
Lecture Notes for 6.824, Arti�cial Intelligencec1992 David McAllester, all rights reserved Rev. October, 1992Constraint Satisfaction SearchFor the past thirty �ve years arti�cial intelligence researchers have beenstudying heuristic search techniques. People writing AI programs have hadstrong intuitions about what it means for a program to search. Intuitivelythey classi�ed programs according to the kinds of search performed. Certainprograms, such as matrix multiplication routines, did no search whatsoever.Other programs searched for solutions to a �xed �nite set of constraints. Oth-ers searched for paths in graphs, or for strategies in game trees, or for proofsin formal inference systems. The intuitive classi�cation of search programsseems to roughly correspond to complexity classes. The no-search proce-dures correspond to the complexity class P. Constraint satisfaction searchprocedures correspond to the complexity class NP, graph search and gamesearch procedures to the class PSPACE, and search in theorem proving tothe class of recursively enumerable functions. This chapter discusses heuris-tic techniques for solving search problems of the simplest type | constraintsatisfaction problems. Heuristic techniques for other forms of search are dis-cussed in later chapters.1 Constraint Satisfaction ProblemsIntuitively, a search problem involves �nding an object that satis�es a givenspeci�cation. A classic example is the eight queens problem. This is theproblem of placing eight queens on a chess board so that no two queens attackeach other, i.e., so that no single row, column, or diagonal contains more thanone queen. This problem can be solved (ine�ciently) by a \generate and test"program that �rst generates a list of all the possible ways eight queens can beplaced a chess board and then tests each possibility to see if it is a solutionto the problem.Another example is the SAT problem. This is the problem of determining1

whether a set of Boolean clauses is satis�able. A Boolean variable is a variablethat can have one of two values, True or False. We often use the letters Pand Q to represent Boolean variables. A literal is either a Boolean variableof the negation of a Boolean variable. A Boolean clause is a disjunction ofBoolean literals. For example, :P _Q is a clause containing the two literals:P and Q. The clause :P _ Q is satis�ed if either P is False or Q isTrue. A SAT problem consists of a set of Boolean clauses. The problem isto determine if there exists an interpretation of the Boolean variables thatsatis�es all of the given clauses. This is a search problem | it can be solvedby a generate and test search process. One generates all possible assignmentsof truth values to Boolean variables and tests each assignment to see if itsatis�es every clause.Search can be very expensive, i.e., it can require a large amount of compu-tation time. Note that if there are n Boolean variables in a SAT problemthen there are 2n possible assignments of truth values to these variables.Searching all these truth assignments will take time proportional to 2n |the time taken by a simple search program is exponential in the number ofBoolean variables. It turns out that all the known algorithms for determin-ing Boolean satis�ability require exponential time. Intuitively, this meansthat every known technique for solving SAT problems essentially searchesthe space of truth assignments.To develop a more re�ned understanding of search problems some more pre-cise terminology will be useful. First, we can give a formal de�nition of whatwe mean by procedures that do not search. Formally a \no-search procedure"is one that only requires polynomial time. An procedure is said to requirepolynomial time if there exists a polynomial f(n) (like cn3 + bn2) such that,for inputs of size n, the algorithm always terminates in less than f(n) time.Note that a generate and test procedure for solving SAT is not polynomialtime | it requires time proportional to 2n where n is the number of theBoolean variables and the function 2n grows faster than any polynomial. Aprocedure that terminates in time less than 2f(n) for some polynomial f(n)is said to execute in exponential time. By de�nition, search procedures re-quire at least exponential time. It is important to note that this classi�cationof procedures into search and no-search procedures concerns the worst casetime. If a procedure terminates in linear time on 99.99% of all inputs, but2

requires exponential time on the remaining .01%, it is considered to be asearch procedure.It would be a mistake to assume that a problem, like SAT, is really in-tractable in practice just because all known algorithms for solving the prob-lem take exponential time in the worst case. Many such problems only takepolynomial expected time. In fact, for many natural probability distributionsthe SAT problem only requires polynomial average time [Goldberg, 1979],[Purdom, 1983]. Other problems that require search, such as �nding goodmoves in a chess game, can be solved in practice by using the most e�cientknown search procedures combined with powerful high speed computation.The need to search is not fatal! This chapter, and those that follow, discussgeneral purpose techniques for improving the e�ciency of search procedures.There is a signi�cant body of AI literature on constraint satisfaction prob-lems; a survey can be found in [Pearl and Korf, 1987]. To more preciselyde�ne the notion of a constraint satisfaction search problem we �rst de�nethe concept of a domain variable.De�nition: A domain variable is a pair <x;D> where x is avariable (a symbol) and D is a �nite set called the domain of thevariable.By abuse of notation we use the letters x, y and z to denote domain variables.It should be remembered that a domain variable x is actually a pair of atoken and a set (a domain). In the eight queens problem one can de�neeight domain variables Q1; � � � ; Q8, one variable for each column of the chessboard. The variable Qi represents the position of the i'th queen, i.e., Qi willrepresent the row on which the queen of the i'th column is to be placed. Thequeen on the i'th column can be placed in any one of rows 1 through 8 sothe domain of Qi is the set of numbers f1; 2; � � � ; 8g.De�nition: A variable interpretation for a given set of domainvariables is a mapping � from the variables to values such that�(x) is always an element of the domain of the variable x.3

A constraint satisfaction problem consists of a set of domain variables anda ste of constraints on those variables. In the 8-queens problem there is oneconstraint for each pair of variables | the interpretation of Qi and Qj mustbe such that the two queens do not attack. In a SAT problem the variablesare Boolean and each clause is a constraint on the variables contained in thatclause. A constraint involving the domain variables x1, x2, � � �, xn will oftenbe written as �(x1; x2; � � � ; xn).A constraint can be represented by a predicate and domain variables. Theconstraint that the queen Qi does not attack the queen Qj can be repre-sented as the triple <:Attacksi;j; Q1; Q2> where :Attacksi;j is the predi-cate which is true of two numbers n and m if a queen on row i and column ndoes not attack a queen on row j and columnm. In general, a constraint canbe represented as a tuple <P; x1; x2; � � � ; xk> where P is a predicate of karguments. This constraint holds under a particular variable interpretationif the predicate P is true of the values of the variables x1; ; x2; � � � ; xk.Formally, we will assume that the predicates used in representing constraintsare de�ned by an explicit table which states, for each possible tuple of ar-gument values, whether the predicate is true or false on those arguments.In practice the predicate is usually speci�ed with a computer program suchas a Lisp procedure. Note that individual constraints usually only involvea small subset of the variables involved in the overall constraint satisfactionproblem.De�nition: Let D1, � � �, Dk be �nite sets (variable domains). Atabular predicate on D1, � � �, Dk is a k-dimensional table whichspeci�es a truth value for each tuple <v1; � � � ; vk> where vi is anelement of Di.De�nition: A constraint is a tuple <P; x1; � � � ; xk> where eachxi is a domain variable and P is a tabular predicate on the do-mains of x1, � � �, xk.De�nition: A variable interpretation � satis�es a constraint<P; x1; � � � ; xk> if the tabular predicate P is true of the tuple<�(x1); � � � ; �(xk)>.De�nition: A constraint satisfaction problem (CSP) is a setof constraints. A variable interpretation satis�es a CSP, and is4

called a solution of that CSP, if it satis�es each constraint in theCSP.It is possible to show that the problems of determining if a given CSP has asolution has the technical property of being NP complete.12 This is strongevidence that any procedure for solving an arbitrary CSP must search (musttake exponential time in the worst case). However, as we shall see in thenext section, some search procedures are more e�cient than others.2 Value PropagationConsider a constraint satisfaction problem involving domain variables x1; � � � ; xn.To �nd a solution to the constraint satisfaction problem one can search theset of possible assignments of values to variables. The set of possible variableassignments can be organized into a tree. At the root of the tree no com-mitment has been made about the values of the variables. Each branch fromthe root of the tree corresponds to a particular value for the �rst variable| if there are �ve possible values for x1 then there are �ve branches fromthe root node. The second level of branching in the tree corresponds to thepossible values of x2 and so on. The leaves of the tree correspond to completevariable assignments.Given values for some, but not all, variables it may be possible to use in-ference techniques to determine that no solution is consistent with the givenvalues. In other words, inference can be used to do more e�ective consistencytesting at intermediate nodes of the search tree [Mackworth, 1977], [Freuder,1985]. To formalize the notion of inference we �rst formalize the information1For a thorough presentation of NP completeness see [Garey and Johnson, 1979].2Because 3-SAT is NP-complete, constraint satisfaction is NP-complete even in thecase where each domain variable has at most two values and each constraint involves atmost three variables. If every constraint involves only two variables and every variable hasa domain of just two values then the satis�ability problem is solvable in polynomial time(by reduction to 2-SAT). If every constraint involves two variables but variables can havethree values then determining the existence of a solution is NP-complete (be reduction of3-SAT where clauses are mapped to variables.)5

that is present at an intermediate node of the search tree. Each intermediatenode of the search tree represents a partial assignment of values to variables.De�nition: A partial assignment is a set of equations of theform fx1 = v1; � � � ; xk = vkg where vi is an element of the domainof xi. A complete assignment for a given set of constraints is apartial assignment that contains an assignment for every variableappearing in the constraints. If � is a partial assignment, then acompletion of � is a complete assignment that contains �.For technical reasons it is convenient to allow partial assignments to containmore than one value for the same variable. However, an assignment thatcontains more than one value for the same variable will be called inconsistent.De�nition: A partial assignment will be called inconsistent ifit contains more than one value for the same variable. A partialassignment which is not inconsistent will be called consistent.A consistent complete assignment is just a representation for a variable in-terpretation as de�ned in the previous section. If � is a partial assignmentthat represents the information present at an internal node of the search tree,then a consistent completion of � represents the information that is presentat some leaf node under that internal node.Any constraint satisfaction problem can be viewed a \network" of variablesand constraints. In this network each variable is connected to the constraintsthat involve it, and each constraint is connected to the variables it involves.A network representation for a constraint satisfaction problem is shown in�gure 1. In �gure 1 variables are represented by circles and constraints arerepresented by boxes. Figure 1 represents both a constraint network and apartial assignment of values to variables. A variable that has not yet beenassigned a value is labeled with \??".Given a partial assignment to the variables in a constraint network one canoften infer values that are \forced" for other variables. For example, consider6

Figure 1: A Constraint Network
7

a SAT problem that contains the clause :P _ :Q _ W and consider a par-tial assignment that assigns both P and Q False but provides no assignmentfor W . Any extension of this partial assignment to a complete solution mustassign W the value True. In this case one can extend the assignment so thatW is assigned the value True without fear of omitting any solutions. Thiskind of inference appears to be essential to performing constraint satisfactionsearch e�ciently.De�nition: Let � be a partial assignment and let � be a con-straint. We say � and � entail a (new) equation x = v if theequation x = v is contained in every consistent completion of �that satis�es �.The inference of new equations naturally leads to a propagation process inwhich the inference of one equation can justify the inference of a secondequation and so on. For example, if we have the Boolean constraints P1 ! P2,P2 ! P3, � � � Pk�1 ! Pk, and we have a partial assignment in which P1 isassigned True, then we can infer that P2 must be assigned True, and henceP3 must be assigned True and so on up to Pk. When searching for a solutionto a constraint satisfaction problem the partial assignments at each node ofthe search tree can be closed under constraint propagation inference of thistype. De�nition: Let C be a set of constraints and let � be a partialassignment. We say that an equation y = v is derivable by valuepropagation from � and C there is a single constraint � in C suchthat � and � entail y = v.De�nition: The value propagation closure of a partial assign-ment � with respect to a constraint set C is the least partialassignment �0 such that every equation derivable by value prop-agation from �0 and C is already contained in �0.Value propagation adds labels that can be derived from existing labels anda single constraint. For example, in Figure 1 value propagation may be be8

able to derive an equation of the form x3 = v3 from the equations x1 = v1,x2 = v2, and the constraint C1. Given an equation of the form x3 = v3, onemay then be able to use the equations x3 = v3, x4 = v4, and the constraintC2 to derive a new equation of the form x5 = v5. This process continues untilno new equations can be derived (or until an inconsistency is discovered asdescribed below).It is possible for value propagation to discover an inconsistency. For example,suppose that the constraint set C contains the constraints x = a ! y = band x = a ! y = c where b and c are distinct values. Now suppose that� contains the equation x = a. In this case the value propagation closureof � contains both the equation y = b and the equation y = c and hence isinconsistent. In practice value propagation can be terminated whenever aninconsistency is discovered.Each variable in a CSP can be represented by a data structure that containsa �eld for the value, if any, assigned to that variable. Each variable datastructure can also contain a list of all of the constraints in the network thatmention that variable. Given this representation of variables, and the ob-vious representation of constraints, the following procedure can be used tocompute the value propagation closure of a partial assignment. Actually, theprocedure only returns the closure if the closure is consistent. If the closureis inconsistent then the procedure returns the token \inconsistent".Value Propagation Procedure:1. Initialize Queue to be a list of all the constraints in the network.2. If the current partial assignment is inconsistent the terminate and re-turn \inconsistent".3. If Queue is empty then return the current partial assignment.4. Remove a constraint � from QUEUE. For each equation that can bederived from � and existing equations, update the variable data struc-tures to incorporate the new equations.5. For each updated variable in step 4 (for each variable where the derived9

equation was not already present) add all constraints involving thatvariable to the list QUEUE.6. Goto 2.If there is a bound on the size of variable domains and a bound on thenumber of variables in a single constraint, for example every variable rangesover at most three values and every constraint involves at most four variables,then the above procedure runs to completion in time linear in the numberof constraints in the network. To see this note that, given upper boundson the domain size of variables and the number of variables in a constraint,there exists an upper bound on the amount of time taken by step 4 of theprocedure. Given that an individual execution of step 4 takes constant time,it is not di�cult to verify that the time taken by the overall procedure isproportional to the total number of times a constraint is added to the queue.But the upper bound on the number of variables in a constraint places anupper bound on the number of times a given constraint can be added to thequeue. Thus the total number of times a constraint is added to the queue isbounded by a constant times the number of constraints.Constraint propagation is an inference process | it infers new equations fromconstraints and existing equations. Furthermore, constraint propagation isvery e�cient | for bounded constraint size it can be run to completion intime linear in the number of constraints. Unfortunately, constraint propa-gation is not complete. To understand completeness we need the followingde�nition.De�nition: Let � be a partial assignment and let C be a con-straint set. We say that � and C entail an equation x = v if everyconsistent completion of � that satis�es C contains x = v.Constraint propagation is incomplete. This means that it is possible that �and C entail x = v but that the value propagation closure of � does not con-tain x = v. For example, let C consist of the two constraints x = a! y = cand x = a! y = d. Suppose that the domain of x is the set fa; bg and thatthe domain of y is the set fc; dg. In this case, any variable interpretation10

that satis�es these two constraints must interpret x as b, because if x is inter-preted as a then any particular interpretation of y violates one of the givenconstraints. However, if no equations have yet been given, then constraintpropagation will not derive any new equations because no single constraintentails a new equation. Thus, although x = b is entailed by the constraints,constraint propagation can not derive it.There is a good reason for the incompleteness of constraint propagation. Forbounded constraint size, constraint propagation terminates in linear time inthe size of the constraint network. However, even for bounded constraint size,determining the existence of a solution to a constraint satisfaction problem isNP-complete. If constraint propagation were complete then it is not di�cultto show that we would have a polynomial time procedure for an NP-completeproblem. Assuming P6=NP, there can not exist any such procedure.Even with value propagation, solving a CSP requires search. The search canbe done in such a way that it forms a tree where each branch in the treecorresponds to the possible values of some variable. Each node in the treecontains a partial assignment. Value propagation is used to close the partialassignment present at each node. Because many values can be assigned byvalue propagation rather than by branching, the search tree based on valuepropagation is usually much smaller than than the naive search tree whichexplores all possible assignments.3 Arc ConsistencyThere are various polynomial time (and hence semantically incomplete) con-straint propagation inference procedures for CSPs. The procedures vary incost and strength | there are cheap weak procedures and expensive strongprocedures. Strong procedures draw more conclusions but take more timeto do it. Weak procedures draw fewer conclusion but �nd those conclu-sions more quickly. The value propagation procedure de�ned in the previoussection is cheap and weak. In this section we de�ne a stronger but more ex-pensive procedure | arc consistency propagation. Arc consistency involvesmaintaining more information than just a simple partial assignment. In par-11

ticular, arc consistency keeps track of values that have been ruled out as wellas values that have been determined.De�nition: A disequation is a negation of an equation, e.g., anexpression of the form x 6= v. A CSP knowledge state is a setof equations and disequations. A CSP knowledge state is calledinconsistent if it either contains two di�erent equations for thesame variable or if it contains both y = v and y 6= v for somevariable y and value v.I will use the symbol � to denote a CSP knowledge state.De�nition: A completion of a CSP knowledge state � is a vari-able interpretation that satis�es the equations and disequationsin �.De�nition: A CSP knowledge state � and a constraint � entailan equation x = v if every completion of � that satis�es � assignsx the value v. � and � entail a disequation x 6= v if everycompletion of � that satis�es � assigns x some value other thanv.De�nition: A knowledge state � entails an equation y = v byexhaustion of alternatives if for every value w other than v inthe domain of y the knowledge state � contains the disequationy 6= w.De�nition: Let C be a set of constraints and let � be a CSPknowledge state. We de�ne the Arc consistency closure of � withrespect to constraint set C to be the least CSP knowledge state �0of equations and disequations satisfying the following conditions.33The term \arc consistency" comes from the case where every constraint involves onlytwo variables. In this case the constraint network de�nes a graph where the nodes arevariables and there is an arc between any two nodes that are involved in the same con-straint. Arc consistency is the property that the CSP knowledge state is consistent witheach individual arc in the graph | for each individual arc there exists a completion of theknowledge state that satis�es that arc. 12

� �0 contains �.� If �0 together with some single constraint in C entail a dise-quation x 6= v, then �0 also contains the disequation x 6= v.� If �0 entails y = v by exhaustion of alternatives, then �0contains y = v.Arc consistency is strictly stronger than value propagation. Although thespeci�cation of when one can derive an equation appears weaker | one canonly derive an equation when all other values have been ruled out | if anew value does semantically follows from the knowledge state and a singleconstraint then all other values will be ruled out and the new remainingvalue will be derived. Actually, arc consistency can be implemented as analgorithm that only derives disequations | equations are implicitly presentwhen all but one value has been eliminated. To see that arc consistency is infact stronger than value propagation one can simply examine the 8-queensproblem. In the 8-queens problem no single constraint between two queenscan force a value of one of the queens and so value propagation can neverderive a new equation. However it is easy to construct a case where arcconsistency derives new values.The procedure for value propagation given above can be modi�ed to per-form arc consistency propagation. An analysis similar to that given abovecan be used to show that if an upper bound is placed on the size of thevariable domains, and an upper bound is placed on the number of variablesin each constraint, then the procedure runs in time linear in the number ofconstraints. However, arc consistency propagation is more expensive thanvalue propagation. To see this we can include the number of domain valuesas an explicit parameter in the analysis of the running time. For now weassume that each constraint involves at most two variables. A CSP in whichevery constraint involves at most two variables is often called a binary CSP.Let e be the number of constraints in a binary CSP (e is the number of edgesin the graph representation of the binary CSP). Let d be an upper boundon the number of values in the domain of each variable. The value propa-gation closure of a partial assignment can be computed in time proportionalto de. The best known algorithm for computing the arc consistency closureof a CSP knowledge state has a worst case running time proportional to d2e13

[Mohr and Henderson, 1986]. Note that for a bounded value of d both ofthese running times are linear in e (the number of constraints). However, fornontrivial values of d value propagation is considerably faster (but weaker)than arc consistency propagation.4 Generalized Forward Checking (GFC)A third propagation algorithm, known as generalized forward checking (GFC),is often better in solving CSPs than either value propagation or arc consis-tency. GFC is intermediate in strength between value propagation and arcconsistency.De�nition: Let C be a set of constraints and let � be a CSPknowledge state. We de�ne the generalized forward checking clo-sure of � with respect to constraint set C to be the least set �0 ofequations and disequations satisfying the following conditions.41. �0 contains �.2. If the equations in �0 (ignoring the disequations) togetherwith a single constraint in C entail a disequation x 6= v, then�0 also contains the disequation x 6= v.3. If �0 entails y = v by exhaustion of alternatives, then �0contains y = v.Condition 2 in the above de�nition is weaker than the corresponding con-dition in the de�nition of arc consistency. Arc consistency is based on the4The term \generalized forward checking" comes from viewing this procedure as ageneralization of a much simpler technique called \forward checking". Forward checkingis a consistency test rather than a propagation procedure. It simply checks that foreach unassigned variable y, and for each constraint � involving y, there exists a value inthe domain y which is consistent with � and the existing equations for other variablesin the constraint �. Generalized forward checking converts this consistency test into apropagation procedure which generates new equations.14

derivation of disequations from disequations. Disequations carry more in-formation than equations | disequations can specify partial informationabout a variable even when no equation is known. GFC keeps track of dis-equations, but only derives disequations from the known equations. GFC isstrictly stronger than value propagation. If an equation follows from otherequations and a single constraint then GFC will derive that equation. Unlikevalue propagation, GFC can derive new equations in the 8-queens problem.There are also examples that show that arc consistency is strictly strongerthan GFC, although these examples are somewhat more di�cult to �nd (seethe exercises at the end of this section).Recall that a binary CSP is one in which each constraint involves at mosttwo variables. In a binary CSP it is possible to compute the GFC closureof a knowledge state in de time where d is an upper bound on the size ofthe domain of each variable and e is the number of constraints. This isthe same bound as for value propagation. Since GFC is considerably morepowerful than value propagation, and not signi�cantly more costly, GFC isgenerally preferable to value propagation.5 For most problems GFC is nearlyas powerful as arc consistency, and its running time of de is considerablybetter than arc consistency's time of d2e.5 Restricted GFCConsider nonbinary CSPs, i.e., ones in which the number of variables perconstraint can be larger than two. Let e be the number of constraints, d anupper bound on the number of values in variable domains, and a (for arity)be an upper bound on the number of variables in each constraint. Valuepropagation and GFC can be implemented to run in time da�1e while thebest known algorithm for arc consistency can be run in time proportional to5We are assuming that constraints are represented by tables. Some constraints, such asnumerical constraints, are not represented as tables. For numerical constraints the domainsizes are either in�nite or �nite but very large. For numerical constraints value propagationis preferable to GFC. However, numerical constraints are usually best handled with boundspropagation rather than any of techniques described here. Bounds propagation is describedin the chapter on nondeterministic lisp. 15

dae. When a is greater than two all of these procedures are nonlinear in d. Itis possible to construct another inference procedure which is linear in d evenfor a greater than two. This new procedure will be called restricted GFC.De�nition: A constraint � will be called active relative to aknowledge state � if all but one of the variables in � have beenassigned a value in �.De�nition: Let C be a set of constraints and let � be a CSPknowledge state. We de�ne the Restricted GFC closure of � withrespect to constraint set C to be the least set �0 of equations anddisequations satisfying the following conditions.� �0 contains �.� If the equations in �0 (ignoring the disequations) togetherwith some single active constraint in C entail a disequationx 6= v, then �0 also contains the disequation x 6= v.� If �0 entails y = v by exhaustion of alternatives, then �0contains y = v.For binary CSPs restricted GFC is essentially identical to unrestricted GFC.6Restricted GFC can be implemented in time proportional to (d + a)e. Notethat in the case where a is greater than two this is a considerable improve-ment over da�1e, the running time of GFC. This improvement in runningtime is gained at the cost of a loss of some inferential power. RestrictedGFC is strictly weaker than GFC and hence strictly weaker than arc con-sistency. Restricted GFC is incomparable with value propagation | thereare inferences that will be made by value propagation that will not be madeby restricted GFC and, more commonly, inferences made by restricted GFCthat will not be made by value propagation.6The one exception is the case where a constraint can be used to rule out a value evenin an empty knowledge state | this does not generally arise in practice.16

6 Nonlinear Propagation AlgorithmsAll of the propagation algorithms discussed above run in time linear inthe number of constraints (assuming bounded variable domain size and abounded number of variables per constraint). There are other procedureswhich are inferentially more powerful but which require superlinear time. Ahierarchy of propagation procedures based on the notion of k-consistency isde�ned by Mackworth [Mackworth, 1977]. The larger the value of k the morepowerful, and the more costly, the propagation procedure. All of the prop-agation procedures run in polynomial time but the order of the polynomialincreases with k.Other hierarchies of propagation procedures are possible. Let C be any prop-agation algorithm (such as value propagation or GFC). If � is a knowledgestate then we let C(�) is the knowledge state that results from applying thepropagation algorithm C to the knowledge state �. Recall that all the prop-agation procedures discussed in this chapter run in polynomial time and aresemantically incomplete. To �nd a solution to a CSP one must still search.Let � be the knowledge state at a node in the search tree. Since the searchmight fail, it must be possible that extending � with an equation y = v leadsto an inconsistent state, i.e., that C(�[fy = vg) is inconsistent. At the nodewith knowledge state � we could \look ahead" in the search tree and see thaty = v leads to a contradiction. This should allow one to add the disequationy 6= v to the knowledge state at that node. We can de�ne a stronger prop-agation procedure that infers all disequations that can be inferred by thiskind of lookahead. First we de�ne the general notion of a closure operatoron knowledge states. Each constraint propagation algorithm de�nes such aclosure operator.De�nition: A closure operator on knowledge states is a mappingC form knowledge states to knowledge states such that C(�)contains �, C(C(�)) equals C(�) and if � is a subset of � thenC(�) is a subset of C(�).De�nition: Given a closure operator C on knowledge states wede�ne L(C) to be the closure operator such that L(C)(�) is theleast set �0 satisfying the following conditions.17

� �0 contains �.� �0 is closed under C, i.e., �0 contains C(�0).� If C(�0 [fy = vg) is inconsistent then �0 contains the dise-quation y 6= v.� If �0 entails y = v by exhaustion of alternatives, then �0contains y = v.The closure operator L(C) adds a level of \look ahead" to the closure operatorC. If C runs in amortized time T then L(C) can be made to run in amortizedtime ndT where n is the number of variables and d is an upper bound onvariable domain size. So if C is polynomial then so is L(C), but the order ofL(C) is larger than the order of C. We de�ne Lk(C) to be L(L(� � �L(C) � � �))with k applications of L. Lk(C) is the k-fold look ahead operator, i.e., theoperator which looks ahead k steps in the search tree. As k increases the klevel look ahead propagator becomes more powerful. However, the cost ofrunning the propagator also increases.To the author's knowledge, nonlinear propagation procedures have neverbeen shown to be useful in solving CSPs e�ciently. For most applicationsrestricted GFC appears to be the most e�ective propagation procedure.7 Applications to Vision (Line Labeling)Constraint propagation was introduced by Waltz to help in the visual inter-pretation of line drawings [Waltz, 1975]. Consider the line drawing shownin �gure 2. This line drawing represents a two dimensional projection ofa set of three dimensional objects. Waltz considered making the followingassumptions.� The three dimensional objects are polyhedra, i.e., objects with atfaces.� Each line in the drawing represents an edge of one of the polyhedra (wewill ignore shadows, cracks, and changes of color).18

Figure 2: A simple line drawing
Figure 3: The four vertex typesGiven a particular three dimensional interpretation of the image each linecan be given one of four labels. If the line represents a convex edge of apolyhedra, and the two faces of the polyhedra which meet at the line arevisible in the image, the the line is labeled +. If it represents a concaveedge, and the two meeting planes are visible, then it is labeled �. If the linerepresents an edge such that only one of the two meeting faces is visible inthe image then the line is labeled with an arrow pointing along the line. Thearrow is oriented so that the visible face is clockwise from the head of thearrow. The drawing in �gure 2 has been labeled according to the naturalphysical interpretation. 19

Figure 4: The constraint imposed by each vertex typeWaltz also made an additional assumption that the objects are in generalposition relative to the viewer, i.e., there are no coincidental alignments ofvertices or edges of di�erent objects, although objects are allowed to rest onone another in a face-to-face manner. Under the general position assumptionwe need only consider line drawings in which at most three lines meet at anygive vertex. We can classify all vertices into three kinds, Ls, arrows, Forksand Ts as shown in �gure 3. Furthermore, each kind of vertex has a limitednumber of possible three dimensional labelings. The allowed labelings foreach kind of vertex is shown in �gure 4.The assumptions Waltz made about the physical objects and their projectiononto the image allowed him to convert the line drawing into a constraintsatisfaction problem. The line drawing can be viewed as a CSP in which thevariables are the lines of the drawing. Each variable (line) has one of fourpossible values, +, �, or an arrow in one of two possible directions. Figure 4gives a way of interpreting each vertex in a line drawing as a constraint onthe labels assigned to the lines meeting at that vertex. We will also assumethat the lines on the periphery of the drawing are labeled with arrows in aclockwise direction around the image (the physical objects occur only insidethe periphery of the image).Figure 5 shows the result of value propagation closure on the initial partialassignment of one image. In this case, and for most line drawings, valuepropagation is complete, it derives all labels that are implied by the vertex20

Figure 5: An example of propagation21

constraints. In general, however, value propagation, and even arc consistency,is not complete for line labeling CSPs. In fact it has been shown that theproblem of determining the existence of a solution to a line labeling CSPis NP-complete [Kirousis and Papadimitriou, 1988]. So in general �ndingconsistent line labelings requires exponential search.8 Problems1. Give an partial placement of queens on a 6x6 chessboard where GFCderives an equation that value propagation fails to derive. Place an x oneach square ruled out by disequations derivable by GFC.2. Give a partial placement of queens on a 6x6 chessboard where arc consis-tency propagation derives an equation not derived by GFC. Draw the con-�guration twice. In one drawing show all the information derived by GFCincluding squares ruled out and derived placements. In the other drawingshow all the information derived by arc consistency propagation.3. If all solutions to a constraint satisfaction problem assign the variable Xthe value x then we say thatX = x is entailed by the constraints. A constraintpropagation algorithm is called complete if it can derive all assignments thatfollow from the constraints. This is the same notion of completeness that isused for inference rules in general | inference rules are complete if, givenany set of premises, they can be used to derive all assertions semanticallyentialed by the premises. Give an example of a Waltz line drawing wherevalue propagation is incomplete, i.e., there is an assignment that is entailedby the constraints but value propagation will not derive that assignment.4. Give an example of a Waltz line drawing where arc consistency propaga-tion is incomplete. (This is di�cult.)5. Give a proof that in Boolean CSPs, i.e., in CSPs in which every variablehas only two possible values, the procedures value propagation, arc consis-tency propagation, and GFC are all equivalent.6. Show that arc consistency can be run on SAT problems in linear time22

(time proportional to the sum over all clauses of the number of literals in theclause). Arc consistency on SAT problems is more commonly known as unitresolution.7. Give a method of translating an arbitrary CSP into a SAT problem suchthat the SAT problem is satis�able if and only if the CSP has a solution.8. Give a reduction from CSPs to SAT problems as in 7 which has theadditional property that running arc consistency on the SAT problem cor-responds to running GFC on the original CSP. More formally, running arcconsistency on the SAT problem should generate an inconsistency if andonly if running GFC on the original CSP generates an inconsistency. Give aproof that your reduction satis�es these criterion.9. Repeat problem 8 but give a reduction where running arc consistencyon the SAT problem corresponds to running arc consistency on the originalCSP.10. Use the results from problems 6 and 9 to show that in CSPs wherevariable domains have no more than d elements, and constraints involveno more than a variables, arc consistency closure can be computed in timeproportional to dae where e is the number of constraints.11. A Horn clause is a clause with at most one positive literal. Show that arcconsistency is complete for Horn clauses, i.e., if arc consistency propagationfails to derive an inconsistency then the given set of Horn clauses is satis�able.Combined with the results from problem 6, this shows that Horn clausesatis�ability is linear time decidable. A di�erent proof of this fact can befound in [Downing and Gallier, 1984].
23

References[Downing and Gallier, 1984] William Downing and Jean H. Gallier. Lineartime algorithms for testing the satis�ability of propositional horn formulae.Journal of Logic Programming, 1(3):267{284, 1984.[Freuder, 1985] E. C. Freuder. A su�cient condition for backtrack-boundedsearch. J. ACM, 32(4):755{761, 1985.[Garey and Johnson, 1979] Michael R. Garey and David S. Johnson. Com-puters and Intractability, A guide to the Theory of NP-completeness. Free-man Press, 1979.[Goldberg, 1979] A. Goldberg. Average case complexity of the satis�abilityproblem. In Fourth Workshop on Automated Deduction, pages 1{6, 1979.[Kirousis and Papadimitriou, 1988] L. M. Kirousis and C. H. Papadimitriou.The complexity of recognizing polyhedral scenes. Journal of Computer andSystems Science, 37(1):14{38, 1988.[Mackworth, 1977] A. K. Mackworth. Consistency in networks of relations.Arti�cial Intelligence, 8(1):99{181, 1977.[Mohr and Henderson, 1986] R. Mohr and T. Henderson. Arc and path con-sistency revisited. Arti�cial Intelligence, 28(2):225{233, 1986.[Pearl and Korf, 1987] Judea Pearl and Richard Korf. Search techniques.Ann. Rev. Comput. Sci., 2:451{467, 1987.[Purdom, 1983] Paul Walton Purdom. Search rearrangement backtrackingand polynomial average time. Arti�cial Intelligence, 21:117{133, 1983.[Waltz, 1975] David Waltz. Understanding line drawings of scenes with shad-ows. In Patrick H. Winston, editor, The Psychology of Computer Vision.McGraw-Hill, 1975. 24

