
An Empirical Study on a Locality Based
Heuristic in Multi-Agent Constraint Satisfaction

Dev Minotra∗ Jiming Liu+∗(corresponding)

∗School of Computer Science, University of Windsor
+Department of Computer Science, Hong Kong Baptist University

Abstract— Previous work on multi-agent oriented constraint-
satisfaction [8] shows that ERA is competitively suitable in solving
the n-queen problem, and is capable of providing approximate
solutions to different types of CSPs in about two or three time
steps. Challenges remain in developing more efficient ERA based
systems for solving CSPs beyond just approximation. In this
paper, a modified ERA algorithm, involving a locality based
heuristic and a random tie-breaking method, is proposed and
tested. Experimental results have shown significant performance
improvements, indicating some of the key characteristics and
strengths of ERA as a multi-agent solution search process.

I. INTRODUCTION

Graph-Coloring Problems (GCPs) are constraint-satisfaction
problems that involve assigning values to variables that are
represented as nodes in a graph, G(V,E), where V is the set
of vertices that represent variables and E represents the set
of edges. The variables are bounded by constraints and these
constraints are represented by the edges in the graph where
no two nodes connected by an edge can share the same color.
GCPs are NP-complete [11].

ERA is an Autonomy Oriented Computing method [5]
that is designed to solve constraint-satisfaction problems in
a distributed environment [8], [6]. In ERA, the variables of
a CSP are represented by agents. An agent can be assigned
to a single variable or a group of variables. Each agent is
composed of a set of reactive behaviors, and an ability to
observe the states of its neighbors. The search process in
ERA consists of the asynchronous movements of distributed
agents within each clock cycle. These movements correspond
to the intermediate variable assignments by the agents based
on their local observation and evaluation of variable conflicts.
An elaborate explanation of the algorithm can be found in [8].
Although ERA is multi-agent oriented, it can also be used as
a variation of local-search to solve centralized CSPs [8]. The
original ERA algorithm is capable of obtaining approximate
(but not optimal) solutions to GCPs in only two to three
time steps [8]. Here, one time step corresponds to one clock
cycle, in which distributed agents can make asynchronous
movements based on their evaluations and behaviors.

It should be pointed out that in our present work, the eval-
uations and asynchronous movements of agents are simulated
using a sequential implementation, in which agents within each
clock cycle will behave in an independent manner.

Autonomy Oriented Computing (AOC) is the area of study
that explicitly explores the role of self-organization in multi-
entity systems in an attempt to solve computational problems
or modeling complex systems behavior [5]. ERA is the exam-
ple representing how AOC based approaches formulate and
tackle a CSP, and furthermore the heuristics being studied
and presented in this paper illustrate how the local behaviors
of entities impact the emergent global performance of CSP
solving as a self-organizing process.

Specifically, the goal of this work is to provide and validate
a modified version of ERA in solving GCPs. We will exper-
imentally show how a degree heuristic integrated with other
modifications can significantly reduce the number of time steps
in the search process, and compare the performance with that
of an agent-compromise method [9].

A. Related Work

Tang et al [9] have reported a GCP solving method that
incorporates the behavior of compromise-making to address
the local-minima problem in the search process of the orig-
inal ERA method. Their agent-compromise method has led
to a reduced number of agent movements. In our present
work, we will adopt a different performance measurement,
i.e., the number of time steps as opposed to the number of
movements. This is because a time step can be composed of
several movements, and these movements will take place in
an asynchronous manner. When we consider the application of
the ERA method in a distributed application environment such
as a sensor network, it would be more relevant to evaluate the
performance in terms of the total number of time steps required
in solving a CSP.

Yokoo et al [15] have proposed another approach to
distributed CSPs with the methods of asynchronous weak-
commitment search and asynchronous backtracking. Their ap-
proach has been successful in solving CSPs in such distributed
environments as telecommunication networks [3], [16]. The
drawback of the asynchronous weak-commitment search is
that it abandons partial solutions in its search process, when
variable combinations extending the partial solution do not
lead to a solution [8]. On the other hand, ERA allows
variables to be modified simultaneously. Depending on the
local behavior of individual agents, a partial solution keeps
getting self-organized in a stable and spontaneous manner
as to be illustrated in this paper. In addition, ERA differs

2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology

0-7695-3027-3/07 $25.00 © 2007 IEEE
DOI 10.1109/IAT.2007.83

513

2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology

0-7695-3027-3/07 $25.00 © 2007 IEEE
DOI 10.1109/IAT.2007.83

511

2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology

0-7695-3027-3/07 $25.00 © 2007 IEEE
DOI 10.1109/IAT.2007.83

511

2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology

0-7695-3027-3/07 $25.00 © 2007 IEEE
DOI 10.1109/IAT.2007.83

505

from the asynchronous weak-commitment search in terms of
completeness [8]. In ERA, completeness is traded for effi-
ciency, whereas the asynchronous weak-commitment search
is a complete method. Most importantly, the communications
in ERA are not as explicit as those in the methods by
Yokoo et al [8], making it better suitable for multiple light-
weight agents/nodes (i.e., low in cost and resources) in highly
distributed environments [5].

B. Locality Based Heuristics

Agents in ERA are composed of predefined primitive be-
haviors that cause their movements at each time step of the
algorithm execution. Primitive behaviors, such as the least-
move, better-move, and random-move, have been defined by
Liu et al [8]. An important property of these reactive rules
is that they do not involve global behavior. Local behavior
is conducive to the success of a system in a distributed
environment. The agents are collectively coupled with an
environment that records violation update values to provide
agents with conflict information in an implicit way.

The locality based heuristic proposed here involves a
degree-based approach, where an agent uses the degree of
connectivity of its neighbors as a factor in measuring violation
values in the environment update function. This heuristic is
combined with another modification in tie-breaking. In local
search approaches, different tie-breaking methods could often
lead to different search performances [16]. In this work, we
will experimentally show that random tie-breaking improves
the performance of ERA.

C. Organization of the Paper

The next section, Section II, will discuss the nature of
the solution search in ERA and introduce the concept of the
retention ratio. Section III will provide details about the least-
move behavior and include definitions of new modifications
being proposed. In Section IV, the degree based heuristic
is covered in detail. Section V provides an overview of the
modified specifications. Section VI reports the experiments
conducted and their results. Section VII discusses the experi-
mental results. Final conclusions and directions for future work
are provided in Section VIII.

II. THE NATURE OF THE SOLUTION SEARCH IN ERA

A. Synergy in the ERA system

An important characteristic that any multi-agent solution
search process should exhibit is the ability to allow multiple
agents to make decisions on the basis of their individual local
behaviors, simultaneously. The idea of reactive movements
is central to Autonomy Oriented Computing, where agents
have the ability to self-organize, leading to a solution of a
computational problem where every agent makes a decision
at each time step based on the state of its local environment
and its reactive rules. The effect of the decision will impact
the state of the environment at the next time step. This means
that if an agent chooses to move to a ‘minimal-position’ in
the state of the environment, it does so with the anticipation

that such a move would lead to a positive result in the next
time step, despite dynamic changes in the environment that
take place due to other agents that also asynchronously move
with very similar motivations.

The asynchronous movements of agents in the environment
can be either chaotic or made in such a way that allows
stable and spontaneous changes in the system that lead to
a global solution convergence. The original ERA algorithm
allows such a synergetic and stable solution convergence for
the n-queen problem [8]. However, in solving GCPs, this
may not be always the case. From the experiments to be
reported in this paper, the original ERA has good solution-
search characteristics on simple GCPs, however, for more
complex and large-scale problems, it is not effective.

B. The Retention Ratio

Instantaneous retention ratio at time step t is defined as the
ratio of the number of agents that reach a minimal position at
time step t after performing a least-move at t−1 to the number
of agents that have made a least-move at t−1. Here, ‘minimal’
is with respect to the state of the environment after all agents
have moved and new environment updates have been made.
It may not be necessary that an agent arrives at a minimal
position after performing the least move. This is because
all agents move asynchronously, and change the environment
accordingly at each time step. Therefore, it would be useful
to observe the plot of instantaneous retention ratio changes;
different trend patterns may indicate different characteristics
of the algorithm. We will refer to retention-ratio at time step
t as γt in this paper. In other words,

γt =
Number of agents at minimum-positions at t

Number of agents making a least-move at t− 1
(1)

If γt is consistently above a certain level (e.g., .8) through-
out the search, we say that the system has exhibited paral-
lelizability. A multi-agent search process where agents work
on local reactive rules is parallelizable when agents can
make decisions simultaneously and also accomplish individual
motives. In general, for all successful ERA search processes,
it has been observed that γt increases over time at a compar-
atively higher rate in the first few time steps.

III. HEURISTIC ADDITIONS AND LEAST-MOVE VARIANTS

A. Operational Modes for the Least-Move

The heuristics to be added to ERA is embedded into the
least-move behavior. In order to describe the changes made,
this paper makes use of several modes to define the variations
of the least-move. As details on the least-move behavior are
significant to this paper, it will be described in this section
along with the specifics of new modifications. The least-move
has been defined by Liu et al [8]. In a few words, it can be
described as the move in which an agent ai at time t moves
to a position of the minimal-violation in its environment.

Briefly, it can be said that a least-move is conservative, if
an agent would not move to a new minimal position at time
t+ 1 when it is already at a minimal position at time t. The

514512512506

LMODE can be described as the mode that acts as a tie-breaker
when there are multiple minimal positions to choose from. On
LMODE activation, a minimal position is chosen at random.
When LMODE is not used, the default minimum position is
the one with the smallest position-index.

In this paper, the least-move is classified into 4 different
forms. The two modes LMODE and CONMODE direct the
behavior of the least-move being implemented. The activation
of CONMODE would implement the conservative least-move.
When CONMODE is deactivated, the least-move is non-
conservative. According to the description of the least-move
provided by Tang et al [9], the past implementation of least-
moves are of the conservative type. Hence, the introduction of
the conservative least-move is not a novel addition. However,
it is important to discuss the significance of this simple mode
setting that when changed it can have a drastic impact on the
performance of the solution search. Our experimental results
show that with CONMODE, ERA would perform much better
than when CONMODE is not used.

Suppose that all lattice points for agentr are indexed from
0 to n. The corresponding violations for these lattice points are
v0, v1, v2....vn. The set of all indices of the minimal-positions
at time t will be Mt, where Mt = {m0, m1, m2,....,mk},
where mi ≤ mj for every i<j. We let new post denote the
position of the agent at time t, and new post−1 at time t− 1.

When the set of all possible values that CONMODE can
take is {1,0} and that LMODE can take is {1,0}, the definition
of CONMODE and LMODE for any agentr is stated as
follows:

new post =

new post−1 if CONMODE = 1 and
new post−1 ∈ Mt.

m0 if CONMODE = 1,
and LMODE = 0.
and new post−1 6∈ Mt

random(Mt) if CONMODE = 1 and,
LMODE =1.
new post−1 6∈ Mt

m0 if CONMODE = 0 and,
LMODE = 0.

random(Mt) if CONMODE = 0,
and LMODE = 1.

where random(A) is a function that randomly returns an
element from set A.

The original version of ERA can be classified as the spec-
ification that uses CONMODE and does not use the LMODE
based on the statements given in [9].

B. The Degree-Based Heuristic

The degree-based heuristic is a strategy used in a CSP
solution-search process where the ordering of variable as-
signments is priority based [10]. Applying the degree-based
heuristic to a (GCP) involves a priority ordering based on
the degree of the node connectivity. In our present work,
the degree-based heuristic is incorporated into the violation-
updating step of the ERA algorithm. Violation updating is
central to the functioning of ERA where an implicit inter-
agent communication is achieved; this can readily be noted in
the following outline of ERA:

1 procedure ERA
2 begin
3 Initialize the system
4 while(true) do
5 for r = 1 to agent number do
6 Select behavior for agentr
7 Move agentr to a new position if needed
8 end for
9 if(Current state satisfies constraints)

10 Print all variable values and exit
11 Update violations
12 time step++
13 end while
14 end

There are two ways that we can update violation values [8].
One involves updating an entire matrix containing all conflict
values at the end of a time step, and the other involves updating
a violation-array of an agent before it would decide its move.
The violation-array would contain violations of all prospective
moves. Both are equivalent.

Let a lattice-position refer to a possible assignment to a
variable, or assignments to a small group of variables that
belong to one agent. An agent’s environment consists of all
such possible lattice positions. In the original ERA, the lattice
violations were calculated purely on the basis of the number
of variable conflicts for an assignment, where every variable
conflict would add one unit of violation.

In our present approach, if the degree of connectivity of
the conflicting-variable is x, x × K unit violations are added.
The modified violation-updating procedure can be described
as follows:

1 procedure Update violations
2 begin
3 for r = 1 to agent number do
4 for j = 1 to C do
5 for i = 1 to agent number do
6 if(link(r,i)= TRUE AND (j = value(i)) AND (r!=i))
7 violation numberr[j] := violation numberr[j]
8 + {K × connectivity(i)}
9 end

Note: violation numberr[j] is the environment update ar-
ray for agentr providing violation values on all lattice points

515513513507

where agentr can move. connectivity(A) is a function that
returns the degree of connectivity of agentA, if agentr is
connected to it. link(a,b) returns 1 if an edge connects a and
b.

C. New additions and specifications on ERA

As will be reported below, our current empirical studies
have shown that the following setting will yield a significant
improvement on the applicability of ERA on GCPs:
• The degree based heuristic applied to the environment

update function (D = 1).
• Setting LMODE to 1 based on the description provided

(L = 1).
• Setting CONMODE to 1 based on the description pro-

vided (C = 1).
For the sake of description, we will use the letters of D, L, and
C to refer to the above three conditions, respectively. Hence,
when all three modes are applied, DLC = 111.

IV. EXPERIMENTS AND EVALUATIONS

In this section, we will present several experimental studies
that evaluate the performance of the modified ERA method
incorporating the proposed locality based heuristic.

A. Determining the leastp value

Experiment 1: The goal of this experiment is to determine
the best leastp value (i.e., the probability by which an agent
would make a least-move) for the following validation ex-
periments. The leastp value plays an important role in that a
change in this value creates the maximum impact on the search
performance, specially when measured in terms of the total
number of time steps. Note that we will keep other parameters
constant throughout the tests. Specifically, the priority mode
is set to F2BLR as defined and used in the previous studies.
The ratio of the leastp to randomp is fixed to 2*V, where V
is the number of vertices in the graph. The betterp is fixed to
.8. The number of variables assigned per agent is 1 and the
maximum of 7,000 time steps has been fixed on all runs. The
graph problems are taken from [1].

With the proposed modifications in the ERA algorithm,
there will be three conditions that need to be studied. Con-
sidering all the possible settings for the three conditions, there
will be eight possible cases to be tested. The tests will be
conducted using benchmark GCP instances. With respect to
each of the benchmark GCPs as listed in Table I, its best
leastp value will be determined over 50 test runs.

Note that in our experiments, performance evaluations will
be made in terms of the number of time steps an approach
would take to find a solution. As mentioned earlier, a time
step corresponds to a cycle in which all agents independently
decide whether or not (and/or how) to make their moves.

Results: The best leastp values found in different modes for
the corresponding graph-coloring instances are given in Table
I. A detailed breakdown for the anna.col problem instance is

TABLE I
DETERMINATION OF THE BEST leastp IN ALL MODES

GCP Instance LMODE DC=00 DC=01 DC=10 DC=11

0 .4, .3 .8, .9 .3, .2 .7, .6
miles500.col

1 HFR .9, .8 HFR .7, .5

0 .7, .4 .9, .8 .6, .4 .8, .5
miles250.col

1 HFR .9, .8 HFR .7,.8

0 HFR HFR .3 .7, .6
miles1000.col

1 HFR .9, .8 HFR .8, .7

0 HFR .7, .6 HFR .5, .4
miles1500.col

1 HFR .9, .7 HFR .7, .6

0 .3,.2 .9, .7 .5, .4 .6, .7
anna.col

1 HFR .9, .8 HFR .7, .8

0 .5, .3 .8, .9 .4, .3 .6, .5
jean.col

1 HFR .9, .8 HFR .7, .6

0 .9, .7 .8, .6 .6, .8 .7, .6
queen5 5.col

1 HFR .9, .8 HFR .7, .8

0 .7, .6 HFR .6, .8 .9, .8
queen7 7.col

1 HFR .7, .5 HFR .9, .8

0 .6, .8 .8 .7 .80
myciel6.col

1 HFR .9, .8 HFR .80

0 .7, .8 .7 .6 .9, .8
myciel7.col

1 HFR .90 HFR .7, .8

The best leastp values have been shown for each of the GCP instances in
different mode combinations. The two of the best cases are included in the

table, with the better one shown first. In some cases only one is shown.
Here, DC stands for Degree Based Heuristic and CONMODE flags. HFR

stands for High Failure rate.

provided in Table II. Figure 1 shows the time steps for each
individual value of leastp tested on the three modes, i.e., DLC
= 001, DLC = 000, and DLC = 111.

B. Performance Validation

Experiment 2: The goal of this experiment is to determine
the performance in various test modes, e.g., LMODE = 1 and
DC = 11, based on the best leastp value obtained. Each mode
will be tested on the benchmark graph-coloring problems,
and 100 test runs will be performed in each case, unless
specified in the table. The results obtained for the case of
LMODE = 1 and DC = 11 (leastp = .850) will be regarded as
the performance evaluation without parameter adjustment. All
other parameters are kept constant throughout all cases of the
graph-coloring instances; we will use the same parameters as
in the previous experiment. The performance has been rated
on average time steps over all test runs.

Results: The experimental results are presented in two
tables, where Table III provides the results in all modes where
the degree-based heuristic is not applied, and Table IV pro-
vides the corresponding results with the degree-based heuristic
applied. From the results, it can be inferred that there is a
significant improvement in performance when the LMODE,

516514514508

TABLE II
AVERAGE TIME STEPS AGAINST leastp VALUE

leastp DLC = 000 DLC = 001 DLC = 111

time steps time steps time steps

.1 182.0 1222.54 81.48

.2 74.8 898.76 37.66

.3 56.82 693.66 20.62

.4 103.54 757.68 19.14

.5 104.6 683.5 13.38

.6 80.0 595.92 12.74

.7 152.12 385.78 10.6

.8 140.18 416.46 12.34

.9 337.26 330.68 12.46

The evaluations

have been conducted for the anna.col graph-coloring problem instance. The
number of time steps for obtaining a solution has been recorded over

different values of leastp. The data is obtained over 50 runs.

Fig. 1. Average time steps against leastp value. The number of time steps
for obtaining a solution has been calculated over different values of leastp.
The data is obtained over 50 runs on the anna.col graph-coloring instance
[1]. Here, letter D stands for Degree Based Heuristic, L is LMODE, and C
is CONMODE.

CONMODE, and the proposed degree-based heuristic are
applied.

V. DISCUSSION

Parallelizability is a characteristic that allows a large number
of reactive agents to take part in the solution-search process.
It is also an indicator that an approximate solution can be
reached within a short period of time where the number of
agents that make movements is very high in the beginning of
the search-process.

TABLE III
PERFORMANCE WITHOUT APPLYING THE DEGREE-BASED HEURISTIC

GCP Case LC=00 LC=01 LC=10 LC=11

τ 1028.72 864.25 HFR 224
miles500

σ 986.12 806.39 - 148.8

τ 128.13 314.12 HFR 145.81
miles250

σ 123.49 323.9 - 160.75

τ HFR HFR HFR 2137
miles1000 S% 95%

σ - - - 1791.77

τ HFR 879.02 HFR 293.66
miles1500

σ - 859.9 - 206.4

τ 74.9 265.77 HFR 219.81
anna

σ 104.88 266.1 - 216.8

τ 28.1 61.06 HFR 19.98
jean

σ 23.42 77.54 - 23.12

τ 42.08 57.1 HFR 59.69
queen5 5

σ 33.06 95.92 - 69.18

τ 1822.72 HFR HFR 4906.71
queen7 7 S% 46%

σ 1483.14 - HFR 2501.84

τ 14.34 29.66 64.44 22.72
myciel6

σ 8.76 40.7 51.77 30.9

τ 96.97 73.04 81.16 87.84
myciel7

σ 143.6 125.59 64.19 147.09

τ refers to time steps. LC stands for LMODE and CONMODE flags. HFR
stands for High Failure rate. σ indicates standard deviation for the data-set.
The success percentage has been indicated for instances, where 100% was
not observed. S% is used to indicate success%. The ’LC = 01’ shows the

performance of the original ERA.

An important relationship has been observed between leastp
and the number of time steps. Table II illustrates this on
the anna.col problem [1]. A comparison between the original
ERA, the proposed modification, and the setting of DLC =
000 is shown. The anna.col problem is comparatively simple
and shows a minimum standard deviation on average value
calculations, hence providing a reasonable, level-playing field
for comparison.

It can be observed that when CONMODE is applied, a
higher leastp results in a faster solution convergence, in-
dicating that a large number of agents can make decisions
simultaneously. When CONMODE is absent, there is no
characteristic relationship that can be observed between leastp
and time steps. When we look at DLC = 111, we observe a
parallelizability characteristic.

Hence, an increase in the number of active-agents results
to a corresponding reduction in time steps. This provides
evidence that the strength of ERA lies in its ability to solve
a CSP in a distributed fashion, by involving several reactive
agents at one time.

The degree-based heuristic allows agent-violations to be
considered on the basis of variable connectivity where the
heuristic involves avoiding the problem of nodes with high
connectivity failing to coordinate with the ones with low

517515515509

TABLE IV
PERFORMANCE ON APPLYING DEGREE-BASED HEURISTIC

GCP Case LC=00 LC=01 LC=10 LC=11 LC=11*

τ 93.52 67.38 HFR 61.55 76.4
miles500

σ 84.01 80.70 - 64.68 101.1

τ 38.62 40.54 HFR 35.27 39.14
miles250

σ 34.74 48.18 - 50.23 42.8

τ 4307.3 437.44 HFR 103.31 115.41
miles1000 S% 80%

σ 2266.2 445.02 - 75.95 76.48

τ HFR 418.73 HFR 375.48 400.36
miles1500

σ - 433.49 - 441.616 400.50

τ 14.97 10.51 HFR 11.87 12.07
anna

σ 5.703 3.856 - 4.48 3.08

τ 18.54 9.86 HFR 8.69 11.69
jean

σ 9.71 4.12 - 3.6 5.74

τ 29.84 30.23 HFR 26.62 36.38
queen5 5

σ 20.72 21.93 - 22.02 25.26

τ 3269.1 1984.53 HFR 1781.54 2161.2
queen7 7 S% 98% 97% 97%

σ 2279.27 1818.54 - 1686.72 1817.08

τ 13.87 9.10 67.21 10.69 10.69
myciel6

σ 8.30 4.08 64.45 6.81 6.81

τ 16.44 16.83 97.78 14.57 15.2
myciel7

σ 18.54 19.92 66.9 7.61 13.79

τ is used to indicate time steps. LC stands for LMODE and CONMODE
flags. HFR stands for High Failure rate. σ indicates standard deviation for

the data-set. The success percentage has been indicated for instances where
100% was not observed. S% is used to indicate success%. The ’LC = 11’
shows the performance of the proposed modification. The column named

LC = 11* is applied on leastp = .850 over all cases to demonstrate
performance on consistent values.

connectivity due to synchronous and continuous changes in
variable assignments. This is well suited to a distributed,
parallelizable system.

Figure 2 shows the comparison of the γt against time
steps characteristic for three different cases in miles1000.col
[1]. The γt variation indicates the stability of the search
process. From the plot, we can see that when CONMODE
is used, the system is more stable, allowing a more synergetic
coordination, as compared to when it is absent. The former
case also demonstrates a faster rate of increase in γt during
the first few time steps.

Implementing LMODE allows the search process to explore
different variable-value combinations under the condition that
CONMODE is also used. This enables the agents to make a
wider search of the problem space, by making agents choose
minimal positions on a random tie-breaking behavior rather
than on a deterministic rule. This behavior can deal with
the local minima trap problem better. Other approaches to
avoiding this problem have been reported in [4], [9], [12].

Fig. 2. A comparison of the γt against time steps characteristic for
three different cases in the miles1000.col [1] problem. LCD corresponds
to LMODE, CONMODE, and Degree Heuristic flags, respectively. In the
diagram, Case A is LCD = 111, Case B is LCD = 010, and Case C is LCD
= 000. LCD = 111 is the configuration for the proposed modification. LCD
= 010 is the configuration for the original version of ERA [9].

VI. CONCLUSIONS AND FUTURE WORK

From our experimental studies, we can conclude that the
proposed heuristic additions into ERA bring in significant

518516516510

performance improvements in terms of reduced time steps.
The reason attributes to a degree-based rule that fits well into
the asynchronous nature of ERA, and a random tie-breaking
method that permits a wider span of the search space to be
explored.

Our further research will involve generalizing the algorithm
to accept problems in a wider domain that goes beyond the
specific set of problems considered here. The following issues
will be dealt with:
• Empirical studies on how ERA performs across the

phase-transition [14] need to be conducted.
• The capability of ERA to tackle over-constrained prob-

lems will be investigated. The deadlock phenomenon and
the inability of the ERA algorithm to perform in over-
constrained situations has been highlighted in [18].

• The algorithm should be modified so that small-world
structures in GCPs can be addressed [7][5]. This could
potentially make the algorithm adaptable to any graph
structures.

• Constraint optimization methods are important in multi-
agent coordination [13] and the performance of ERA in
this aspect is yet to be studied.

ACKNOWLEDGEMENT

The authors would like to thank the IAT’07 reviewers for
their comments and suggestions on the earlier version of this
paper. They appreciate receiving the inputs and help from Dr.
Jianguo Lu on the presentation. The research work reported
here has been supported in part by an NSERC Discovery
Grant.

REFERENCES

[1] http://mat.gsia.cmu.edu/color/color.html.
[2] Muhammad Arshad and Marius C. Silaghi. Distributed simulated

annnealing and comparison to DSA. 2003.
[3] Makoto Yokoo. Edmund Durfee. Toru Ishida. and Kazuhiro Kuwabara.

Constraint satisfaction: The distributed constraint satisfaction problem:
Formalization and algorithms. IEEE Trans. Knowledge and Data
Engineering, 10:673–685, 1998.

[4] Jiming Liu. XiaoLong Jin. and Yi Tang. Multi-agent collaborative
service and distributed problem solving. Cognitive System Research.
Special Issue on Intelligent Agents and Data Mining for Cognitive
Systems, 5:191 – 206, 2004.

[5] Jiming Liu. XiaoLong Jin. and Kwok Ching Tsui. Autonomy Oriented
Computing, From Problem Solving to Complex Systems Modeling.
Kluwer Academic Publishers, 2004.

[6] XiaoLong Jin. and Jiming Liu. Multiagent SAT (MASSAT): Au-
tonomous pattern search in constrained domains. In Proceedings of
Intelligent Data Engineering and Automated Learning - IDEAL 2002:
Third International Conference, Manchester, UK, August 12-14,2002.,
pages 318–328, 2002.

[7] Xiaolong Jin. and Jiming Liu. Efficiency of emergent constraint
satisfaction in small-world and random agent networks. In Proceedings
of IAT, 2003, volume 0, pages 304 – 310, 2003.

[8] Jiming Liu. Han Jing. and Yi Tang. Multi-agent oriented constraint
satisfaction. Artificial Intelligence, 136:101–144, 2001.

[9] Yi Tang. Jiming Liu. and XiaoLong Jin. Agent compromises in dis-
tributed problems solving. Intelligent Data Engineering and Automated
Learning, 2690:35–42, 2003.

[10] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Prentice-Hall, Inc, Upper Saddle River, NJ, USA, 1995.

[11] Ellis Horowitz. Satraj Sahni. and Sanguthekar Rajasekaran. Fundamen-
tals of Computer Algorithms. Galgotia, 1991.

[12] Yi Shang. and Benjamin Wah. A discrete lagrangian-based global-
search method for solving satisfiability problems. Journal of Global
Optimization, 12:61–99, 1998.

[13] Pragnesh Jay Modi. Wei-Min Shen. Milind Tambe. and Makoto Yokoo.
An asynchronous complete method for distributed constraint optimiza-
tion. pages 161 – 168, 2003.

[14] David Clark. Jeremy Frank. Ian Gent. Ewan MacIntyre. Neven Tomov.
and Toby Walsh. Local search and number of solutions. Lecture Notes
in Computer Science, pages 119 – 133, 1996.

[15] Makoto Yokoo. Asynchronous weak-commitment search for solving
distributed constraint satisfaction problems. In CP ’95: Proceedings
of the First International Conference on Principles and Practice of
Constraint Programming, pages 88–102, London, UK, 1995.

[16] Makoto Yokoo. Distributed constraint satisfaction: foundations of
cooperation in multi-agent systems. Springer-Verlag, London, UK, 2001.

[17] Weixiong Zhang and Lars Wittenberg. Distributed breakout revisited.
In In Proceedings of the National Conference in Artificial Intelligence,
number 18, pages 352–358, 2002.

[18] Hui Zou and Berthe Choueiry. Multi-agent based search versus local
search and backtrack search for solving tight csps: A practical case
study. Working Notes of the Workshop on Stochastic Search Algorithms,
IJCAI, pages 17–24, 2003.

519517517511

