is already node consistent. This is Mackworth’s procedure AC1
[11] reworded to make explicit its nested loop structure. It is easy to see that
AC] deletes from D, any x that does not belong to arc consistent arcs.

The use of bit vectors to represent sets is essential for an efficient im-
plementation of the algorithm of Fig. 2. For example, the domain D; can be
represented by a vector of bits in which there is a bit position for each possible
value in D;, a one indicating that D; still contains the corresponding value and
a zero indicating that the corresponding value has been deleted from D;. This
is precisely the representation which the designers of the programming
language PASCAL had in mind when they introduced the set type [7). Similarly,

in the relationship P;, for each x we can represent the set of values

{¥IP;(x,)} by a bit vector whose bit positions correspond to those in D;. Thus

1. repeat changed: =false;

2 fori:=1ton do

3 for j:=1to n do

4, if (i,j)e arcs (G) and i j then
5 for each x&D; do

6. if there is noy € D; s.t. Py(x,y) then
7 begin

8. delete x from D;;

9. changed: =true

10. end

11. until not changed.

Fig. 2. Mackworth’s basic arc consistency algorithm AC]1,

RELATIONAL CONSISTENCY ALGORITHMS 233

1. repeat changed : = false;

2 forj:=1to n do

3 fori:=1tondo

4 if (i,))Earcs(G) and i/ then

5. begin

6. D! :=;

7 for each y € D; do D;:= D/ U{x|P(x.»)};
8 if D,;5=D,n D; then

9 begin D;:=D;n D/; changed : =true end
10. end

11. until not changed

Fig. 3. An altemative basic arc consistency algorithm.

the test at line 6 of Fig. 2 can be implemented by anding two bit vectors and
testing for zero result [16]. Deleting an element from D; (line 8) can also be
implemented by a single and operation.

In Fig. 3, we present an alternative basic arc consistency algorithm which is
an improvement on Fig. 2 in that the test for zero result of anding and the
further and to delete a one from D, have been omitted from the innermost part
of the procedure. At line 7, we construct the set of values {x|3y (Py(x.y))}-
The set intersection and union operations used in lines 7-9 can all be
implemented by anding and oring bit vectors. [Since Py(x,y)=Py(y,x),
{x]Py(x,y)} ={x]|P(y,x)}.] The order of nesting of the iterations over i and j
has been reversed in order to facilitate further improvements in efficiency
which can be made when algorithms developed from that of Fig. 3 are used
during backtracking (Sec. 5) and in the subgraph isomorphism problem (Sec.
8). :

Mackworth makes improvements to AC1 based on the observation that if
during an iteration of AC1 an element is deleted from a single domain D,, only
domains connected to D, in the network can possibly be affected on the next
iteration. Similar improvements can be made to the algorithm of Fig. 3 without
losing its advantages. In the algorithm of Fig. 4, Q is used to hold values of j
for which it is worth applying the arc consistency algorithm. When a domain
D, is changed, i is added to Q. The two outer loops of the algorithm are
equivalent to the outer loop of Mackworth’s AC3. These two outer loops could
be merged by making @ hold pairs of values (i,j) as in Mackworth’s AC3, thus
allowing further improvements in efficiency. We maintain the separation of the
iterations over j and i for reasons connected with the applications of the
algorithm discussed in subsequent sections.

234 J. J. McCGREGOR

5. USE OF ARC CONSISTENCY ALGORITHMS DURING
BACKTRACKING

It is likely that after an initial application of consistency algorithms, there
will still be a large number of alternatives to be considered by a backtrack
search such as that in Fig. 1. In the simple example described in the Appendix,
after the application of an arc consistency algorithm, each domain still
contains two elements. Even after the application of a path consistency
algorithm [11, 12), the domains corresponding to suspects in Boston, London
and Paris still contain two suspects each.

An alternative way of looking at the process of giving a tentative value to x;
(Fig. 1, line 5) is to think of D, as being tentatively restricted to a single value.
When viewed in this light, it is clear that application of an arc consistency
algorithm after each such decision could now cause further reduction in the
sizes of the other domains, thus reducing the number of combinations of
values which have to be considered in conjunction with the value selected for
X;. One of the other domains may even be reduced to the empty set by the arc
consistency algorithm, thus enabling the selected value for x, to be rejected
immediately without further variable instantiation.

In fact the test at line 6 in Fig. 1 can be replaced by an application of any
of the arc consistency algorithms discussed so far. The effect of this is that
each time a domain is restricted to a single value, all elements which are not
arc consistent with this value are removed from other domains. For a given
value of k, only domains D; such that i >k can be changed in this way. At
depth k in the backtrack search, x, must be arc consistent with x; for i <k,
since otherwise x, would have been previously removed from D,. Thus if
algorithm 2, 3 or 4 is used to refine the search space during backtracking as
suggested, the iteration over i in each case can be reduced to fori:=k+1ton
do. The cases where previously the test at line 6 would have failed are now
eliminated from consideration by an earlier application of the arc consistency
algorithm.

Against the saving of time resulting from reduction in the size of the search
space must be balanced the extra work involved, not only in applying the arc
consistency algorithm but also in stacking and unstacking copies of domains
D,, Di,y,...,D, each time a variable x, is instantiated. This is necessary
because any of these domains could change as a result of selecting a value for
x, and applying the arc consistency algorithm, and when that value x, is later
rejected, these changes to the other domains will have to be undone.

It seems likely that in many problems, a full scale application of an arc
refinement algorithm at every step during backtracking will be inappropriate.
This is certainly the case when these techniques are applied to subgraph or

RELATIONAL CONSISTENCY ALGORITHMS 235

L Q:={jll1<j<n};
2. while Q isn’t empty do
3 begin
4 select and delete any node j from Q;
5. fori:=1tondo
6 if (i,j)€arcs (G) and i< then
7 begin
8. D/:=0;
9. for each y €D, do D/ : =D/ U {x|Py(x.y)};
10. if D;D;N D/ then
11. begin D;:=D,n D/;
12. Q:=0u{i}
13. end
14, end
15. end

Fig. 4. An improved version of the algorithm of Fig 3.

graph isomorphism problems (Secs. 8 and 9). In our experiments with these
Problems we have noticed that the effectiveness of the arc refinement algo-
tithm falls off extremely rapidly after the first iteration of the main loop (Fig. 2
or 3). The version of the arc consistency algorithm of Fig. 4 is in a form
Particularly appropriate for conversion into a reduced version for use during
backtracking. When domain D, is tentatively reduced to a single value, x,, the
only value of j for which it is initially worth applying the algorithm of Fig. 4 is

- J=k. Also, for this value of j, D; contains only a single element and the

Statement at line 9 need no longer be a loop. The only value for y to be
considered is y =x;. Thus, during backtracking, we could use the reduced
Version of the arc consistency algorithm presented in Fig. 5. This produces an
effect comparable to that of a single iteration of the main loop in Fig. 2 or Fig.
3, but involves the execution of only a single loop whose extent decreases as
the depth of search k increases.

1. ji=k;yi=x3;

2. fori:=k+1tondo

3 if (i,j))carcs(G) then

4. Dii={x|Pi(x,»)}nD;

Fig. 5. A restricted arc consistency algorithm for use during backtracking.

236 J. J. McGREGOR

6. ORDER OF INSTANTIATION OF VARIABLES DURING
BACKTRACKING

The order in which variables are selected for instantiation during backtrack-
ing is also of importance, particularly when using refinement techniques as
discussed in the previous section. It would be sensible in any case, before
applying the Fig. 1 algorithm, to reorder the domains so that the variables with
the smallest domains are instantiated first [16]. Thus when a subtree is
eliminated from the search space at line 6, more alternatives will be eliminated
than would be the case if the larger domains had been considered first and
pruning had taken place at the same depth.

When arc consistency is being used to refine the domains during backtrack-
ing, ideally we would like to select for instantiation the variable with the
smallest domain at each stage. Such a dynamic reordering of the domains is
likely to be computationally expensive, but a useful compromise can be
adopted, particularly when not all pairs of domains in the network are affected
by constraints, Having selected a variable x, for instantiation and restricted its
domain D, to a single value, the domains most likely to be reduced in size by
the application of an arc consistency algorithm (particularly the limited algo-
rithm of Fig. 5) are those which are connected to D, by constraints in the
network. In the example given in the Appendix it would be foolish to
instantiate the variable representing the Boston suspect, apply a limited arc
consistency algorithm and then choose the variable corresponding to the
London suspect for instantiation. Applying the limited arc consistency algo-
rithm with the Boston domain reduced to a single value will leave the London
domain unchanged, as there are no constraints between London and Boston.
One of the three variables whose domains are connected to Boston by
constraints should be instantiated next. Extending this idea, we propose that
prior to a backtrack search with limited arc refinement, the domains should be
reordered so that the domain whose variable is chosen for instantiation at each
stage will be the one which has most constraints connecting it with domains
whose variables have already been instantiated. This should tend to be the
domain which has had most elements removed from it by prior applications of
the arc consistency algorithm. The domain whose variable is instantiated first
should of course be the one which is initially smallest. A straightforward
algorithm can be written which will reorder the domains in this way, and this
has been done in the programs used to produce the experimental results
reported later.

e W e O n

RELATIONAL CONSISTENCY ALGORITHMS 237

1. SUBGRAPH ISOMORPHISM AS A CONSTRAINT SATISFACTION
PROBLEM

An isomorphism of a graph G, with a subgraph of a further graph G, can
be viewed as a labeling of each node of G, with a different node of Gj.
Accordingly we associate with each node i in G, a variable x; which can be
ussigned as a value any one of the nodes in Gg. A subgraph isomorphism is 2
st of values for x,, x,,... +,» such that

(Viy) {(ay=1=b,, =1) and x,;x}
inf
v'lhere A=[a;] and B=[b;] are the adjacency matrices of G, and G respec-
tvely, and p, is the number of nodes in G,.

Finding a subgraph isomorphism is equivalent to finding x,, X.ees %, that

utisfy the following constraints:

UNARY CONSTRAINTS

F(x) is false if there is any a priori reason why node i in G, cannot
torrespond to node x; in Gy (e.g., the degree of node x; in Gy is less than that
of node i in G,).

BINARY CONSTRAINTS

Strong constraints: if a;=1, then p,-j(x,-,Jg):—:(b% =1).
Weak constraints: if a;=0, then Py(x;,x)=(x#X).

The definition of P; in the case ;=0 corresponds to the fact that no two
todes in G, can be mapped to the same node in G in a subgraph isomor-

~ Phism.

8. IMPROVED SUBGRAPH ISOMORPHISM ALGORITHMS

Ullmann’s algorithm for subgraph isomorphism [16] used (apart from unim-
portant differences) the tree search algorithm of Fig. 1, with the arc con-
sistency procedure of Fig. 2 and the constraint definitions that we have just

formulated in Sec. 7.
The execution time for Ullmann’s algorithm can be reduced by reordering

‘the domains along the lines discussed in Sec. 6, and by using refinement

procedures based on the arc consistency algorithm of Fig. 3.

238 J. J. McGREGOR

In the subgraph isomorphism problem, constraints were defined in the last
section between all pairs of domains in the network. However, the constraints
marked as being strong constraints will predominate in the process of refining
the domains during the backtrack search. In ordering the nodes for instantia-
tion as discussed in Sec. 6 we have therefore considered only these strong
constraints.

Ullmann found the use of the arc consistency algorithm of Fig. 2 during
backtracking worth while in terms of reduced overall program execution time.
However, he reports later [17] that a version of his refinement algorithm in
which the outer iteration (see Fig. 2) is performed only once each time it is
used during backtracking resulted in a further overall increase in speed. We
found that still further restrictions on the amount of work done by the Fig. 2
algorithm during backtracking gave further savings. For example, the loop
starting on line 2 can be executed for values of i up to just beyond the current
depth of the backtrack search, thus ensuring that the domain of the next
variable to be instantiated is reduced in size at the appropriate moment.

Use of the restricted refinement algorithm of Fig. 5 during backtracking
resulted in significant further improvements to the best timings obtained with
reduced versions of the Fig. 2 algorithm. Table 1 presents the results obtained
on sets of random graphs whose adjacency matrices were generated using a
pseudorandom number generator [13]. Pairs of graphs were constructed in the
same way as in [16], and the results are presented in the same way as in that
paper. Each result was obtained over 50 trails with different pairs of graphs.

TABLE 1

Results of Using Arc Consistency Algorithms
in Finding Subgraph Isomorphisms

Best times using Times using
restricted versions Fig.5
Sizes of Number of of Fig.2 algorithm®
graphs involved isomorphisms algorithm® (sec)
(sec)

Py P av. sd. av. s.d. av. s.d.
& 12 1042 1187 0481 0353 0.199 0.161
7 14 6470 915 2405 2716 1.029 1.232
8 10 858 1237 1.098 1.029 0428 0424
8 12 3050 5094 2143 2408 0.845 1.020
8 14 6735 12635 3474 4.674 1428 209
8 16 22579 31303 - 9.156 9944 3718 4440

10 12 1184 2053 3233 4.160 1.130 1.522

10 14 7592 17193 71.27 11.828 2932 4846

*For refinement during backtracking.

[CGREGOR

d in the last
* constraints
s of refining
T instantia-
hese strong

g. 2 during
“ution time.
lgorithm in
h time it is
speed. We
 the Fig. 2
:, the loop
the current
f the next
nent.
cktracking
ained with
s obtained
>d using a
ted in the
as in that
of graphs.

N

1
2

‘mwomé'ﬁ

RELATIONAL CONSISTENCY ALGORITHMS

20

18

10

T

time taken

(in seconds)

—>

of isomorphisms found

no.

Fig. 6. Time taken versus number of subgraph isomorphisms found (in thousands) for p, =8

240 J. J. McGREGOR

The results presented in Table 1 were obtained from programs written in
ALGOL 68 and run on an ICL 1906S computer.

One interesting feature of these results is that, for a given size of graph G,,
the time taken to find all isomorphisms of G, into Gg appears to be linearly
related to the number of isomorphisms found. In Fig. 6 we have plotted the
number of isomorphisms found against the time taken for every 10th pair of
graphs from each set of 50 pairs for which p, =8.

9. APPLICATIONS TO FINDING GRAPH ISOMORPHISMS

Some further experiments were carried out on the detection of isomor-
phisms between graphs. The relationships P; were defined for this problem by

if aij= 1 then Py(_x,y)’:"(bxy = 1)’
if a;=0 then Py(x,y)=(x#ynab, =0).

Using this network of relationships, some experiments were made on the
problem of finding all isomorphisms of a graph onto itself. Algorithm 5 was
used as a refinement procedure during backtracking. For these experiments we
used some strongly regular 25-node graphs which were described and used by
Ullmann in [16]. These probably represent pathological worst case examples of
this type of problem. Table 2 presents the times required to process the first 5
of these graphs. The results of Table 2 were obtained by using a program
written in PASCAL and run on an ICL 1906S computer. (The change from
ALGOL 68 to PASCAL was necessary as our ALGOL 68 implementation does not
permit the manipulation of bit patterns of more than 24 bits.)

TABLE?2

Times Required to Find All [somorphisms of a
Strongly Regular 25-Node Graph onto Itself

Time (sec)
Using restricted Using alternative restricted
refinement algorithm refinement algorithm
Graph of Fig. 5 discussed in Sec. 9
1 10.296 4.967
2 3.692 1.212
3 5.714 3.265
4 4.949 1.460
5 4.363 1.551

ron

arc

Aft

Fig

“GOR
en in

h G,
rearly
d the
ir of

mor-
n by

RELATIONAL CONSISTENCY ALGORITHMS 241

Some further experiments were carried out using an alternative restricted
arc consistency algorithm during backtracking as follows:

forj:=1to k do
if (k+ L)) Earcs(G) then
Dy := {zlPk+l(z’xj)}n Dy sy

After instantiating X this algorithm was used to delete from Dy, all elements

time in 28
milli- .
seconds 27

26 x

25
24

23
22 x
21

20 x

2 w4 s
18 20 22 24 26 28 30 32 M 36 38 40 & LIS

nusber of nodes

Fig. 7. Backtrack search time versus number of nodes for determination of isomorphism of
Pseudorandomly generated graphs.”

242 J. J. McGREGOR

which are inconsistent with the values selected so far for x;, x,,...,x,. The
advantage of this is that copies of only two domains, D, and D, ,, need be
stacked at each step in the backtrack search, as D, ,, is the only domain which
is refined immediately after instantiating x,. This gave considerably improved
timings in the case of our graph isomorphism problems as indicated in the last
column of Table 2, but in the case of the subgraph isomorphism problems of
the previous section, somewhat poorer timings were obtained.

Each application of the above refinement technique requires the execution
of a single loop, but the extent of the loop increases as the depth of search
increases. Whether or not this is compensated for by the reduction in the
amount of domain copying clearly depends on the structure of the backtrack
search tree explored.

The well-known graph isomorphism algorithm of Corneil and Gotlieb [4],
although founded on a conjecture since proved to be false, provides a
benchmark against which subsequent algorithms have been compared. From
Fig. 7, we see that for isomorphic random graphs with an average edge density
of 0.5, the timing of a backtrack search incorporating the above refinement
algorithm depended on pF, where x=<1.7 for the range of values of p, which we
were able to consider. The time taken to set up the necessary data structures
before the backtrack search depends on p2 for any type of graph. Corniel and
Gotlieb report a theoretical time dependence of p2 for their algorithm when
applied to similar random graphs. They also report an observed time of
0.00447=268 msec for p,=20. Our algorithm took an average backtrack
search time of 6.96 msec for this size of graph together with an average
preliminary time of 46.50 msec to set up the data structures. Our results
therefore compare favorably with theirs for random graphs, as well as produc-
ing unusually good results on strongly regular graphs.

10. PATH CONSISTENCY ALGORITHMS

We now turn our attention to path consistency, which is mathematically
more general than arc consistency. Elements can be deleted from domains on
grounds of path consistency as well as arc consistency; and the search might
be speeded up still further by deleting from each relationship P; any element
that connects a pair of values which are not path consistent along some path
from node i to node j.

To facilitate such refinement of relationships P;, we require and therefore
describe the full bit matrix representation of the P; used by Montanari [12]
and Mackworth [11], in which each P, is explicitly represented. For all pairs of
values i,j (i#f), P; is represented by the bit matrix Ry, where Ry, =1 if
Py(x,y) is true and Ry, =0 otherwise. It is convenient to think in terms of

— MM e oM M M B L e

o

. PR P

S1

le;
e

bt o A S o Y

T T e AR

RELATIONAL CONSISTENCY ALGORITHMS 243

Ry ={y|Py(x,y)}, the sets R;;, being represented by bit vectors as discussed in
Sec. 4. It should be noted that the use of such an explicit representation of the
constraints may immediately introduce additional storage and computational
overheads: in some problems, for many pairs of values i, j, there may not be
constraints which have to be satisfied by the values x;, x;; or there may be a
onvenient reduced representation for the P;, as is the case in the subgraph
isomorphism problem, where all that has to be stored and accessed for the
algorithms discussed in previous sections is the pair of bit matrices 4 and B
Tepresenting the two graphs involved.

The path consistency algorithm of Montanari {12}, improved by Mackworth
[11], works by repeatedly examining all paths of length two and deleting
tlements from the domains and relationships until all paths of length two are
path consistent, (Montanari proved that a network which is path consistent
along all paths of length two is path consistent along paths of any length.) This
algorithm requires setting up the bit matrices R; before the first iteration, and
all subsequent processing carries the overhead of accessing the multidimen-
sional array containing the R;.

Figure 8 presents an algorithm that has the effect of exploring paths of all
lengths and that can work on the first iteration by using any appropriate
Teduced representation of the P;. The (partially refined) R, can be constructed

1. for 1:=1 to n do DCOPY,:=D; .
2. repeat changed : =false;
3 fori:=1tondo
4 for each x€ D, do
5. begin
6 D;:={x};
7 apply a full arc consistency algorithm;
8 if any domain has been reduced to the empty set then
2. begin DCOPY; : =DCOPY; — {x};
10. _ changed : =true
]1. end
12, else for j:=1to ndo
13. ‘ if j~i then
14, if Ry, >D; then
15. begin changed : =true; R;,: =D, end
I6. for /:=1 to n do D,:=DCopy,
17. end

18. until not changed v :
| Fig. 8. A new path consistency algorithm.

244 ' J. J. McGREGOR

as a side effect of this first iteration. Furthermore, this path consistency
algorithm uses an arc conmsistency - algorithm as its basic tool. Thus any
improvements to arc consistency algorithms or special purpose hardware
implementation of the arc consistency algorithm, similar to that discussed by
Ullmann [16}, can be used to advantage in the path consistency algorithm of
Fig. 8. It should be noticed in this respect that all applications of arc
refinement done during one iteration of the main loop of Fig. 8 could be
performed in parallel. Haralick [6] has recently proposed an algorithm for
finding graph homomorphisms which in fact uses a specialization of the path
consistency algorithm of Fig. 8.

It may not be obvious that the algorithm of Fig. 8 does establish path
consistency. To confirm that it does, we call upon the following two theorems.

THEOREM 1. If a network is arc consistent and a domain D; contains only a
single value x (and all other domains are nonempty), then all paths in the network
which have i as a terminal node are path consistent.

Proof (by induction on path length). The theorem is true for all paths of
length 1 with i as a terminal node, by the definition of arc consistency. We
assume that it is true for all paths of length <n, and let i and i, be the terminal
nodes of any path of length n:i, i\, &, - - §,. Forany x, €D, , 3x,_,ED, _ such
that P, ,(x,_;,X,), since the metwork is arc consistent. Also, P(x,x,_)),
since the network is arc consistent and x is the only element of D,, and so
I, €D, E€D,,...,x,_; €D,_, such that P,(x,x) AP, (x,x,)
A= AP, (%._2,%,.) by the induction hypothesis. Thus a path of length
n with i as a terminal node is path consistent.]

THEOREM 2. If a network is not arc consistent and a domain D; contains a
value x, then if an element y is deleted from domain D; by an arc consistency
algorithm (Fig. 7, line 7), then element (x.y) should be deleted from P; (if
present) on path consistency grounds.

Proof. Say element y such that Py(x,y) is deleted from D; by the arc
consistency algorithm. This happens if there is a domain D, such that there is
no z€ D, such that P,(y,z). Consider any path i,...,k,j. There can be no
value for z € D, which forms part of a consistent sequence of values x,...,2,»
along this path. The pair (x, y) should therefore be deleted from P; on path
consistency grounds. n

The algorithm of Fig. 8 considers each element in each domain in turn. For
each element x € D, the remaining elements in D, are temporarily deleted, and
a full arc consistency algorithm (Fig. 4 say) is applied to the modified network.
(Note that Q in Fig. 4 can be initialized to contain only the i currently selected
in Fig. 8.) This has the effect of examining all paths emanating from node i

P I -t

P . T s o

g B €D o ey rpd e i3 o s e

[

=

OR

Icy

) a
rk

We
nal
ch

RELATIONAL CONSISTENCY ALGORITHMS 245

and deleting from each domain D; any element y which is not path consistent
with x along all paths from node i to node j. Thus lines 4 to 17 in Fig. 8 have
the effect of checking path consistency along all paths in the network emanat-
ing from node i.

Montanari and Mackworth examine all elements of the R; on every
iteration of their path consistency algorithm. Many elements of the R; which
would be examined and changed by their algorithm would not be processed by
the algorithm of Fig. 8. These elements would in fact never be used subse-
quently by any of the backtracking or arc consistency algorithms previously
discussed (there being no elements in the domains which would cause such
clements in R to be used). This selective refinement of R is a natural
consequence of the way in which the operation of the Fig. 8 algorithm is
confrolled by the presence of elements in the domains.

A number of improvements can be made to the given version of the
algorithm of Fig. 8. Montanari has shown that only paths of length two need
be considered by a path consistency algorithm, and we have also observed
(Sec. 5) that the effectiveness of an arc consistency algorithm falls off rapidly
after its first iteration. It may therefore be sensible in the algorithm of Fig. 8
that the arc consistency algorithm used at line 7 should be restricted to

. performing only two main iterations, thus examining only paths of length two

from node i. Improvements analogous to those made by Mackworth to
Montanari’s algorithms can also be made to the algorithm of Fig. 8: the
efficiency of the arc refinement algorithm at line 7 can be improved on second
and subsequent iterations by keeping a note of changes made to the R; and the
D, since the corresponding execution of line 7 during the previous main
iteration, and using this information to avoid unnecessary work being done by
the arc refinement algorithm.

11. EXPERIMENTS WITH PATH CONSISTENCY IN ISOMORPHISM
PROBLEMS.

Previously published discussions of path consistency algorithms have been
entirely theoretical. In order to remedy this situation, we have experimented
with path refinement algorithms on subgraph and graph isomorphism prob-
lems using the same data as were used for the experiments reported in Secs. 8
and 9.

The first column of timings in Table 3 are the average times taken for the
subgraph isomorphism problems using exactly the same algorithm as was used
for the experiments reported in Sec. 8, except that in this case a full bit matrix

- representation of the P; was used by that algorithm. Comparison with Table 1
‘ indicates the slight overheads involved in such a representation of the F;.

246 ~ J.J. McGREGOR

TABLE 3

Results of Experiments with Path Consistency Algorithms
in Finding Subgraph Isomorphisms*

Av. time, Av. time, Av. search Av. time, Av. search
no pr. 1 pass, time after 1st pass, time after
(sec) Montanari- full p.r. Fig. 8 p.r. 1 pass,
Mackworth algorithm algorithm Fig. 8 pr.
pI. (sec) (sec) algorithm
Graph sizes algorithm (sec)
“F P, P, (sec)
6 12 0.200 0.140 0.199 0.115 0.199
7 14 1.034 0303 1.030 0.198 1.030
8 10 0.430 0261 0.423 0.157 0424
8 12 0.849 0.366 0.841 0203 0.841
8 14 1.435 0478 1.422 0.259 1422
8 16 3.795 0583 3.782 0.326 3.783
10 12 1.136 0.749 1.102 0318 1.103
10 14 2.949 1.011 2.904 0.389 2.905
*p.r.=path refinement.

Montanari’s and Mackworth’s path consistency algorithms are functionally
equivalent in the first iteration. Mackworth’s improvements were intended to
speed up the second and subsequent iterations. The second column of timings
in Table 3 are average times taken in the subgraph isomorphism problems by
the first iteration of a Montanari-Mackworth path consistency algorithm.
These can be treated as lower bounds for the times taken by a full path
refinement algorithm of this family, the additional time required depending on
how effective Mackworth’s improvements are. The next column of timings in
Table 3 are average times taken by the previously used backtracking algorithm
after an initial application of a full path refinement algorithm for each
problem. These results show very little improvement in backtracking times
compared with the previous algorithm. Any improvements certainly do not
compensate for the additional time overhead required by the initial application
of path refinement.

In common with arc consistency algorithms, path consistency algorithms
appear to be considerably less effective on second and subsequent iterations.
For this reason, it might be expected that maximum cost effectiveness would
be attained by applying only a single iteration of a path consistency algorithm.
The new path consistency algorithm introduced in Sec. 10 permits an efficient
implementation of its first iteration when there is a good reduced representa-
tion for the P;, as is the case with the isomorphism problems. The fourth
column of timings in Table 3 are the average times taken by the first iteration

PR B MM e e b A

=gy

F Y OO oo

=W E N e T My O

Lo

-V e 0

-

RELATIONAL CONSISTENCY ALGORITHMS 247

of this algorithm, and the next column gives the times taken by the subsequent
application of the previously used backtracking algorithm. In fact the algo-
rithm for finding graph homomorphisms proposed by Haralick [6] is equivalent
to this specialized use of path consistency. The path refinement process is now
considerably quicker (despite the fact that paths of all lengths are being
examined), but it is still clearly not cost effective.

Equivalent experiments were carried out on the graph isomorphism prob-
lems for which results were previously presented in Sec. 9. The path refinement
algorithms of Montanari and Mackworth took approximately 11 seconds on
cach of these problems, while that of Fig. 8 took approximately 4 seconds.
However, no changes were made by the path consistency algorithms to the
network for these problems, and there was therefore no resulting improvement
in search times.

In view of the above results, we did not consider it appropriate to investi-
gate the application of path refinement during backtracking, as this would
have involved further large overheads arising from the use of the path
consistency algorithm itself, as well as from the need to copy the R; whenever
the path consistency algorithm was used.

12. DISCUSSION

One of the main contributions of this paper is the demonstration that the
cost effectiveness of arc consistency in finding subgraph and graph isomor-
phisms is increased by using only a one pass arc consistency algorithm as a
refinement technique during backtracking. The reason for this is that the
cumulative effect of the repeated application of the restricted arc consistency
algorithm will approximate more and more closely to the effect of a full arc
consistency algorithm as the depth of search increases. Thus there is very little
advantage to be gained by doing the additional work involved in applying a
full arc consistency algorithm at each stage in the search.

The theorems of Sec. 10 provide some insight as to why path consistency is
found experimentally not to be cost effective in graph matching. To appreciate
this it is only necessary to recognize that the path consistency algorithm of Fig,
8 is closely related to a backtrack search algorithm in which a full arc
consistency procedure is used as a refinement technique. Each step forward in
the backtrack search involves temporarily deleting all but one element from a

~ domain D, and applying the arc consistency algorithm. This amounts to

performing a partial path consistency check with respect to all paths emanat-
ing from node k, thus ensuring that no elements remain in the other domains

~ which are path inconsistent with the element selected from D; (see Theorem 1,

248 J. J. McGREGOR

Sec. 10). The extent to which the network becomes path consistent will
increase as the depth of search increases. In view of the remarks made in the
preceding paragraph, path consistency will be attained to some extent even
when only a one pass arc consistency algorithm is used for refinement during
backtracking. .

The conclusion to which we are inescapably led is that, despite its theoreti-
cal appeal, path consistency algorithms of the type discussed merely duplicate
to a large extent work which is more efficiently and conveniently done by
using a limited arc consistency algorithm during backtracking in the way we
have described. -

APPENDIX—SIMPLE EXAMPLE OF A CONSTRAINT SATISFACTION
PROBLEM

The problem is to discover a spyring consisting of one spy in each of
Boston, London, Houston, Paris and Sheffield subject to the following con-
straints. ‘

UNARY CONSTRAINTS

The spy in the ith city is one of the suspects whose code name is listed in
the ith column of Table 4.

BINARY CONSTRAINTS

The spy in Boston must be a suspect who has met a spy in Houston, and
vice versa. A similar constraint must hold between the following pairs of cities:
Boston-Paris, Boston-Sheffield, London-Houston, London-Paris, London-
Sheffield. Table 5 shows which suspects have met which other suspects where a
1 signifies “has met”.

In the notation of Sec.2, D,={B,, B2, B3, B4},D,={L1, L2, L3}, D,={Hl,
H2, H3, H4}, D,={P1, P2, P3}, D;={Sl, S2, S3, S4}. P, is defined by the

TABLE 4
Boston London Houston Paris Sheffield
Bl L1 H1 Pl S
B2 12 H2 P2 S2
B3 L3 H3 P3 S3

B4 H4 S4

OR

the
yen
ing
o ti-
ate
by

we

N

n-

RELATIONAL CONSISTENCY ALGORITHMS 249

TABLE 5

HI H2 H3 H4 PIL P P3 Sl § S3 S
BI 1 1 1 1 1 1 6 o t o0 1
B2 | o 0 1 1 1 6 o 1 0 o0 o
B3| o 0 0 1 0 i1 0 1 o0 1 o0
B4 | 1 1 0 0 1 6 0o o 1 o0 1
L1 0 0 1 1 0 1 0 0 0 o
2] o 0 0 I 1 6. 0 1 0 1 o0
L3 1 1 0 0 o 0 1 60 1 0 1

subset of Table 5 which indicates which pairs of suspects, one from Boston and
one from Houston, have met. The other P; are defined similarly.

Thanks are due to Professor J. R. Ullmann, with whom helpful discussions were

held at all stages of the work.

REFERENCES

L

2

10.

i1

A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, 1974,

C. Cherry and P. K. T. Vaswani, A new type of computer for problems in propositional
logic, with greatly reduced scanning procedures, Information and Control 4:155-168 (Sept.
1961).

. S. A. Cook, The complexity of theorem proving procedures, in Proceedings of the 3rd

Annual ACM Symposium on Theory of Computing, 1971, pp. 151-158.

. D. G. Corneil and C. C. Gotlieb, An efficient algorithm for graph isomorphism, J. Assoc.

Comput. Mach. 17(1):51-64 (Jan. 1970).

. E. C. Freuder, Structural isomorphism of picture graphs, in Pattern Recognition and

Artificial Intelligence (C. H. Chen, Ed.), Academic, New York, 1976.

. R. M. Haralick, The characterisation of binary relation homomorphisms, Internat. J.

General Systems 4:113-121 (1978). o)
K. Jensen and N. Wirth, Pascal: User Manual and Report (corrected printing), Springer,

New York, 1978.)
R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer

Computations (R. E. Miller and J. W, Thatcher, Eds.), Plenum, New York, 1972.

. R. Kowalski, A proof procedure using connection graphs, J. Assoc. Comput. Mach.

22(4):572~595 (Oct. 1975). _
M. F. Lynch, Storage and retrieval of information on chemical structures by computer,

Endeavour 27 (101):68—73 (May 1968). }
A. K. Mackworth, Consistency in networks of relations, Artificial Intelligence 8(1):99-113

(1977).

| 12. U. Montanari, Networks of constraints: fundamental properties and applications to

picture processing, Information Sci. 7(2):95-132 (1974).

