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Abstract. Constraint networks in qualitative spatial and temporal
reasoning are always complete graphs. When one adds an extra el-
ement to a given network, previously unknown constraints are de-
rived by intersections and compositions of other constraints, and this
may introduce inconsistency to the overall network. Likewise, when
combining two consistent networks that share a common part, the
combined network may become inconsistent.

In this paper, we analyse the problem of combining these binary
constraint networks and develop certain conditions to ensure combin-
ing two networks will never introduce an inconsistency for a given
spatial or temporal calculus. This enables us to maintain a consistent
world-view while acquiring new information in relation with some
part of it. In addition, our results enable us to prove other important
properties of qualitative spatial and temporal calculi in areas such as
representability and complexity.

1 INTRODUCTION
An important ability of intelligent systems is to handle spatial and
temporal information. Qualitative calculi such as the Region Con-
nection Calculus (RCC8) [10] or Allen’s Interval Algebra (IA) [1]
intend to capture such information by representing relationships be-
tween entities in space and time. Such calculi have different advan-
tages compared to quantitative spatial and temporal representations
such as coordinate systems. They are closer to everyday human cog-
nition, deal well with incomplete knowledge, and can be computa-
tionally more efficient than, say, the full machinery of metric spaces.

Defining a qualitative calculus is very intuitive. What is required
is a domain of spatial or temporal entities, a set of jointly exhaustive
and pairwise disjoint (JEPD) relations between the entities of the do-
main, and (weak) composition between the relations. These proper-
ties are essential for enabling constraint-based reasoning techniques
for qualitative calculi [13]. However, not all qualitative calculi that
can be defined in this way are equally well suited for representing
and reasoning about spatial and temporal information.

Consider two consistent sets Θ1, Θ2 of spatial or temporal infor-
mation. It is clear that if both sets refer to different entities, then com-
bining the two sets will also lead to a consistent set as there are no
potentially conflicting constraints. If the two sets contain information
about the same entities, then it is clear that combining the two sets
might lead to inconsistencies, as your favourite crime story will am-
ply demonstrate. Here we are interested in a particular kind of com-
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bination of sets, namely, combining sets that share only a very small
number of entities and where the relationships between the shared
entities are identical in both sets. Assume, for example, that Θ1 and
Θ2 contain consistent information about the spatial relationships of
entities in two adjacent rooms, Θ1 for room 1 and Θ2 for room 2.
Assume further that the two rooms are connected by n closed doors
such that the relationships between the n doors are exactly the same
in Θ1 and Θ2, and the doors are the only entities contained in both
sets. Without considering any additional information (e.g. that there
is only one computer in total, but both room 1 and room 2 contain
the computer according to Θ1 and Θ2), it is common sense that com-
bining both sets Θ1 and Θ2 to Θ = Θ1 ∪ Θ2 cannot lead to an in-
consistency. However, as several examples in the literature show [6],
there are qualitative calculi where this property is not satisfied and
where inconsistencies are introduced when combining two sets that
share a small number of entities with identical relations. Such cal-
culi are counterintuitive and it is questionable whether they should
be used for spatial or temporal representation and reasoning at all, as
they introduce inconsistencies where there shouldn’t be any.

Apart from this problem, there are some practically very important
advantages of using a qualitative calculus that allows the consistent
combination of two consistent sets of information: (1) It opens up the
possibility to use divide-and-conquer techniques and to split a large
set of qualitative constraints into smaller sets that can be processed
independently. This is an essential requirement for hierarchical rea-
soning and may also speed up reasoning. (2) It becomes possible to
ignore or filter additional information if it is clear that it won’t affect
the information important to us.

Unfortunately, there is currently no general way of determining
for which qualitative calculi consistent sets can be consistently com-
bined and for which calculi unnecessary inconsistencies are intro-
duced. Some initial results were obtained by Li and Wang [6], where
a special case of this problem called one-shot extensibility was anal-
ysed. Li and Wang considered the case of consistently extending a
consistent atomic set of RCC8 constraints by one additional entity,
and showed manually by an extensive case analysis that this is always
possible for RCC8. Li and Wang showed that one-shot extensibility
is also an essential requirement for other important computational
properties of a qualitative calculus.

In this paper we analyse combinations where two sets share at
most two entities and identify a method for automatically testing if
this is always possible for a given qualitative calculus. This case is
particularly important for different reasons: (1) It provides a purely
algebraic and very general proof for one-shot extensibility [6]. (2)
It (partially) solves some fundamental questions related to algebraic
closure, consistency and (weak) composition, and (3) it provides a
purely symbolic test for when a relation algebra is representable.



2 PRELIMINARIES
A qualitative calculus such as RCC8 or the Interval Algebra defines
relationships over a given set of spatial or temporal entities, the do-
main D. The basic relations B form a partition of D × D which is
jointly exhaustive and pairwise disjoint, i.e., between any two ele-
ments of the domain exactly one basic relation holds [7]. RCC8 for
example uses a topological space of extended regions as the domain
and defines eight basic relations DC, EC, PO, EQ, TPP, NTPP, TPPi,
NTPPi which are verbalised as disconnected, externally connected,
partial overlap, equal, tangential proper part, non-tangential proper
part and the converse relations of the latter two [10]. In this paper we
intensively use the precise mathematical definitions of relations, al-
gebras and different algebraic operators which we summarize in the
following. A more detailed overview can be found in [3, 7, 13].

A nonassociative relation algebra (NA) is an algebraic structure
A = (A,∧,∨, ;,−, ,̆ 1’, 0, 1), such that

• (A,∧,∨,−, 0, 1) is a Boolean algebra
• (A, ;, ,̆ 1’) is an involutive groupoid with unit, that is, a groupoid

satisfying the following equations

(a) x ; 1’ = 1’ ; x (b) x̆˘= x (c) (x ; y)̆ = y̆ ; x̆

• the operations ; and˘are normal operators, that is, they satisfy the
following equations

– x ; 0 = 0 = 0 ; x

– 0̆ = 0

– x ; (y ∨ z) = (x ; y) ∨ (x ; z)

– (x ∨ y) ; z = (x ; z) ∨ (y ; z)

– (x ∨ y)̆ = x̆ ∨ y̆

• the following equivalences hold

(x ; y) ∧ z = 0 iff (z ; y̆ ) ∧ x = 0 iff (x̆ ; z) ∧ y = 0

These are called Peircean laws or triangle identities.

A nonassociative relation algebra is a relation algebra (RA) if the
multiplication operation (;) is associative. For more on relation alge-
bras and nonassociative relation algebras see [4] and [8].

Let A be a NA. For any set U , called a domain, let R(U) be the
algebra (℘(U × U);∪,∩, ◦,−,−1, ∆, ∅, U × U), where the oper-
ations are union, intersection, composition, complement, converse,
the identity relation, the empty relation and the universal relation (all
with their standard set-theoretical meaning). Notice that since ◦ is as-
sociative, R(U) is a RA. We say that A is weakly represented over
U if there is a map µ : A → ℘(U × U) such that µ commutes with
all operations except ; for which we require only

µ(a ; b) ⊇ µ(a) ◦ µ(b)

This property of weak representation gives rise to a notion of weak
composition of relations, namely, for R, S ∈ µ[A], we define R � S
to be the smallest relation Q ∈ µ[A] containing R ◦ S. Every NA
has a weak representation, for example a trivial one, with U = ∅. Of
course, interesting weak representations are nontrivial, and typically
injective. A weak representation is a representation if µ is injective
and the inclusion above is in fact equality, that is, if µ is an embed-
ding of relation algebras. In such a case weak composition equals
composition [12], and that is expressed by saying that weak compo-
sition is extensional. Not every NA, indeed not every RA is repre-
sentable.

Although weak representations are not as interesting as represen-
tations, curiously, it is the former that gave rise to a notion of qual-
itative calculus, which is a triple (A, U, µ) where A is a NA, U
is a set and µ : A → U is a weak representation of A over U .
Since (A, U, µ) is notationally cumbersome, we will later write A
for both a NA and a corresponding calculus (A, U, µ), if U and µ are
clear from context or their precise form is not important. A calculus
(A, U, µ) is extensional if µ is a representation of A. Notice that if
(A, U, µ) is extensional, then A is a RA, indeed a representable one.
The converse need not hold, as the example of RCC8 demonstrates.

All NAs considered in this paper are assumed to be finite (hence
atomic) and such that 1’ is an atom. These are severe restrictions on
the class of NAs, but natural from a qualitative calculi point of view.

A network N over a NA A is a pair (V, `) where V is a set of
vertices (nodes) and ` : V 2 → A is any function. Thus, a network is a
complete directed graph labelled by elements of A. Abusing notation
a little we will often write N for the set of vertices of N , if it does not
cause confusion. Where double precision is important, we will write
VN and `N for the set of vertices of N and its labelling function,
respectively. For convenience we assume that the set V of nodes is
always a set of natural numbers. We will also frequently refer to the
label on the edge (i, j) as Rij . A network M is a subnetwork of N ,
if all nodes and labels of M are also nodes and labels of N . We will
write M ≤ N is such case. A network M is a refinement of N if
VM = VN and `M (i, j) ≤ `N (i, j), for any i, j ∈ V (where ≤ is
the natural ordering among the labels as elements of A). A network
is atomic if all the labels are basic relations (atoms) of A. To indicate
atomicity we will sometimes use lower case labels rij . A network N
is algebraically-closed (a-closed) if the following hold

1. Rii is the equality relation (identity element of A)
2. Rij �Rjk ≥ Rik for any i, j, k ∈ N

Networks may be viewed as approximations to (weak) representa-
tions, indeed, if µ is a weak representation of A over a domain U ,
then µ[A] is an a-closed network over A. An arbitrary network N
over A is consistent with respect to a weak representation µ, if N is
a subnetwork of µ[A].

This paper is mostly concerned with combining a-closed networks
without introducing inconsistencies. Let N0, N1, N2 be a-closed net-
works, such that N0 ≤ N1 and N0 ≤ N2. The triple (N0, N1, N2)
is called a V -formation. A V-formation (N0, N1, N2) can be amal-
gamated if there is an a-closed network M such that N1 ≤ M and
N2 ≤ M . Such an M is called an amalgam of N1 and N2 over N0

or just an amalgam if the rest is clear from the context. Notice that
we do not formally require VM = VN1 ∪ VN2 . However, if an amal-
gam M exists, its restriction to M ′ ≤ M with VM′ = VN1 ∪ VN2

is an amalgam as well, so we can always assume that M only has
nodes from N1 and N2.

Definition 1 (Network Amalgamation Property) Let A be a qual-
itative calculus (NA). A has Network Amalgamation Property
(NAP), if any V-formation (N0, N1, N2) of networks over A can be
amalgamated by a network M over A.

Clearly NAP is a hard property to come by, so some restrictions
are necessary. One such restriction calls for the common subnetwork
N0 to be small in the following sense.

Definition 2 (k-Amalgamation Property) Let A be a qualitative
calculus (NA). A has k Amalgamation Property (k-AP), if any V-
formation (N0, N1, N2) of networks over A, such that |N0| ≤ k,
can be amalgamated by a network M over A.



Figure 1. (a) 3-extensibility and, (b) 4-extensibility. Both amalgamate over
the edge (1,2). The dashed arrows represent the new edges.

It is obvious that n-AP implies m-AP for n ≥ m. The smallest
interesting case for a qualitative calculus is that of 2-AP. We will
approach it step by step, beginning with |N1| = |N2| = 3, i.e.,
amalgamation of two triangles over a common edge. We will show
that this follows from the associativity of A. The next case, namely,
|N1| = 4 and |N2| = 3 (adding a triangle to a square) turns out to be
crucial. We will analyse it in some detail and then show that certain
strong version of this case implies 2-AP for atomic networks.

3 EXTENSIBILITY
In this section we deal with 2-AP for the case with |N2| = 3, which
can be seen as extending an a-closed network N1 by a triangle N2

over a common edge. We refer to this as a one-shot extension [6].

Definition 3 ((generic) k-extensibility) Let A be a qualitative cal-
culus (NA) and k a natural number. A is k-extensible if any atomic
V-formation (N0, N1, N2) of networks over A, such that |N0| = 2,
|N1| = k and |N2| = 3, can be amalgamated by a network |M |
over A. If Ni (i ∈ {0, 1, 2}) are non-atomic, then A is generically
k-extensible (see Figure 1).

Lemma 1 Let A be a RA. If A is associative, then A is generically
3-extensible.

Proof sketch. Let N0 = {1, 2}, N1 = {0, 1, 2} and N2 = {1, 2, 3}.
Put R03 = R01 � R13 ∩ R02 � R23. By associativity, R12 6= ∅. We
need to show that the triangles {0, 1, 3} and {0, 2, 3} are a-closed.
By symmetry it suffices to prove it for {0, 1, 3}, so we need to show
three inclusions:

(R01 �R13) ∩ (R02 �R23) ≤ R01 �R13 (1)

R13 ≤ R10 � [(R01 �R13) ∩ (R02 �R23)] (2)

R01 ≤ [(R01 �R13) ∩ (R02 �R23)] �R31 (3)

The first of these is trivial, the two others follow from relation algebra
identities. To show 3-extensibility, put R03 = r01 � r13 ∩ r02 � r23,
where rij are atoms. Then any refinement of R03 satisfies the in-
clusions above, so any atomic refinement r03 satisfies them as well.

Since algebras that fail associativity are somewhat pathological,
the above lemma is widely applicable.

Unlike 3-extensibility, 4-extensibility may fail in associative alge-
bras, indeed even in representable ones. Consider the group Z7 (the
integers under addition modulo 7) and for x, y ∈ Z7 define

Figure 2. (a) The RA B9 and, (b) The network S that is not 4-extensible

• xIy if x = y
• xGy if x = y ± 1 (mod 7)
• xBy if x = y ± 2 (mod 7)
• xRy if x = y ± 3 (mod 7)

Then, {I, R, G, B} are atoms of a representable relation algebra.
Its representation using red for R, green for G and blue for B is
shown in Figure 2. This algebra is known as B9 (cf. [5]). Consider
the network S = {0, 1, 2, 3} with `(0, 1) = R = `(2, 3), `(0, 3) =
B = `(1, 2), `(0, 2) = G = `(1, 3), and `(i, i) = I , `(i, j) =
`(j, i). Verifying that S is a-closed but not extensible is left to the
reader as an exercise. Since S is atomic, B9 is not 4-extensible. We
will return to S twice more in this paper, hence the fancy font.

We did not find any equations that would imply 4-extensibility in
a manner similar to the role of associativity in Lemma 1. Checking
generic 4-extensibility exhaustively takes too long for even a rela-
tively small calculus such as RCC8. However, we could construct
RCC8 networks for which generic 4-extensibility fails. Interestingly,
all such networks we managed to construct contained relations that
are known to be NP-hard (cf. [11]). On the other hand, 4-extensibility
can be exhaustively tested by a program that performs checks on all
atomic a-closed networks with four nodes.

Theorem 1 If a qualitative calculus (A, U, µ) is extensional and A
is not 4-extensible, then a-closure does not decide consistency for
networks of atomic relations.

Proof sketch. In an extensional calculus, consistent networks can al-
ways be extended by one-shot [6]. However, if A is not 4-extensible,
then there exists an atomic network N on four nodes that has no a-
closed one-shot extension. Therefore N is not consistent.

One example of such an algebra is B9, with S in place of N .

3.1 Strong 4-extensibility
4-extensibility allows two networks of size 3 and 4 respectively to be
combined over one edge without introducing inconsistencies. In this
section, we show a special case of 4-extensibility that allows us to
combine any two atomic networks of arbitrary size over one edge.

Definition 4 (Strong 4-extensibility) Let A be a qualitative calcu-
lus (NA). A is strongly 4-extensible if any V-formation (N0, N1, N2)
of atomic networks over A, with N0 = {1, 2}, N1 = {0, 1, 2} and
N2 = {1, 2, 3, 4}, can be amalgamated by a network |M | over A,
such that for all i ∈ N2 \N0

Ri0 = (ri1 � r10) ∩ (ri2 � r20)

It follows easily by triangle identities that strong 4-extensibility
implies 4-extensibility. The beauty of strong 4-extensibility is that
for a given one-shot extension, labels for new edges are precisely the



intersections of compositions of labels on existing edges. This prop-
erty is in fact possessed by both RCC8 and IA and can be checked
even more efficiently than simple 4-extensibility.

Theorem 2 If a NA A is strongly 4-extensible, then A has 2-
Amalgamation Property if N1, N2 are atomic.

Proof sketch. Let (N0, N1, N2) be a V-formation of atomic net-
works, with N0 = {0, 1}. Let M = N1 ∪ N2 be the network re-
taining all the labels from N1 and N2 and with the new labels for
edges (x, y) with x ∈ Ni \ Nj and y ∈ Nj \ Ni ({i, j} = {1, 2})
defined by `(x, y) = rx0 � r0y ∩ rx1 � r1y . We will show that M is
a-closed. Suppose the contrary. Then, there is a triangle in M with
edges labelled by A,B,C, such that C 6≤ A � B. Now, A,B and C
cannot all be edges from Ni (i ∈ {1, 2}), for Ni is a-closed. So at
least one of A,B,C is of the from `(x, y) with x ∈ Ni \ Nj and
y ∈ Nj \Ni ({i, j} = {1, 2}). Notice also that there at most two of
A, B, C can be such (three such edges do not form a triangle). We
have then two cases. If there is exactly one such edge among A,B,C,
it violates the assumption of 3-extensibility; if there are exactly two
such edges, then it violates the assumption of strong 4-extensibility.
Thus, M is a-closed as claimed.

The above theorem showed that if the calculus is strong 4-
extensible, then we can amalgamate any two atomic networks over
one edge. In the following we will show additional benefits of strong
4-extensibility for a qualitative calculus or relation algebra.

Definition 5 (One-Shot Extensibility [6]) A qualitative calculus
(A, U, µ) is one-shot extensible if any consistent atomic V-formation
(N0, N1, N2) with |N0| = 2 and |N2| = 3, can be amalgamated by
a consistent atomic network M .

Corollary 1 If a qualitative calculus A is strongly 4-extensible, and
a-closure decides consistency for networks of atomic and universal
relations, then A is one-shot extensible.

One-shot extensibility was used in [6] to prove (for certain A) that
tractability of a set of relations S is equivalent to tractability of its
closure bS under weak composition, intersection and converse. The
method from [6] involves numerous manual calculations in the se-
mantics of A. However, if we know that a-closure happens to decide
consistency for networks of atomic and universal relations in a qual-
itative calculus, as it for example does in RCC8 [2], then a simple
check on the composition table for strong 4-extensibility is sufficient
to prove one-shot extensibility.

Definition 6 (One-Shot Proto-Extensibility) A qualitative calcu-
lus (NA) A is one-shot proto-extensible if any atomic V-formation
(N0, N1, N2) with |N0| = 2 and |N2| = 3, can be amalgamated by
an atomic network M .

One-shot proto-extensibility ensures that the amalgam has an a-
closed atomic refinement. Its advantage over one-shot extensibility
is that the it is a syntactic notion that is independent to any (weak)
representation. Any representable algebra is trivially one-shot exten-
sible relative to its representation.

Theorem 3 Any one-shot proto-extensible RA is representable.

Proof sketch. Let A be a RA with the required property. We build a
representation of A inductively, beginning with any atomic a-closed
triangle. At any given stage i, we have constructed an atomic a-
closed network Ni. By one-shot proto-extensibility, we can pick any

atomic a-closed triangle T and add it to Ni, in effect amalgamat-
ing Ni and T over an edge that they share, obtaining an atomic a-
closed network Ni+1. Let N =

S
i∈ω Ni. Define µ : A → N putting

µ(a) = {(x, y) : `N (x, y) = a} for an atom a ∈ A. By finiteness of
A, each u ∈ A is a join of finitely many atoms. Thus, we can extend
µ onto the whole universe of A setting µ(u) = µ(a1)∪ · · · ∪µ(an),
where a1, . . . , an are atoms with u = a1∨· · ·∨an. It can be verified
that the so defined µ is a representation of A.

It is not the case that one-shot extensibility implies one-shot proto-
extensibility, even for representable algebras. This is connected to
the existence of atomic a-closed networks that are not consistent.
A counterexample is again provided by B9, which is representable,
hence one-shot extensible, but not one-shot proto-extensible, as the
network S in Figure 2 shows.

4 ATOMIC REFINEMENT OF
AMALGAMATED NETWORKS

In the previous section we showed that a NA A has the 2-Amalga-
mation Property over atomic networks if it is strongly 4-extensible.
Then if a calculus (A, U, µ) has the property that a-closure decides
consistency for networks of atomic and universal relations, there is
always an atomic amalgam of the two networks, hence the calculus is
one-shot proto-extensible. However, this is not a satisfactory result,
as one-shot proto-extensibility is a purely syntactic concept based on
the relation algebra, and we want to be able to prove it without resort-
ing to the semantics of the qualitative calculus. We want a procedure
that ensures the amalgam always has an a-closed atomic refinement.
Such a procedure would provide a purely syntactic way to prove one-
shot proto-extensibility, and hence representability.

4.1 Flexibility Ordering
Under strong 4-extensibility, each non-atomic relation in the amal-
gam of two networks over a common edge is precisely the intersec-
tion of the two paths from nodes in one network to another. One way
to ensure there is always an atomic refinement to these relations such
that the entire network is a-closed is to have a flexible atom (cf. [9]).
A relation algebra with a set of atoms B has a flexible atom a if the
following condition hold:

∃a ∈ B : ∀b, c ∈ B \ {1’}, a ∈ b � c

A flexible atom is contained in any composition of two atomic re-
lations, so to make an amalgam atomic and a-closed one would just
need to replace all the non-atomic relations in it by the flexible atom.

However, requiring a flexible atom is a very strong condition, and
we do not know of a qualitative calculus, whose associated algebra
has this property. Instead, we propose to construct an ordering of
atoms that will emulate this property when refining amalgams, given
the algebra has strong 4-extensibility. That is, we create a sequence
of atomic relations, such that for any non-atomic edge R in the amal-
gam, we can refine it to the first element in the sequence that is con-
tained in R, and the network remains a-closed.

Formally, let A be a relation algebra with a set of atoms B and
S be a sequence of its atoms. A choice refinement of a non-atomic
relation R over S is the first member of S that is a refinement of R.

Definition 7 (Flexibility Ordering) For a strongly 4-extensible re-
lation algebra A, its Flexibility Ordering is a sequence S of atomic
relations, such that for any amalgam M of an atomic V-formation



(N0, N1, N2) with |N0| = 2, the non-atomic relations from M can
be replaced by their respective choice refinements over S and the
resulting network is a-closed.

The idea is that we define a sequence S of atomic relations such
that in any M , when we replace a non-atomic edge R by its choice
refinement r over S, it will never be inconsistent with the atomic
edges of M , or atomic edges which arise as choice refinements of
other non-atomic relations in M that are prior or equal to r in S.

To construct such a sequence, we propose an automated procedure
that consists of two parts: First, for a given sequence S, that may not
cover all cases, we test if a new atomic relation r that is not in S to
see if it is compatible with S. That is, for an amalgam M of any two
atomic a-closed network {0, 1, 2} and {1, 2, 3, 4}, in the case that no
current member of S is contained in the new edge R03 but r is, we
check whether the following hold:

1. If R04 is already atomic, then when we replace R03 with r, the
triangle {0, 3, 4} is a-closed.

2. Else if there exists a choice refinement r04 of R04 over S, then
when we replace R03 with r, R04 with r04, the triangle {0, 3, 4}
is a-closed.

3. Else if R04 contains r, then when we replace both R03 and R04

by r, the triangle {0, 3, 4} is a-closed.

If the above hold for all such amalgams M , r and S is compatible.
The second part involves the construction of such a list. Starting

from an empty list, we incrementally add atoms that pass the com-
patibility test with the list, and backtrack when no further candidates
can pass the test. It is worth noting that each branch of the search
tree may terminate early: e.g. if an atom a is not compatible with an
empty ordering, then we do not have to test any entries with a at the
head of the ordering.

Theorem 4 If a NA is strongly 4-extensible, and it has a Flexibility
Ordering, then it is one-shot proto-extensible.

Proof sketch. From Theorem 2 we get a network M that is a-closed,
but the new edges between N1 and N2 may not be atomic. How-
ever, with a Flexibility Ordering we can refine each of these edges
to atomic relations, knowing that similar atomic refinements of other
new edges will not introduce an inconsistent triple, since we have
checked all possible cases in the construction of the Flexibility Or-
dering. Therefore the entire network is refined to be atomic and a-
closed, thus the relation algebra is one-shot proto-extensible.

This general result, together with Theorem 3, allows us to prove
representability of a RA A from its composition table. This means
that A can be a part of an extensional qualitative calculus (A, U, µ).
It also implies that consistency can be preserved when amalgamating
two atomic a-closed networks over two nodes if we know that a-
closure decides consistency for only atomic relations.

4.2 Empirical Evaluations of Flexibility Ordering
on RCC8 and Interval Algebra

Both RCC8 and IA are prime candidates to test for Flexibility Order-
ings, as they are well known and non-trivial calculi in the spatial-
temporal domain, and their respective relation algebras are both
strongly 4-extensible. For RCC8, the procedure found the Flexibility
Ordering: (DC, EC, PO, TPP, TPPi), whereas for IA, the procedure
found (<, di, o, s, oi, f). Hence we have proved from their compo-
sition table that their relation algebras are representable.

Computationally the worst case of the procedure isO(|B|!). How-
ever, this would be extremely rare, as most branches of the search
tree will be terminated earlier than exhaustive search, thus trimming
down a majority of potential search space. For IA, with 13 atoms,
the procedure found an ordering in 4 seconds on a Intel Core2Duo
2.4GHz processor with 2GB RAM, and for RCC8 it found a solution
in less than a second. Therefore, our procedure is widely applicable.

5 CONCLUSION AND FUTURE WORK
We provided sufficient conditions to amalgamate two atomic net-
works of any size over a common edge. Hence, for a calculus where
a-closure decides consistency for networks that contain only atomic
and universal relations, two atomic networks can always be consis-
tently amalgamated. The property of strong 4-extensibility, together
with other known results, also tell us when a-closure does not decide
consistency for atomic networks. It provides an efficient computa-
tional test to check, for a non-extensional calculus, whether com-
plexity results for a set of relations can be transferred to its closure.

More importantly, we have provided a procedure that proves the
resulting amalgamated network has an a-closed atomic refinement,
independent of any information about the domain of the calculus.
This allows us to prove representability of a relation algebra from its
composition table. It preserves consistency under amalgamation of
two atomic networks over two nodes, if a-closure decides consistency
for networks of atomic relations.

The first obvious future step is to see whether two atomic a-closed
networks can be amalgamated over n nodes for n > 2. Then we
take it to the non-atomic ones. It is also interesting to see under what
conditions a calculus has the Network Amalgamation Property, that
is, networks can be combined regardless of number of shared nodes.

Secondly, our proposed notion of one-shot proto-extensibility is a
sufficient, but not necessary condition for representability of a rela-
tion algebra. There are other representable relation algebras which
are not one-shot proto-extensible. It would be interesting to see if
there are any connections between one-shot proto-extensibility and
Hirsch-Hodkinson type games [4], and whether Hirsch-Hodkinson
games can be interpreted as a sequence of one-shot extensions.
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