Lecture Notes for 6.824, Artificial Intelligence
©1992 David McAllester, all rights reserved Rev. October, 1992

Constraint Satisfaction Search

For the past thirty five years artificial intelligence researchers have been
studying heuristic search techniques. People writing Al programs have had
strong intuitions about what it means for a program to search. Intuitively
they classified programs according to the kinds of search performed. Certain
programs, such as matrix multiplication routines, did no search whatsoever.
Other programs searched for solutions to a fixed finite set of constraints. Oth-
ers searched for paths in graphs, or for strategies in game trees, or for proofs
in formal inference systems. The intuitive classification of search programs
seems to roughly correspond to complexity classes. The no-search proce-
dures correspond to the complexity class P. Constraint satisfaction search
procedures correspond to the complexity class NP, graph search and game
search procedures to the class PSPACE, and search in theorem proving to
the class of recursively enumerable functions. This chapter discusses heuris-
tic techniques for solving search problems of the simplest type — constraint
satisfaction problems. Heuristic techniques for other forms of search are dis-
cussed in later chapters.

1 Constraint Satisfaction Problems

Intuitively, a search problem involves finding an object that satisfies a given
specification. A classic example is the eight queens problem. This is the
problem of placing eight queens on a chess board so that no two queens attack
each other, i.e., so that no single row, column, or diagonal contains more than
one queen. This problem can be solved (inefficiently) by a “generate and test”
program that first generates a list of all the possible ways eight queens can be
placed a chess board and then tests each possibility to see if it is a solution
to the problem.

Another example is the SAT problem. This is the problem of determining



whether a set of Boolean clauses is satisfiable. A Boolean variable is a variable
that can have one of two values, True or False. We often use the letters P
and @) to represent Boolean variables. A literal is either a Boolean variable
of the negation of a Boolean variable. A Boolean clause is a disjunction of
Boolean literals. For example, =P V () is a clause containing the two literals
—P and ). The clause =P V () is satisfied if either P is False or @) is
True. A SAT problem consists of a set of Boolean clauses. The problem is
to determine if there exists an interpretation of the Boolean variables that
satisfies all of the given clauses. This is a search problem — it can be solved
by a generate and test search process. One generates all possible assignments
of truth values to Boolean variables and tests each assignment to see if it
satisfies every clause.

Search can be very expensive, i.e., it can require a large amount of compu-
tation time. Note that if there are n Boolean variables in a SAT problem
then there are 2" possible assignments of truth values to these variables.
Searching all these truth assignments will take time proportional to 2" —
the time taken by a simple search program is exponential in the number of
Boolean variables. It turns out that all the known algorithms for determin-
ing Boolean satisfiability require exponential time. Intuitively, this means
that every known technique for solving SAT problems essentially searches
the space of truth assignments.

To develop a more refined understanding of search problems some more pre-
cise terminology will be useful. First, we can give a formal definition of what
we mean by procedures that do not search. Formally a “no-search procedure”
is one that only requires polynomial time. An procedure is said to require
polynomial time if there exists a polynomial f(n) (like en® + bn?) such that,
for inputs of size n, the algorithm always terminates in less than f(n) time.
Note that a generate and test procedure for solving SAT is not polynomial
time — it requires time proportional to 2" where n is the number of the
Boolean variables and the function 2" grows faster than any polynomial. A
procedure that terminates in time less than 27" for some polynomial f(n)
is said to execute in exponential time. By definition, search procedures re-
quire at least exponential time. It is important to note that this classification
of procedures into search and no-search procedures concerns the worst case
time. If a procedure terminates in linear time on 99.99% of all inputs, but



requires exponential time on the remaining .01%, it is considered to be a
search procedure.

It would be a mistake to assume that a problem, like SAT, is really in-
tractable in practice just because all known algorithms for solving the prob-
lem take exponential time in the worst case. Many such problems only take
polynomial expected time. In fact, for many natural probability distributions
the SAT problem only requires polynomial average time [Goldberg, 1979],
[Purdom, 1983]. Other problems that require search, such as finding good
moves in a chess game, can be solved in practice by using the most efficient
known search procedures combined with powerful high speed computation.
The need to search is not fatal! This chapter, and those that follow, discuss
general purpose techniques for improving the efficiency of search procedures.

There is a significant body of Al literature on constraint satisfaction prob-
lems; a survey can be found in [Pearl and Korf, 1987]. To more precisely
define the notion of a constraint satisfaction search problem we first define
the concept of a domain variable.

Definition: A domain variable is a pair <z, D> where x is a
variable (a symbol) and D is a finite set called the domain of the
variable.

By abuse of notation we use the letters x, y and z to denote domain variables.
It should be remembered that a domain variable x is actually a pair of a
token and a set (a domain). In the eight queens problem one can define
eight domain variables ()1, - - -, (Jg, one variable for each column of the chess
board. The variable (); represents the position of the :’th queen, i.e., (); will
represent the row on which the queen of the 7’th column is to be placed. The
queen on the :’th column can be placed in any one of rows 1 through 8 so
the domain of @); is the set of numbers {1,2,---,8}.

Definition: A wvariable interpretation for a given set of domain
variables is a mapping p from the variables to values such that
p(x) is always an element of the domain of the variable x.



A constraint satisfaction problem consists of a set of domain variables and
a ste of constraints on those variables. In the 8-queens problem there is one
constraint for each pair of variables — the interpretation of (); and (); must
be such that the two queens do not attack. In a SAT problem the variables
are Boolean and each clause is a constraint on the variables contained in that
clause. A constraint involving the domain variables xy, x5, - --, z,, will often
be written as ®(xq, xq, -+, @,).

A constraint can be represented by a predicate and domain variables. The
constraint that the queen (); does not attack the queen (); can be repre-
sented as the triple <—=Attacks;;, ()1, (J2> where -Attacks; ; is the predi-
cate which is true of two numbers n and m if a queen on row 7 and column n
does not attack a queen on row j and column m. In general, a constraint can
be represented as a tuple <P, x1, x2, ---, x> where P is a predicate of k
arguments. This constraint holds under a particular variable interpretation
if the predicate P is true of the values of the variables x1, ,x9, -+, .
Formally, we will assume that the predicates used in representing constraints
are defined by an explicit table which states, for each possible tuple of ar-
gument values, whether the predicate is true or false on those arguments.
In practice the predicate is usually specified with a computer program such
as a Lisp procedure. Note that individual constraints usually only involve
a small subset of the variables involved in the overall constraint satisfaction
problem.

Definition: Let Dy, ---, Dy, be finite sets (variable domains). A
tabular predicate on Dy, ---, Dy is a k-dimensional table which
specifies a truth value for each tuple <vy, ---, vp> where v; is an
element of D;.

Definition: A constraint is a tuple <P, x1, ---, 23> where each
x; 18 a domain variable and P is a tabular predicate on the do-
mains of xq, -+, x}.

Definition: A variable interpretation p satisfies a constraint
<P, x1, ---, xp> if the tabular predicate P is true of the tuple

<plar), ==+, plar)>.
Definition: A constraint satisfaction problem (CSP) is a set
of constraints. A variable interpretation satisfies a CSP, and is

4



called a solution of that CSP, if it satisfies each constraint in the

CSP.

It is possible to show that the problems of determining if a given CSP has a
solution has the technical property of being NP complete.!? This is strong
evidence that any procedure for solving an arbitrary CSP must search (must
take exponential time in the worst case). However, as we shall see in the
next section, some search procedures are more efficient than others.

2 Value Propagation

Consider a constraint satisfaction problem involving domain variables z, - - -, x,,.
To find a solution to the constraint satisfaction problem one can search the
set of possible assignments of values to variables. The set of possible variable
assignments can be organized into a tree. At the root of the tree no com-
mitment has been made about the values of the variables. Each branch from
the root of the tree corresponds to a particular value for the first variable
— if there are five possible values for x; then there are five branches from
the root node. The second level of branching in the tree corresponds to the
possible values of x5 and so on. The leaves of the tree correspond to complete
variable assignments.

Given values for some, but not all, variables it may be possible to use in-
ference techniques to determine that no solution is consistent with the given
values. In other words, inference can be used to do more effective consistency
testing at intermediate nodes of the search tree [Mackworth, 1977], [Freuder,
1985]. To formalize the notion of inference we first formalize the information

'For a thorough presentation of NP completeness see [Garey and Johnson, 1979].

?Because 3-SAT is NP-complete, constraint satisfaction is NP-complete even in the
case where each domain variable has at most two values and each constraint involves at
most three variables. If every constraint involves only two variables and every variable has
a domain of just two values then the satisfiability problem is solvable in polynomial time
(by reduction to 2-SAT). If every constraint involves two variables but variables can have
three values then determining the existence of a solution is NP-complete (be reduction of
3-SAT where clauses are mapped to variables.)



that is present at an intermediate node of the search tree. Each intermediate
node of the search tree represents a partial assignment of values to variables.

Definition: A partial assignment is a set of equations of the
form {1 = vy, -+, 2x = v} where v; is an element of the domain
of ;. A complete assignment for a given set of constraints is a
partial assignment that contains an assignment for every variable
appearing in the constraints. If p is a partial assignment, then a
completion of p is a complete assignment that contains p.

For technical reasons it is convenient to allow partial assignments to contain
more than one value for the same variable. However, an assignment that
contains more than one value for the same variable will be called inconsistent.

Definition: A partial assignment will be called inconsistent if
it contains more than one value for the same variable. A partial
assignment which is not inconsistent will be called consistent.

A consistent complete assignment is just a representation for a variable in-
terpretation as defined in the previous section. If p is a partial assignment
that represents the information present at an internal node of the search tree,
then a consistent completion of p represents the information that is present
at some leaf node under that internal node.

Any constraint satisfaction problem can be viewed a “network” of variables
and constraints. In this network each variable is connected to the constraints
that involve it, and each constraint is connected to the variables it involves.
A network representation for a constraint satisfaction problem is shown in
figure 1. In figure 1 variables are represented by circles and constraints are
represented by boxes. Figure 1 represents both a constraint network and a
partial assignment of values to variables. A variable that has not yet been
assigned a value is labeled with “777.

Given a partial assignment to the variables in a constraint network one can
often infer values that are “forced” for other variables. For example, consider



Figure 1: A Constraint Network



a SAT problem that contains the clause =P V =) V W and consider a par-
tial assignment that assigns both P and () False but provides no assignment
for W. Any extension of this partial assignment to a complete solution must
assign W the value True. In this case one can extend the assignment so that
W is assigned the value True without fear of omitting any solutions. This
kind of inference appears to be essential to performing constraint satisfaction
search efficiently.

Definition: Let p be a partial assignment and let ® be a con-
straint. We say p and ® entail a (new) equation @ = v if the
equation x = v is contained in every consistent completion of p
that satisfies ®.

The inference of new equations naturally leads to a propagation process in
which the inference of one equation can justify the inference of a second
equation and so on. For example, if we have the Boolean constraints P, — P,
Py, — P, -+ Py — Py, and we have a partial assignment in which P; is
assigned True, then we can infer that P, must be assigned True, and hence
P; must be assigned True and so on up to P,. When searching for a solution
to a constraint satisfaction problem the partial assignments at each node of
the search tree can be closed under constraint propagation inference of this

type.

Definition: Let C be a set of constraints and let p be a partial
assignment. We say that an equation y = v is derivable by value
propagation from p and C there is a single constraint ® in C such
that p and ® entail y = v.

Definition: The value propagation closure of a partial assign-
ment p with respect to a constraint set C is the least partial
assignment p’ such that every equation derivable by value prop-
agation from p’ and C is already contained in p'.

Value propagation adds labels that can be derived from existing labels and
a single constraint. For example, in Figure 1 value propagation may be be



able to derive an equation of the form w3 = vz from the equations z; = vy,
Xy = vy, and the constraint 1. Given an equation of the form x5 = vs, one
may then be able to use the equations x3 = vs, x4 = v4, and the constraint
(5 to derive a new equation of the form x5 = vs. This process continues until
no new equations can be derived (or until an inconsistency is discovered as

described below).

It is possible for value propagation to discover an inconsistency. For example,
suppose that the constraint set C contains the constraints * = ¢ — y = b
and * = @ — y = ¢ where b and ¢ are distinct values. Now suppose that
p contains the equation ¥ = a. In this case the value propagation closure
of p contains both the equation y = b and the equation y = ¢ and hence is
inconsistent. In practice value propagation can be terminated whenever an
inconsistency is discovered.

Each variable in a CSP can be represented by a data structure that contains
a field for the value, if any, assigned to that variable. Each variable data
structure can also contain a list of all of the constraints in the network that
mention that variable. Given this representation of variables, and the ob-
vious representation of constraints, the following procedure can be used to
compute the value propagation closure of a partial assignment. Actually, the
procedure only returns the closure if the closure is consistent. If the closure
is inconsistent then the procedure returns the token “inconsistent”.

Value Propagation Procedure:

1. Initialize Queue to be a list of all the constraints in the network.

2. If the current partial assignment is inconsistent the terminate and re-
turn “inconsistent”.

3. If Queue is empty then return the current partial assignment.

4. Remove a constraint ® from QUEUE. For each equation that can be
derived from ¢ and existing equations, update the variable data struc-
tures to incorporate the new equations.

5. For each updated variable in step 4 (for each variable where the derived



equation was not already present) add all constraints involving that
variable to the list QUEUE.

6. Goto 2.

It there is a bound on the size of variable domains and a bound on the
number of variables in a single constraint, for example every variable ranges
over at most three values and every constraint involves at most four variables,
then the above procedure runs to completion in time linear in the number
of constraints in the network. To see this note that, given upper bounds
on the domain size of variables and the number of variables in a constraint,
there exists an upper bound on the amount of time taken by step 4 of the
procedure. Given that an individual execution of step 4 takes constant time,
it is not difficult to verify that the time taken by the overall procedure is
proportional to the total number of times a constraint is added to the queue.
But the upper bound on the number of variables in a constraint places an
upper bound on the number of times a given constraint can be added to the
queue. Thus the total number of times a constraint is added to the queue is
bounded by a constant times the number of constraints.

Constraint propagation is an inference process — it infers new equations from
constraints and existing equations. Furthermore, constraint propagation is
very efficient — for bounded constraint size it can be run to completion in
time linear in the number of constraints. Unfortunately, constraint propa-
gation is not complete. To understand completeness we need the following
definition.

Definition: Let p be a partial assignment and let C be a con-
straint set. We say that p and C entail an equation = = v if every
consistent completion of p that satisfies C contains @ = v.

Constraint propagation is incomplete. This means that it is possible that p
and C entail x = v but that the value propagation closure of p does not con-
tain © = v. For example, let C consist of the two constraints + = a — y = ¢
and @ = ¢ — y = d. Suppose that the domain of z is the set {a,b} and that
the domain of y is the set {¢,d}. In this case, any variable interpretation

10



that satisfies these two constraints must interpret « as b, because if x is inter-
preted as a then any particular interpretation of y violates one of the given
constraints. However, if no equations have yet been given, then constraint
propagation will not derive any new equations because no single constraint
entails a new equation. Thus, although = = b is entailed by the constraints,
constraint propagation can not derive it.

There is a good reason for the incompleteness of constraint propagation. For
bounded constraint size, constraint propagation terminates in linear time in
the size of the constraint network. However, even for bounded constraint size,
determining the existence of a solution to a constraint satisfaction problem is
NP-complete. If constraint propagation were complete then it is not difficult
to show that we would have a polynomial time procedure for an NP-complete
problem. Assuming P£NP, there can not exist any such procedure.

Even with value propagation, solving a CSP requires search. The search can
be done in such a way that it forms a tree where each branch in the tree
corresponds to the possible values of some variable. Each node in the tree
contains a partial assignment. Value propagation is used to close the partial
assignment present at each node. Because many values can be assigned by
value propagation rather than by branching, the search tree based on value
propagation is usually much smaller than than the naive search tree which
explores all possible assignments.

3 Arc Consistency

There are various polynomial time (and hence semantically incomplete) con-
straint propagation inference procedures for CSPs. The procedures vary in
cost and strength — there are cheap weak procedures and expensive strong
procedures. Strong procedures draw more conclusions but take more time
to do it. Weak procedures draw fewer conclusion but find those conclu-
sions more quickly. The value propagation procedure defined in the previous
section is cheap and weak. In this section we define a stronger but more ex-
pensive procedure — arc consistency propagation. Arc consistency involves
maintaining more information than just a simple partial assignment. In par-

11



ticular, arc consistency keeps track of values that have been ruled out as well
as values that have been determined.

Definition: A disequation is a negation of an equation, e.g., an
expression of the form = # v. A CSP knowledge state is a set
of equations and disequations. A CSP knowledge state is called
inconsistent if it either contains two different equations for the
same variable or if it contains both y = v and y # v for some
variable y and value v.

I will use the symbol ¥ to denote a CSP knowledge state.

Definition: A completion of a CSP knowledge state ¥ is a vari-
able interpretation that satisfies the equations and disequations

in X.

Definition: A CSP knowledge state ¥ and a constraint ® entail
an equation z = v if every completion of ¥ that satisfies ® assigns
z the value v. ¥ and ® entail a disequation = # v if every
completion of ¥ that satisfies ® assigns = some value other than
v.

Definition: A knowledge state ¥ entails an equation y = v by
exhaustion of alternatives it for every value w other than v in
the domain of y the knowledge state > contains the disequation

y # w.

Definition: Let C be a set of constraints and let ¥ be a CSP
knowledge state. We define the Arc consistency closure of ¥ with
respect to constraint set C to be the least CSP knowledge state ¥’

of equations and disequations satisfying the following conditions.?

3The term “arc consistency” comes from the case where every constraint involves only
two variables. In this case the constraint network defines a graph where the nodes are
variables and there 1s an arc between any two nodes that are involved in the same con-
straint. Arc consistency is the property that the CSP knowledge state is consistent with
each individual arc in the graph — for each individual arc there exists a completion of the
knowledge state that satisfies that arc.

12



e Y/ contains Y.

o If X' together with some single constraint in C entail a dise-
quation x # v, then ¥/ also contains the disequation z # v.

o If ¥ entails y = v by exhaustion of alternatives, then ¥’
contains y = v.

Arc consistency is strictly stronger than value propagation. Although the
specification of when one can derive an equation appears weaker — one can
only derive an equation when all other values have been ruled out — if a
new value does semantically follows from the knowledge state and a single
constraint then all other values will be ruled out and the new remaining
value will be derived. Actually, arc consistency can be implemented as an
algorithm that only derives disequations — equations are implicitly present
when all but one value has been eliminated. To see that arc consistency is in
fact stronger than value propagation one can simply examine the 8-queens
problem. In the 8-queens problem no single constraint between two queens
can force a value of one of the queens and so value propagation can never
derive a new equation. However it is easy to construct a case where arc
consistency derives new values.

The procedure for value propagation given above can be modified to per-
form arc consistency propagation. An analysis similar to that given above
can be used to show that if an upper bound is placed on the size of the
variable domains, and an upper bound is placed on the number of variables
in each constraint, then the procedure runs in time linear in the number of
constraints. However, arc consistency propagation is more expensive than
value propagation. To see this we can include the number of domain values
as an explicit parameter in the analysis of the running time. For now we
assume that each constraint involves at most two variables. A CSP in which
every constraint involves at most two variables is often called a binary CSP.
Let e be the number of constraints in a binary CSP (e is the number of edges
in the graph representation of the binary CSP). Let d be an upper bound
on the number of values in the domain of each variable. The value propa-
gation closure of a partial assignment can be computed in time proportional
to de. The best known algorithm for computing the arc consistency closure
of a CSP knowledge state has a worst case running time proportional to d?e

13



[Mohr and Henderson, 1986]. Note that for a bounded value of d both of
these running times are linear in e (the number of constraints). However, for
nontrivial values of d value propagation is considerably faster (but weaker)
than arc consistency propagation.

4 Generalized Forward Checking (GFC)

A third propagation algorithm, known as generalized forward checking (GFC),
is often better in solving CSPs than either value propagation or arc consis-
tency. GFC is intermediate in strength between value propagation and arc
consistency.

Definition: Let C be a set of constraints and let ¥ be a CSP
knowledge state. We define the generalized forward checking clo-
sure of ¥ with respect to constraint set C to be the least set ¥/ of

equations and disequations satisfying the following conditions.*

1. ¥’ contains Y.

2. If the equations in ¥’ (ignoring the disequations) together
with a single constraint in C entail a disequation @ # v, then
¥ also contains the disequation x # v.

3. If X entails y = v by exhaustion of alternatives, then ¥’
contains y = v.

Condition 2 in the above definition is weaker than the corresponding con-
dition in the definition of arc consistency. Arc consistency is based on the

*The term “generalized forward checking” comes from viewing this procedure as a
generalization of a much simpler technique called “forward checking”. Forward checking
is a consistency test rather than a propagation procedure. It simply checks that for
each unassigned variable y, and for each constraint ® involving y, there exists a value in
the domain y which is consistent with ® and the existing equations for other variables
in the constraint ®. Generalized forward checking converts this consistency test into a
propagation procedure which generates new equations.

14



derivation of disequations from disequations. Disequations carry more in-
formation than equations — disequations can specify partial information
about a variable even when no equation is known. GFC keeps track of dis-
equations, but only derives disequations from the known equations. GFC is
strictly stronger than value propagation. If an equation follows from other
equations and a single constraint then GFC will derive that equation. Unlike
value propagation, GFC can derive new equations in the 8-queens problem.
There are also examples that show that arc consistency is strictly stronger
than GFC, although these examples are somewhat more difficult to find (see
the exercises at the end of this section).

Recall that a binary CSP is one in which each constraint involves at most
two variables. In a binary CSP it is possible to compute the GFC closure
of a knowledge state in de time where d is an upper bound on the size of
the domain of each variable and e is the number of constraints. This is
the same bound as for value propagation. Since GFC is considerably more
powerful than value propagation, and not significantly more costly, GFC is
generally preferable to value propagation.® For most problems GFC is nearly
as powerful as arc consistency, and its running time of de is considerably
better than arc consistency’s time of dZe.

5 Restricted GFC

Consider nonbinary CSPs, i.e., ones in which the number of variables per
constraint can be larger than two. Let e be the number of constraints, d an
upper bound on the number of values in variable domains, and « (for arity)
be an upper bound on the number of variables in each constraint. Value
propagation and GFC can be implemented to run in time d*~'e while the
best known algorithm for arc consistency can be run in time proportional to

®We are assuming that constraints are represented by tables. Some constraints, such as
numerical constraints, are not represented as tables. For numerical constraints the domain
sizes are either infinite or finite but very large. For numerical constraints value propagation
is preferable to GFC. However, numerical constraints are usually best handled with bounds
propagation rather than any of techniques described here. Bounds propagation is described
in the chapter on nondeterministic lisp.

15



d*e. When a is greater than two all of these procedures are nonlinear in d. It
is possible to construct another inference procedure which is linear in d even
for a greater than two. This new procedure will be called restricted GI'C.

Definition: A constraint ® will be called active relative to a
knowledge state ¥ if all but one of the variables in ® have been
assigned a value in X.

Definition: Let C be a set of constraints and let ¥ be a CSP
knowledge state. We define the Restricted GFC closure of ¥ with
respect to constraint set C to be the least set X/ of equations and
disequations satistying the following conditions.

e Y/ contains Y.

e If the equations in ¥’ (ignoring the disequations) together
with some single active constraint in C entail a disequation
x # v, then ¥/ also contains the disequation = # v.

o If ¥ entails y = v by exhaustion of alternatives, then ¥’
contains y = v.

For binary CSPs restricted GFC is essentially identical to unrestricted GFC.°
Restricted GFC can be implemented in time proportional to (d 4 a)e. Note
that in the case where a is greater than two this is a considerable improve-
ment over d*"'e, the running time of GFC. This improvement in running
time is gained at the cost of a loss of some inferential power. Restricted
GFC is strictly weaker than GFC and hence strictly weaker than arc con-
sistency. Restricted GFC is incomparable with value propagation — there
are inferences that will be made by value propagation that will not be made
by restricted GFC and, more commonly, inferences made by restricted GFC
that will not be made by value propagation.

5The one exception is the case where a constraint can be used to rule out a value even
in an empty knowledge state — this does not generally arise in practice.

16



6 Nonlinear Propagation Algorithms

All of the propagation algorithms discussed above run in time linear in
the number of constraints (assuming bounded variable domain size and a
bounded number of variables per constraint). There are other procedures
which are inferentially more powerful but which require superlinear time. A
hierarchy of propagation procedures based on the notion of k-consistency is
defined by Mackworth [Mackworth, 1977]. The larger the value of k the more
powerful, and the more costly, the propagation procedure. All of the prop-
agation procedures run in polynomial time but the order of the polynomial
increases with k.

Other hierarchies of propagation procedures are possible. Let (' be any prop-
agation algorithm (such as value propagation or GFC). If ¥ is a knowledge
state then we let C'(X) is the knowledge state that results from applying the
propagation algorithm (' to the knowledge state Y. Recall that all the prop-
agation procedures discussed in this chapter run in polynomial time and are
semantically incomplete. To find a solution to a CSP one must still search.
Let X be the knowledge state at a node in the search tree. Since the search
might fail, it must be possible that extending > with an equation y = v leads
to an inconsistent state, i.e., that C(XU{y = v})is inconsistent. At the node
with knowledge state ¥ we could “look ahead” in the search tree and see that
y = v leads to a contradiction. This should allow one to add the disequation
y # v to the knowledge state at that node. We can define a stronger prop-
agation procedure that infers all disequations that can be inferred by this
kind of lookahead. First we define the general notion of a closure operator
on knowledge states. Each constraint propagation algorithm defines such a
closure operator.

Definition: A closure operator on knowledge states is a mapping
C form knowledge states to knowledge states such that C(X)
contains ¥, C'(C(X)) equals C'(X) and if ¥ is a subset of I' then
C(X) is a subset of C'(T').

Definition: Given a closure operator (' on knowledge states we
define L(C') to be the closure operator such that L(C)(X) is the

least set ¥/ satisfying the following conditions.

17



e Y/ contains Y.

e Y/ is closed under C| i.e., ¥’ contains C'(X').

o If C(¥'U{y =wv})is inconsistent then ¥’ contains the dise-
quation y # v.

o If ¥ entails y = v by exhaustion of alternatives, then ¥’
contains y = v.

The closure operator L(C') adds a level of “look ahead” to the closure operator
C. If C runs in amortized time T" then L(C') can be made to run in amortized
time ndl where n is the number of variables and d is an upper bound on
variable domain size. So if C' is polynomial then so is L(C'), but the order of
L(C) is larger than the order of C'. We define L*(C) to be L(L(--- L(C)--+))
with & applications of L. L*(C) is the k-fold look ahead operator, i.e., the
operator which looks ahead £ steps in the search tree. As k increases the k
level look ahead propagator becomes more powerful. However, the cost of
running the propagator also increases.

To the author’s knowledge, nonlinear propagation procedures have never
been shown to be useful in solving CSPs efficiently. For most applications
restricted GFC appears to be the most effective propagation procedure.

7 Applications to Vision (Line Labeling)

Constraint propagation was introduced by Waltz to help in the visual inter-
pretation of line drawings [Waltz, 1975]. Consider the line drawing shown
in figure 2. This line drawing represents a two dimensional projection of
a set of three dimensional objects. Waltz considered making the following
assumptions.

e The three dimensional objects are polyhedra, i.e., objects with flat
faces.

e Fach line in the drawing represents an edge of one of the polyhedra (we
will ignore shadows, cracks, and changes of color).

18



Figure 2: A simple line drawing

Figure 3: The four vertex types

Given a particular three dimensional interpretation of the image each line
can be given one of four labels. If the line represents a convex edge of a
polyhedra, and the two faces of the polyhedra which meet at the line are
visible in the image, the the line is labeled +. If it represents a concave
edge, and the two meeting planes are visible, then it is labeled —. If the line
represents an edge such that only one of the two meeting faces is visible in
the image then the line is labeled with an arrow pointing along the line. The
arrow 1is oriented so that the visible face is clockwise from the head of the
arrow. The drawing in figure 2 has been labeled according to the natural
physical interpretation.

19



Figure 4: The constraint imposed by each vertex type

Waltz also made an additional assumption that the objects are in general
position relative to the viewer, i.e., there are no coincidental alignments of
vertices or edges of different objects, although objects are allowed to rest on
one another in a face-to-face manner. Under the general position assumption
we need only consider line drawings in which at most three lines meet at any
give vertex. We can classify all vertices into three kinds, Ls, arrows, Forks
and Ts as shown in figure 3. Furthermore, each kind of vertex has a limited
number of possible three dimensional labelings. The allowed labelings for
each kind of vertex is shown in figure 4.

The assumptions Waltz made about the physical objects and their projection
onto the image allowed him to convert the line drawing into a constraint
satisfaction problem. The line drawing can be viewed as a CSP in which the
variables are the lines of the drawing. Each variable (line) has one of four
possible values, +, —, or an arrow in one of two possible directions. Figure 4
gives a way of interpreting each vertex in a line drawing as a constraint on
the labels assigned to the lines meeting at that vertex. We will also assume
that the lines on the periphery of the drawing are labeled with arrows in a
clockwise direction around the image (the physical objects occur only inside
the periphery of the image).

Figure 5 shows the result of value propagation closure on the initial partial
assignment of one image. In this case, and for most line drawings, value
propagation is complete, it derives all labels that are implied by the vertex

20



Figure 5: An example of propagation

21



constraints. In general, however, value propagation, and even arc consistency,
is not complete for line labeling CSPs. In fact it has been shown that the
problem of determining the existence of a solution to a line labeling CSP
is NP-complete [Kirousis and Papadimitriou, 1988]. So in general finding
consistent line labelings requires exponential search.

& Problems

1. Give an partial placement of queens on a 6x6 chessboard where GFC
derives an equation that value propagation fails to derive. Place an x on
each square ruled out by disequations derivable by GFC.

2. Give a partial placement of queens on a 6x6 chessboard where arc consis-
tency propagation derives an equation not derived by GFC. Draw the con-
figuration twice. In one drawing show all the information derived by GFC
including squares ruled out and derived placements. In the other drawing
show all the information derived by arc consistency propagation.

3. If all solutions to a constraint satisfaction problem assign the variable X
the value x then we say that X = x is entailed by the constraints. A constraint
propagation algorithm is called complete if it can derive all assignments that
follow from the constraints. This is the same notion of completeness that is
used for inference rules in general — inference rules are complete if, given
any set of premises, they can be used to derive all assertions semantically
entialed by the premises. Give an example of a Waltz line drawing where
value propagation is incomplete, i.e., there is an assignment that is entailed
by the constraints but value propagation will not derive that assignment.

4. Give an example of a Waltz line drawing where arc consistency propaga-
tion is incomplete. (This is difficult.)

5. Give a proof that in Boolean CSPs, i.e., in CSPs in which every variable
has only two possible values, the procedures value propagation, arc consis-
tency propagation, and GFC are all equivalent.

6. Show that arc consistency can be run on SAT problems in linear time

22



(time proportional to the sum over all clauses of the number of literals in the
clause). Arc consistency on SAT problems is more commonly known as unit
resolution.

7. Give a method of translating an arbitrary CSP into a SAT problem such
that the SAT problem is satisfiable if and only if the CSP has a solution.

8. Give a reduction from CSPs to SAT problems as in 7 which has the
additional property that running arc consistency on the SAT problem cor-
responds to running GFC on the original CSP. More formally, running arc
consistency on the SAT problem should generate an inconsistency if and
only if running GFC on the original CSP generates an inconsistency. Give a
proof that your reduction satisfies these criterion.

9. Repeat problem 8 but give a reduction where running arc consistency
on the SAT problem corresponds to running arc consistency on the original

CSP.

10. Use the results from problems 6 and 9 to show that in CSPs where
variable domains have no more than d elements, and constraints involve
no more than a variables, arc consistency closure can be computed in time
proportional to d*e where ¢ is the number of constraints.

11. A Horn clause is a clause with at most one positive literal. Show that arc
consistency is complete for Horn clauses, i.e., if arc consistency propagation
fails to derive an inconsistency then the given set of Horn clauses is satisfiable.
Combined with the results from problem 6, this shows that Horn clause
satisfiability is linear time decidable. A different proof of this fact can be
found in [Downing and Gallier, 1984].

23



References

[Downing and Gallier, 1984] William Downing and Jean H. Gallier. Linear
time algorithms for testing the satisfiability of propositional horn formulae.
Journal of Logic Programming, 1(3):267-284, 1984.

[Freuder, 1985] E. C. Freuder. A sufficient condition for backtrack-bounded
search. J. ACM, 32(4):755-761, 1985.

[Garey and Johnson, 1979] Michael R. Garey and David S. Johnson. Com-
puters and Intractability, A guide to the Theory of NP-completeness. Free-
man Press, 1979.

[Goldberg, 1979] A. Goldberg. Average case complexity of the satisfiability
problem. In Fourth Workshop on Automated Deduction, pages 1-6, 1979.

[Kirousis and Papadimitriou, 1988] L. M. Kirousis and C. H. Papadimitriou.
The complexity of recognizing polyhedral scenes. Journal of Computer and

Systems Science, 37(1):14-38, 1988.

[Mackworth, 1977] A. K. Mackworth. Consistency in networks of relations.
Artificial Intelligence, 8(1):99-181, 1977.

[Mohr and Henderson, 1986] R. Mohr and T. Henderson. Arc and path con-
sistency revisited. Artificial Intelligence, 28(2):225-233, 1986.

[Pearl and Korf, 1987] Judea Pearl and Richard Korf. Search techniques.
Ann. Rev. Comput. Sci., 2:451-467, 1987.

[Purdom, 1983] Paul Walton Purdom. Search rearrangement backtracking
and polynomial average time. Artificial Intelligence, 21:117-133, 1983.

[Waltz, 1975] David Waltz. Understanding line drawings of scenes with shad-
ows. In Patrick H. Winston, editor, The Psychology of Computer Vision.
McGraw-Hill, 1975.

24



