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Introduction

The concept of constraint is central to a number of human activities. A constraint
limits the field of possibilities in a certain universe. For example, a school timetable
that coordinates students, teachers, lessons, rooms and time slots, must satisfy many
constraints. Typically, for each group of students, the objective is to fill up one sheet
such as the one shown1 in Figure 1. In each time slot, you have to indicate who the
teacher is, what the lesson is, and where it is located. Obviously, not all combinations
are possible, since the constraints are numerous and various:

– no teacher can teach more than one class at the same time;
– different classes cannot be taught in the same room at the same time;
– classes cannot be taught in rooms that are too small, and preferably should not

be taught in rooms that are much too big;
– some classes require specialized rooms such as science laboratories;
– some classes require consecutive periods in the same room with the same

teacher;
– some part-time teachers need to have certain entire days off;
– students cannot have too far to travel between consecutive classes.

Besides school timetabling, constraint satisfaction problems arise in many enterprise
and industrial tasks, ranging from scheduling to configuration, circuit design and
molecular biology.

Constraint programming (CP) is a general framework providing simple, general
and efficient models and algorithms for solving real-world and academic problems.
The appeal of constraint programming mainly relates to the clear distinction between,
on the one hand, its formalism, which facilitates the representation of various

1. All figures can be downloaded at http://www.iste.co.uk/Lecoutre/cn.zip
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. . . . . .. . .

Figure 1. The timetable assigned to a group of students. Filling timetable sheets is a constraint
satisfaction problem

problems by means of constraints, and, on the other hand, a vast range of algorithms
and heuristics to solve them. Practical use of this framework involves two main stages.
In the first of these, the user represents the problem abstractly by a constraint network,
which is a set of variables together with a set of constraints, and perhaps also one or
more objective functions. Ideally, this first stage is purely declarative, but in practice,
some limited form of programming may be required (using e.g. an object-oriented or
logic programming language). In the second stage, the problem represented by the
constraint network is tackled by an available software tool, known as a constraint
solver, that automatically obtains one solution, or all solutions, or an optimal solution,
to the given problem. A solution is an assignment of values to all variables such that
all constraints are satisfied.

A constraint network is a formulation of an instance of the constraint satisfaction
problem (CSP) which is at the core of constraint programming. In a discrete instance,
the domains, which are the sets of allowed values of variables, are finite. The discrete
constraint satisfaction problem is not known to admit polynomial running time
algorithms to solve its instances. More precisely, unless P = NP (which is very
unlikely to be the case), no such general algorithm can exist, since CSP is NP-hard2.
This means that the worst-case time complexity of any algorithm for solving CSP
instances is expected to be exponential. However, the worst case actually arises only

2. Complexity analysis is briefly introduced in Appendix A.2
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within a limited range of situations, and outside this range efficient algorithms are
already available. Efficiency is achieved by exploiting the structure of instances.

Although this book is focused on CSP, this problem or framework has many
derivatives, mainly extensions, as indicated in Figure 2: temporal CSP (TCSP),
weighted CSP (WCSP), valued CSP (VCSP), quantified CSP (QCSP), constraint
optimization problem (COP), Max-CSP, distributed CSP (DisCSP), etc. Quite often,
a concept or technique introduced for basic CSP has turned out to be relevant to its
extensions. For example, the concept of arc consistency has been applied to most of
these extensions.

Figure 2. The CSP framework and some of its extensions

I. Toward simplicity of use

The ability to take heterogeneous constraints into account under a unifying
framework has contributed to growing commercial interest in constraint programming
since the 1990s. Modeling a problem may, however, turn out to be very difficult for the
uninitiated user, as, for example, the number of specific patterns of constraints, called
global constraints, may be unexpectedly large. In some cases, there is a need for
specialized expertise to take full advantage of the efficiency of available techniques
and algorithms.

A solver applies constraints so as to avoid exploring combinations of values that
cannot possibly belong to any solution. Ideally, the operation of a solver should be
totally transparent to the user: the user should not be aware of specific short-cuts
used by the solver. Unfortunately, this idyllic vision is not exactly correct in reality
because most of the currently available constraint toolkits require the user to guide
search, to select algorithms to filter the search space, to break symmetries, etc. As
pointed out by Puget [PUG 04], an important challenge for constraint programming is
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to achieve greater simplicity of use: constraint programming should be made easier
for non-specialist users. Enhanced ease of use will boost the impact of constraint
programming on industry and academia, and will establish it more firmly as a key
software technology for solution of combinatorial problems.

To take up the “simplicity of use” challenge, there is a need for robust and efficient
solvers that users can regard as black-boxes. A black-box is a system such that the
user sees only its input and output data, while its internal structure or mechanism
remains invisible. This approach has recently been emphasized by some position
papers [PUG 04, GEN 06a] as well as the holding of constraint solver competitions3.
The black-box approach partially addresses the requirement for simplicity since the
user does not have to be aware of (or modify or extend) embedded techniques and
algorithms. However, a black-box constraint solver must have a default configuration
that in most cases yields the best behavior that could be obtained by fine tuning of
available options. This can be achieved by making the solver robust.

A solver is robust when it is able to produce similar results, consuming similar
resources (time and space), given different but equivalent models of the same
problem. It is important to note that the user of an ideally robust solver does not need
to provide carefully chosen constraint network models. Robustness compensates for
bad modeling by providing sophisticated solving techniques. Some of these certainly
remain to be invented, but others are presented in this book: inferences from strong
consistencies, adaptive heuristics, nogood recording, automatic symmetry breaking,
state-based search, etc. These techniques enable a particularly clever exploration
of the search space, learning much useful information before or during search so
as to avoid exploring fruitless combinations of values of variables. Given different
formulations of the same CSP instance, advanced learning and inference techniques
reduce behavior disparities by increasing the efficiency of the solver. Thus robustness
and efficiency are intimately interrelated.

II. Conceptual simplicity of techniques and algorithms
Robust and efficient black-box solvers are intended to simplify the life of users.

However, identifying and implementing appropriate state-of-the-art techniques and
algorithms can be quite a hard task for black-box designers and developers. It is not
easy to distinguish the most important algorithms among the large number that have
been published. Moreover, certain algorithms require complex data structures and
procedures that have not been disclosed in complete detail, so re-implementation is
hazardous. Luckily, many of the substantial new developments that have appeared
during the last decade are characterized by conceptual simplicity of techniques

3. See http://www.cril.univ-artois.fr/CPAI08/
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and algorithms. This book attempts to present these developments comprehensively
and rigorously, offering you a gentle introduction to this active field of research.
Pragmatically, the book concentrates on general-purpose approaches that have proven
to be effective in practice. These approaches are the source of a nascent generation of
robust constraint solvers accessible to the average user.

If we insist on (conceptual) simplicity, this is because it has many nice features.
Although these may be obvious, they deserve brief comment as follows. First,
simplicity may be understood primarily as ease of comprehension. An easily
understood principle is, from the master’s point of view, easy to explain and, from the
disciple’s point of view, quick to assimilate. The difficulty in the comprehension of
the world or of nature certainly lies in finding the elementary principles that enable
explanation of the Creation. Modestly, in our context, the difficulty lies in finding the
basic recipes that are at the origin of the efficiency of algorithms.

Another comment about simplicity is that it tends to make development easier.
Proposed algorithmic solutions eventually become procedures written in programming
languages. Software development time can be reduced, and more robust code can
be written, if an algorithm is easy to code. Ease of coding usually depends on the
complexity of the data structures that are employed. Generally, the shorter the code
that implements an algorithm, the less the risk of bugs therein.

A final comment about simplicity concerns its impact on the reproduction of
experiments. If a method is simple to understand and to implement, this simplicity
substantially increases the probability that two people independently evaluating
the method will develop similar (source) code and consequently obtain similar
experimental results. Surely, science is nothing without the possibility of reproducing
experiments (and, more generally, without the possibility of checking theoretical
results).

III. Organization of this book

In the first chapter, constraint networks are introduced with the formalism that
surrounds them. Formal foundations are then given, and several examples of constraint
satisfaction problems are presented. In the second chapter, we study the nature of
constraint networks, essentially discussing the presence or absence of structure in
problems. The remainder of the book is divided into two parts.

The first part describes general inference methods based on local consistencies,
which are relational and structural properties of constraint networks. The principle
is to simplify the problem instance that must be solved by discarding some
useless portions of the search space. This is made possible by propagating
constraints following a targeted consistency that allows identification of inconsistent
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instantiations. Chapter 3 provides an overview of the consistencies usually studied
in constraint satisfaction. Following usual practice, we concentrate mainly on first-
order (or domain-filtering) consistencies that identify globally inconsistent values.
Chapter 4 describes generic algorithms proposed to enforce the central consistency in
constraint programming, namely (generalized) arc consistency; such algorithms are
universal, as they can theoretically be used for any type of constraints. In Chapter 5,
we restrict our attention to table constraints, that is to say, constraints defined by
explicitly listing allowed (or forbidden) combinations of values. We describe very
recent propagation schemes that have led to significant progress. In Chapter 6, we
are interested in singleton arc consistency, a consistency built upon (generalized) arc
consistency. We introduce some recent approaches that make use of the incrementality
of arc consistency algorithms in different ways. Finally, in Chapter 7, we study dual
consistency, which is a consistency related to path consistency.

The second part of the book presents general search methods that cleverly explore
the search space of combinatorial problems. The basic idea of these methods is to
gather useful information, before and especially during a search, so as to guide the
search efficiently. Chapter 8 presents the concept of backtrack search, together with
classical look-back and look-ahead schemes. Chapter 9 explains how dead-ends
encountered during a search can be quite helpful in guiding the search toward sources
of conflicts. The guidance heuristics involve constraint weighting and last-conflict
reasoning. Chapter 10 investigates nogood recording, in conjunction with the idea of
regularly restarting search. Nogoods can easily be extracted from the current state of
search before each restart, and exploited in subsequent runs to discard portions of the
search space that have already been explored. Chapter 11 introduces the promising
related approach of exploiting partial states extracted, using sophisticated operators,
throughout the search. Finally, Chapter 12 addresses the automatic breaking of
symmetries. This is an important reasoning mechanism that allows symmetric
portions of the search space to be discarded.

We wish to emphasize that many algorithms presented in this book have been
implemented in our constraint solver Abscon. This solver is primarily intended to
serve as a platform for the scientific development of research ideas. Incidentally, it
participates in constraint solver competitions. We also wish to emphasize that this
book does not attempt exhaustive coverage of all topics in the constraint processing
field. It is intended mainly to promote the artificial intelligence approach to constraint
programming, and is unsurprisingly built upon the experience of the author, making
some sections rather personal.

IV. Introductory example

Most of the concepts introduced in this book refer to either inference or search.
Nevertheless, sometimes concepts refer to both principles of inference and search.
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This is the reason why we propose4 an example to gently introduce the central notions
of consistency and backtrack search. Map coloring is the problem chosen for this
example.

The goal of a map coloring problem is to color a map so that adjacent regions,
i.e. regions sharing a common border, have different colors. Figure 3(a) shows a map
that has nine regions which need to be colored. The four color map theorem (e.g. see
[WIL 05]) states that given any plane separated into regions, such as a political map
of the states of a country, the regions can be colored using no more than four colors.
Thus, we propose to color the map shown in Figure 3(a) with the four colors shown in
Figure 3(b).

(a) Map (b) Colors

Figure 3. A map with nine regions to be colored using four colors

The map together with the colors shown in Figure 3 is an instance of the map
coloring problem. We can represent this instance by a constraint network P which is
a structure composed of variables and constraints. A variable is an unknown, which
must be given, or assigned, a value from an associated domain. Naturally, the variables
of our constraint network correspond to the nine regions of the map, and the domain
of each variable contains the four available colors. The variables are {x1, x2, . . . , x9}
and the domains are {dg,mg, lg, w}, where dg stands for dark gray, mg stands for
mid gray, etc. Figure 4 illustrates this. A constraint restricts the possible combinations
of values of some variables. Since adjacent regions must be colored differently, we
introduce a constraint on every pair of variables that represent adjacent regions. Such
a binary constraint states that the values assigned to the two variables involved in this
constraint must be different. We just use inequation constraints. For example, we have

4. I would like to thank Julian Ullmann for having suggested this to me.
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x1 ̸= x2 since x1 and x2 represent two adjacent regions located in the north of the
map.

x2

x7

x1

x8

x9

x6

x5

x3

x4

Figure 4. Each region of the map is represented by a variable x whose domain is the set
{dg, mg, lg, w}, that is, the four available colors

It may be useful to associate a constraint graph with a (binary) constraint network
so as to benefit from well-known results from graph theory. A constraint graph is
an undirected graph built from a constraint network such that there is a vertex per
variable, and there is an edge per pair of variables involved in a constraint. Figure 5
shows the constraint graph for our example. Using the constraint graph of the map
coloring problem, we obtain an equivalent graph coloring problem: color the vertices
of the graph such that adjacent vertices, i.e. vertices linked by an edge, have different
colors.

x3

x2

x4
x7

x8
x5

x6

x1

x9

Figure 5. The constraint graph associated with the constraint network partially depicted in
Figure 4. Here, vertices are labeled with the variable names they represent
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To find a solution for this problem, we need search. In its complete form,
search performs an exhaustive exploration of the search space. The search space is
basically the Cartesian product of the domains of the variables; here, as we have nine
variables and four values per domain, we obtain a search space whose size is 49.
This represents 262,144 different configurations, or complete instantiations, for the
constraint network. Enumerating every complete instantiation in turn and checking
each one to see whether it satisfies all the constraints appears to be quite inefficient;
this is a method called generate and test.

To improve the performance of the “generate and test” approach, it is possible
to perform a depth-first exploration of the search space, verifying at each step that
it may still be possible to find a solution. Variables are assigned, or instantiated, in
turn, thereby forming partial instantiations. At each step, the local consistency of the
partial instantiation can be checked: the partial instantiation is locally consistent iff
each constraint covered by it (i.e. each constraint only involving instantiated variables)
is satisfied.

For our example, a depth-first search (DFS) starts by assigning dg to x1; see
Figure 6(a). The partial instantiation {x1 = dg} is locally consistent because no
constraint is covered by it (all constraints are binary). Then, DFS assigns dg to x2; see
Figure 6(b). This time, the partial instantiation is not locally consistent because the
constraint x1 ̸= x2 is covered and violated. No solution can be found by extending
this partial instantiation, which corresponds to a dead-end situation and is called a
nogood. This is why another value for x2 is tried by the search; see Figure 6(c).

Assume now that the (locally consistent) partial instantiation {x1 = dg, x2 = mg,
x3 = mg, x4 = w, x5 = lg, x6 = dg} must be extended over x7; see Figure 7(a).
It is easy to see that any assignment to x7 yields an inconsistent instantiation because
x1, x2, x4 and x5 are adjacent to x7 and have all been assigned different colors.
Otherwise stated, no color remains possible for x7. Consequently, after four tentative
assignments for x7 (because the domain of x7 is composed of four values), the search
has to return to the variable that was instantiated before x7, which is x6. When the
search returns to a previous variable, we say that the search algorithm backtracks; this
general principle is called backtracking. Depth-first search (with backtracking) is also
called backtrack search. In our example, after backtracking from x7, another value for
x6 must be tried; this is color mg as shown in Figure 7(b). This new assigned color
is immediately discarded because the constraint x3 ̸= x6 is violated. For a similar
reason, lg is discarded, and so the only remaining possibility is to try w for x6; see
Figure 7(c). However, after assigning w to x6, the algorithm again performs the same
useless tentative instantiations of x7, although the value of x6 has no bearing on these
failures. Rediscovering the same failure situations during search is called thrashing.

Finally, it seems reasonable to prevent conflicts that can easily be anticipated
(so as to prevent, or at least reduce, thrashing). For example, if at the beginning of
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(a) DFS assigns dg to x1

x2

x7
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(b) DFS assigns dg to x2. The partial instantiation is not locally consistent because the
constraint x1 ̸= x2 is violated.

x2

x7

x1

x8

x9

x6

x5

x3

x4

(c) DFS tries another assignment for x2 (mg is assigned to x2). The new partial instantiation
is locally consistent.

Figure 6. The early steps performed by DFS (depth-first search)
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x2
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(a) The partial instantiation {x1 = dg, x2 = mg, x3 = mg, x4 = w, x5 = lg, x6 = dg}
must be extended over x7. No extension is locally consistent: search has to backtrack to x6.

x2
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x1

x8

x9

x6

x5
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x4

(b) After backtracking to x6, a new value has been assigned to x6. This value (as well as lg)
is immediately discarded because the new partial instantiation is not locally consistent.
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x8

x9

x6

x5

x3

x4

(c) The value w is now assigned to x6. Four useless tentative assignments to x7 will be
performed again. This is a phenomenon called thrashing.

Figure 7. Illustration of backtracking and thrashing
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search the value dg is assigned to x1, then clearly this value can be removed from
the domain of the variables in the neighborhood of x1, namely x2, x3, x4 and x7; see
Figure 8. A value for an uninstantiated variable is incompatible with the value of the
last instantiated variable if there is a constraint that prevents these two variables from
taking these values simultaneously. Such incompatible values are not arc-consistent
and can be safely deleted without losing any solutions. Deletion of inconsistent values
is called filtering of the domains.

x2

x7

x1

x8

x9

x6

x5

x3

x4

Figure 8. By reasoning locally from constraints after dg is assigned to x1, we deduce (infer)
that the value dg can be safely removed from the domains of x2, x3, x4 and x7

Sophisticated backtrack search algorithms interleave search steps and filtering
inference processes that can identify inconsistent partial instantiations of arbitrary
size. Before starting search, constraint networks are usually processed during a so-
called preprocessing stage. Typically, inferences such as removing inconsistent values
are performed at preprocessing time. Sometimes preprocessing alone is sufficient to
solve a problem instance.
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Chapter 1

Constraint Networks

This chapter introduces the formalism of constraint networks, which can abstractly
represent many academic and real-world problems. Section 1.1 introduces variables
and constraints, which are the main ingredients of constraint networks. This
introduction includes different representations of constraints as well as the vital
concept of constraint support. In section 1.2, we formally define constraint networks.
Moreover, we present the (hyper)graphs that can be associated with any constraint
network, and introduce instantiations. Section 1.3 provides some illustrative examples
of problems that can be easily represented by means of constraint networks. For
simplicity and entertainment, these examples are based on logic puzzles. Section 1.4
is concerned with partial orders in constraint networks, decisions and general
properties of values and variables. Finally, section 1.5 introduces some data structures
that can be employed to represent constraint networks in computer programs.

1.1. Variables and constraints

Here we will define variables and constraints, which are the main ingredients of
constraint networks. They constitute the surface part of a problem representation,
whereas domains and relations constitute the underlying part. In object-oriented
design, we would certainly build up a class for variables and another for constraints,
and represent all relevant information about variables and constraints in terms of
attributes (maybe introducing additional classes) for these objects: identifier, domain,
scope, relation, etc.

DEFINITION 1.1.– [Variable] A variable, which is a component of an abstract system,
is an object that has a name and is able to take different values. In our context, a
variable (whose name is) xmust be given a value from a set, which is called the current
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domain of x and is denoted by dom(x). The domain of a variable x may evolve over
time, but it is always included in a set called the initial domain of x.1 This initial
domain, which is denoted by dominit(x), represents the full universe of the variable
x.

A continuous variable has an infinite initial domain, usually defined in terms of
real intervals. Continuous variables are outside the scope of this book, which only
considers discrete variables. A discrete variable is a variable whose initial domain
contains a finite number of values.

We use letters x, y, z (and when necessary u, v, w), possibly subscripted or primed,
to denote variables. Without any loss of generality, our variables can be assumed
to have integer values in their domains when necessary. Quite often, letters a, b, c,
possibly subscripted or primed, will be used to denote values. For example, x and y
such that dominit(x) = {a, b} and dominit(y) = {1, 2, . . . , 100} are two discrete
variables whose initial domains contain 2 and 100 values, respectively.

Domains are dynamic sets, i.e. they may change over time. A variable is said to
be fixed when its current domain only contains one value, and unfixed otherwise. A
variable can be fixed either explicitly or implicitly (incidentally). When a variable x
is explicitly given a value a from its current domain dom(x) during the progression
of a scenario or an algorithm, every other value b ̸= a is considered to be removed
from dom(x). In this case we say that the variable x is instantiated; otherwise, we say
that x is uninstantiated. We also say that the variable x is assigned (the value a) or
that the value a is assigned to x. Assigning a value to a variable is called a variable
assignment. Implicitly fixed variables occur when deduction (inference) mechanisms
are used. For example, consider the equality x = y between two variables x and y
whose (common) current domain is {1, 2}. If the variable x is assigned the value 1,
by reasoning from the equality we can deduce that y must also be equal to 1, i.e. the
value 2 can be removed from dom(y) by deduction. The two variables are then fixed,
the first one explicitly and the second one implicitly. However, only the first variable
is considered to be instantiated (or assigned).

A value a is said to be valid for a variable x iff a ∈ dom(x). Because of changes
in dom(x), a value that is valid for x at time t may be invalid at another time t′. To
keep track of those changes, it can be helpful to use a superscript t to denote the time at
which we refer to a domain: domt(x) is the domain of x at time t. With t0 representing
the time origin we have, for every variable x, domt0(x) = dominit(x). Actually, as
we shall see later, instead of using time, we use constraint networks as superscript
for domains. Indeed, when we reason about several related constraint networks, it is

1. We can imagine situations where initial domains could be enlarged. However, no technique
presented in this book allows us to do that.
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expedient to write domP (x) to denote the domain of x in constraint network P . When
the context is unambiguous, we simply use dom(x).

In this book, without any loss of generality, we assume that (names of) discrete
variables belong to an infinite totally ordered set, with the (strict) total order denoted
by ▹; thus x ▹ y means that variable x (strictly) precedes y within this order.
Consequently, any set of variables handled in the remainder of this book is assumed
to be totally ordered by ▹.

REMARK 1.2.– [Total Order on Variables] Any set X of variables is totally ordered
according to the relation ▹.

Similarly, without any loss of generality, we assume that values are always taken
from a totally ordered set, with the (strict) total order denoted by <; thus a < b means
that the value a (strictly) precedes b within this order. Consequently, any set of values
handled in the remainder of this book is assumed to be totally ordered by <.

REMARK 1.3.– [Total Order on Values] Any set V of values is totally ordered
according to the relation <.

To define constraints, we introduce tuples, Cartesian product and relations. More
information about sets, relations, etc. can be found in Appendix A.1.

DEFINITION 1.4.– [Tuple] A tuple τ is a sequence, usually enclosed between
parentheses, of values separated by commas. A tuple containing r values is called an
r-tuple. The ith value of an r-tuple, with 1 ≤ i ≤ r, is denoted by τ [i].

As values are taken from a totally ordered set, r-tuples can be lexicographically
ordered by extending the relation <. The new strict total order is denoted by <lex, and
the corresponding non-strict total order is denoted by ≤lex.

DEFINITION 1.5.– [Lexicographic Order] Let τ and τ ′ be two r-tuples.
– τ <lex τ ′ iff ∃i ∈ 1..r such that τ [i] < τ ′[i] and ∀j ∈ 1..i − 1, τ [j] = τ ′[j].
– τ ≤lex τ ′ iff τ <lex τ ′ or τ = τ ′.

EXAMPLE.– Considering values taken from N, we have:
– (2, 4, 7, 6) <lex (3, 3, 3, 8);
– (2, 4, 7, 6) <lex (2, 4, 8, 2);
– (2, 4, 7, 6) <lex (2, 4, 7, 8).

A Cartesian product is a set composed of all tuples that can be built from a
sequence of sets.
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DEFINITION 1.6.– [Cartesian Product] Let D1, D2, . . . , Dr be a sequence of r
sets. The Cartesian product D1 × D2 × · · · × Dr, also written

∏r
i=1 Di, is the set

{(a1, a2, . . . , ar) | a1 ∈ D1, a2 ∈ D2, . . . , ar ∈ Dr}. Each element of
∏r

i=1 Di is
an r-tuple.

EXAMPLE.– We can define Cartesian products of domains of variables. For example,
if x, y and z are three variables such that dom(x) = dom(y) = {a, b} and dom(z) =
{a, c}, we have:

dom(x) × dom(y) × dom(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a, a, a),
(a, a, c),
(a, b, a),
(a, b, c),
(b, a, a),
(b, a, c),
(b, b, a),
(b, b, c)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

A relation is simply a subset of a Cartesian product.

DEFINITION 1.7.– [Relation] A relation R defined over a sequence of r sets
D1, D2, . . . , Dr is a subset of the Cartesian product

∏r
i=1 Di, so R ⊆

∏r
i=1 Di.

We also say that R is defined on ∏r
i=1 Di.

EXAMPLE.– Here is a relation defined on dom(x) × dom(y) × dom(z):

Rxyz =

⎧
⎪⎪⎨

⎪⎪⎩

(a, a, c),
(b, a, a),
(b, a, c),
(b, b, c)

⎫
⎪⎪⎬

⎪⎪⎭

We can now introduce the central concept of constraint.

DEFINITION 1.8.– [Constraint] A constraint, which is a component of an abstract
system, is represented by a name and is a restriction on combinations of values that
can be taken simultaneously by a set of variables. In our context, a constraint (whose
name is) c is defined over a (totally ordered) set of variables, which constitute the
scope of c and are denoted by scp(c). A constraint c is defined by a relation, denoted
by rel(c), comprising exactly the set of tuples allowed by c for the variables of its
scope; we have rel(c) ⊆

∏
x∈scp(c) dominit(x).

The letter c, possibly subscripted with the sequence of scope variables, or possibly
primed, is used to denote a constraint. For example, the constraint cxyz is such that
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scp(cxyz) = {x, y, z}. Sometimes we use the symbol c to denote a value for a variable,
but the context is always sufficient to distinguish between a constraint and a value.

A tuple τ allowed by c is also said to be accepted by c, and we say that τ satisfies
c. A tuple that is not allowed by c is said to be disallowed or forbidden by c, and we
say that c is unsatisfied, or violated, by τ . For example, if cxyz is a constraint such
that rel(cxyz) = Rxyz , where Rxyz is the relation introduced above, then (b, a, c) is
an allowed tuple, whereas (a, b, a) is disallowed by cxyz .

A variable x that belongs to scp(c) is said to be involved in c. Note that scp(c)
is totally ordered according to the relation ▹; see Remark 1.2. Consequently, in
Definition 1.8 the order of the domains in the Cartesian product corresponds to the
order of the variables for which they are the domains. We use scp(c)[i] in some
algorithms to denote the ith variable involved in scp(c), with 1 ≤ i ≤ | scp(c)|. Two
constraints c and c′ such that scp(c) ∩ scp(c′) ̸= ∅ are said to intersect. For example,
cxyz and cwy are two constraints that intersect on variable y. The arity of a constraint
c is the number of variables involved in c, i.e. | scp(c)|. A constraint is:

– unary iff its arity is 1;
– binary iff its arity is 2;
– ternary iff its arity is 3;
– non-binary iff its arity is strictly greater than 2.

Notice that a non-binary constraint is considered as being neither binary nor (more
surprisingly) unary. The reason is that, as we shall see later, unary constraints defined
on discrete variables can easily be discarded (and so ignored).

Definition 1.8 is a little bit more general than the one usually employed, which
is confined to tailored constraints. This has to do with the concept of embedded
constraint networks introduced in [BES 06].

DEFINITION 1.9.– [Tailored Constraint] A constraint c is said to be tailored iff
rel(c) ⊆

∏
x∈scp(c) dom(x).

When a constraint is tailored, every allowed tuple only involves valid values,
i.e. values in current domains. When it is not tailored, we may have rel(c) ̸⊆∏

x∈scp(c) dom(x), but by definition we know that rel(c) ⊆
∏

x∈scp(c) dominit(x).
The general definition 1.8 is useful in dynamic situations, as we shall see later. In
practice, constraints are tailored when they are defined; but when domains of variables
change, constraints do not systematically remain tailored.

It is important to note that constraint relations may also change over time; this
is a feature of various approaches such as enforcing path consistency or pairwise
consistency, which are introduced later. The state of a constraint c at time t is given
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by the state of rel(c) at time t, and also, indirectly, by the state of the domains of
the variables involved in c at time t. To keep track of changes, if any, in a constraint
relation, we can use a superscript t so that relt(c) is the relation of c at time t.

EXAMPLE.– Figure 1.1 illustrates the dynamic aspect of constraint relations with
a ternary constraint cxyz (with scp(cxyz) = {x, y, z}). We have dominit(x) =
dominit(y) = dominit(z) = {a, b, c}. At time t0, the initial tailored constraint
is defined. At time t1, two allowed tuples of the initial relation have here been
(arbitrarily) removed. At time t2, some values have been (arbitrarily) removed from
the domains of the variables involved in cxyz , making cxyz no longer tailored. For
example, (b, a, a) ∈ relt2(cxyz) but (b, a, a) /∈ domt2(x) × domt2(y) × domt2(z).

rel
t1(cxyz) = {
(a, b, b)

(b, a, a)

}
(c, c, a)
(c, a, c)

(a, c, a)

dom
t1(y) = {a, b, c}

dom
t1(z) = {a, b, c}

dom
t1(x) = {a, b, c}

dom
t0(y) = {a, b, c}

dom
t0(z) = {a, b, c}

dom
t0(x) = {a, b, c}

(a, c, a)

rel
t0(cxyz) = {
(a, b, b)

(b, a, a)
(c, a, c)
(c, c, a)

}

dom
t2(y) = {a, b, c}

dom
t2(z) = {a, b, c}

dom
t2(x) = {a, b, c}

rel
t2(cxyz) = {
(a, b, b)

(b, a, a)
(c, a, c)
(c, c, a)

}

(a, c, a)

cxyz

t1

t
2

t0

Figure 1.1. Three (arbitrary) successive states of a constraint cxyz

The initial relation of c is denoted by relinit(c); this is the relation defined at the
time origin t0. As for domains, when we are concerned with constraints in more than
one constraint network, e.g. when analyzing the dynamic behavior of an algorithm,
we write relP (c) to denote the relation of c in constraint network P . When the context
is unambiguous, we simply use rel(c).

Although we have defined a constraint in terms of an associated relation, this
imposes no restriction on the practical prescription of constraints. In practice, a
constraint may be defined either intensionally or extensionally.
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DEFINITION 1.10.– [Intensional Constraint] A constraint c is intensional, or defined
in intension, iff rel(c) is implicitly described by a predicate2, i.e. by a characteristic
function that is defined from ∏

x∈scp(c) dominit(x) to {false, true} and based on a
Boolean expression or formula.

Examples of Boolean expressions are x ̸= y and |x ∗ y| < |z|. Clearly, the
semantics of constraints intensionally defined by Boolean expressions is immediately
understood. We usually refer to an intensional constraint c as c : expr where expr is
the predicate expression of c (also denoted by expr [c]).
DEFINITION 1.11.– [Extensional Constraint] A constraint c is extensional, or defined
in extension, iff rel(c) is explicitly described, either positively by listing the tuples
allowed by c or negatively by listing the tuples disallowed by c.

For an extensional constraint c, we use table[c] and table[c] to denote the set of
tuples allowed and disallowed by c, respectively. Of course, we have table[c] = rel(c)
and table[c] =

∏
x∈scp(c) dominit(x) \ rel(c). The use of these special terms shows

clearly that we are dealing with extensional constraints.
EXAMPLE.– Consider a ternary constraint cxyz . Imagine that this constraint means
that the values which can be assigned simultaneously to x, y and z must all be
different. The constraint cxyz can be defined in intension by using x ̸= y∧x ̸= z∧y ̸=
z as a predicate expression, denoted by cxyz : x ̸= y ∧ x ̸= z ∧ y ̸= z. Note that
this representation remains stable, irrespective of the initial domains of variables in
scp(cxyz). If dominit(x)×dominit(y)×dominit(z) = {0, 1, 2}×{0, 1, 2}×{0, 1, 2},
then cxyz can be represented in extension by one of the two following sets:

table[cxyz] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(0, 1, 2),
(0, 2, 1),
(1, 0, 2),
(1, 2, 0)
(2, 0, 1),
(2, 1, 0)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

table[cxyz] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(0, 0, 0),
(0, 0, 1),
(0, 0, 2),

. . .
(2, 2, 1),
(2, 2, 2)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

The number of allowed tuples is 6, whereas the number of disallowed tuples
is 21. For simplicity and for space efficiency, it is better in this case to employ a
representation of allowed tuples. If we generalize the ternary constraint cxyz to an
r-ary constraint c such that the initial domain of any involved variable is {0, 1, . . . ,
r−1} while keeping the same semantics, the number of allowed and disallowed tuples
become r! and rr−r!, respectively. It is then essential to represent such a constraint in

2. Note that an intensional constraint cannot always easily be defined by a Boolean formula,
because it sometimes corresponds to use of a computer function.
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intension, and even better, by a so-called global constraint whose meaning is implicit.
Actually, the constraint introduced in our example is (an instance of) the well-known
global constraint (pattern) allDifferent.

DEFINITION 1.12.– [Global Constraint] A global constraint is a constraint pattern
that captures precise relational semantics and can be applied over an arbitrary
number of variables.

For example, the semantics of allDifferent is that every variable must take a
different value. When the allDifferent constraint pattern is applied to three variables
x, y and z, we obtain a constraint denoted by cxyz : allDifferent(x, y, z). Clearly, the
allDifferent constraint pattern can be applied to any number of variables. For more
information about global constraints, see e.g. [HOE 06, BEL 08].

(a, b)
(a, c)
(b, a)
(b, b)
(c, c)

x y

(a) table of cxy

y

c

b

a

x

a b c

(b) (0, 1)-matrix of cxy

Figure 1.2. Extensional representation of a binary constraint cxy by a table and a
(0, 1)-matrix

An alternative representation for extensional constraints is to use multi-
dimensional Boolean arrays, also called (0, 1)-matrices when constraints are binary.
For example, assume that x and y are two variables such that dom(x) = dom(y) =
{a, b, c}, and cxy is a binary constraint defined in extension by the table3 given in
Figure 1.2(a). The constraint cxy can equivalently be represented by the (0, 1)-matrix
given in Figure 1.2(b). An entry of 0 (resp. 1) means that the tuple composed of the
value labeling the row and the value labeling the column is disallowed (resp. allowed)
by the constraint. For example, we find 1 at the intersection of row b and column a,
meaning that (b, a) is allowed by cxy. The space complexity of a table representation
is O(tr), where t denotes the number of tuples in the table, and r the arity of the
constraint4. The space complexity of a multi-dimensional array representation is
O(dr), where d denotes the greatest domain size, which shows that arrays can be used

3. Henceforth, tables are presented as a simple enumeration (list) of tuples.
4. Asymptotic notation is presented in Appendix A.2.1.

www.it-ebooks.info

http://www.it-ebooks.info/


Constraint Networks 47

only for small-arity constraints. In the remainder of the book, we always consider
extensional constraints implemented by tables.

As explained above, when constraints are not tailored we have rel(c) ̸⊆∏
x∈scp(c) dom(x). For example, consider a binary intensional constraint cxy : x = y

such that dominit(x) = dominit(y) = {0, 1, . . . , 9}. We have rel(cxy) = {(i, j) ∈
dominit(x) × dominit(y) | i = j}. When the membership of domains is changed,
we can implicitly update the relation associated with cxy , e.g. as in [BAC 02a], so
that rel(cxy) = {(i, j) ∈ dom(x) × dom(y) | i = j}, and constraints always
remain tailored. However, it may not be practical to update a constraint relation
represented in extension; in our example, an extensional representation of cxy is
table[cxy] = relinit(cxy) = {(0, 0), . . . , (9, 9)}. If 0 and 1 are removed from
dom(x), then in principle, (the table associated with) the relation of cxy can be
reduced to rel(cxy) = {(2, 2), . . . , (9, 9)}. In practice, updating table[cxy] may be
expensive and not very helpful, and implicitly considering such an update may be
unsafe in the development and/or complexity analysis of some algorithms. Therefore,
unless explicitly mentioned, constraint relations will be considered as invariant, i.e.
rel(c) = relinit(c) for all constraints c.

The distinction between what is allowed (i.e. what can be accepted by a constraint)
and what is valid (i.e. what can be built from the variable domains of a constraint) is
important for understanding the dynamic aspect of some algorithms.

Let τ = (a1, . . . , ar) be an r-tuple of values of a (totally ordered) set of r variables
X = {x1, . . . , xr}. The value ai will be denoted by τ [xi]. By extension, for any
subset X ′ ⊆ X , the restriction of τ to the variables in X ′ will be denoted by τ [X ′].
For example, let X = {w, x, y, z} and τ = (a, b, b, c). We have τ [w] = a, τ [x] = b,
. . . , and τ [{w, z}] = (a, c). A valid tuple for a constraint is a tuple containing a valid
value for every variable in the scope of the constraint.
DEFINITION 1.13.– [Valid Tuple] Let c be an r-ary constraint. An r-tuple τ is valid
on c iff ∀x ∈ scp(c), τ [x] ∈ dom(x). The set of valid tuples on c is val(c) =∏

x∈scp(c) dom(x).

By definition of variables, we always have val(c) ⊆
∏

x∈scp(c) dominit(x).
Moreover, when c is tailored, we have rel(c) ⊆ val(c). Recall that a tuple τ is allowed
by a constraint c iff τ ∈ rel(c). Supports and conflicts are defined as follows.
DEFINITION 1.14.– [Support and Conflict] Let c be an r-ary constraint. An r-tuple
τ is a support (resp. a conflict) on c iff τ is a valid tuple on c which is allowed (resp.
disallowed) by c.

If τ is a support (resp. a conflict) on a constraint c involving a variable x and such
that τ [x] = a, we say that τ is a support (resp. a conflict) for (x, a) on c; we also say
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that (x, a) is supported (resp. not supported) by c. When (a, b) is a support on a binary
constraint cxy, we sometimes say that (x, a) supports (y, b) on cxy, and symmetrically
that (y, b) supports (x, a) on cxy .

NOTATION 1.15.– Let c be a constraint.
– The set of supports on c is sup(c) = val(c) ∩ rel(c).
– The set of conflicts on c is con(c) = val(c) \ sup(c).

For a tailored constraint c, we have sup(c) = rel(c) since rel(c) ⊆ val(c).
Determining if a tuple is allowed is called a constraint check, and determining if a
tuple is valid is called a validity check. We often need to make such checks when
looking for supports; search of supports represents a basic operation in constraint
reasoning. Figure 1.3 summarizes the different sets introduced so far; Figure 1.4
provides a detailed example.

rel(c)

val(c)

sup(c)

∏
x∈scp(c) dom

init(x)

Figure 1.3. A constraint c whose “universe” is Q
x∈scp(c) dominit(x). The set of tuples

allowed by c is rel(c). The set of valid tuples on c is val(c). The set of supports on c is
sup(c) = rel(c) ∩ val(c)

The following notation will be useful in situations where we need to deal with
tuples that involve a particular value.

NOTATION 1.16.– Let c be a constraint, x ∈ scp(c) and a ∈ dom(x).
– The set of valid tuples for (x, a) on c is val(c)x=a = {τ ∈ val(c) | τ [x] = a}.
– The set of supports for (x, a) on c is sup(c)x=a = val(c)x=a ∩ rel(c).
– The set of conflicts for (x, a) on c is con(c)x=a = val(c)x=a \ sup(c).
– The set of strict supports for (x, a) on c is sup(c)↓x=a= {τ [scp(c) \ {x}] | τ ∈

sup(c)x=a}.
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rel(cxy)

y

x

val(cxy)

sup(cxy)

dom
init(x) × dom

init(y)

Figure 1.4. A constraint cxy : x < y whose “universe” is
dominit(x) × dominit(y) = {0, . . . , 3}× {0, . . . , 5}. The set of tuples allowed by cxy is
rel(cxy) = {(i, j) ∈ dominit(x) × dominit(y) | i < j}. When dom(x) = {1, 2, 3} and

dom(y) = {0, 1, 2, 3}, the set of valid tuples on cxy is val(cxy) = {1, 2, 3}× {0, 1, 2, 3}.
The set of supports on cxy is sup(cxy) = rel(cxy) ∩ val(cxy) = {(1, 2), (1, 3), (2, 3)}

rel(cxy)

y

x

dom
init(x) × dom

init(y)

sup(cxy) = val(cxy)

Figure 1.5. The constraint from Figure 1.4 in a different state, since we now have
dom(x) = {1, 2} and dom(y) = {3, 4}. Here, we have

sup(cxy) = val(cxy) = {1, 2}× {3, 4}. Hence, cxy is entailed: we have
a guarantee that x < y

When we have sup(c)x=a ̸= ∅, we say that c (currently) supports (x, a).
Note here that a strict support for a value (x, a) on a constraint c is a tuple
composed of | scp(c)| − 1 values, whereas a “classical” support contains | scp(c)|
values. We need strict supports to define some properties later. For example,
if cxyz is such that sup(cxyz) = {(a, b, a), (a, b, c), (b, a, b), (c, c, b)}, then
sup(cxyz)x=a = {(a, b, a), (a, b, c)}, and sup(cxyz)↓x=a= {(b, a), (b, c)}.
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We can now introduce constraint tightness (and looseness), which is an important
feature. The greater the tightness of a constraint, the more difficult it is to satisfy the
constraint.
DEFINITION 1.17.– [Constraint Tightness and Looseness] Let c be a constraint.

– The looseness of c is equal to the ratio
| relinit(c)|

|
∏

x∈scp(c) dominit(x)|
.

– The tightness of c is equal to the ratio
|
∏

x∈scp(c) dominit(x) \ relinit(c)|
|
∏

x∈scp(c) dominit(x)|
.

Looseness and tightness above are defined from initial domains and relation; this
corresponds to the classical usage. Sometimes it is useful to compute tightness or
looseness from current domains and relation. The current constraint tightness (resp.
looseness) of a constraint c is the ratio | con(c)|/| val(c)| (resp. | sup(c)|/| val(c)|).
Current constraint tightness corresponds to the ratio “number of conflicts on c over
number of valid tuples on c”. For example, the constraint tightness of the constraint
cxy depicted in Figure 1.4 is 10

24 , assuming that rel(cxy) = relinit(cxy), and its current
constraint tightness is 9

12 .
Universal and empty constraints correspond to extreme values of rel(c). A

universal constraint can be safely ignored (but may be introduced for special
purposes), whereas an empty constraint can never be satisfied.
DEFINITION 1.18.– [Universal and Empty Constraints] Let c be a constraint.

– c is universal iff relinit(c) =
∏

x∈scp(c) dominit(x).
– c is empty iff relinit(c) = ∅.

After domains have been reduced, constraints sometimes seem to be universal or
empty; they are said to be entailed or disentailed:
DEFINITION 1.19.– [Entailed and Disentailed Constraints] Let c be a constraint.

– c is entailed iff sup(c) = val(c).
– c is disentailed iff sup(c) = ∅.

As long as no value is restored to any domain, an entailed constraint is guaranteed
to be satisfied (provided that at least one value remains in each domain). Similarly,
a disentailed constraint is guaranteed to be unsatisfied. An illustration of an entailed
constraint is given in Figure 1.5.
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1.2. Networks of variables and constraints

Constraint satisfaction was introduced5 and formalized in the the 1960s
[DAV 62, ULL 65, GOL 65, ULL 66] and 1970s [WAL 72, MON 74, GAS 74,
WAL 75, ULL 76, BIT 75, MAC 77a, STA 77, ULL 77, FRE 78, MCG 79, GAS 79].
Surprisingly, there are almost as many equivalent definitions of constraint networks
(sometimes called constraint satisfaction problems) as papers about the topic. In the
following definition, variables and constraints constitute the “interface” of constraint
networks.

1.2.1. Basic definitions

A structure composed of variables and constraints is called a constraint network
or, more simply, a network, when the context is unambiguous.

DEFINITION 1.20.– [Constraint Network] A finite constraint network P is composed
of a finite set of variables, denoted by vars(P ), and a finite set of constraints, denoted
by cons(P ), such that ∀c ∈ cons(P ), scp(c) ⊆ vars(P ).

Usually and unless stated otherwise, we will take as given both an initial
constraint network denoted by P init and a current constraint network denoted by P .
The constraint network P is defined on the same6 variables and constraints as P init,
and is derived from P init by modification (reduction) of domains and/or relations.
Informally, P init is the constraint network specified by the user at time origin t0; this
is a formulation of a specific problem for which the user requires a solution. At time
t during the solution process, P is the network obtained from P init by application of
various transformations. The initial domain of a variable x is dominit(x), whereas
the current domain of x will be denoted by domP (x), or more simply dom(x) if the
context is unambiguous. Similarly, we denote the initial relation associated with a
constraint c by relinit(c), and the current relation by relP (c) or rel(c). In summary,
when necessary we use constraint networks that are time-referential for domains and
relations.

In this book, the set vars(P ), any subset of vars(P ) and consequently the
scope of any constraint are totally ordered according to the relation ▹; see
Remark 1.2. We assume that ▹ is implicitly given by the sequence of variables
in listed sets. For example, for P such that vars(P ) = {v, w, x, y, z} and
cons(P ) = {cvwx, cvyz, cwxz} with scp(cvwx) = {v, w, x}, scp(cvyz) = {v, y, z}
and scp(cwxz) = {w, x, z}, we implicitly assume that v ▹ w ▹ x ▹ y ▹ z.

5. A good introduction to the emergence of constraint satisfaction is [FRE 06].
6. Two variables or two constraints are the same if they share the same name (identifier).
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A binary constraint network is a network only involving binary constraints,
whereas a non-binary constraint network is a network involving at least one non-
binary constraint. From now on, unless stated otherwise, we shall only consider
constraint networks involving no unary constraints. In the context of finite constraint
networks, this is not a real limitation because for every unary constraint cx such that
scp(c) = {x}, we can simply replace dominit(x) by dominit(x) ∩ relinit(cx) and
discard cx (since after this operation, cx is an entailed constraint). This replacement
enforces a property called node consistency, which was introduced in [MAC 77a].

EXAMPLE.– P such that
– vars(P ) = {x, y} with dominit(x) = dominit(y) = {a, b, c}, and
– cons(P ) = {cx, cxy, cy, } with relinit(cx) = {a, b} and relinit(cy) = {b, c}

can be transformed into P ′ such that
– vars(P ′) = {x, y} with dominit(x) = {a, b} and dominit(y) = {b, c}, and
– cons(P ′) = {cxy}.

Another restriction that we impose is the normalization of constraint networks.
From a formal point of view, it is better to deal with normalized networks because
this avoids some form of non-determinism (for example, when recording so-called
nogoods) and improves the filtering capabilities of various algorithms.

DEFINITION 1.21.– [Normalized Constraint Network [APT 03, BES 06]] A constraint
network P is said to be normalized iff ∀c1 ∈ cons(P ),∀c2 ∈ cons(P ), c1 ̸= c2 ⇒
scp(c1) ̸= scp(c2).

Constraint networks can easily be normalized by merging constraints that share
the same scope. More specifically, a non-normalized constraint network P can be
normalized as follows. Each pair of constraints c1 and c2 such that scp(c1) = scp(c2)
is replaced by a new constraint c3 such that scp(c3) = scp(c1) and rel(c3) = rel(c1)∩
rel(c2).

EXAMPLE.– P such that
– vars(P ) = {x, y} and cons(P ) = {c1, c2},
– scp(c1) = {x, y} and rel(c1) = {(a, a), (a, b), (b, b)}, and
– scp(c2) = {x, y} and rel(c2) = {(a, b), (b, a), (b, b)}

can be transformed into P ′ such that
– vars(P ′) = {x, y} and cons(P ′) = {c3}, and
– scp(c3) = {x, y} and rel(c3) = {(a, b), (b, b)}.
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Such transformation is immediate when constraints are given in extension. For
intensional constraints, the predicate expressions can simply be merged with a logical
and (∧).
EXAMPLE.– P such that

– vars(P ) = {x, y} and cons(P ) = {c1, c2},
– c1 : x ≤ y, and
– c2 : x + y < 10

can be transformed into P ′ such that
– vars(P ′) = {x, y} and cons(P ′) = {c3}, and
– c3 : (x ≤ y) ∧ (x + y < 10).

Other cases can be addressed by converting if necessary some intensional
constraints into extension.

To summarize, the space of constraint networks that we shall consider is the
following.
NOTATION 1.22.– [P] The set of finite normalized constraint networks with no unary
constraints is denoted by P .

When we want to limit constraints to a unique arity, we use the following space.
For example, P2 represents the set of normalized binary constraint networks.
NOTATION 1.23.– [Pk] Let k be an integer such that k ≥ 2. The set of finite
normalized constraint networks of P only involving constraints of arity k is denoted
by Pk.

The following space will also be useful. For k = 2, it guarantees that there exists
exactly one constraint per pair of variables.
NOTATION 1.24.– [Pk∗] Let k be an integer such that k ≥ 2. The set of finite
normalized constraint networks ofPk with a k-ary constraint for each k-combination
of variables is denoted by Pk∗ .

From now on, whenever we refer to a constraint network without any other
precision, we consider an element of P .

The degree of a variable is a characteristic that may be useful (e.g. when devising
variable ordering heuristics).
DEFINITION 1.25.– [Degree] The degree of a variable is the number of constraints
involving it. The dynamic degree of a variable x is the number of constraints involving
x and at least one unfixed variable distinct from x.
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Remember that a variable is unfixed iff its domain is not singleton. Two variables x
and y are said to be neighbors if there exists a constraint c such that {x, y} ⊆ scp(c).
Throughout this book we use the following notation.

NOTATION 1.26.– [n, e, d and r] For a given constraint network P , we denote by:
– n the number of variables, n = | vars(P )|;
– e the number of constraints, e = | cons(P )|;
– d the greatest domain size, d = maxx∈vars(P ) |dom(x)|;
– r the greatest constraint arity, r = maxc∈cons(P )| scp(c)|.

When studying complexities, we shall assume that each variable is not isolated, i.e.
involved in at least one constraint, which implies that n ≤ er. For binary constraint
networks (r = 2), this means that n is O(e).

To simplify discourse in this book, we define v-values and c-values.

DEFINITION 1.27.– [v-value]
– A v-value is a variable–value pair (x, a) where x is a variable and a ∈

dominit(x).
– A v-value of a constraint network P is a v-value (x, a) such that x ∈ vars(P )

and a ∈ domP (x).

Using this abbreviation, saying that a v-value (x, a) is removed (or deleted) is
equivalent to saying that a is removed from dom(x). Note that in some (general)
contexts, we shall refer to v-values simply as values because these two notions are
quite close.

DEFINITION 1.28.– [c-value]
– A c-value is a constraint-variable-value triplet (c, x, a) where c is a constraint,

x ∈ scp(c) and a ∈ dominit(x).
– A c-value of a constraint network P is a c-value (c, x, a) such that c ∈ cons(P )

and a ∈ domP (x).

Recall that a tuple τ is a support on a constraint c for a v-value (x, a) when x ∈
scp(c) and τ is a support on c such that τ [x] = a. In this case, we also say that τ
is a support for the c-value (c, x, a). Two v-values (x, a) and (y, b) are said to be
compatible iff either no binary constraint exists between x and y, or (a, b) ∈ rel(cxy)
where cxy is the binary constraint between x and y.
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NOTATION 1.29.– Let P be a constraint network.
– v-vals(P ) denotes the set of v-values of P .
– c-vals(P ) denotes the set of c-values of P .

Figure 1.6 provides an example.

n = 4

d = 3

e = 3

r = 3

cons(P ) = {cwx, cwyz, cxz}
scp(cwx) = {w, x}
scp(cwyz) = {w, y, z}
scp(cxz) = {x, z}

(w, a)
(w, b)
(x, a)
(x, b)
(x, c)
(y, a)

(z, b)
(z, a)

(z, c)

P

(cwx, w, a)
(cwx, w, b)
(cwx, x, a)
(cwx, x, b)
(cwx, x, c)

(cwyz, w, a)
(cwyz, w, b)

(cxz, x, a)

(cwyz, y, a)
(cwyz, z, a)
(cwyz, z, b)
(cwyz, z, c)

(cxz, x, b)
(cxz, x, c)
(cxz, z, a)
(cxz, z, b)
(cxz, z, c)

P

P

dom(w) = {a, b}
dom(x) = {a, b, c}
dom(y) = {a}
dom(z) = {a, b, c}

vars(P ) = {w, x, y, z}

Figure 1.6. A constraint network P involving n = 4 variables and e = 3 constraints. The
greatest domain size is d = 3 and the greatest constraint arity is r = 3. The set of v-values

and c-values of P are listed

To conclude this introduction to constraint networks, we highlight an important
class of constraint networks, wherein variables are Boolean and constraint predicates
are logic clauses. Here constraint predicates are expressed as propositional formulae
in conjunctive normal form (CNF). For example, the CNF formula:

(x ∨ y ∨ ¬z) ∧ (¬w ∨ ¬x) ∧ (w ∨ ¬y ∨ z)

is defined over four variables w, x, y, z that are Boolean, which means that their initial
domains are {false, true}. This formula is a conjunction (operator ∧) of three clauses.
A clause is a disjunction (operator ∨) of literals where a literal is either a Boolean
variable or its logical negation (operator ¬).

Any CNF formula can be directly “encoded” as a CSP instance expressed as a
constraint network with the Boolean variables of the formula as variables and the CNF
clauses as non-binary constraints of the network. This is called non-binary encoding
in [WAL 00]. For our CNF formula above, the constraint network P is such that:
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– vars(P ) = {w, x, y, z} with dom(w) = · · · = dom(z) = {false, true};
– cons(P ) = {cxyz : x ∨ y ∨ ¬z, cwx : ¬w ∨ ¬x, cwyz : w ∨ ¬y ∨ z}.

1.2.2. Associated (hyper)graphs

It is usual to refer to some properties of the (hyper)graphs that can be associated
with any constraint network. Graphs and hypergraphs are formally defined in
Appendix A.1.

The constraint hypergraph, also called macro-structure, associated with a
(normalized) constraint network P consists of n vertices corresponding to the
variables of P and also e hyperedges corresponding to the constraints of P ; the
vertices in a hyperedge correspond to the variables in the scope that it represents.

DEFINITION 1.30.– [Constraint Hypergraph] The constraint hypergraph of a
constraint network P is the pair (V,E) where V = vars(P ) and E = {scp(c) | c ∈
cons(P )}.

The primal graph of a constraint network P is the primal graph of the constraint
hypergraph of P . It has n vertices corresponding to the variables of P and one edge
for each pair of variables residing in the same constraint scope. For binary constraint
networks, the primal graph is identical to the constraint hypergraph. The dual graph
of a constraint network P is the dual graph of the constraint hypergraph of P . It
has e vertices corresponding to the constraints of P and one edge for each pair of
constraints sharing at least one variable. Figure 1.7 provides an example of a constraint
hypergraph. Figures 1.8 and 1.9 show the primal and dual graphs for this hypergraph.

x

v

w

z

y

Figure 1.7. The constraint hypergraph of a constraint network P such that
vars(P ) = {v, w, x, y, z} and cons(P ) = {cvwx, cvyz, cxy}. The hyperedges represent the

scopes of the three constraints in P

The dual graph of a constraint network can be regarded as the transformation
of a non-binary constraint network into a binary one. Such a transformation, called
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x

v

w

z

y

Figure 1.8. The primal graph of the constraint hypergraph depicted in Figure 1.7. There is an
edge between two vertices (variables) in the primal graph when there is a hyperedge

(constraint) involving them in the hypergraph

{v, y, z}

{v, w, x} {x, y}

Figure 1.9. The dual graph of the constraint hypergraph depicted in Figure 1.7.
There is an edge between two vertices (constraint scopes) in the dual

graph when their intersection is not empty

dual encoding or dual graph encoding, comes from the relational database community
and was introduced for constraint networks in [DEC 89b]. In the dual encoding, the
variables are swapped with constraints. Each constraint c of the original non-binary
constraint network is represented by a variable called a dual variable. The domain of
each dual variable consists of the set of allowed tuples in the original constraint c.
A binary constraint between two dual variables ensures that shared initial variables
must be given the same values. Other encodings of non-binary constraint networks
into binary ones exist (see e.g. [BAC 02a, SAM 05]).

We now introduce the density of a constraint network since this is a notion that can
be related to (hyper)graphs.

DEFINITION 1.31.– [Density] Let P ∈ Pk be a constraint network (only involving
constraints of arity k). The density of (the constraint hypergraph associated with) P
is equal to e/(n

k ).

For k = 2 (the usual case) the network density is equal to 2e/(n2 − n). For
example, for a binary network involving 10 variables and 15 constraints, the density
is 30/90 ≈ 33%.

www.it-ebooks.info

http://www.it-ebooks.info/


58 Constraint Networks

Finally, the compatibility hypergraph, also called micro-structure [JÉG 93],
associated with a normalized constraint network P contains one vertex per v-value of
P and one hyperedge per constraint support. It corresponds to a n-partite hypergraph
with one partition for each variable.

DEFINITION 1.32.– [Compatibility Hypergraph] The compatibility hypergraph of a
constraint network P , denoted by µ(P ), is the pair (V,E) where:

– V = v-vals(P );
– E = ∪c∈cons(P ){{(x1, a1), . . . , (xr, ar)} | scp(c) = {x1, . . . , xr} ∧

(a1, . . . , ar) ∈ sup(c)}.

x

z

y

Figure 1.10. The compatibility graph µ(P ) of the constraint network P such that
vars(P ) = {x, y, z}, with dom(x) = dom(y) = dom(z) = {0, 1, 2}, and

cons(P ) = {cxy : x = y, cxz : x < z, cyz : y ̸= z}

Due to the complexity of managing compatibility hypergraphs, they are usually
introduced only for the binary case. Moreover, such graphs are usually given for
networks involving tailored constraints. In this case the set of (hyper)edges can
be equivalently defined from ∪c∈cons(P ) rel(c). Some authors prefer to handle
incompatibility hypergraphs, which differ from compatibility hypergraphs only in
that hyperedges correspond to conflicts instead of supports.

An advantage of compatibility hypergraphs is their natural representation of
constraints: an edge corresponds to a support. A drawback is that in certain
circumstances implicit universal constraints must also be represented, at least in
theory. Typically, when compatibility (hyper)graphs are used as a formal tool to
make inferences (e.g. see [GAU 97, CHM 03]), this is for binary complete constraint
networks, i.e. constraint networks in P2∗ . However, in this book, compatibility
graphs will be used only for illustrative purposes and implicit universal constraints
will not be represented. Instead the reader should assume that, when there is no
edge between (values of) two distinct variables, this implicitly signifies that there is
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a universal constraint between these variables. Figure 1.10 shows an example of a
compatibility graph.

1.2.3. Instantiations and solutions

Before formally defining solutions to constraint networks, we need to introduce the
concept of instantiation. To make this intuitive, you can just imagine that instantiations
on a constraint network are analogous to paths in a labyrinth; see Figure 1.11. Starting
from the entrance, a path through a labyrinth corresponds to a sequence of decisions
taken at branch points. An instantiation on a constraint network is a sequence (or rather
set) of v-values that corresponds to the assignment of distinct variables. If the current
path cannot be extended to find an exit, we are at a dead-end. For an instantiation, we
say that the current instantiation is globally inconsistent.

Figure 1.11. A path in a labyrinth is analogous to an instantiation on a constraint network

DEFINITION 1.33.– [Instantiation]
– An instantiation I of a (potentially empty) set X = {x1, . . . , xk} of variables is

a totally ordered7 set {(x1, a1), . . . , (xk, ak)} such that a1 ∈ dominit(x1), . . . , ak ∈
dominit(xk); the value ai with 1 ≤ i ≤ k is denoted by I[xi] and the set X of
variables covered by I is denoted by vars(I).

– An instantiation I is valid iff ∀(x, a) ∈ I, a ∈ dom(x).

7. The total order on variables is naturally extended to instantiations.
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– An instantiation I on a constraint network P is an instantiation of a set X ⊆
vars(P ); I is valid on P iff ∀(x, a) ∈ I, a ∈ domP (x); I is complete (on P ) if
vars(I) = vars(P ), partial otherwise.

Sometimes, an instantiation {(x1, a1), . . . , (xk, ak)} is denoted by {x1 =
a1, . . . , xk = ak}, as in the introductory example of this book. Search algorithms
usually handle valid instantiations on constraint networks. Often, instantiations are
extended over additional variables or restricted over some variables.

DEFINITION 1.34.– [Extension of Instantiation] Let I and I ′ be two instantiations. If
vars(I) ∩ vars(I ′) = ∅ then I ′′ = I ∪ I ′ is an instantiation of vars(I) ∪ vars(I ′),
called an extension of I over vars(I ′), or similarly, an extension of I ′ over vars(I).

DEFINITION 1.35.– [Restriction of Instantiation] Let I be an instantiation and X be
a set of variables. I ′ = I[X] is an instantiation of vars(I) ∩ X defined as {(x, a) ∈
I | x ∈ X} and called the restriction of I over X .

The extension of an instantiation I over a variable x is simply an extension of I
over {x}. A constraint c is satisfied by an instantiation I iff I provides a value for every
variable in scp(c) and the tuple obtained after restricting I over scp(c) is allowed by
c.

DEFINITION 1.36.– [Satisfying Instantiation] Let I be an instantiation.
– I covers a constraint c iff scp(c) ⊆ vars(I).
– I satisfies a constraint c iff I covers c and the tuple (a1, . . . , ar), such that

I[scp(c)] = {(x1, a1), . . . , (xr, ar)}, is allowed by c.

We can now introduce an important definition that is central to the development of
many properties, called consistencies, which are exploited to reduce the combinatorics
of constraint networks.

DEFINITION 1.37.– [Locally Consistent Instantiation] An instantiation I on a
constraint network P is locally consistent (on P ) iff a) I is valid on P and b) every
constraint of P covered by I is satisfied by I . It is locally inconsistent otherwise.
EXAMPLE.– If P is a constraint network such that

– vars(P ) = {x, y, z} with dom(x) = dom(y) = dom(z) = {0, 1, 2}, and
– cons(P ) = {cxy : x = y, cxz : x < z, cyz : y ̸= z}

then:
– {(x, 1)} is a locally consistent instantiation, since there is no constraint covered

by it;
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– {(x, 1), (y, 0)} is not a locally consistent instantiation, since the constraint cxy

covered by it is not satisfied by it (1 ̸= 0);
– {(x, 1), (y, 1)} is a locally consistent instantiation, since the constraint cxy

covered by it is satisfied by it (1 = 1);
– {(x, 1), (y, 1), (z, 0)} is an extension over z of {(x, 1), (y, 1)} that is not locally

consistent, since the constraint cxz is not satisfied by it (1 ̸< 0);
– {(x, 1), (y, 1), (z, 2)} is a complete and locally consistent instantiation, since all

variables are covered, and all constraints are satisfied.

Note that ∅ is always a locally consistent instantiation. When an instantiation is
complete and locally consistent, it constitutes a solution8. This is the case of the last
instantiation in the example above.

DEFINITION 1.38.– [Solution] Let P be a constraint network. A solution of P is a
complete instantiation on P that is locally consistent. The set of solutions of P is
denoted by sols(P ).

In other words, a solution to a network P is an assignment of values to all the
variables such that all the constraints are satisfied. P is said to be satisfiable if it
admits at least one solution, i.e. if sols(P ) ̸= ∅, unsatisfiable otherwise. The classical
constraint satisfaction problem (CSP) is the task of determining whether or not a
given constraint network is satisfiable, showing one solution if any. Other tasks,
not addressed in this book, may be of interest: computing or counting all solutions,
computing an optimal solution according to a given cost function, etc. A CSP instance
is defined by a constraint network, and solving it means (in this book) finding one
solution or instead proving that it is unsatisfiable. In the remainder of this book, we
shall indifferently use constraint networks or CSP instances.

Similarly, a CNF formula is satisfiable iff there exists a complete instantiation of
the variables of the formula such that each clause evaluates to true. Propositional
satisfiability (SAT) is the general problem of deciding whether or not a given CNF
formula, called a SAT instance, is satisfiable. This was the first problem shown
to be NP-complete; see Appendix A.2.2 for more information about complexity
classes. Clearly, as CSP is a generalization of SAT (see page 55), CSP is NP-hard.
Considering that constraint checks are performed in polynomial time, certificates
(solutions) can be checked in polynomial time. Consequently, CSP is NP-complete.
Note that polynomial encodings (reductions) of CSP to SAT have been proposed; see
e.g. [KLE 89, GEN 02a]. In fact, SAT is one of the most studied problems because
of its theoretical and practical importance. Encouraged by impressive progress in

8. A locally consistent partial instantiation is called a partial solution by some authors.
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practical solving of SAT, various applications ranging from formal verification to
planning are encoded and solved using SAT.

Equivalent constraint networks are defined on the same variables and represent the
same set of solutions.

DEFINITION 1.39.– [Equivalence] Let P and P ′ be two constraint networks such that
vars(P ) = vars(P ′). P and P ′ are equivalent, or solution-equivalent, iff sols(P ) =
sols(P ′).

Note that a CSP instance is trivially unsatisfiable when a domain or a relation
is empty. We regard all such instances as equivalent, and we denote by ⊥ the
representative of this implicit equivalence class.

NOTATION 1.40.– Let P be a constraint network. We write P = ⊥ iff ∃x ∈ vars(P ) |
dom(x) = ∅ or ∃c ∈ cons(P ) | rel(c) = ∅.

Equivalent constraint networks may differ considerably because, for instance, any
unsatisfiable constraint network is equivalent to ⊥.

To find solutions in practice we often handle supports. Recall that a support on
a constraint is a tuple that is both valid (i.e. can be built from current domains) and
allowed by this constraint (i.e. belongs to the associated relation). Recall also that a
solution is a complete instantiation that is locally consistent. Therefore the restriction
of a solution to the scope of a constraint c is a support on c.

The counterpart of locally consistent instantiation is globally inconsistent
instantiation, which is instantiation doomed to failure because it cannot possibly
lead to any solution. A globally inconsistent instantiation is also known as a nogood.
Efficiently detecting, recording and exploiting nogoods is one of the keys to success
in solving CSP instances.

DEFINITION 1.41.– [Globally Inconsistent Instantiation] An instantiation I on a
constraint network P is globally inconsistent iff it cannot be extended to a solution
of P . It is globally consistent otherwise.

REMARK 1.42.– [Nogood] A globally inconsistent instantiation is also called a
nogood.

Obviously, an instantiation that is not locally consistent is necessarily globally
inconsistent. However, the reverse is not true: a globally inconsistent instantiation is
not necessarily locally inconsistent.
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EXAMPLE.– Considering again the network P described above, we have:
– {(x, 1), (y, 0)} is globally inconsistent since it is locally inconsistent;
– {(x, 1), (y, 1)} is globally consistent since it can be extended to a solution;
– {(y, 2), (z, 1)} is globally inconsistent while being locally consistent;
– {(x, 2)} is also globally inconsistent while being trivially locally consistent.

It is sometimes helpful to employ a homogeneous representation of a constraint
network, wherein domains and also constraints are replaced by nogoods. The nogood
representation of a constraint network is a set of nogoods, one for every value removed
from the initial domain of a variable and one for every tuple disallowed by a constraint.

DEFINITION 1.43.– [Nogood Representation]
– The nogood representation x̃ of a variable x is the set of instantiations

{{(x, a)} | a ∈ dominit(x) \ dom(x)}.
– The nogood representation c̃ of a constraint c, with scp(c) = {x1, . . . , xr},

is the set of instantiations {{(x1, a1), . . . , (xr, ar)} | (a1, . . . , ar) ∈∏
x∈scp(c) dominit(x) \ rel(c)}.
– The nogood representation P̃ of a constraint network P is the set of

instantiations ⎛

⎝
⋃

x∈vars(P )

x̃

⎞

⎠ ∪

⎛

⎝
⋃

c∈cons(P )

c̃

⎞

⎠ .

Instantiations in P̃ are explicit nogoods of P (recorded through domains and
constraints). Figure 1.12 provides an illustration. Here, we have a constraint network
P composed of two variables x and y, with dom(x) = {a2, a3} and dom(y) = {b1},
and a binary constraint cxy with rel(cxy) = {(a1, b1), (a1, b2), (a2, b1), (a2, b2),
(a3, b3)}. Initially, we had dominit(x) = {a1, a2, a3}, dominit(y) = {b1, b2, b3} and
relinit(cxy) = rel(cxy) ∪ {(a3, b2)}. The nogood representations of x, y, cxy and P
are given.

Such nogood representations will be useful later when studying closure properties
of consistencies. Notice that when a nogood is larger than an another one, it is said to
be subsumed; this will be developed in section 1.4.2. For example, {(x, a2), (y, b3)}
is subsumed by {(y, b3)}. Intuitively, a nogood that is subsumed is not relevant
as it is less general than (at least) another one, and two constraint networks are
nogood-equivalent (a related definition is given in [BES 06]) when they have the
same canonical form, i.e. represent exactly the same set of “unsubsumed” nogoods.
Figure 1.12 shows the canonical nogood representation of a constraint network.
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b2b1 b3

a2 a3a1
x̃ = {{(x, a1)}}
ỹ = {{(y, b2)}, {(y, b3)}}

c̃xy = {{(x, a1), (y, b3)}, {(x, a2), (y, b3)},

P̃ = {{(x, a1)}, {(y, b2)}, {(y, b3)},

{(x, a3), (y, b1)}, {(x, a3), (y, b2)}}

{(x, a1), (y, b3)}, {(x, a2), (y, b3)},
{(x, a3), (y, b1)}, {(x, a3), (y, b2)}}

cxy

x

˜

y

P

̂

P̂ = {{(x, a1)}, {(y, b2)}, {(y, b3)}, {(x, a3), (y, b1)}}

Figure 1.12. The nogood representation eP and canonical nogood representation bP of a
constraint network P . bP is built from eP by discarding subsumed nogoods

DEFINITION 1.44.– [Canonical Nogood Representation] The canonical nogood
representation P̂ of a constraint network P is the set {I ∈ P̃ | J ∈ P̃ ⇒ J ̸⊂ I}.

DEFINITION 1.45.– [Nogood-equivalence] Let P and P ′ be two constraint networks
such that vars(P ) = vars(P ′). P and P ′ are nogood-equivalent iff P̂ = P̂ ′.

We are often interested in constraint networks that result from the instantiation of
some variables:

NOTATION 1.46.– [P |I] Let P be a constraint network and I be a valid instantiation
on P . P |I denotes the constraint network obtained from P by restricting, for each
value (x, a) in I , the domain of x to {a}.

If P ′ = P |I and (x, a) ∈ I , then we have domP ′

(x) = {a}. Notice that I is a nogood
of P iff P |I is unsatisfiable.

It will also be useful to build sub-networks by discarding some variables and/or
constraints.

DEFINITION 1.47.– [Sub-network] Let P be a constraint network. A sub-network of
P is a constraint network obtained from P by removing some variables of P and some
constraints of P .
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By definition, a sub-network P ′ of P is such that ∀c ∈ cons(P ′), scp(c) ⊆
vars(P ′) since P ′ is a constraint network. Also, the state of variables and constraints
is unchanged: we have ∀x ∈ vars(P ′),domP ′

(x) = domP (x) and ∀c ∈
cons(P ′), relP

′

(c) = relP (c). Figure 1.13 is an illustration of a sub-network.

y x
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u v
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u
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v
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w
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v
≤

x

v
<

z

u < v

w

<

u

v
<

w

u < v

w

<

u

w = z

Figure 1.13. A constraint network P and a sub-network P ′ of P

1.3. Examples of constraint networks

We now give several examples of problems that can easily be represented using the
formalism of constraint networks. Both for simplicity and for entertainment, all these
problems correspond to logic puzzles. Specifically, these are the queens problem, the
crossword problem, the Sudoku problem and the edge-matching puzzle.

1.3.1. Queens problem

The classical queens problem is easy to understand and illustrates the three main
forms of constraints: extensional, intensional and global. The problem can be stated
as follows: can we put eight queens on a chessboard such that no two queens attack
each other? Two queens attack each other iff they belong to the same row, the same
column or the same diagonal. Note that each queen must necessarily be in a different
column, as in Figure 1.14. By considering boards of various size, the problem can be
generalized as follows: can we put n queens on a board of size n×n such that no two
queens attack each other?

We shall consider several representation models that only differ in terms of
constraints. For all these models, there is one variable per queen (and column), and
the values are row numbers. If the ith variable xi is assigned the value j, it means
that the ith queen is put in the square at the intersection of the ith column and
the jth row. For the n-queens instance, we have a constraint network P such that
vars(P ) = {x1, . . . , xn} with dom(xi) = {1, . . . , n},∀i ∈ 1..n.
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Figure 1.14. The 8-queens instance: eight queens must be put on a chessboard such that no
two queens attack each other

As a tentative first model, we might impose a constraint to guarantee that no two
queens are put on the same row, and another constraint to guarantee that no two queens
are put on the same diagonal. Consequently, we have cons(P ) = {cij : xi ̸= xj | i ∈
1..n, j ∈ 1..n, i < j} ∪ {c′ij : |i − j| ̸= |xi − xj | | i ∈ 1..n, j ∈ 1..n, i < j}.
For example, for the 3-queens instance9, we obtain vars(P ) = {x1, x2, x3} with
dom(x1) = dom(x2) = dom(x3) = {1, 2, 3} and cons(P ) that contains:

c12 : x1 ̸= x2 c′12 : |x1 − x2| ̸= 1
c13 : x1 ̸= x3 c′13 : |x1 − x3| ̸= 2
c23 : x2 ̸= x3 c′23 : |x2 − x3| ̸= 1

This instance is not normalized since there are two distinct constraints on one
pair of variables. This can cause inefficiency in a process that seeks a solution. We
know that a v-value (x, a) is globally inconsistent (and can therefore be removed) if
there exists a constraint c that does not support (x, a). In the 3-queens instance we
can see that both c12 and c′12 independently support (x1, 2). However, the respective
sets of strict supports, {1, 3} and {2}, are disjoint. Consequently there is no support
for (x1, 2) when these two constraints are merged. The second model is obtained by
normalizing networks. For the normalized 3-queens instance, cons(P ) contains:

9. This is a quite elementary (unsatisfiable) instance, but it is sufficient for our purpose.
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c′′12 : x1 ̸= x2 ∧ |x1 − x2| ̸= 1
c′′13 : x1 ̸= x3 ∧ |x1 − x3| ̸= 2
c′′23 : x2 ̸= x3 ∧ |x2 − x3| ̸= 1

Here the constraint semantics are more complex, so we may less easily see how to
apply specialized algorithms to filter the search space by removing values detected as
locally inconsistent. Besides, it is known that filtering is more efficient with a global
constraint allDifferent than with a clique10 of binary inequation constraints (constraints
of the form x ̸= y). In an alternative formulation, cons(P ) contains:

allDifferent(x1, x2, x3)
c′12 : |x1 − x2| ̸= 1
c′13 : |x1 − x3| ̸= 2
c′23 : |x2 − x3| ̸= 1

Yet another formulation converts the merged constraints into extension. In this
case, for the 3-queens instance, cons(P ) contains:

c′′′12 such that table[c′′′12] = {(1, 3), (3, 1)}
c′′′13 such that table[c′′′13] = {(1, 2), (2, 1), (2, 3), (3, 2)}
c′′′23 such that table[c′′′23] = {(1, 3), (3, 1)}

This simple problem illustrates the importance of modeling in constraint
programming (CP). Unluckily, modeling often demands a certain amount of expertise
from the user. Our ambition in this book is to emphasize some techniques that render
constraint solvers more robust, thus (partially) liberating the user from significant
prerequisites. A bad model for the n-queens problem would allow each queen to be
put on any square of the board, thus introducing variables whose domain contains n2

values instead of n. The search space would be far larger. However, it is possible to
translate this bad model automatically into one where domains only contain n values
by exploiting a reformulation technique based on a property called interchangeability
[FRE 97].

On the other hand, generating a constraint allDifferent on each set (clique) X
of variables such that irreflexivity is guaranteed on each pair {x, y} of variables of
X (that is, at least x ̸= y is guaranteed) can also be envisioned as an automatic
process11. It would lead here, for the n-queens problem, to a single additional
constraint allDifferent involving all n variables, which could achieve better pruning
of the search space. Automatically breaking variable and/or value symmetries is

10. See section A.1.2.
11. To the best of our knowledge, the constraint solvers Abscon, Choco and Mistral, which
participated in the 2008 constraint solver competition, all include such a mechanism.
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another important issue that may be helpful, as discussed in Chapter 12. Finally,
automatically detecting constraints of similar scope, merging them and potentially
converting them into extension (if the solver is equipped with an efficient filtering
procedure for extensional constraints) is not particularly complex. To summarize,
even if the user provides the constraint solver with badly modeled instances, the
solver can automatically enrich (reformulate) a bad model to make the resolution
more efficient.

Finally, we provide examples illustrating notions introduced earlier with the 8-
queens instance. We employ the first model introduced above and denote the variables
by xa, . . . , xh to clarify the correspondence with columns. Figure 1.15 shows one

Figure 1.15. One solution for the 8-queens instance. This is the complete instantiation
{(xa, 3), (xb, 6), (xc, 4), (xd, 2), (xe, 8), (xf , 5), (xg, 7), (xh, 1)}

solution to the 8-queens instance. A locally inconsistent instantiation is shown in
Figure 1.16, and a globally inconsistent one is shown in Figure 1.17.

1.3.2. Crossword problem

A crossword is a word puzzle that normally takes the form of a square or
rectangular grid of black and white squares. Playing crosswords is a very popular
activity. The well-known goal is to fill the white squares with letters, forming words
suggested by clues. We now adopt a totally different viewpoint: we do not wish to
solve crosswords but instead to conceive them.

Conceiving a crossword puzzle requires two things: a grid and a dictionary.
Indeed, given a grid, one can try to fill it up using words contained in the dictionary,
as in Figures 1.18 and 1.19. Let us consider a simple and natural model for this
problem (the one identified as m1 in [BEA 01]). First, we associate a variable with
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Figure 1.16. The instantiation {(xa, 3), (xb, 6), (xc, 4), (xd, 2), (xe, 7)} is not locally
consistent since the binary constraint |xa − xe| ̸= 4 covered by it is not satisfied

Figure 1.17. The instantiation {(xa, 3), (xb, 1), (xc, 4), (xd, 2)} is globally inconsistent (a
nogood). By discarding positions that cannot be occupied without violating a constraint, one
can indeed check that there are no more possibilities to put four additional queens on the
chessboard. This is this kind of filtering that is performed by the algorithm called forward

checking (presented later)

each white square of the grid; the domain of a variable consists of the 26 letters of
the Latin alphabet. For any maximal sequence of adjacent white squares in the grid,
we introduce a constraint involving the variables associated with these squares such
that the values assigned to these variables correspond to a word in the dictionary.
Such a constraint is extensionally defined. Potentially (as in model m1), we introduce
additional constraints to ensure that the same word does not appear more than once
on the grid.
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Figure 1.18. A crossword grid

Figure 1.19. A solution to the crossword grid of Figure 1.18. It has been obtained with the
dictionary “words”

For example, assuming that we have three variables x, y and z corresponding to a
maximal sequence of three adjacent white squares in the grid, we have an extensional
constraint cxyz such that table[cxyz] = rel(cxyz) = {(a, c, e), (a, i, d), . . . , (z, o, o)}
contains tuples corresponding to all 3-length words in the given dictionary.
Independently of any constraint, we have dominit(x) = dominit(y) = dominit(z) =
{a, b, . . . , z}. The reader interested in this problem can consult e.g. [GIN 90, BEA 01,
SAM 05, KAT 05, ULL 07, LEC 08a, ANB 08].

1.3.3. Sudoku problem

A Sudoku player aims to fill, using numbers from 1 to 9, a 9 × 9 grid so that the
values are pairwise different in each column, in each row, and in each 3 × 3 (major)
block. Sudoku commences with a partially filled grid, for example as in Figure 1.21,
where the major blocks are demarcated by bold lines.

Solving a Sudoku grid is not difficult at all when a constraint solver is used,
but people enjoy playing Sudoku without a computer. Techniques from constraint
programming may help to explain how players reason, and also to measure the
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Figure 1.20. A symmetric French solution to the blank crossword grid 9 × 9 obtained by
S. Tabary and the author, and published at http://pagesperso-orange.fr/ ledefi

Figure 1.21. A Sudoku grid

difficulty of Sudoku grids [SIM 05, LAB 06]. We now briefly introduce a CSP model
that represents instances of this game. Modeling Sudoku illustrates the simplicity and
declarativity of the constraint satisfaction approach.

To keep things simple, let us assume that we have a Sudoku grid that is is not filled
at all, i.e. we have a blank grid. Then, the problem of filling this basic grid can be
represented by the following constraint network P :

– vars(P ) = {x1,1, x1,2, . . . , x9,9} with dom(xi,j) = {1, 2, . . . , 9} ∀i, j ∈ 1..9;
– cons(P ) = {allDifferent(xi,1, xi,2, . . . , xi,9) | i ∈ 1..9}

∪ {allDifferent(x1,j , x2,j , . . . , x9,j) | j ∈ 1..9}
∪ {allDifferent(xv+i,h+j | i ∈ 1..3, j ∈ 1..3) | v ∈ {0, 3, 6}, h ∈ {0, 3, 6}}.

www.it-ebooks.info

http://www.it-ebooks.info/


72 Constraint Networks

Figure 1.22. A solution to the Sudoku grid from Figure 1.21

where xi,j is the variable associated with the square of the grid located at the
intersection of row i and column j. The set of constraints only contains allDifferent
constraints and can be divided into three subsets that correspond to rows, columns
and blocks. It is easy to adapt this model to any partially filled grid since it suffices
to assign appropriate values to some variables initially. A solution to the constraint
network is of course a solution to the Sudoku problem. Figure 1.22 shows an example
of a solution. Further information about the theory behind Sudoku, its origins, and its
relationships with constraint programming can be found in [JUS 07].

1.3.4. Edge-matching puzzles

An edge-matching puzzle is a logic puzzle where a set of pieces whose edges are
distinguished with colors or patterns must be assembled on a board in such a way
that the edges of adjacent pieces match. Sometimes, pieces have four sides as in the
puzzle depicted in Figure 1.23. Framed puzzles additionally present a special color
(or pattern) that must necessarily be put on the outside border of the puzzle; the black
color plays this role in our illustration. Figure 1.24 shows a solution to this framed
edge-matching puzzle.

We now consider an instance of this problem in which pieces are four-sided, a
frame is present, and the size of the board is k × k. With k × k pieces numbered
from 1 to k2, a possible model is as follows. With each square of the board at the
intersection of row i and column j (1 ≤ i ≤ k, 1 ≤ j ≤ k), we associate two variables
denoted by pij and rij . The value of the variable pij indicates which piece must be
put in the square at location (i, j) and rij indicates which rotation must be applied.
You might think that the domain dom(pij) of each variable pij is initially the set
{1, 2, . . . , k2} composed of k2 values, one per piece. However, in order to guarantee
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Figure 1.23. A framed edge-matching puzzle

Figure 1.24. The solution to the edge-matching puzzle from Figure 1.23
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the presence of a frame, the domains of p00, p0k, pk0 and pkk must only contain four
values. Indeed, such variables represent the four corners of the frame and only four
pieces are compatible (have two sides with the frame color). Similarly, we can reduce
the domain of 4× (k−2) other pij variables to 4× (k−2) values since this is exactly
the number of pieces having one side with the frame color. For the remaining variables
pij , the domain consists of (k − 1)2 values since this is the number of pieces having
no side with the frame color. On the other hand, the domain dom(rij) of each variable
rij is composed of four values {0, 90, 180, 270} that represent the possible rotations
of the piece pij with respect to its initial position.

A first constraint is that each piece must be selected only once. This is easily
guaranteed by applying a global constraint allDifferent involving all pij variables. To
guarantee that two adjacent pieces have edges that correspond, we need quaternary
constraints. For example, for every 1 ≤ i ≤ k and every 1 ≤ j ≤ k − 1, we have
a horizontal matching constraint involving pij , pij+i, rij and rij+1. This constraint
checks that the left side of the piece pij after considering its rotation rij must match
with the right side of the piece pij+1 after considering its rotation rij+1. Such
constraints can be easily expressed extensionally. Of course, we apply similar vertical
matching constraints. Furthermore, we apply binary constraints to ensure that the
frame is present.

Edge-matching puzzles are NP-complete problems and are therefore challenging
benchmarks for both the SAT and CSP communities [ANS 08]. Currently, the most
famous edge-matching puzzle is undoubtedly Eternity II. Indeed, a $2 million prize
is offered to the first person who succeeds in completing the 256-piece puzzle. After
the first scrutiny date in December 2008, organizers are still searching for a winner.
Eternity II is the follow up to Eternity I, which captured the imagination of thousands
of people in the UK when a check for £1 million was handed over to a student who
successfully solved the puzzle 18 months after launch.

1.4. Partial orders, decisions, nogoods and properties

This section introduces several important definitions and concepts that are useful
in the remainder of this book. They concern partial orders on constraint networks,
decisions taken by inference procedures or by search, generalized forms of nogoods
and properties on values and variables.

1.4.1. Partial orders

To relate constraint networks, we introduce some partial orders. When two
constraint networks P and P ′ are such that vars(P ) = vars(P ′) (resp. cons(P ) =
cons(P ′)), this implies that P and P ′ are defined on the same set of variables (resp.
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the same set of constraints). Of course, the states of variables (resp. constraints) in
both networks may differ substantially.

DEFINITION 1.48.– [Partial Order≼d] Let P and P ′ be two constraint networks such
that vars(P ) = vars(P ′) and cons(P ) = cons(P ′).

– P ′ ≼d P iff ∀x ∈ vars(P ), domP ′

(x) ⊆ domP (x) and ∀c ∈ cons(P ),
relP

′

(c) = relP (c).
– P ′ ≺d P iff P ′ ≼d P and ∃x ∈ vars(P ) | domP ′

(x) ⊂ domP (x).

DEFINITION 1.49.– [Partial Order≼r] Let P and P ′ be two constraint networks such
that vars(P ) = vars(P ′) and cons(P ) = cons(P ′).

– P ′ ≼r P iff ∀x ∈ vars(P ), domP ′

(x) = domP (x), and ∀c ∈ cons(P ),
relP

′

(c) ⊆ relP (c).
– P ′ ≺r P iff P ′ ≼r P and ∃c ∈ cons(P ) | relP

′

(c) ⊂ relP (c).

P ′ ≺d P means that P ′ can be obtained from P by removing some values from
domains while keeping intact relations, whereas P ′ ≺r P means that P ′ can be
obtained from P by removing some allowed tuples from relations while keeping intact
domains. Clearly, ≼d and ≼r are partial orders since these relations are reflexive, anti-
symmetric and transitive; see Appendix A.1. In other words, (P,≼d) and (P,≼r)
are partially ordered sets (posets).

These partial orders may seem quite restrictive since networks must necessarily be
defined on the same sets of variables and constraints. However, they are adapted to
so-called domain-filtering and relation-filtering consistencies12 that are prominent in
the literature and are presented in Chapter 3. Besides, these two partial orders can be
generalized when considering nogood representations as follows:

DEFINITION 1.50.– [Partial Order ≼] Let P and P ′ be two constraint networks such
that vars(P ) = vars(P ′).

– P ′ ≼ P iff P̃ ′ ⊇ P̃ .
– P ′ ≺ P iff P̃ ′ ⊃ P̃ .

12. Even path consistency can be considered as relation-filtering, provided that the networks are
completed with universal binary constraints.
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Clearly, (P,≼) is a poset. It allows us not to keep the same set of constraints when
comparing networks. This new partial order generalizes ≼d and ≼r as shown by the
following proposition.

PROPOSITION 1.51.– Let P and P ′ be two constraint networks. If P ′ ≼d P or P ′ ≼r

P then P ′ ≼ P .

An illustration of the three introduced partial orders is given in Figure 1.25.

(b, b) (b, b)
(a, a)

(c, c)
}

(b, a)

rel(cxz)={
(a, b)

(c, c)
}

(a, a)
(c, c)

}

(b, b)

rel(cxy)={
(a, a)

(c, c)
}

(b, b)
(a, a)

(c, c)
}

(b, a)
(a, b)

(c, c)
}

dom(y) = {a, c}
dom(z) = {a, b, c}

dom(x) = {a, c}

rel(cyz)={
(a, a)
(c, c)

}
(b, a)
(a, b)

(c, c)
}

dom(y) = {a, b, c}
dom(z) = {a, b, c}

dom(x) = {a, b, c}

rel(cxy)={
(a, a)
(c, c)

}

rel(cxz)={rel(cyz)={

≺

dom(y) = {a, b, c}
dom(z) = {a, b, c}

dom(x) = {a, b, c}

(a, a)

(c, c)
}

rel(cyz)={rel(cxy)={

≺d ≺r

dom(y) = {a, c}
dom(z) = {a, c}

dom(x) = {a, c}

rel(cxy)={
(a, a)
(c, c)

}

rel(cyz)={
(a, a, a)

}
(c, c)

}

rel(cxyz)={rel(cxz)={

≺

rel(cxz)={

Figure 1.25. Illustration of partial orders ≼d, ≼r and ≼. A constraint network is represented
inside each dotted rectangle (variables and constraints are implicitly given by their associated

domains and relations)

Note that we can further generalize this last partial order by considering canonical
nogood representations. The relation ≼̂ is defined as follows: P ′ ≼̂ P iff vars(P ) =
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vars(P ′) and P̂ ′ ⊇ P̂ . Clearly, we can easily build two distinct constraint networks P

and P ′ such that P ′ ≼̂ P and P ≼̂ P ′. It suffices that P̂ ′ = P̂ but P̃ ′ ̸= P̃ , meaning
that P and P ′ differ by subsumed nogoods. In other words, ≼̂ is a preorder (related
to the one defined on page 33 in [BES 06]) but not a partial order because the relation
is not antisymmetric. Nevertheless, using this relation, it is possible to construct a
partial order on the quotient set of P by the nogood-equivalence relation introduced
in Definition 1.45.

As explained previously, constraint networks are normalized and unary constraints
are invisible after they have been applied to initial domains. There is therefore only
one manner to discard (or remove) an instantiation from a given constraint network,
or equivalently to “record” a new explicit nogood in a constraint network. A set
of variables together with a set of nogoods determines a unique constraint network
involving no universal constraints. To simplify the definition, but without any loss of
generality, we assume that neither P nor P \ I contains any universal constraint.

DEFINITION 1.52.– [P \ I] Let P a constraint network, and I be an instantiation
on P . P \ I denotes the constraint network P ′ such that vars(P ′) = vars(P ) and
P̃ ′ = P̃ ∪ {I}.

P \ I is an operation that retracts I from P . Such an operation is likely to be
performed when I has just been identified as a nogood (although this is not absolutely
necessary). It can be seen as an operation that builds a new constraint network from
P and I , not necessarily with the same set of constraints. Such an operation will be
useful for reasoning on the theoretical impact of consistencies, as in Chapter 3. Let
us show how P ′ is built. If I ∈ P̃ , of course we have P ′ = P \ I = P : this means
that the instantiation I was already an explicit nogood of P . The interesting case is
when I /∈ P̃ . If I corresponds to a value a for a variable x, i.e. I = {(x, a)}, it
suffices to remove a from dom(x). If I corresponds to a tuple allowed by a constraint
c of P , it suffices to remove this tuple from rel(c). Otherwise, we must introduce a
new constraint whose associated relation contains all possible tuples (built from initial
domains) except the one that corresponds to the instantiation.

EXAMPLE.– If x, y and z are three variables whose initial domain is {a, b}, and if P
is a constraint network such that

– vars(P ) = {x, y, z} with dom(x) = dom(y) = dom(z) = {a, b}, and
– cons(P ) = {cxy, cxz} with rel(cxy) = {(a, a), (b, b)} and rel(cxz) = {(b, a)}

then P ′ = P \ {(x, a)} \ {(x, a), (y, a)} \ {(y, a), (z, a)} is the network such that
– vars(P ) = {x, y, z} with dom(x) = {b} and dom(y) = dom(z) = {a, b}, and
– cons(P ) = {cxy, cxz, cyz} with rel(cxy) = {(b, b)}, rel(cxz) = {(b, a)} and

rel(cyz) = {(a, b), (b, a), (b, b)}.
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Here, we have successively discarded three arbitrary instantiations.

1.4.2. Decisions and nogoods

In order to be able to define some properties (e.g. singleton arc consistency in
Chapter 6) and a generalization of nogoods, we introduce decisions:

DEFINITION 1.53.– [Positive and Negative Decision] A positive decision δ is a
restriction on a variable x of the form x = a, whereas a negative decision is a
restriction of the form x ̸= a, where a ∈ dominit(x). A decision δ on a constraint
network P is a positive or negative decision involving a pair (x, a) such that
x ∈ vars(P ); δ is valid on P iff a ∈ domP (x).

A (valid) positive decision is a variable assignment and a (valid) negative decision
a value refutation. Of course, ¬(x = a) is equivalent to x ̸= a and ¬(x ̸= a) is
equivalent to x = a. Hereafter, decision alone means either a positive or a negative
decision. When decisions are taken on a network, we obtain a new network defined as
follows:

DEFINITION 1.54.– [P |∆] Let P be a constraint network and ∆ be a set of decisions
on P . P |∆ is the network obtained (derived) from P such that, for each positive
decision x = a ∈ ∆, each value b ∈ dom(x) with b ̸= a is removed from dom(x),
and, for each negative decision x ̸= a ∈ ∆, a is removed from dom(x).

In other words, P |∆ is the greatest network P ′ ∈ P such that P ′ ≼d P and P ′

entails13 ∆. For any set ∆ of decisions, vars(∆) denotes the set of variables occurring
in decisions of ∆. For convenience, P |{x=a} and P |{x ̸=a} will be simply denoted by
P |x=a and P |x̸=a, respectively. Figure 1.26 provides an illustration.

Not all sets of decisions are well-formed; those that systematically lead to failure
are usually not relevant.

DEFINITION 1.55.– [Well-formed Set of Decisions] A set ∆ of decisions is said to be
well-formed iff there exists at least one constraint network P such that vars(P ) =
vars(∆) and P |∆ ̸= ⊥.

Intuitively, when a set of decisions is not well-formed, it means that a domain wipe-
out (i.e. an empty domain) is unavoidable. If ∆ only involves positive decisions, then
∆ is well-formed iff no two decisions in ∆ involve the same variable. For example,

13. This is formalized by Definition 1.60.
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P

P
′

P

x ̸= b

z ̸= a

vars(P ′) = {x, y, z}
dom

P ′

(x) = {a}
dom

P ′

(y) = {c}
dom

P ′

(z) = {b, c}

vars(P ) = {x, y, z}
dom

P (x) = {a, b, c}
dom

P (y) = {a, b, c}
dom

P (z) = {a, b, c}

. . .

P
′ = P |∆

∆

x = a

y = c

Figure 1.26. The constraint network P ′ = P |∆ ≼d P obtained from P after taking into
account the decisions in∆ = {x ̸= b, y = c, z ̸= a, x = a}; we have vars(∆) = {x, y, z}.

No consistency is enforced

{x = a, x = b} is clearly badly formed. Moreover, a well-formed set cannot include
a decision and also its negation. For example, {x = a, x ̸= a} is not well-formed.
Finally, if all values in the initial domain of a variable are refuted, we have a badly
formed set of decisions. For example, if dominit(x) = {a, b, c} then {x ̸= a, x ̸=
b, x ̸= c} is not well-formed. Henceforth we shall only consider well-formed sets of
decisions.

The concept of nogood has already been introduced in section 1.2.3; see Definition
1.42. A nogood is defined as a globally inconsistent instantiation. Such nogoods are
sometimes said to be standard and they correspond to the definition proposed by
Dechter in [DEC 03]. Conflict sets [DEC 90, FRO 94] are standard nogoods identified
when a partial instantiation cannot be extended. In some cases, a nogood justification
(which is usually a subset of constraints of the original problem) is associated with
a nogood [SCH 94a]; this can be useful for non-chronological backtracking and is
also particularly relevant in a dynamic context (adding and removing constraints
dynamically). Eliminating explanations [GIN 93, JUS 00b, JUS 00a] provides a
different way of considering nogoods.

Recognizing that instantiations and (well-formed) sets of positive decisions are
fundamentally equivalent, we obtain an alternative definition for standard nogoods:
a standard nogood of P is a set ∆ of positive decisions on P such that P |∆ is
unsatisfiable. We will use both definitions interchangeably.
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Consideration of positive and negative decisions as in [FOC 01, KAT 03, KAT 05]
leads to a generalization of standard nogoods, called generalized nogoods:

DEFINITION 1.56.– [Generalized Nogood] A set of decisions ∆ on a constraint
network P is a generalized nogood of P iff P |∆ is unsatisfiable.

Clearly, a (standard) nogood is generalized but the opposite is not necessarily true.
For example, ∆ = {x = a, y = b} such that P |∆ is unsatisfiable is a standard
nogood of P , and consequently by definition a generalized nogood of P . But ∆ =
{x = a, z ̸= c}, such that P |∆ is unsatisfiable, is a generalized nogood of P which
is not standard. In fact a generalized nogood can represent an exponential number of
standard nogoods [KAT 05]. If, for example, we have r variables x1, x2, . . . , xr such
that dom(xi) = {1, 2, . . . , d},∀i ∈ 1..r, then the generalized nogood {x1 ̸= 1, x2 ̸=
1, . . . , xr ̸= 1} captures dr − 1 standard nogoods.

It may be important to compare the relative pruning capabilities of nogoods. For
example, identifying subsumed nogoods allows us to discard them.

DEFINITION 1.57.– [Subsumption] Let P be a constraint network, and ∆1, ∆2 be
two generalized nogoods of P .

– ∆1 and ∆2 are equivalent iff P |∆1 = P |∆2 .
– ∆1 is subsumed by ∆2 iff P |∆1 ≼d P |∆2 .

P |∆ indicates which part of the search space is forbidden by ∆. As an illustration,
∆1 = {x = a, y = b} and ∆2 = {x ̸= b, x ̸= c, y = b} are equivalent if dom(x) =
{a, b, c}. If now ∆1 and ∆2 are such that ∆2 ⊆ ∆1, then ∆1 is subsumed by ∆2.
Moreover, if ∆1 and ∆2 are standard and only involve unfixed variables, then ∆1 is
subsumed by ∆2 iff ∆2 ⊆ ∆1.

We can use membership decisions to handle representatives of equivalence classes
of nogoods. Membership decisions are decisions of the form x ∈ Dx. Note that such
decisions are usually not taken by backtrack search algorithms (at least, not when
tackling discrete CSP instances).

DEFINITION 1.58.– [Membership Decision] A membership decision δ is a restriction
on a variable x of the form x ∈ Dx, where ∅ ⊂ Dx ⊆ dominit(x); δ is strict iff Dx ⊂
dominit(x). A membership decision δ on a constraint network P is a membership
decision x ∈ Dx such that x ∈ vars(P ); δ is valid on P iff Dx ⊆ domP (x) and δ is
strict on P iff Dx ⊂ domP (x).

For a set ∆ of membership decisions on P , we can define P |∆ in a manner similar
to the definition introduced for positive and negative decisions. Specifically, we define
P |∆ to be the network obtained (derived) from P such that, for each membership
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decision x ∈ Dx, each value b ∈ dom(x) with b /∈ Dx is removed from dom(x). A
set ∆ of membership decisions is well-formed iff each variable occurs at most once in
∆ (consequently, ∆ is also well-formed according to Definition 1.55).

PROPOSITION 1.59.– Let P be a constraint network. For every well-formed set ∆ of
(positive and/or negative) decisions on P , there exists a unique well-formed set ∆m

of strict membership decisions on P such that P |∆ = P |∆m .

The proof is omitted. As an example, if dominit(x) = dominit(y) = dominit(z) =
{a, b, c} and ∆ = {x = a, y ̸= b, y ̸= c, z ̸= b}, then we have ∆m = {x ∈ {a}, y ∈
{a}, z ∈ {a, c}}.

Finally, note that a set of decisions is entailed by a constraint network P when
decisions contained in this set have no more impact on P .

DEFINITION 1.60.– [Entailed Decisions] Let ∆ be a set of (positive and/or negative)
decisions or a set of membership decisions on a constraint network P . P entails ∆ iff
P |∆ = P .

A decision δ is entailed by P if {δ} is entailed by P .

1.4.3. Properties on values and variables

Constraint networks possibly have properties that may be used to simplify the
search for a solution, typically by reducing the size of the search space. Some of
these properties are more powerful than others; in this sense there are stronger and
weaker properties. Network properties concerning values and variables are the most
important. As a matter of fact, properties on values are defined from properties on v-
values. However, recall that the distinction is thin between values and v-values. Here,
when a property ϕ holds on a v-value (x, a), we also say that ϕ holds on the value a
(for variable x).

Inconsistency of a single value is a centrally important property. Whereas an
inconsistent value belongs to no solution and so can be discarded, an implied value
belong to all solutions (if any) and so can be assigned. A set of implied values
constitutes a backbone (briefly described in section 2.2.1).

DEFINITION 1.61.– [Inconsistent/Implied Value] Let P be a constraint network and
(x, a) be a v-value of P .

– (x, a) is inconsistent on P iff there is no solution S of P such that S[x] = a.
– (x, a) is implied on P iff every solution S of P is such that S[x] = a.
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In other words, (x, a) is inconsistent iff the instantiation I = {(x, a)} is globally
inconsistent, i.e. a nogood. Of course, a v-value not inconsistent is said to be
(globally) consistent. If a v-value (x, a) is implied, then every v-value (x, b) with
b ̸= a is inconsistent. Clearly the removal of inconsistent values preserves solutions.
The purpose of domain-filtering consistencies, which are introduced later in this
book, is to identify and remove inconsistent values. Figure 1.27 provides examples of
inconsistent and implied values.

cba

a

b

c

a

b

c

P

y

z x

Figure 1.27. A constraint network P such that vars(P ) = {x, y, z} and
sols(P ) = {(a, a, a), (a, b, b)}. The v-value (x, a) is implied, which means that (x, b) and

(x, c) are inconsistent. (y, c) and (z, c) are also inconsistent

Interchangeability is another important property introduced by Freuder [FRE 91].
Full interchangeability has been refined into several weaker forms, including
neighborhood interchangeability, k-interchangeability, partial interchangeability and
substitutability. Relational interchangeability (i.e. neighborhood interchangeability
according to one constraint) [HAS 93] and neighborhood partial interchangeability
[CHO 98] are further weak forms. Interchangeability and substitutability have been
used in many contexts; see e.g. [BEN 92, HAS 93, CHO 95, FRE 97, BEL 94,
COO 97, PET 03a, LAL 05].

A v-value (x, a) is substitutable for a v-value (x, b) iff substituting (x, a) for
(x, b) in every solution involving (x, b) yields another solution. Two v-values are
interchangeable iff each is substitutable for the other. Before defining these properties
more formally we need to introduce some notation. When I is an instantiation such
that (x, a) ∈ I , we denote by I[x/b] the instantiation (I \ {(x, a)}) ∪ {(x, b)}, which
is the instantiation obtained from I by replacing the value assigned to x in I by b.

DEFINITION 1.62.– [Substitutable/Interchangeable Value] Let P be a constraint
network, and let (x, a) and (x, b) be two v-values of P .

– (x, a) is substitutable for (x, b) on P iff for every solution S of P such that
S[x] = b, S[x/a] is also a solution of P .
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– (x, a) is (fully) interchangeable with (x, b) on P iff (x, a) is substitutable for
(x, b), and (x, b) is substitutable for (x, a).

For example, consider a constraint network P such that vars(P ) = {x, y, z} and
sols(P ) = {(a, a, a), (a, b, b), (b, a, a), (c, a, a), (c, b, b)}. The v-values (x, a) and
(x, c) are interchangeable and both are substitutable for (x, b). When only a single
solution is sought, we can remove a value that is interchangeable with another value
(or for which a value is substitutable). Such removal preserves the satisfiability of the
problem instance but not the full set of solutions14. In this spirit, we define replaceable
values from substitutability.
DEFINITION 1.63.– [Replaceable Value] Let P be a constraint network. A v-value
(x, a) is replaceable on P iff there exists a v-value (x, b) of P such that (x, b) is
substitutable for (x, a).

Removable and fixable values, which have been defined more recently [BOR 04,
BOR 08], are values that can be safely removed and assigned, respectively, preserving
the satisfiability of instances.
DEFINITION 1.64.– [Removable/Fixable Value] Let P be a constraint network and
(x, a) be a v-value of P .

– (x, a) is removable on P iff for every solution S of P such that S[x] = a, there
exists a value b ̸= a in dom(x) such that S[x/b] is also a solution of P .

– (x, a) is fixable on P iff for every solution S of P , S[x/a] is also a solution of
P .

For example, consider a constraint network P such that vars(P ) = {x, y, z} and
sols(P ) = {(a, a, a), (a, b, b), (b, a, a), (c, b, b)}. The v-value (x, a) is fixable. The
v-values (x, b) and (x, c) are removable; it is certainly surprising that (x, a) is also
removable.

A value is clearly fixable iff it is substitutable for every other value in the domain.
It is also easy to see that removability is a weaker property than replaceability because
a replaceable value is necessary removable. Yet weaker properties are defined as
follows:
DEFINITION 1.65.– [Eliminable/Assignable Value] Let P be a constraint network and
(x, a) be a v-value of P .

– (x, a) is eliminable on P iff either sols(P ) = ∅ or there exists a solution S of P
such that S[x] ̸= a.

14. However, by reasoning from equivalence classes or bundles, all solutions can be computed
and represented compactly [HAS 93, BEC 01, CHO 02, LAL 05].
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– (x, a) is assignable on P iff either sols(P ) = ∅ or there exists a solution S of P
such that S[x] = a.

Figure 1.28 shows relationships between network properties that concern values.
A property ϕ is stronger than a property ϕ′ iff whenever ϕ holds on a v-value of a
constraint network P , ϕ′ also holds on it. ϕ is strictly stronger than ϕ′ iff ϕ is stronger
than ϕ′ and there exists at least one constraint network P such that ϕ′ holds on a v-
value of P but not ϕ. Note further that a value which is not implied is eliminable, and
also that a (globally) consistent value is assignable.

ϕ ϕ
′

(x, a)

(x, a)

(x, a)

(x, a)

(x, a)

(x, a)

(x, a)

ϕ ϕ
′

Figure 1.28. Relationships between properties on values. We assume here that there are at
least two values in the domain of x

If there was a cheap way to identify eliminable values, then an instance could
be solved by iteratively identifying and removing eliminable values. But no cheap
way is available; checking whether a value is inconsistent, replaceable, removable,
eliminable, implied, fixable or assignable is a co-NP-complete task (see [BOR 08]
for a general proof). However, it is possible to make use of most of these properties
locally, because there are polynomial time algorithms that determine whether a
general property holds for some values by reasoning locally on some subproblems.
An interesting result in [BOR 08] shows that local reasoning is not sound for the
removability property. This leads to the practical use of local forms of stronger
properties such as arc inconsistency and neighborhood substitutability.

We have hitherto been concerned with network properties of values; properties
can also be defined for variables. As mentioned in [BOR 08], network properties
of variables have been widely studied in several contexts (e.g. SAT) but have been
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rather neglected in the domain of constraint satisfaction. Two antithetical concepts are
defined as follows:

DEFINITION 1.66.– [Determined/Irrelevant Variable] Let P be a constraint network
and x be a variable of P .

– x is determined on P iff for every solution S of P and every value b ̸= S[x] in
dom(x), S[x/b] is not a solution of P .

– x is irrelevant on P iff for every solution S of P and every value b ̸= S[x] in
dom(x), S[x/b] is also a solution of P .

For example, consider a constraint network P such that vars(P ) = {x, y, z} with
dom(x) = dom(y) = dom(z) = {a, b} and sols(P ) = {(a, a, a), (a, a, b), (b, b, a),
(b, b, b)}. The variable x is determined and z is irrelevant.

Dependencies between variables on the entire network are important properties
that can also be simply defined between variables within a single constraint (e.g.
[CAM 08]). Several notions of dependency have been introduced [LAN 98] in the
general context of propositional logic. For example, definability is a property which
stipulates that some variables are fixed whenever some other variables are also fixed;
this has been used [OST 02, PHA 07] for both complete and local search procedures in
SAT. Functional dependencies among variables in declarative problem specifications
have also been studied in [MAN 07].

DEFINITION 1.67.– [Dependent Variable] Let P be a constraint network, x be a
variable of P and X be a subset of variables of P such that x /∈ X .

– x is dependent of X on P iff for every two solutions S1 and S2 of P such that
S1[y] = S2[y],∀y ∈ X , we have S1[x] = S2[x].

– x is minimally dependent of X on P iff x is dependent of X on P , and there is
no set of variables Y ⊂ X such that x is dependent of Y on P .

Interchangeability is a property that has been defined above on values. However,
this property can also be defined on variables (see e.g. [LAW 07]). Note that if I is
an instantiation containing the two v-values (x, a) and (y, b) then Ix↔y denotes (I \
{(x, a), (y, b)}) ∪ {(x, b), (y, a)}, i.e. the instantiation obtained from I by swapping
values of x and y.

DEFINITION 1.68.– [Interchangeable Variables] Let P be a constraint network and
x, y be two variables of P . x is (fully) interchangeablewith y on P iff for every solution
S of P , Sx↔y is also a solution of P .

Variable and value interchangeability is sometimes called pairwise or piecewise
variable and value symmetry (e.g. [FLE 06]). This property is useful for breaking
symmetries in constraint networks.
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Finally, an eliminable variable is one that, together with all constraints involving it,
can be eliminated safely from a constraint network. This is a strong property that may
be useful when constraint networks are composed of several connected components
(independent sub-networks). Chapter 11 will refer to this property.

DEFINITION 1.69.– [P⊖X] LetP be a constraint network andX be a set of variables
of P . P ⊖ X is the constraint network P ′ obtained from P by removing all variables
in X as well as every constraint c of P such that scp(c) ∩ X ̸= ∅.

DEFINITION 1.70.– [Eliminable Variable] Let P be a constraint network and x be
a variable of P . x is eliminable on P iff the satisfiability of P is equivalent to the
satisfiability of P ⊖ {x}.

1.5. Data structures to represent constraint networks

Subsequent chapters introduce algorithms that find constraint network solutions.
In preparation, we now precisely describe (in the context of backtrack search) some
data structures that can serve to represent domains and constraints. This description is
also required for our study of algorithm complexity analysis. Exhaustive presentation
of all variants and alternatives is beyond the scope of this book.

1.5.1. Representation of finite domains

A CSP instance can be solved by a backtrack search algorithm in which, at each
step, a decision is made. This decision is immediately followed by a filtering process
called constraint propagation. This is introduced in detail in Chapter 8. Constraint
propagation removes values, which must be restored upon backtracking. To achieve
restoration we need, for each removed value, to record the level at which it was
removed. Usually, the level (or depth) is given by the number of positive decisions,
i.e. variable assignments, currently taken by the search algorithm. The current level,
denoted by p, is then the current number of instantiated variables (also called past
variables). In what follows, we introduce trailing, which is a domain representation
and save/restore technique that is used in many constraint solvers. Copying and
recomputation are known alternatives to trailing [SCH 99, CHO 01, SCH 06], but
these will not be considered in this book.

During the search, trailing can use the following structures15 to represent the
current state of a domain (which is initially composed of d values).

15. As already stated, the initial domain of a variable can never be enlarged. This is quite a
reasonable assumption, valid for all algorithms presented in this book.
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– values is an array of size d that contains the set of values.
– absent is an array of size d that indicates which values are currently removed

from the domain. More precisely, absent [i] = −1 indicates that values[i] belongs to
the current domain, whereas absent [i] = k (≥ 0) indicates that values[i] has been
removed at level k of search.

– next is an array of size d that allows us to link (from first to last) all values of the
current domain. When absent [i] = −1, next [i] gives the index j > i of the next value
in the current domain (we have absent [j] = −1 and ∀k ∈ i + 1..j − 1, absent [k] ̸=
−1), or −1 if values[i] is the last value.

– prev is an array of size d that allows us to link (from last to first) all values
of the current domain. When absent [i] = −1, prev [i] gives the index j < i of the
previous value in the current domain (we have absent [j] = −1 and ∀k ∈ j + 1..i −
1, absent [k] ̸= −1), or −1 if values[i] is the first value.

– prevAbsent is an array of size d that allows us to link all values that do not
belong to the current domain. When absent [i] ̸= −1, prevAbsent [i] gives the index j
of the value removed during search just before values[i], or −1 if values[i] is the first
removed value.

We also need three variables denoted head , tail and tailAbsent , which indicate
the indices of the first value, the last value and the last removed value, respectively.
Using head and tail variables in conjunction with next and prev arrays, we obtain a
behavior similar to a doubly linked list. Using tailAbsent and prevAbsent , we obtain
a behavior similar to a stack (last-in first-out structure). The initialization of these
structures is rather straightforward, as in Figure 1.29.

You may wonder how to find the position (index) of a given value. In fact, in
the context of many consistency algorithms (e.g. generic algorithms such as GAC3
described in Chapter 4), this is never required as we can always reason about the
indices of values. Nevertheless, in a more general context, we can always introduce
a hash map which allows, under reasonable assumptions, the index of a given value
to be obtained in constant time. For more information, see section 4 in [HEN 92]
and implementation details in [BES 99]. From now on, to simplify the presentation of
algorithms and without any loss of generality, we assume16 that values and indices (of
values) match, i.e. ∀i ∈ 1..d, values[i] = i; we then prefer to use symbols a and b (for
values) instead of symbols i and j (for indices).

When a value is removed by constraint propagation (or search decision), the
function removeValue, Algorithm 1, is called. This updates both the stack of removed
values and also the doubly linked list of remaining values. Figure 1.30 illustrates this

16. However, observe that values and indices do not match in Figures 1.29 and 1.30 since, for
example, values[1] = 0.
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Figure 1.29. The structures initialized for a domain composed of eight values
{0, 2, 3, 4, 5, 7, 8, 9}

Figure 1.30. The structures from Figure 1.29 after the successive removals of values 3 and 7
(at index 3 and 6) at level 2. The current domain is {0, 2, 4, 5, 8, 9}

(for the second call to Algorithm 1, the formal parameter a is set to 6, and not 7,
since for our illustration, indices and values do not match). When an assignment is
performed during search, the function reduceTo, Algorithm 2, is called to remove
all values distinct from the given one. When the solver backtracks up to level p, the
function restoreUpto, Algorithm 4, is called. This function restores values, which
have been removed at a level greater than or equal to p, back into the domains whence
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they came. Restoration of a value is achieved by calling function addValue which
updates the stack as well as the doubly linked list. This use of a last-in first-out
structure (stack) ensures that indexes at prev [a] and next [a] are correct when a value
is restored. This is a technique known as dancing links [KNU 00].

Algorithm 1: removeValue(a: value, p: integer)
// p is the current level (number of instantiated variables)
absent [a] ← p1
prevAbsent [a] ← tailAbsent2
tailAbsent ← a3
if prev [a] = −1 then4

head ← next [a]5
else6

next [prev [a]] ← next [a]7

if next [a] = −1 then8
tail ← prev [a]9

else10
prev [next [a]] ← prev [a]11

Algorithm 2: reduceTo(a: value, p: integer)
b ← head1
while b ̸= −1 do2
if b ̸= a then3

removeValue(b, p)4

b ← next [b]5

The space complexity of this representation is Θ(|dom(x)|) for any variable x,
which is optimal. The time complexity of all elementary operations (determining if a
value is present, getting next value, previous value, etc.) is O(1). As a consequence,
the time complexity of removeValue and addValue is O(1). Of course, there are other
representations of domains that may be quite useful. For example, if the order of values
in domains is not important, we can use a sparse set data structure [BRI 93]. This
allows restoration of all values removed at a given level in constant time. A bit vector,
which is basically a structure that contains a collection of bits and provides constant-
time access to each bit, is also an attractive data structure. In practice, we may select
the domain representation that is best for the instance at hand [HEB 08].
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Algorithm 3: addValue(a: value)
// a is the last removed value that needs to be restored
absent [a] ← −11
tailAbsent ← prevAbsent [a]2
if prev [a] = −1 then3

head ← a4
else5

next [prev [a]] ← a6

if next [a] = −1 then7
tail ← a8

else9
prev [next [a]] ← a10

Algorithm 4: restoreUpto(p: integer)
b ← tailAbsent1
while b ̸= −1 ∧ absent [b] ≥ p do2

addValue(b)3
b ← prevAbsent [b]4

In subsequent chapters, we sometimes simplify presentation by describing
algorithms using more general representations of some instructions. For example, we
shall implicitly take account of the parameter p when:

– dom(x).reduceTo(a, p) is simplified into: x ← a or x = a;
– dom(x).removeValue(a, p) is simplified into: remove a from dom(x) or x ̸= a.

1.5.2. Representation of constraints

We know that a constraint can be represented extensionally or intensionally (we
do not discuss about global constraints in this section). When a generic filtering
algorithm17 is employed, one has to be able to perform a constraint check, that is to
say, to determine if a given tuple is accepted by a constraint. If c is a constraint and
τ a tuple to be checked against c, then the constraint check corresponds to the test
τ ∈ rel(c).

17. When specific filtering algorithm(s) or propagator(s) is(are) associated with the constraint,
there is usually no need to have this functionality.
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If the constraint c is defined in intension, one has just to write a Boolean function
that accepts any tuple τ in parameter. For example, let us assume that c is defined by
the predicate expression x ̸= y, then the body of a function to be associated with c
could simply be:

return τ [x] ̸= τ [y]

When the constraint is given in extension, it is possible to represent its associated
relation by:

– a multi-dimensional array of Boolean;
– a table, i.e. a list (or array) of arrays of integers;
– a hash map;
– bit vectors.

Using a multi-dimensional array allows us to perform a constraint check in
O(r), where r is the arity of the constraint, but the worst-case space complexity
exponentially grows with the arity since it is in O(dr). This kind of representation
can only be used for constraints of small arity and/or constraints involving variables
with domains of small size. For example, assume that c is a ternary constraint such
that scp(c) = {x, y, z} and that a 3-dimensional array m has been defined from the
initial list of allowed or disallowed tuples given for c. The body of the function to be
associated with c could simply be:

returnm[τ [x], τ [y], τ [z]]

When for space reasons, it is not possible to use a multi-dimensional array of
Booleans, one can just record the given list of allowed or disallowed tuples (i.e. what
we call a table). With binary search, it is possible to perform a constraint check in
O(log(t)r), where t is the number of tuples, while the worst-case space complexity
is O(tr). An alternative, which can be worthwhile, is to adopt a hash map. With
some assumptions, one can expect to check a tuple in O(r). More information will
be given in sections 5.1.1 and 5.6.1 of Chapter 5. Finally, bit vectors can be a good
solution to save space and time for binary networks. This is discussed in section 4.5.3
of Chapter 4.
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Chapter 2

Random and Structured Networks

It is conceptually very difficult to determine, either qualitatively or quantitatively,
the extent to which any given object is randomly shaped. Shapes of (sufficiently large)
randomly generated objects are characteristically irregular. This irregularity may be
contrasted with the considerable regularity of structured objects fashioned directly or
indirectly by human processes. We may ask: to what extent can shapes be considered
to be regular? Assessing randomness is equivalent to assessing irregularity, and this
has been explored in different ways.

In algorithmic information theory (e.g. see [COV 06]), the Kolmogorov complexity
of an object corresponds to a measure of the computational resources needed to specify
it. Kolmogorov randomness (also called algorithmic randomness) defines a sequence
of bits as being random if and only if it is shorter than any computer program that can
produce it. Unluckily, this measure is not readily computable and is not applicable to
short sequences because the shortest way to deal with small sequences, whatever they
are, is to write a program that simply prints them.

In [PIN 97], approximate entropy, which must not be confounded with information
entropy [SHA 48], is introduced to measure the irregularity of a sequence of digits.
This explicitly computable entropy quantifies the extent to which non-random
sequences differ from maximally irregular sequences. Hogg [HOG 98] has proposed
to extend the scope of approximate entropy to quantify the randomness of any discrete
structure, i.e. any structure composed of a finite number of components. In particular,
he has shown that this measure can be applied to constraint search processes. He has
illustrated this with graph coloring and 3-SAT solution-seeking search processes.

Less formally, the reader should intuitively understand what characterizes the
structure of a constraint network. A constraint network is structured if it is composed
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of one or more general components (sub-networks), each having a certain regularity.
Quite often, such components correspond to clusters of variables and constraints that
can be identified at modeling time. Typically, the more complex the context of the
problem, the more numerous the components. For example, problems from enterprise
or industry usually combine abstractions representing different aspects of the reality.
The interconnection between components may be more or less regular, but except for
very regular problems, variables and constraints usually do not play a similar role, nor
do they have the same impact within the network. Consequently, some components
of a constraint network are more difficult to satisfy than others. Therefore a challenge
for a constraint solver is to recognize underlying structure and to exploit it.

People have recently focused their attention on ideas for capturing the hidden
structure of problem instances. Structure can sometimes be characterized by
backbones and backdoors. A backbone is a set of variables that always have the
same value in any solution, while a (strong) backdoor is a set of variables that
concentrate the combinatorics of a problem instance. Exploiting such features
facilitates solving constraint networks. Minimal unsatisfiable cores, which are related
to strong backdoors, provide further examples. Minimal unsatisfiable cores represent
unsatisfiable sub-networks that cannot be reduced without becoming satisfiable. They
are useful, for example, to explain sources of unsatisfiability. Yet another example is
that identification of cliques in the (primal) constraint graph provides strong structural
information that can be useful in practice. Finally, the amount of acyclicity in a
constraint network indicates the extent to which the network can be handled (or
transformed) as a tree.

This chapter is organized in two main sections dealing respectively with random
and structured networks.

2.1. Random constraint networks
For some purposes, we may wish to generate instances on demand. In particular it

is usual to generate random CSP instances automatically. This enables experimentation
on a large set of instances with an unlimited number of different parameter settings
(e.g. density of the network, tightness of the constraints, etc.). In this section, we
present classical models used in the generation of random instances. In particular, we
focus on two models, denoted by RB and RD, which, while guaranteeing inherent
difficulty, can produce random instances having both extensional and intensional
constraints.

2.1.1. Classical models
Here is a quick overview of the different classical models for random constraint

network generators. There are four different classical models denoted by A, B, C and
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D [SMI 96, GEN 01]. Each of these models proceeds in two steps. The first step builds
network macro-structure, which is the constraint hypergraph. The second step builds
network micro-structure, which is the compatibility hypergraph; see section 1.2.2.
Actually, the two steps can be interleaved. Recall that the density of a normalized
constraint network, assuming that all constraints have arity k, is equal to e/(n

k ), and
that the tightness of a constraint corresponds to the proportion of disallowed tuples
in the associated relation. For randomly generated constraints, tightness can also be
defined as the probability that a tuple be disallowed.

Each random CSP instance is characterized by a 5-tuple (k, n, d, p1, p2) where k
denotes the arity of the constraints, n the number of variables, d the uniform domain
size, p1 a measure of the density of the constraint network and p2 a measure of the
tightness of the constraints. There are four models since p1 and p2 can be either a
probability or a proportion. p1 is a probability in models A,C and is a proportion in
models B,D. p2 is a probability in models A,D and is a proportion in models B,C.
Note that, for binary instances, k is usually omitted.

Model B is defined as follows:
DEFINITION 2.1.– [Model B] A class of random CSP instances of model B is denoted
by B(k, n, d, p1, p2) where, for each instance:

– k ≥ 2 denotes the arity of each constraint;
– n ≥ 2 denotes the number of variables;
– d ≥ 2 denotes the size of each domain;
– 1 ≥ p1 > 0 determines the number e = p1(n

k ) of constraints;
– 1 > p2 > 0 determines the number t = p2dk of disallowed tuples of each

relation.
To generate one instance P ∈ B(k, n, d, p1, p2), the generator constructs e
constraints, each one formed by randomly selecting (without repetition) a scope
of k (distinct) variables and randomly selecting (with repetition) a relation of t
distinct disallowed tuples.

For example, a CSP instance from class B(2, 20, 10, 0.5, 0.3) has 20 variables
whose domains contain exactly 10 values, and 0.5 × (202 ) = 95 binary constraints
whose associated relations forbid exactly 0.3 × 102 = 30 tuples. Note that p1(n

k ) and
p2dk may have to be rounded to the nearest integer. Note also that we are free to use
the number of constraints e and the number of disallowed tuples t directly instead of
proportions.

Model D is defined as follows:
DEFINITION 2.2.– [Model D] A class of random CSP instances of model D is denoted
by D(k, n, d, p1, p2) where, for each instance:
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– k ≥ 2 denotes the arity of each constraint;
– n ≥ 2 denotes the number of variables;
– d ≥ 2 denotes the size of each domain;
– 1 ≥ p1 > 0 determines the number e = p1(n

k ) of constraints;
– 1 > p2 > 0 denotes the constraint tightness in terms of probability.

To generate one instance P ∈ D(k, n, d, p1, p2), the generator constructs e
constraints, each one formed by randomly selecting (without repetition) a scope
of k (distinct variables) and randomly selecting (with repetition) a relation such that
each one of the dk tuples is forbidden with probability p2.

It has been shown [CHE 91] that the hardest random instances occur at a so-called
phase transition between an under-constrained region where all instances are almost
surely satisfiable and an over-constrained region where all problems are almost surely
unsatisfiable. This phase transition is associated with a range of values of a control
parameter. This parameter is usually p2 (or κ which measures the constrainedness
of an instance [GEN 96b]). The peak of difficulty occurs close to the threshold or
crossover point, which is where 50% of instances are satisfiable. The mushy region
[SMI 96, PRO 96] is the range of values of the control parameter over which the phase
transition takes place. Locating the phase transition has been addressed in [WIL 94,
SMI 96]. An illustration is given in Figure 2.1.

To illustrate phase transition, we consider three series of classes of model D:
D(2, 20, 11, 180, p2), D(2, 30, 15, 306, p2) and D(2, 40, 19, 443, p2). The difficulty
of solving instances is increased with the number of variables, the uniform domain
size and the number of (binary) constraints. Note that instead of being a proportion,
the fourth parameter is the number of constraints. Here tightness p2 is the control
parameter that can be varied to cause the phase transition. Figure 2.2 shows the
effort (CPU time) required for solution of instances from these three different classes.
This is the effort required by a solver implementing the algorithm MAC that will be
presented in Chapter 8. Figure 2.2 is limited to tightness values between 0.14 and
0.36 where the most difficult instances occur. From bottom to top, successive curves
in Figure 2.2 are for n = 20, n = 30 and n = 40. As we shall see later, the threshold
(or crossover point) for these three classes is theoretically located at p2 ≈ 0.233,
which corresponds closely to the threshold observed experimentally (although for
small problem instances, this is not always the case). Figure 2.3 shows the actual
phase transitions: at p2 = 0.19, all instances are satisfiable, while at p2 = 0.25, all
instances are unsatisfiable. Phase transition occurs between these two values.

At this stage, models A, B, C and D seem to be simple and equivalent tools for
generating random instances. However, Achlioptas et al. [ACH 97] have identified
a shortcoming of all four standard models. This is that random problem instances
generated using these models suffer from (trivial) insolubility as problem size

www.it-ebooks.info

http://www.it-ebooks.info/


Random and Structured Networks 97

(a) Evolution of the proportion of satisfiable instances.

(b) Evolution of the computational cost.

Figure 2.1. Phase transition, computational cost and threshold (crossover point)

increases. Achlioptas et al. [ACH 97] have shown that, asymptotically, if p2 ≥ 1/d,
such instances almost surely contain a flawed variable when the number of variables
increases while other parameters are kept constant. A flawed variable is such that each
value from its associated domain is flawed, i.e. not supported by a constraint of the
instance. Therefore, an instance involving a flawed variable is trivially unsatisfiable
and this can be discovered in polynomial time.

To overcome the deficiency of standard models, several alternatives have been
proposed. In [ACH 97], a model E (for generating binary constraint networks) is
introduced by selecting, with probability p, each one of the d2(n

2 ) tuples (x, y, a, b)
where x and y are two distinct variables, a ∈ dom(x) and b ∈ dom(y). This new
model is proved to be asymptotically interesting. However, it provides less flexibility
in the construction of the network and quickly yields a complete constraint graph
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Figure 2.2.Mean search cost of solving 50 instances of classes D(2, 20, 11, 180, p2),
D(2, 30, 15, 306, p2) and D(2, 40, 19, 443, p2) with the complete search algorithm MAC

even when p is small. A generalized model has been proposed by Molloy [MOL 03]
with the introduction of a probability distribution in order to select constraints directly
(instead of selecting allowed tuples, one by one). Molloy [MOL 03] proves that very
well behaved sets of constraints obtained with a probability distribution certainly show
a phase transition. Because such distributions can be awkward to use in practice,
[MOL 03] also addresses the generation of difficult instances.

There has been some work that incorporates some “structure” into generated
random instances. One idea is to ensure that the generated instances are arc-consistent
[GEN 01] or (strongly) path-consistent [GAO 04]; local consistencies, such as arc
consistency and path consistency, are properties described in Chapter 3. More
precisely, Gent et al. [GEN 01] propose variants, called flawless models, of standard
models with flawed values prevented. They consider that “each value must be
supported by at least one unique value, i.e. one value that is not also required to
support another value” and achieve this by including, in each binary constraint,
a set S of d allowed tuples such that any pair τ1, τ2 of tuples of S is such that
τ1[1] ̸= τ2[1] ∧ τ1[2] ̸= τ2[2]. Then, the instances generated according to flawless
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Figure 2.3. Phase transitions for D(2, 20, 11, 180, p2), D(2, 30, 15, 306, p2) and
D(2, 40, 19, 443, p2)

models are guaranteed to be arc-consistent and, at any value of p2 < 1/2, do not
suffer asymptotically from trivial insolubility”. Unluckily, they can be solved in
polynomial time as they embed easy subproblems [GAO 04]. A generalization of
this approach has then been proposed by Gao and Culberson [GAO 04], who show
that if each relation is chosen in such a way that the generated instances are strongly
path-consistent, then such instances have exponential resolution complexity no matter
how tight the constraints. By ensuring the presence of a l-regular bipartite graph in
each generated relation (with a sufficiently large l), the instances are guaranteed to be
strongly path-consistent. The main drawback is that generating random instances is
no longer a fairly natural and easy task.

Finally, in [XU 00, SMI 01, XU 03, FRI 03] standard models have been revised by
controlling the way parameters change as the problem size increases. The alternative
model D scheme proposed by Smith in [SMI 01] guarantees the occurrence of
a phase transition when some parameters are controlled and when the constraint
tightness is within a certain range. The two revised models RB and RD introduced
by Xu and Li in [XU 00, XU 03] provide the same guarantee by varying one of two
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control parameters around a critical value that can be computed. In the next section,
we shall see that almost all instances of models RB and RD are hard, i.e. do not
present resolution proofs of size less than exponential size. Also, Frieze and Molloy
[FRI 03] identify a range of suitable parameter settings in order to show a non-trivial
threshold of satisfiability. Their theoretical results apply to binary instances taken
from model A and also to “symmetric” binary instances from a so-called model B,
which, not corresponding to the standard one, associates the same relation with every
constraint.

2.1.2. Models RB and RD

This section introduces some theoretical results concerning two models defined in
[XU 00, XU 03]. Firstly, model RB is an alternative to model B. To simplify analysis,
model RB, unlike model B, allows more than one constraint to have the same scope
(but nothing prevents us from normalizing random instances generated by model RB).
Results introduced below may possibly hold also for Model B (i.e. when selection
of scopes is performed without duplicates). This is because the number of duplicate
constraints is asymptotically much smaller than the total number of constraints and
thus can be neglected in the analysis. But the main difference between models RB and
B is that in model RB the domain size of each variable grows polynomially with the
number of variables.

DEFINITION 2.3.– [Model RB] A class of random CSP instances of model RB is
denoted by RB(k, n,α, r, p) where, for each instance:

– k ≥ 2 denotes the arity of each constraint;
– n ≥ 2 denotes the number of variables;
– α > 0 determines the domain size d = nα of each variable;
– r > 0 determines the number e = r.n. ln n of constraints;
– 1 > p > 0 determines the number t = pdk of disallowed tuples of each relation.

To generate one instance P ∈ RB(k, n,α, r, p), the generator constructs e
constraints, each one formed by randomly selecting (with repetition) a scope of
k (distinct) variables and randomly selecting (with repetition) a relation of t distinct
disallowed tuples.

Because d = nα and e = rn ln n, the parameters α and r determine the values of
d and e for a given value of n. This makes it possible to determine the critical value
pcr of p where the hardest instances must occur. Specifically, pcr = 1 − e−α/r which
is equivalent to the expression of pcr given in [SMI 96]. Note that nα, r.n. ln n and
pdk may have to be rounded to the nearest integer.
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Model RD is similar to model RB except that p denotes a probability instead of a
proportion.

DEFINITION 2.4.– [Model RD] A class of random CSP instances of model RD is
denoted by RD(k, n,α, r, p) where, for each instance:

– k ≥ 2 denotes the arity of each constraint;
– n ≥ 2 denotes the number of variables;
– α > 0 determines the domain size d = nα of each variable;
– r > 0 determines the number e = r.n. ln n of constraints;
– 1 > p > 0 denotes the constraint tightness in terms of probability.

To generate one instance P ∈ RD(k, n,α, r, p), the generator constructs e
constraints, each one formed by randomly selecting (with repetition) a scope of
k (distinct) variables and randomly selecting (with repetition) a relation such that
each one of the dk tuples is not allowed with probability p.

The following analysis refers exclusively to model RB, although the results also
hold for model RD. In [XU 00], it is proved that model RB, under certain conditions,
not only avoids trivial asymptotic behavior but also guarantees exact phase transitions.
More precisely, with Pr denoting a probability distribution, the following theorems
hold:

THEOREM 2.5.– If k, α > 1
k and p ≤ k−1

k are constants then

lim
n→∞

Pr[P ∈ RB(k, n,α, r, p) is satisfiable ] =

{
1 if r < rcr

0 if r > rcr

where rcr = − α
ln(1−p) .

THEOREM 2.6.– If k, α > 1
k and pcr ≤ k−1

k are constants then

lim
n→∞

Pr[P ∈ RB(k, n,α, r, p) is satisfiable] =

{
1 if p < pcr

0 if p > pcr

where pcr = 1 − e−
α
r .

The condition pcr ≤ k−1
k is equivalent to ke−

α
r ≥ 1 given in [XU 00]. Theorems

2.5 and 2.6 guarantee a phase transition provided that the domain size is not too small
and the constraint tightness, or the threshold value of the constraint tightness, is not
too large.
EXAMPLE.– When the constraints are binary, the domain size must be greater than
the square root of the number of variables (as α > 1/2 and d = nα) and the
constraint tightness or threshold value of the tightness is required to be at most 50%.
The following table gives the limits of Theorems 2.5 and 2.6 for different arities.
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k α p or pcr

2 > 1/2 ≤ 1/2
3 > 1/3 ≤ 2/3
4 > 1/4 ≤ 3/4
5 > 1/5 ≤ 4/5

In practice, we shall certainly prefer to use Theorem 2.6 since the classical way
of experimenting with random instances is to use the constraint tightness (here p) as
a control parameter. Importantly, what is interesting with Models RB and RD is that
once values of parameters k, α and r have been chosen so that Theorem 2.6 holds,
we can generate more and more difficult instances (as shown below by Theorem 2.7)
by simply increasing the value of n (the number of variables). We can be sure that
the phase transition exists and stays at the same place. This allows observation of
the scaling behavior of algorithms, which is important in the practical comparison of
algorithms.
EXAMPLE.– When, k = 2, α = 0.8 and r = 3, we see that α > 1/2 and pcr =
1 − e−

α
r ≈ 0.233 ≤ 1/2, so Theorem 2.6 holds. Harder and harder instances, can be

generated by increasing the value of n. For a given value of n, values of d and e are
automatically determined, and rounding to the nearest integers, we obtain:

n d e pcr

10 6 69 0.229
20 11 180 0.234
30 15 306 0.233
40 19 443 0.233
50 23 587 0.234

After rounding, from series to series, the critical theoretical values pcr may be
slightly shifted, but this is really limited. Note also that the classes of model D
introduced earlier in section 2.1.1 followed the scheme (i.e. parameters) of model RD.
The only difference is that more than one constraint on the same scope was disallowed
during generation. Models RB and RD can be perceived as a kind of framework,
having proven good properties, wherein a classical series of random instances can be
generated.
EXAMPLE.– It is worthwhile to check that for k = 3, α = 1 and r = 1, Theorem 2.6
holds and that we can generate a series defined by:

n d e pcr

12 12 30 0.630
16 16 44 0.635
20 20 60 0.632
24 24 76 0.633
28 28 93 0.633
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The next theorem establishes that unsatisfiable instances of model RB are almost
surely guaranteed to be hard. The proof is based on a strategy following some results
of [BEN 01, MIT 02] and can be found in [XU 03]. A similar result for model A has
been presented in [FRI 03] with respect to binary instances (i.e. k = 2). Mitchell
[MIT 00] has described similar behavior for instances where constraints have fewer
than d/2 disallowed tuples.

THEOREM 2.7.– If P ∈ RB(k, n,α, r, p) and k, α, r and p are constants, then, almost
surely1, P has no tree-like resolution of length less than 2Ω(n).

To summarize, model RB guarantees exact phase transitions and hard instances at
the threshold. This contradicts the statement in [GAO 04] about the requirement of an
extremely low tightness for all existing random models to obtain non-trivial threshold
behaviors and guaranteed hard instances at the threshold. Information about random
instances forced to be satisfiable, as well as a vast range of experimental results, can
be found in [XU 05, XU 07].

2.1.3. Random constraint networks in intension

In previously published literature, most of the experimental work with random
constraint networks has been with binary instances. This is mainly due to space
limitations, because the space needed for explicitly storing the tuples allowed (or
disallowed) by a constraint grows exponentially with its arity. For instance, at least
109 memory words are needed to store 1% of the tuples of a 10-ary constraint that
has 10 values per variable domain since 108 tuples, each one composed of 10 values,
must be stored. It is not practical to represent large non-binary random networks with
constraints given in extension.

We now present a variant [LEC 03b] of model RD that generates networks
which have intensional constraints. This development enables experimentation with
randomly generated networks of any arity.

We give each constraint c a unique identifier id(c). The function isConsistent,
Algorithm 5, defines the set of tuples allowed (disallowed) by constraint c. More
precisely, for any given values of (id(c), τ), isConsistent(c, τ, p) determines if the
tuple τ is allowed by c while considering tightness p. The function computeRandomValue
always returns the same real random value between 0 and 1 (exclusive). The function
isConsistent compares this random value with the constraint tightness p serving as an
acceptance boundary.

1. We say that a property holds almost surely when this property holds with probability tending
to 1 as the number of variables tends to infinity.
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Algorithm 5: isConsistent(c: constraint, τ : tuple, p: 0..1): Boolean
Output: true iff τ ∈ rel(c) according to probability p

realRandomValue ← computeRandomValue(id(C), τ)1
return realRandomValue ≥ p2

Algorithm 6: computeRandomValue(id : integer, τ : tuple): real
Output: a real random value computed from id and τ

// variable document : array of bytes
// variable fingerprint : array of bytes
// variable b: byte
document ← createDocumentWith(id, τ)1
fingerprint ← MD5(document) // SHA is an alternative2
b ← fingerprint [1]3
for i ranging from 2 to fingerprint .length do4

b ← b ⊕ fingerprint [i]5

return b/2566

A simple implementation of the function computeRandomValue computes a seed
from the parameters, and uses this to obtain a real value using a pseudo-random
number generator. An alternative implementation uses a message digest algorithm like
M5 [RIV 92] or SHA [NIS 02]. These algorithms correspond to secure one-way hash
functions that take arbitrary-sized data, called documents, and output fixed-length
hash values called fingerprints or message digests. For any bit changed in a document,
the best hash functions modify at least 50% of the bits occurring in the computed
fingerprint. In the present context, the document consists of the actual parameters of
computeRandomValue, namely, the identification number of the constraint and the
given tuple.

Real values of hash function can be obtained as shown in Algorithm 6. The
function createDocumentWith, which is not described in detail here, creates a
document that is simply a concatenation of all values of its actual parameters.
Algorithm 6 then calls a hash function such as MD5 to generate a fingerprint. The
exclusive-or operation (⊕) is iteratively applied to each byte of the fingerprint. Finally,
Algorithm 6 obtains a real value between 0 and 1 by dividing the resulting byte by
256.

This approach is correct, firstly because isConsistent always produces the same
result for a given set of parameter values. Second, the decision whether each tuple τ
is not allowed by c is made independently with probability p. By having the constraint
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identification number as a parameter of computeRandomValue, we obtain distinct
constraints with the same arity.

It is now possible to define a variant, RDint, of model RD that will work in practice
with any required arity.

DEFINITION 2.8.– [Model RDint] A class of random CSP instances of model RDint

is denoted by RDint(k, n,α, r, p) where, for each instance:
– k ≥ 2 denotes the arity of each constraint;
– n ≥ 2 denotes the number of variables;
– α > 0 determines the domain size d = nα of each variable;
– r > 0 determines the number e = r.n. ln n of constraints;
– 1 > p > 0 denotes the constraint tightness in terms of probability.

To generate one instance P ∈ RDint(k, n,α, r, p), the generator constructs e
intensional constraints, each one formed by randomly selecting (with repetition) a
scope of k (distinct) variables and (implicitly) defined by the function isConsistent
described above.

It is easy to implement this new model, which has no space requirement and allows
experimentation with large arity constraints. To demonstrate the practical validity of
this model, we have compared the instances generated by models RD and RDint. More
precisely, we have compared three approaches, as follows.

– Extension: the model RD is used, and the constraints are defined in extension
using a pseudo-random number generator based on a linear congruential method.

– SHA: the model RDint is used, and the constraints are defined in intension using
SHA.

– MD5: the model RDint is used, and the constraints are defined in intension using
MD5.

We have experimented with classes RDint(2, 25, 15, 150, p) and RDint(3, 50, 5,
80, p). In the description of these classes, we have directly mentioned the domain
size d (instead of α) and the number of constraints e (instead of r). In fact, for the
first classes, α ≈ 0.84 and r ≈ 1.86, whereas for the second classes, α ≈ 0.41 and
r ≈ 0.41. The former classes yield dense instances with 25 variables, 15 values per
domain and 150 binary constraints, whereas the latter classes yield sparse instances
with 50 variables, 5 values per domain and 80 ternary constraints. We limit our study
to constraints of small arity because of the approach that expresses constraints in
extension. For each value of p, varied from 0 to 1 with a step equal to 1/256, and for
each approach, 50 instances have been generated and solved by the algorithm MAC
(presented in Chapter 8). Tables 2.1 and 2.2 show the results for several values of p
located in the mushy region. Results are given in terms of the number of satisfiable
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instances (#sat), the average number of constraint checks (#ccks), and the average
CPU time in seconds.

Tightness SHA MD5 Extension
p #sat #ccks CPU #sat #ccks CPU #sat #ccks CPU

85/256 49 52,636 0.26 50 68,405 0.33 48 50,071 0.07
86/256 49 71,620 0.39 48 96,090 0.46 48 62,774 0.09
87/256 47 106,283 0.51 46 108,863 0.63 47 91,855 0.13
88/256 44 142,706 0.71 40 125,014 0.60 42 130,379 0.19
89/256 34 189,478 0.91 32 165,009 0.81 29 195,430 0.29
90/256 21 211,338 1.01 25 182,229 0.86 22 193,591 0.28
91/256 12 197,716 0.95 14 196,004 0.92 15 196,428 0.28
92/256 4 185,203 0.89 9 200,059 0.97 11 187,122 0.27
93/256 1 169,795 0.81 5 193,020 0.90 7 180,506 0.26
94/256 0 151,028 0.72 1 174,125 0.82 2 163,857 0.23
95/256 0 131,131 0.62 0 156,439 0.73 1 144,739 0.20

Table 2.1. Phase transition for RDint(2, 25, 15, 150, p)

Tightness SHA MD5 Extension
p #sat #ccks CPU #sat #ccks CPU #sat #ccks CPU

149/256 46 70,256 0.33 47 88,442 0.40 47 72,845 0.09
150/256 42 84,746 0.40 46 108,605 0.49 47 83,132 0.09
151/256 40 136,544 0.64 44 113,136 0.51 44 113,386 0.13
152/256 35 148,010 0.70 39 136,536 0.62 37 128,164 0.14
153/256 30 139,460 0.65 33 137,865 0.63 33 147,407 0.16
154/256 23 149,839 0.70 26 176,143 0.79 26 138,698 0.15
155/256 19 150,383 0.70 23 168,319 0.75 22 140,998 0.15
156/256 15 152,153 0.71 15 159,181 0.71 15 154,094 0.17
157/256 11 151,910 0.70 12 150,633 0.67 8 146,423 0.16
158/256 7 134,474 0.63 6 135,822 0.60 5 138,864 0.15
159/256 5 121,855 0.56 4 116,854 0.52 3 121,424 0.13

Table 2.2. Phase transition for RDint(3, 50, 5, 80, p)

These results clearly show that the three approaches give similar results in terms
of numbers of satisfiable instances and constraint checks. However, we observe that
solving intensional random instances needs more CPU time than solving extensional
ones. Indeed, the CPU time required to perform a constraint check is from 3 to 4 times
longer; computing a fingerprint with MD5 or SHA is expensive. Nevertheless, these
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results confirm that a door is opened to realize experimentations with (intensional)
random instances of large arity.

The location of each experimentally identified crossover point can be compared
with its theoretical value. Table 2.1 shows experimental evidence that for the
RDint(2, 25, 15, 150, p) classes, the crossover point is located between p = 89/256 ≈
0.347 and p = 91/256 ≈ 0.355. This can be compared with the theoretically
computed p ≈ 0.363. Table 2.2 shows experimentally that for the RD(3, 50, 5, 80, p)
classes, the crossover point is located between p = 153/256 ≈ 0.597 and
p = 155/256 ≈ 0.605. Again, this can be compared with the theoretically computed
p ≈ 0.634. A slight difference between experimental and theoretical values is more
pronounced for the second classes.

2.1.4. Benchmarks

This section briefly presents some series of random instances that have been
generated in format XCSP 2.1, briefly described in Appendix B. Many of these have
been selected for use in various constraint solver competitions. In some experiments
that will be reported later, we will refer to these series. This section is succinct2.
2.1.4.1. Random series
2.1.4.1.1. Random instances from Model D

Seven classes of binary instances near crossover points have been generated
following Model D. For each class ⟨2, n, d, e, p2⟩, the number of variables n is
fixed at 40, the domain size d lies between 8 and 180, the number of constraints
e lies between 753 and 84 (so the density between 0.96 and 0.1) and the tightness
p2 lies between 0.1 and 0.9. Here, tightness p2 is the probability that a pair of
values is disallowed by a relation. The first class, ⟨2, 40, 8, 753, 0.1⟩, corresponds
to dense instances involving constraints of low tightness, whereas the seventh one,
⟨2, 40, 180, 84, 0.9⟩, corresponds to sparse instances involving constraints of high
tightness. It is important that a significant sampling of domain sizes, densities and
tightnesses is provided.
2.1.4.1.2. Random instances from Model RB

As already mentioned, a desirable property of models RB and RD is that they can
generate more and more difficult instances simply by increasing the value of n, once k,
α and r have been fixed so that Theorem 2.6 holds. The scaling behavior of algorithms
can easily be observed by increasing the number of variables. With k = 2, α = 0.8 and
r = 3, we have generated three series of random binary instance for n ∈ {30, 40, 50}.

2. Further information can be found at http://www.cril.fr/~lecoutre
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With the same parameters, we have also generated three series of instances forced
to be satisfiable (see [XU 07]). Similarly, with k = 3, α = 1 and r = 1, we have
generated three series of random ternary instance for n ∈ {20, 24, 28}, together with
three additional series forced to be satisfiable.

2.1.4.1.3. Random instances from Model RB forced to be satisfiable
Using model RB, Ke Xu has encoded some forced binary CSP instances with

k = 2, α = 0.8, r = 0.8 and n varying from 40 to 59. Each such instance is prefixed
by frb-n.

2.1.4.1.4. Random instances of large arity
Two series of non-binary instances with positive table constraints of arity 8 and 10

have been generated to illustrate [LEC 06d].

2.1.4.2. Random series containing a small structure
2.1.4.2.1. Ehi

A 3-SAT instance is defined to be a SAT instance in which each clause contains
exactly three literals. Two series of 3-SAT unsatisfiable instances, originated in
[BAY 97], have been converted into CSP instances using the dual method as described
in [BAC 00]. Each instance is obtained by embedding a small unsatisfiable SAT
formula into an easy random 3-SAT instance. The instance names of these series are
prefixed by ehi-85 and ehi-90.

2.1.4.2.2. Geometric
Richard Wallace has proposed geometric random generation of constraint scopes

as follows. Instead of a density parameter, a “distance” parameter, dst , is used such
that dst ≤

√
2. For each variable, two coordinates are chosen randomly within the

range 0, . . . , 1. Then for each pair (x, y) of variables, if the distance between their
associated points is less than or equal to dst , the edge {x, y} is added to the constraint
graph. Constraint relations are generated in the same way as for homogeneous random
CSP instances. Each such instance is prefixed by geo.

2.1.4.2.3. Composed
Nine series of 10 random binary CSP instances have been generated as follows.

Each instance comprises a main (under-constrained) fragment together with some
auxiliary fragments, each of these grafted to the main fragment by means of
additional binary constraints. The series composed-25-10-20 contains 10 satisfiable
instances, whereas all other series contains 10 unsatisfiable instances. Such classes
have appeared in [LEC 04] and related instances have been used experimentally in
[JUS 00b].
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2.2. Structured constraint networks

This section is concerned with structures that can be found in problem instances
arising in real life. Most of the concepts that characterize structure refer to subsets
of variables. These concepts include backbones, backdoors, (minimal) unsatisfiable
cores, cliques and cycles. We also consider the so-called small-world structure and
morphing technique.

2.2.1. Backbones and backdoors

Backbones and backdoors are structurally significant sets of variables. A backbone
[MON 99] is a set of variables (strictly speaking, an instantiation) that have the same
values in every solution, or stated otherwise, a set of implied values:

DEFINITION 2.9.– [Backbone] The backbone of a satisfiable constraint network P is
the greatest instantiation I on P such that sols(P |I) = sols(P ).

Figures 2.4 and 2.5 show examples of backbones.

u v w

y

z

x

u < v v < w

z
̸=

v

w
̸=

x

y ̸= x

u
≤

y

(a) Constraint network P

u v w x y z

(b) Solutions of P

Figure 2.4. A constraint network P and the set sols(P ) of its solutions. The domain of each
variable of P is {0, 1, 2}

The hardness of an instance seems to depend (at least partially) on the relative size
of the backbone, i.e. the ratio of the size of the backbone to the number of variables.
This ratio is called the backbone fraction. When an instance has a non-negligible
backbone fraction, wrong decisions are easily made during the search for a solution.
Wrong decisions taken at the beginning of search (near the top of the search tree) can
punitively reduce the efficiency of backtrack search. For local search, solutions can
be particularly difficult to find since they are clustered (they all extend the backbone).
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(u, 0)

(v, 1)

(w, 2)

(x, 0) (x, 1)

(y, 2)

(z, 2) (z, 0)

. . .

(z, 2)

(y, 1)

(z, 0)

Figure 2.5. The backbone of the constraint network depicted in Figure 2.4 is
{(u, 0, (v, 1), (w, 2)}. This is emphasized here with a tree structure (called a trie)

Nevertheless, if the backbone fraction gets closer to 1, incorrect decisions may be
detected more quickly as the instance is becoming highly constrained. We suspect that
instances having a backbone set of moderate (but not negligible) size are the hardest,
corresponding approximately to the transition threshold inherent to these instances
[MON 99, ACH 00].

A backdoor is also a set of variables: when all the variables in a (strong) backdoor
have been assigned values, the resulting instance can be solved in polynomial time.
Small backdoors attempt to capture the overall combinatorics of problem instances,
and also help to explain the heavy-tailed behavior of backtrack search algorithms
[WIL 03a, WIL 03b]. To define backdoors, we need first to introduce subsolvers.
Informally, a subsolver is an incomplete algorithm that runs in polynomial time and is
able to solve certain instances. For example, a subsolver can be defined to recognize
and solve the instances belonging to a tractable class; tractability is addressed in
section 3.5.2 of Chapter 3. If a given instance does not belong to this class, the
subsolver simply returns “I don’t know” (in polynomial time). A backdoor is always
defined with respect to a certain subsolver, or a certain tractable class.

DEFINITION 2.10.– [Weak Backdoor] Let P be a satisfiable constraint network, and
A be a subsolver. A weak backdoor of P is a set X ⊆ vars(P ) of variables such that
there exists an instantiation I of X on P such that A returns a solution of P |I .

By definition, unsatisfiable instances do not have any weak backdoor set. This is
why a stronger form is proposed.

DEFINITION 2.11.– [Strong Backdoor] Let P be a constraint network, and A be a
subsolver. A strong backdoor of P is a set X ⊆ vars(P ) of variables such that for
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every instantiation I of X on P , A solves P |I , that is, A either returns a solution of
P |I or indicates that P |I is unsatisfiable.

There is one trivial backdoor: vars(P ). This is a weak backdoor if P is satisfiable,
and in any case, this is a strong backdoor3. The advantage of identifying small (strong)
backdoors should be clear: search can be focused only on the variables of a (strong)
backdoor instead of all variables of the instance. If a strong backdoor set of size k is
known, the instance can be solved by enumerating and testing each instantiation of
the backdoor variables. The overall complexity is then O(λdk) where λ denotes the
polynomial complexity of the subsolver [WIL 03b]. Figure 2.6 illustrates this.

d
n

(a) Initial search space

d

k

(b) Backdoor search space

Figure 2.6. The search space of the initial constraint network is O(dn), whereas the search
space “delimited” by a backdoor of size k is O(dk). At each leaf of the backdoor search tree, a

subsolver which runs in polynomial time is executed

Many empirical studies (essentially conducted for SAT) have shown that structured
instances usually admit a (very) small backdoor. Indeed, in the experiments, the
backdoor fraction, i.e. the ratio of the size of the detected backdoor to the number of
variables, is less than 1%, possibly less than 0.1% [WIL 03b]. This is not the case
for random instances: the smallest backdoor sets obtained for 3-SAT with respect
to 2-SAT and HORN-SAT (tractable classes of propositional formulae) represent at
least 30% of the total number of variables [INT 03]. In practice, variable ordering
heuristics appear to search implicitly for small backdoor sets, but there has been no
comparative study of this.

Unsurprisingly, computing a priori small, minimal (i.e. backdoors that cannot
be reduced) or, even better, minimum (i.e. backdoors of minimal size) backdoors
can be quite expensive. For example, Szeinder shows [SZE 05] that the detection of
backdoor sets (for SAT using a subsolver performing unit propagation and pure literal
elimination) of size bounded by a fixed integer is of high parametrized complexity
(W[P]-complete).

In [KIL 05], it is shown that there is little overlap between backbones and
backdoor sets. Besides, in experiments (on SAT instances using a Davis Putnam

3. Naturally, the subsolver is assumed to solve the instance when the instantiation is complete.
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procedure) problem hardness appears to be correlated with strong backdoor size,
weakly correlated with backbone size, and not correlated with weak backdoor size.
The fact that problem hardness is not a simple function of weak backdoor size was
already shown in [RUA 04]. However, by considering a certain form of dependencies
among backdoor variables, we arrive at the refined notion of a backdoor key. This is
the ratio of the number of dependent variables to the size of the backdoor, and this
appears to be closely related to problem hardness. Backdoor trees [SAM 08] represent
another way to refine the concept of strong backdoor sets by taking into account
the relationship between backdoor variables. Backdoor trees are decision trees on
backdoor variables such that each leaf is tractable (i.e. solved by the subsolver). The
hardness of instances can be ranked according to the number of leaves in backdoor
trees.

2.2.2. Cores and cliques

On the practical side, when inconsistency is encountered, circumscription of the
conflict can help the user to understand, explain, diagnose and restore consistency.
A constraint network is said to be minimally unsatisfiable iff it is unsatisfiable and
arbitrary deletion of one constraint makes it satisfiable. A (minimal) unsatisfiable core
is related to strong backdoor.

DEFINITION 2.12.– [Unsatisfiable Core] An unsatisfiable core of a constraint network
P is an unsatisfiable sub-network of P .

DEFINITION 2.13.– [Minimal Unsatisfiable Core] An unsatisfiable core P ′ of a
constraint network P is minimal iff there is no unsatisfiable core P ′′ of P such that
P ′′ ⊂ P ′.

To check whether an unsatisfiable core P ′ is minimal, we check the satisfiability of
every sub-network P ′′ obtained from P ′ by removing exactly one constraint. However,
deciding whether a set of constraints is minimally unsatisfiable is known to be DP-
Complete [PAP 88]. In the example in Figure 2.7, it is easy to check that the sub-
network P ′ of P such that vars(P ′) = {u, v, w} and cons(P ′) = {cuv : u < v, cvw :
v < w, cuw : u > w} is unsatisfiable. Removing any additional constraint clearly
makes the network satisfiable.

In the case of Boolean constraints, finding minimal unsatisfiable sub-formulae
is an active research area. For example, some recent advances in satisfiability
checking have allowed successful extensions of SAT solvers for handling such a
hard computational problem [BRU 00, ZHA 03a, LYN 04b, OH 04, GRE 06]. In
the context of constraint satisfaction, although there is a significant amount of work
dealing with the identification of conflict sets of constraints, there is only a small
amount of work really dedicated to the extraction of minimal unsatisfiable cores from
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(a) A binary constraint network P
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(b) A minimal unsatisfiable core P ′ of P

Figure 2.7. Illustration of a minimal unsatisfiable core

constraint networks. An approach toward diagnosis of over-constrained networks has
been proposed in [BAK 93] and [HAN 99, BAN 03] have contributed a method for
finding all minimal unsatisfiable cores from a given set of constraints. To extract
from an over-constrained problem an explanation (or relaxation) using preferences
given by the user, a divide and conquer approach has also been proposed in [JUN 04].
Finally, the extraction of minimal unsatisfiable cores from constraint networks has
been addressed by exploiting an adaptive variable heuristic [HEM 06], and has been
shown to be effective for many problems. A finer-grained approach has been proposed
in [GRE 07]: this allows the identification and removal of forbidden tuples that are
not part of the cause of unsatisfiability.

A direct relationship between unsatisfiable cores and strong backdoors deserves
to be mentioned. From an unsatisfiable core, one can extract a strong backdoor with
respect to an elementary subsolver [LYN 04a]. The strong backdoor is the set of
variables belonging to the unsatisfiable core, and the subsolver simply ensures that
any constraint covered by the current instantiation is satisfied. Of course, whenever
the current instantiation covers all variables present in the unsatisfiable core, the
subsolver detects an unsatisfied constraint. Interestingly, it has been shown [HEM 06]
that many structured problems admit small minimal unsatisfiable cores. Indeed, the
ratio of number of variables in the detected minimal unsatisfiable cores to the total
number of variables is usually far less than 1%. This confirms that small strong
backdoors do exist in many structured problems.

The minimal unsatisfiable core P ′ extracted from the binary constraint network P
in Figure 2.7 has a special property: its constraint graph is a clique. Besides, for every
pair (x, y) of variables of this sub-network, we can see that the relation associated
with the constraint involving x and y is irreflexive, i.e. we have ∀(a, b) ∈ dom(x) ×
dom(y), (a, b) ∈ rel(cxy) ⇒ a ̸= b. In other words: ∀{x, y} ⊂ vars(P ′), we have
x ̸= y. Hence we can infer an additional global constraint allDifferent over vars(P ′)

www.it-ebooks.info

http://www.it-ebooks.info/


114 Constraint Networks

V0

V2

V3

V4

V6

V7

V9

V10

V12

V13

V15

V16

V18V19

V21

V22

V24

V25

V27

V28

V30

V31

V33V34

V36

V37

V39

V40

V42

V43

V45

V46

V1

V49

V5

V50

V8

V51

V11

V52

V14

V53

V17

V54

V20

V55

V23

V56

V26

V57

V29

V58

V32

V59

V35

V60

V38

V61

V41

V62

V44

V63

V47

V48

(a) Constraint graph

V0

V3

V6

V9

V12

V15

V18

V21

V24

V27

V30

V33

V36

V39

V42

V45

(b) Clique

Figure 2.8. The constraint graph of the instance blackHole-4-4-e-0 contains a 16-clique. A
constraint allDifferent generated from this clique can be shown to be disentailed
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that improves pruning of the search space. In some constraint solvers, the filtering
procedure (propagator) attached to allDifferent achieves a local consistency weaker
than generalized arc consistency (presented in Chapter 3). Even in this case, inferring
allDifferent global constraints can be quite effective provided that the following (trivial)
proposition is exploited.

PROPOSITION 2.14.– Let c : allDifferent(x1, . . . , xr) be a constraint. If |∪r
i=1 dom(xi)| <

r, then c is disentailed (i.e. sup(c) = ∅).

The presence of cliques is a structural feature that deserves careful study.
Properties other than irreflexivity may also be exploitable (for example, see
[TEA 08]). Interestingly, it is not so rare to find cliques in non-random problems.
For example Figure 2.8 shows the constraint graph of the instance blackHole-4-4-e-0
which contains a 16-clique that enables us to infer a global constraint allDifferent.
As this additional constraint is disentailed (this is shown from Proposition 2.14), the
instance is directly proved to be unsatisfiable.

2.2.3. Acyclicity

It is well-known that binary constraint networks whose constraint graph is acyclic
(i.e. forms a tree) can be solved in polynomial time; this is discussed in section 3.5.2.
However, the macro-structure associated with a non-binary constraint network is not
a graph but a hypergraph. So the question of acyclicity for hypergraphs arises. In fact,
acyclicity turns out to be a fundamental structural property. This has been introduced
in the context of relational databases [BEE 83, GOO 83, GYS 94].

In the dual graph D of a hypergraph H = (V,E), each node represents a
hyperedge of H and so corresponds to a subset of V ; see section 1.2.2. An edge in
D between vertices v and v′ connects “shared” variables, those in v ∩ v′. Such an
edge is redundant iff there exists an alternate path between v and v′ formed of edges
each connecting (at least) variables in v ∩ v′. If D is regarded as the dual graph of a
constraint hypergraph, a redundant edge corresponds to a redundant constraint that
can be eliminated because the other constraints in the dual graph enforce the equality
between shared variables [DEC 06].

An acyclic subgraph of the dual graph resulting from the removal of redundant
edges is called a join-tree. The set of vertices in a join-tree in which a node of the
initial hypergraph occurs induces a connected subtree. This is called the connectedness
condition of join trees. A hypergraph is acyclic iff it has a join-tree. Note that there
are various equivalent characterizations of acyclic hypergraphs. For example, a
hypergraph is acyclic iff its primal graph is triangulated or chordal (i.e. every cycle of
length at least four has an edge connecting two non-adjacent nodes of the cycle) and
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conformal (i.e. there is a one-to-one mapping between maximal cliques of the primal
graph and hyperedges of the hypergraph).

EXAMPLE.– Consider a constraint network P involving six variables u, v, w, x, y
and z, and four ternary constraints cuvw, cwxy , cuyz and cuwy (this example is similar
to the one presented in [DEC 92a]). Figures 2.9(a) and 2.9(b) show the constraint
hypergraph and dual graph of P , respectively. Note that the three edges labeled with u,
w, and y are redundant. Hence they can be removed. We obtain the join-tree depicted
in Figure 2.9(c), which demonstrates that the constraint hypergraph of P is acyclic.
Figure 2.9(d) shows the connected subtree of the join-tree of P induced by u.

Acyclic constraint networks are those whose constraint hypergraph is acyclic.
Checking the satisfiability of acyclic constraint networks is tractable and highly
parallelizable [GOT 01]. Besides, for identifying acyclic constraint networks and for
finding a representative join-tree several efficient procedures have been developed in
the area of relational databases [MAI 83]. Although in practice constraint networks
are usually cyclic, structured instances often have several main components which
are more or less independent. The intention of structural decomposition methods
is to transform cyclic constraint networks into acyclic ones. This can be achieved
by grouping variables (and constraints) into clusters that represent subproblems
for which all solutions can be computed. Replacing each cluster with its set of
solutions yields an acyclic equivalent constraint network. We provide more detail in
the following paragraphs.

The definition of tree decomposition [ROB 86] is central in several structural
decomposition methods.

DEFINITION 2.15.– [Tree Decomposition] A tree decomposition of a graph G =
(V,E) is a tree T = (W,F ) such that:

– each vertex of T is a non-empty set (called cluster) of vertices of G: ∀w ∈
W,w ⊆ V ;

– each vertex of G belongs to (at least) one cluster: ∀v ∈ V,∃w ∈ W | v ∈ w;
– each edge of G belongs to (at least) one cluster: ∀e ∈ E,∃w ∈ W | e ⊆ w;
– each vertex of G must induce a connected subtree of T : ∀w,w′, w′′ ∈ W , if

there is a path in T from w to w′′ traversing w′, then w ∩ w′′ ⊆ w′.

DEFINITION 2.16.– [Tree-width] The width of a tree decomposition T = (W,F ) of
a graph G is equal to maxw∈W |w|− 1. The tree-width of a graph G is the minimum
width over all tree decompositions of G.

A tree decomposition of a constraint network P is a tree decomposition of the
primal graph of P . Given such a tree decomposition, the challenge is to solve each
subproblem identified by a cluster. This task dominates the overall worst-case time
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(d) Connected subtree induced by u

Figure 2.9. The constraint network P involving four ternary constraints is acyclic. By
removing redundant edges from the dual graph of P , we obtain a join-tree. Edges in the dual

graph and in the join-tree are labeled with shared variables

complexity which is traditionally given by O(edw+1) for a tree decomposition whose
tree-width is w. The space complexity is similar but can be reduced to become
exponential in the maximal separator size (which is the size of the biggest intersection
between clusters). It is interesting to compare these complexities with those of
backtrack search algorithms. Although backtrack search is often efficient in practice
(benefiting from constraint propagation and adaptive heuristics presented later in this
book), its worst-case time complexity is O(edn) and, without nogood recording, its
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worst-case space complexity is linear. Of course, we have w < n, and even on some
cases w ≪ n.

Tree-clustering [DEC 89b] is a well-known method for obtaining tree-decomposi-
tions. The two first steps are the triangulation of the primal graph and the search of
maximal cliques.

EXAMPLE.– In the example in Figure 2.10, which is taken from [GOT 00], there
is a constraint network P involving six variables u, v, w, x, y and z, two ternary
constraints cuvw and cxyz , and two binary constraints cuz and cwx. Figures 2.10(a)
and 2.10(b) show the constraint hypergraph of P and the dual graph of P . There is no
redundant edge in the dual graph of P , which shows that P is not acyclic. To “render”
P acyclic, the primal graph of P is first triangulated. In this example, inserting one
edge is sufficient to obtain a triangulated graph; see Figure 2.10(d). Next, maximal
cliques are identified in the triangulated primal graph. These maximal cliques define
an acyclic hypergraph whose hyperedges correspond to clusters or subproblems.
Figure 2.10(f) shows a tree decomposition for the hypergraph in Figure 2.10(a).

For real-world problems, tree decomposition may turn out to be quite attractive,
as in the example in Figure 2.11 (kindly provided by Simon de Givry and Thomas
Schiex).

Tree clustering is one of a number of structural decomposition methods. The
main structural decomposition methods have been arranged in a hierarchy [GOT 00],
which includes biconnected components [FRE 82], hinge decomposition [GYS 94],
tree clustering [DEC 89b], cycle cutset [DEC 92a], cycle hypercutset [GOT 00] and
hypertree decomposition [GOT 02]; see Figure 2.12. Jégou, Ndiaye and Terrioux
have shown [JÉG 08, JÉG 09] that by separating decomposition from solution, new
hybrid structural methods can be naturally devised. For example, a constraint network
can be solved with an “optimal” time complexity by using tree clustering on one
tree-decomposition induced by a hypertree-decomposition. This result provides a
theoretical explanation of experimental results observed so far by the community,
specifically, the good performance of tree decomposition methods. This result is
partly derived from a new theoretical bound for backtrack search algorithms such as
FC (the non-binary variant called nFC2 [BES 02]) and MAC. With S denoting the
size of a given constraint network P , the worst-case time complexity of nFC2 to solve
P is O(Srk) where r is the maximum size of relations associated with constraints
of P and k is the size of the minimum cover of vars(P ) by scopes of constraints of
P . Roughly speaking, a structural decomposition method D1 strongly generalizes a
structural decomposition method D2 if D1 allows more efficient decompositions than
D2. There is a rigorous definition in [GOT 02].

Using a hybrid of enumerative search and structural-driven approaches seems a
good compromise because backtrack search can operate in linear memory, while tree
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Figure 2.10. The constraint network P is not acyclic. A tree decomposition is computed
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Figure 2.11. Tree decomposition of the constraint graph of the preprocessed scen-06 instance

decomposition guarantees good time complexity bounds. Among hybrid methods, we
can cite backtracking with tree-decomposition (BTD) [JÉG 03] and AND/OR search
[MAR 05b, MAR 05a], which are also related to pseudo-tree search [FRE 85b]. BTD
computes a tree decomposition that is used as a partial variable ordering by the search
heuristic. The essential property of tree decomposition is that after instantiating the
variables in a separator, we obtain two independent subproblems that can be solved
independently. During search, BTD focuses on separators (intersection of clusters) by
recording structural goods and nogoods and thereby avoids visiting similar portions
of the search space. BTD has been shown effective for both decision and optimization
problems [JÉG 03, JÉG 04, GIV 06]. On the other hand, AND/OR search spaces
display the independencies in the constraint graph and sometimes yield exponential
saving compared to the traditional search space. AND/OR search spaces provide a
unifying paradigm for advanced algorithmic schemes for graphical models.
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Figure 2.12. The hierarchy of decomposition methods of [GOT 02]

2.2.4. Small world structure and morphing technique
The structure of graphs, which are fundamental mathematical structures, has

also been investigated. To quantify the structural properties of a graph, two a priori
independent measures have been introduced in [WAT 98]: the characteristic path
length and the clustering coefficient. The former is defined as the number of edges
in the shortest path between two vertices, averaged over all pairs of vertices, and
indicates the typical separation between two vertices in the graph. The latter is defined
as the density of the subgraph (vertex-)induced4 by the neighbors of a vertex (itself
included), averaged over all vertices, and indicates the cliquishness of a typical
neighborhood. While random graphs have a small characteristic path length and a low
clustering coefficient, quite regular graphs (such as lattices) have a large characteristic
path length and a high clustering coefficient.

We can interpolate between these extremes by introducing a certain amount of
disorder in a regular graph: we can tune a probability parameter p so the resulting
graph lies between regular and random. This way of artificially generating new graphs
offers the opportunity to build graph-based problems (such as constraint networks)
that can be used as benchmarks. For some intermediate values of p, the generated
graph has a small-world structure: the graph has a small characteristic path length like
random graphs and a high clustering coefficient like regular graphs. These structures
seem to be surprisingly widespread since, for example, the neural network of the

4. Let G = (V, E) be a graph and X ⊆ V , the subgraph vertex-induced by X is G′ =
(X, {(v, v′) ∈ E | v ∈ X ∧ v′ ∈ X}).

www.it-ebooks.info

http://www.it-ebooks.info/


122 Constraint Networks

worm caenorhabditis elegans, the power grid of the western United States and the
collaboration graph of film actors are shown to be small worlds. Walsh [WAL 99] has
shown that (many) classical search problems have small world topology. This is the
case for graph-coloring, timetabling and quasi-group problems. The distribution of
time taken by search algorithms to solve small-world problems is likely to be heavy-
tailed. Therefore a randomization strategy with geometric restarts (discussed later in
this book) is suggested to tackle such problems more efficiently.

On the other hand, a general technique called morphing [GEN 99] can introduce
structure or randomness in a wide variety of problems. In particular, morphing
provides a simple mechanism for constructing small world graphs. The basic
principle is that, given two structures S1 and S2, a new structure S3 is built by taking
components of S1 with probability p and components of S2 with probability 1 − p
(proportions can also be considered). Many types of structures can be morphed,
including graphs, matrices, vectors and relations. Moreover, morphing can be used to
build new challenging benchmarks containing a mixture of structure and randomness.

Finally, in addition to the small-world model of graphs, and the classical random
graph model [ERD 59] extensively studied during the last century, scale-free graphs
have been proposed [ALB 99] as a new generic model of network topologies. In this
model, the arity of vertices follows a power-law distribution. The world wide web,
viewed as a graph, has such a structure as well as some social and metabolic networks.
Scale-free networks, because of their heterogeneity, have been shown to be fairly
robust to errors (random loss of vertices) although very vulnerable to attacks (targeted
loss of the most important vertices) [ALB 00, CRU 04]. This latter property has been
termed the “Achilles’ heel” of scale-free networks. In [LI 05], topological features
of scale-free graphs are discussed and a structural metric is proposed as a possible
measure of the extent to which a graph is scale-free. To the best of our knowledge,
the study of constraint networks with scale-free topologies has not been specifically
investigated.

2.2.5. Benchmarks

In recent years, the community has collected many series of structured instances
from different backgrounds. Some of these are briefly introduced below5. These
clearly identified series (in format XCSP 2.1; see Appendix B) allow anybody to
control and reproduce experimental results based on them.

5. There is further information about benchmark instances at http://www.cril.fr/~lecoutre
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2.2.5.1. Main series
2.2.5.1.1. Crosswords

Given a grid and a dictionary, the problem is to fill the grid with words in the
dictionary. To generate crossword instances, three series of grids (Herald, Puzzle,
Vg) and four dictionaries (Lex, Uk, Words, Ogd) have been used. Herald refers to
crossword puzzles taken from the Herald Tribune (Spring, 1999), Puzzle refers to
crossword puzzles mentioned in [GIN 93, GIN 90], and Vg refers to blank grids. Lex
is a dictionary used in [SAM 05], Uk is the UK cryptic solvers dictionary, Words is
the dictionary in /usr/dict/words under Linux, and Ogd is a French dictionary6. Lex
and Words are small dictionaries, whereas Uk and Ogd are large. The model used
to generate the instances is the one identified by m1 in [BEA 01]. For the Vg grids,
all instances involve only extensional constraints, because it is permissible to put the
same word on the grid several times.
2.2.5.1.2. Haystacks
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Figure 2.13. The constraint graph of the binary instance haystacks-08

The Haystacks instances are binary unsatisfiable instances created by Marc van
Dongen. The instance haystacks-p is called the haystack instance of size p: it has
p × p variables and each variable has domain {0, . . . , p − 1}. The constraint graph is
highly regular, consisting of p clusters: one central cluster and p − 1 outer clusters,
each one being a p-clique. The instances are designed so that if the variables in the
central cluster are instantiated, only one of the outer clusters contains an inconsistency:
this cluster is the haystack. The task is to find the haystack and decide that it is

6. See http://pagesperso-orange.fr/ledefi
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unsatisfiable, thereby providing a proof that the current instantiation of the variables in
the central cluster is inconsistent. The structure of the instance haystacks-08 is shown
in Figure 2.13,
2.2.5.1.3. FAPP

The frequency assignment problem with polarization constraints (FAPP) is
an optimization problem7 that was part of the ROADEF’2001 challenge8. In this
problem, there are constraints concerning frequencies and polarizations of radio links.
Progressive relaxation of these constraints is explored: the relaxation level is between
0 (no relaxation) and 10 (the maximum relaxation). Progressive relaxation produces
eleven CSP instances from any single original FAPP optimization instance. Series of
instances are denoted by fappNB with NB ∈ {01, . . . , 40} while individual instances
are denoted by fappNB-n-r where n is the number of variables and r is the relaxation
level. The higher the value of r, the less constrained the instance.
2.2.5.1.4. QCP/QWH/BQWH

The quasi-group completion problem (QCP) is the task of determining whether the
remaining entries of a partial Latin square can be filled in such a way that we obtain a
complete Latin square, ie. a full multiplication table of a quasi-group [GOM 02]. The
quasi-group with holes problem (QWH) is a variant of the QCP wherein instances are
generated so as to be guaranteed satisfiable [GOM 02]. The eight series of instances
generated by Radoslaw Szymanek for the 2005 constraint solver competition are
denoted by qcp-p and qwh-p where p ∈ {10, 15, 20, 25} corresponds to the order
(size) of the Latin square. Two series of 100 satisfiable balanced quasi-group instances
with holes, series denoted by bqwh-p with p ∈ {15, 18}, are also available.
2.2.5.1.5. Radar surveillance

The Swedish Institute of Computer Science (SICS) has proposed a model of
realistic radar surveillance9. The problem is to adjust the signal strength (from 0 to s)
of a given number of fixed radars with respect to six geographic sectors. Each cell of
the geographic area of size p × p must be covered exactly by k radar stations, except
for a number, i of forbidden cells that must not be covered. Three sets of 50 instances
with non-binary constraints have been generated artificially. Each instance is denoted
by radar-p-k-s-i.
2.2.5.1.6. Renault

This is a CSP instance obtained from a Renault Megane configuration problem
[AMI 02] that has been converted from symbolic domains to numeric ones. This

7. This is an extended subject of the CALMA European project.
8. See http://uma.ensta.fr/conf/roadef-2001-challenge/
9. See http://www.ps.uni-sb.de/~walser/radar/radar.html
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instance (which is available in two forms, one normalized and one not), denoted
by renault, involves large table constraints of high arity. The series modifiedRenault
contains instances generated (by Kostas Stergiou) from the original configuration
instance. These are interesting for evaluating, for example, GAC algorithms for table
constraints.

2.2.5.1.7. RLFAP
The radio link frequency assignment problem (RLFAP) is the task of assigning

frequencies to a set of radio links satisfying a large number of constraints and
using as few distinct frequencies as possible. In 1993, the CELAR (the French
“centre d’electronique de l’armement”) built a suite of simplified versions of radio
link frequency assignment problems starting from data on a real network. These
benchmarks have been made available to the public in the framework of the European
EUCLID project CALMA (combinatorial algorithms for military applications). For
more information, see [CAB 99]. There are five series of binary RLFAP instances,
identified as either scen or graph. Following the approach of [BES 01a], some
RLFAP instances have been modified by removing some constraints (w followed by
a value) and/or some frequencies (f followed by a value). For example, scen07-w1-f4
corresponds to the instance scen07 without the constraints which have weight greater
than one and also without the four highest frequencies. The most difficult instances
belong to the series scen11-fNB with NB ∈ 1..12. These real-world instances are
highly structured as illustrated in Figure 2.14.

2.2.5.1.8. Scheduling job-shop and open-shop instances
Job-shop scheduling aims to find a schedule minimizing the overall completion

time for a set of jobs requiring shared resources. Open-shop scheduling differs in that
the operations of each job are not required to be ordered. Five series of satisfiable
job-shop instances, denoted by js-e0ddr1, js-e0ddr2, etc. have been proposed by
Norman Sadeh and experimental results are reported in [SAD 96]. Figure 2.15 shows
the structure of the instance e0ddr1-10-by-5-1; sub-networks corresponding to five
jobs are clearly identifiable. Naoyuki Tamura proposed another series of 10 instances
for the 2006 constraint solver competition. This series, whose instance names are
prefixed with gp10, corresponds to open-shop instances developed by Christelle
Guéret and Christian Prin. Further series of job-shop and open-shop instances have
been generated by Julien Vion in accordance with the description in [TAI 93]. Here,
instances are only considered for satisfaction: instead of looking for an optimal
solution, a time window is fixed, and one has to decide if a solution exists within this
time window. To do this, when considering the original optimization problem, the
time window has been set to the best known value (100 occurring in the name of the
instances), a smaller value (95 occurring in the name of the instances) and a greater
value (105 occurring in the name of the instances). Of course, all “100” and “105”
instances are satisfiable. The instance names of the series are prefixed with js-taillard
and os-taillard.
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Figure 2.14. The constraint graph of the binary instance scen11
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Figure 2.15. The constraint graph of the binary instance e0ddr1-10-by-5-1

2.2.5.1.9. Traveling salesperson
The object of the traveling salesperson problem is to determine a tour, of minimal

length, that visits each in a given set of cities exactly once. Radoslaw Szymanek has
generated two series of 15 ternary instances (all satisfiable) for the 2005 constraint
solver competition. Names of these instances are prefixed by tsp-p with p ∈ {20, 25}.

2.2.5.2. Other series
2.2.5.2.1. All-interval series

The problem10 is to find a vector s = (s1, . . . , sp), such that:

10. See prob007 at http://www.csplib.org
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– s is a permutation of {0, 1, . . . , p − 1}; and
– the interval vector v = (|s2 − s1|, |s3 − s2|, . . . , |sp − sp−1|) is a permutation of

{1, 2, ..., p − 1}.

Each instance is ternary and denoted by series-p.

2.2.5.2.2. Black hole
The Black Hole problem is to move all cards in 17 fans of 3 cards each to the

center pile, the Black Hole, which initially only contains the ace of spades. Radoslaw
Szymanek has generated three series of binary instances (which correspond to a
simplification of the original problem) for the 2005 constraint solver competition.
These are prefixed by BlackHole-4-p with p ∈ {4, 7, 13}.

2.2.5.2.3. Chessboard coloration
The problem is to color all squares of a chessboard composed of r rows and c

columns. There are exactly k available colors and the four corners of no rectangle of
chessboard squares may be assigned the same color. Each instance is quaternary and
denoted by cc-r-c-k.

2.2.5.2.4. Domino
This problem was introduced in [ZHA 01b] to emphasize the sub-optimality of the

algorithm AC3. Each instance, denoted by domino-n-d, is binary and corresponds to
an undirected constraint graph with a cycle. More precisely, n denotes the number
of variables, the domains of which are {1, . . . , d}, and there exist n − 1 equality
constraints xi = xi+1 (∀i ∈ {1, . . . , n − 1}) and a trigger constraint (x1 = xn + 1 ∧
x1 < d) ∨ (x1 = xn ∧ x1 = d).

2.2.5.2.5. Golomb ruler
The problem11 is to put k marks on a ruler of length p such that the distance

between any two pairs of marks is distinct. Each instance from the model involving
ternary (resp. quaternary) constraints is denoted by ruler-p-k-a3 (resp. ruler-p-k-a4).
Figure 2.16 shows the primal constraint graph of the ternary instance ruler-17-6-a3.

2.2.5.2.6. Pigeons
The pigeonhole problem is to put p pigeons into p − 1 boxes, one pigeon per

box. All instances are clearly unsatisfiable. Each instance is binary and denoted by
pigeons-p.

11. See prob006 at http://www.csplib.org
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Figure 2.16. The primal constraint graph of the ternary instance ruler-17-6-a3

2.2.5.2.7. Queen attacking
The queen attacking problem12 is to put a queen and the p2 numbers 1, . . . , p2, on

a p × p chessboard so that:
– no two numbers are on the same cell;
– each number i + 1 is reachable by a knight move from the cell containing i;
– no cell that contains a prime number is not attacked by the queen (for

satisfaction).

Each instance is binary and denoted by queenAttacking-p (qa-p in tables when the
name must be shortened). The constraint graph of the binary instance queenAttacking-
4 is shown in Figure 2.17.

12. See prob029 at http://www.csplib.org
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Figure 2.17. The constraint graph of the binary instance queenAttacking-4

2.2.5.2.8. Queens-knights
On a chessboard of size q × q, the queens-knights problem is to put q queens and

k knights such that no two queens can attack each other and all knights form a cycle
(when considering knight moves) [BOU 04b]. In one version of this binary problem
(identified by “add”), a square of the chessboard can be shared by both a queen and
a knight and in another (identified by “mul”), this is not allowed. Each instance is
denoted by queensKnights-q-k-add for the first version, or, for the second version,
by queensKnights-q-k-mul (qk-... in tables when the name must be shortened). More
information about this problem can be found in section 8.5.

2.2.5.2.9. Langford
The (generalized version of the) Langford’s problem13 is to arrange p sets of

numbers ranging from 1 to k, so that each appearance of the number m is m numbers
on from the last. Each instance is binary and is denoted by langford-p-k.

2.2.5.2.10. Primes
The Primes instances are non-binary intensional satisfiable instances created by

Marc van Dongen. Domains of variables consist of prime numbers and all constraints
are linear equations. The coefficients and constants in the equations are also prime
numbers. Each instance is prefixed by primes.

13. See prob024 at http://www.csplib.org
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2.2.5.2.11. Ramsey
Given a complete graph that has p nodes, the Ramsey problem14 is to color, using

k colors, the edges so that there is no monochromatic triangle in the graph, which
means that in each triangle at most two edges may have the same color. Each instance
is ternary and denoted by ramsey-p-k.

2.2.5.2.12. Schur’s Lemma
The problem15 is to put n balls labeled from 1 to n into three boxes so that for any

triple of balls (x, y, z) such that x + y = z are not all in the same box. The available
series comprise ternary instances whose name is prefixed by lemma and suffixed by
mod for the variant proposed in [BES 02].

14. See prob017 at http://www.csplib.org
15. See prob015 at http://www.csplib.org
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Techniques and algorithms to solve constraint satisfaction problem (CSP)
instances belong mainly (e.g. see [DEC 03, FRE 06]) to two main categories:
inference and search1. Inference methods aim to simplify a problem so as to make it
easier to solve, while preserving its semantics, i.e. its set of solutions. Simplification
can be achieved by transforming the set of variables and constraints, or by discarding
useless parts of the search space, or by other means. Exploration of the search space
is required in the general case where it is impossible to solve a given CSP instance
purely by inference. This exploration is called search.

The first part of this book is focused on inference – more precisely on constraint
propagation, which uses semantics of constraints to identify and discard incompatible
combinations of values. Such combinations, which are instantiations that cannot be
part of any solution, are called (standard) nogoods. A constraint propagation (or
filtering) algorithm is usually described in terms of (local) consistencies, which are
properties of constraint networks. The classical way to “propagate constraints” is
to enforce a given consistency on a given constraint network. Typically, this means
reducing the domains of variables or the relations of constraints in order to obtain a
more explicit network that satisfies the consistency. The resulting network does not
lose any solutions, because only nogoods are “recorded” in the network. It is also
simpler because recorded nogoods can be used to avoid exploration of useless parts
of the search space.

For more than three decades, constraint propagation has received much attention
because it is recognized as a very important component of complete efficient
solvers. Many of the published filtering algorithms are dedicated to specific types of
constraints (typically, global ones). Unfortunately, implementation of a large number
of different algorithms requires substantial development effort, so experimental
comparison of constraint solvers is not easy. General-purpose algorithms are centrally
important in the development of robust black-box solvers. Generic filtering algorithms
that can be used with all kinds of constraint provide a universal filtering mechanism
which has a privileged place in the development of such solvers.

The following chapters present recent techniques and algorithms that improve
or extend generic filtering capabilities. This work is based on simple consistencies:
generalized arc consistency, singleton arc consistency and path/dual consistency.

1. The frontier between inference and search is not always quite distinct because inference
is sometimes conducted by a limited form of search (e.g. when singleton arc consistency,
described later, is enforced).
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Chapter 3

Consistencies

A consistency, which is a general property of a constraint network (or a
general condition on a constraint network), usually indicates a certain level of
(local) coherence. It has to do with constraint (hyper)graphs and/or compatibility
(hyper)graphs. In most cases, a local consistency is a property defined from particular
subsets of variables and/or constraints. In contrast, global consistency is a precise
property that refers to the entire network, guaranteeing in particular that a solution
exists. Absence of a local consistency enables us to make deductions, also called
inferences, that reveal some (standard) nogoods, i.e. reveal some instantiations that
cannot lead to any solution.

By taking account of nogoods identified by inference, constraint networks can
be modified so that they become more explicit and simpler to solve. This involves
constraint propagation, which means the iterative collection of nogoods by a filtering
algorithm that enforces a given consistency. In the worst case, a constraint satisfaction
problem (CSP) instance cannot be solved in polynomial time, but the vast majority
of filtering algorithms that perform constraint propagation run in polynomial time.
Constraint propagation is central to constraint reasoning and has contributed to
the success of constraint programming because it is an appealing concept yielding
practical efficiency.

Although constraint propagation alone is usually not sufficient to solve a problem
instance (e.g. by detecting unsatisfiability), it can simplify an instance before
commencement of search. In practice constraint propagation is applied at each basic
step during backtrack search. Thus backtrack search and inference (processes) are
interleaved. Identification of nogoods allows some useless portions of the search
space to be avoided. In other words, some fruitless branches of the search tree built
by the backtracking algorithm are pruned so as to save much search effort.
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In many cases, consistencies on which filtering algorithms are based allow the
identification of inconsistent instantiations of a certain size. Specifically, a kth-order
consistency is a consistency that permits identification of nogoods of size k. In
practice, most of the consistencies that are studied or exploited are first- and second-
order consistencies. A first-order consistency is associated with domain-filtering
because identified nogoods are of size 1 and correspond to inconsistent values that
can be removed from domains of variables. A second-order consistency enables
identification of inconsistent pairs of values. When binary constraints are extensional,
their associated tables can be easily updated to record some of these new nogoods, but
unfortunately some missing constraints may also have to be included in the constraint
network. This is why, in general and in practice, higher-order consistencies are
relation-filtering consistencies, which means that they can be applied (conservatively)
to existing constraints.

The chapter is organized as follows. Section 3.1 formulates basic variable-based
consistencies. This provides a gentle introduction to the concept of consistencies
and also to the role that they play. Next, section 3.2 states a stability principle for
consistencies. When this holds for a consistency φ, we have an important guarantee
for any constraint network P . Specifically, the existence of a unique greatest φ-
consistent constraint network smaller than P is guaranteed. Section 3.3 introduces
the most commonly studied (and used) domain-filtering consistencies; section 3.4
deals with higher-order consistencies. Finally, section 3.5 explains that, under certain
conditions, the ideal global consistency can be identified, and even better, can be
reached by simple polynomial transformations.

3.1. Basic consistencies

The class of consistencies called k-consistencies, introduced by Freuder in
[FRE 78], provides a good starting point for a study of consistencies. This class
generalizes early consistencies proposed by Mackworth [MAC 77a], which are
introduced later in this chapter. Informally, a constraint network is k-consistent iff
every locally consistent instantiation of k − 1 variables can be extended to a locally
consistent instantiation involving any additional variable.

DEFINITION 3.1.– [k-consistency] Let P be a constraint network and k be an
integer such that 1 ≤ k < n = | vars(P )|. P is k-consistent iff for every set X of
k − 1 variables of P and every additional variable y of P , every locally consistent
instantiation of X on P can be extended to a locally consistent instantiation of
X ∪ {y} on P .

If P is k-consistent and I is a locally consistent instantiation of X , then for every
variable y, there exists a value b in dom(y) such that I∪{(y, b)} is a locally consistent
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instantiation on P . Note that the empty instantiation I = ∅ is deemed to be locally
consistent. This means that no domain can be empty in a 1-consistent network.

As illustrated later in this section, a constraint network that is k-consistent is not
necessarily j-consistent with 1 ≤ j < k. This is why a stronger form has been
introduced:

DEFINITION 3.2.– [Strong k-consistency] Let P be a constraint network and k be an
integer such that 1 ≤ k < n. P is strongly k-consistent iff P is j-consistent for every
integer j such that 1 ≤ j ≤ k.

In section 3.2, we will show that it is always possible to transform a constraint
network into an equivalent one which is strongly k-consistent. The optimal time
and space complexities for establishing strong k-consistency are O(nkdk) and
O(nk−1dk−1), respectively [COO 89, BES 06].

In terms of these consistencies, we can define what can be considered to be the
ultimate consistency:

DEFINITION 3.3.– [Global Consistency] A constraint network is globally consistent
iff it is strongly n-consistent.

A globally consistent network is maximally explicit. This is a very appealing
consistency because we not only have the guarantee that a globally consistent
constraint network is satisfiable (i.e. admits at least one solution) but also that any
partial locally consistent instantiation can always be extended to a solution of the
network [FRE 82].

THEOREM 3.4.– A globally consistent constraint network is satisfiable, and a solution
can be found by a backtrack-free depth-first search.

EXAMPLE.– We now illustrate different consistencies in terms of constraint networks
that have three variables x, y, z and three binary constraints, one per each pair of
variables. The domains of the three variables are dom(x) = dom(y) = dom(z) =
{a, b}. As there is no unary constraint and no domain is empty, all of these constraint
networks are 1-consistent. The network shown in Figure 3.1 is satisfiable but not 2-
consistent. Here {(x, b)} is a locally consistent instantiation of size 1 that cannot be
extended to a locally consistent instantiation that includes the variable z. Moreover,
this network is not 3-consistent: {(y, b), (z, a)} is a locally consistent instantiation of
size 2 that cannot be extended to a locally consistent instantiation that includes the
variable x. A constraint network on which a consistency other than global consistency
holds is obviously not necessarily satisfiable. Figure 3.2 shows a constraint network
that is 2-consistent but not satisfiable. On the other hand, Figure 3.3, shows a network
that is 3-consistent but not 2-consistent, emphasizing the fact that k-consistency does
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not necessarily entail j-consistency for j < k. Finally, Figure 3.4 shows a constraint
network that is 1-consistent, 2-consistent and 3-consistent, and is therefore strongly
3-consistent. As the number, n, of variables is equal to 3, this network is globally
consistent.

Consistencies are of interest for two reasons. Firstly, consistencies can yield
inferences that simplify the task of finding a solution. Networks can be made more
explicit by identifying and recording instantiations (called nogoods) that cannot lead
to any solution. A search procedure may thereby avoid visiting some useless portions
of the search space. For example, in Figure 3.1 {(x, b)} is an instantiation that
cannot be consistently extended. We can take account of this directly by removing b
from dom(x); (y, b) and (z, a) can be removed similarly to (x, b). Furthermore, the
instantiation {(y, b), (z, a)} cannot be extended consistently. We can take account of
this by removing {(y, b), (z, a)} from the y, z constraint relation. The result is a new
network that is equivalent to the original one, but far easier to solve; see Figure 3.5.

A second good reason for interest in consistencies is that they enable identification
of tractable classes of problem instances. The simplest case is (see Theorem 3.4) that
a globally consistent constraint network can be solved in a backtrack-free manner by
a simple depth-first search algorithm, whatever its variable ordering. Backtrack-free
means that the search algorithm never has to reconsider an instantiation shown to be
locally consistent: Chapters 8 and 9 deal with backtrack search and search-guiding
heuristics.

EXAMPLE.– At the present stage, the following example concerning backtrack-free
search can easily be understood. The search procedure works step-by-step. At each
step, the current locally consistent instantiation is extended by selecting an unassigned
variable and assigning to this variable a “locally consistent” value (we know that such
a value exists). This procedure can be applied, for example, to the constraint network
shown in Figure 3.4 using the variable ordering x, y, z. This means that values are
assigned to variables in the sequence x, y, z. For the first variable, x, the first value
a of dom(x) is considered. Because the network is 1-consistent, the instantiation
{(x, a)} is locally consistent. Next, y is selected and the first value a in dom(y) is
considered. The search algorithm finds that the pair {(x, a), (y, a)} is 2-consistent, so
{(x, a), (y, a)} is a locally consistent extension of the initial instantiation {(x, a)}.
Next, the variable z is selected; the locally consistent instantiation (z, a) is checked
against {(x, a), (y, a)} but does not satisfy the binary constraints. Therefore the
second value (z, b) is selected and is found to satisfy the binary constraints. The
result is that {(x, a), (y, a), (z, b)} is a final locally consistent instantiation which is
therefore a solution of the constraint network.

The worst-case time complexity of the backtrack-free search procedure is O(erd)
where r denotes the greatest constraint arity. Unfortunately, even though it is
theoretically possible to make any constraint network globally consistent, this process
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Figure 3.1. A constraint network which is satisfiable although it is neither 2-consistent nor
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Figure 3.2. A constraint network which is not satisfiable, although it is 2-consistent (but not
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Figure 3.3. A constraint network which is 3-consistent but not 2-consistent
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Figure 3.4. A constraint network which is globally consistent as it is strongly 3-consistent
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Figure 3.5. Filtered constraint network of Figure 3.1

is generally combinatorially explosive. This is because it is usually necessary to
compute and record a huge number of inconsistent instantiations (nogoods) of various
sizes.

In [FRE 85a], Freuder has generalized k-consistency into (i, j)-consistency.
Informally, a constraint network is (i, j)-consistent iff every locally consistent
instantiation of i variables can be extended to a locally consistent instantiation
involving any j additional variables.
DEFINITION 3.5.– [(i, j)-consistency] Let P be a constraint network and i, j be two
integers such that 0 ≤ i < n, 1 ≤ j ≤ n and i + j ≤ n. P is (i, j)-consistent
iff for every set X of i variables of P and every additional set Y of j variables of P ,
every locally consistent instantiation ofX on P can be extended to a locally consistent
instantiation of X ∪ Y on P .

If P is (i, j)-consistent and I is a locally consistent instantiation of X , and if
Y = {y1, . . . , yj}, then there exist a value b1 ∈ dom(y1), . . . , a value bj ∈ dom(yj)
such that I ∪ {(y1, b1), . . . , (yj , bj)} is a locally consistent instantiation on P .
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The strong form of (i, j)-consistency is unsurprisingly defined as follows.

DEFINITION 3.6.– [Strong (i, j)-consistency] Let P be a constraint network and i, j
be two integers such that 0 ≤ i < n, 1 ≤ j ≤ n and i + j ≤ n. P is strongly
(i, j)-consistent iff P is (k, j)-consistent for every integer k such that 0 ≤ k ≤ i.

Clearly, k-consistency is equivalent to (k − 1, 1)-consistency. One particular
consistency of this vast class allows us to introduce minimal networks [MON 74].

DEFINITION 3.7.– [Minimal Constraint Network] A constraint network is minimal iff
it is (2, n − 2)-consistent.

When a constraint network (even involving non-binary constraints) is minimal,
this means that every locally consistent instantiation of two variables can be extended
to a solution. A minimal constraint network is maximally explicit in terms of binary
constraints. In this case, an unsatisfiable minimal constraint network has an empty
binary constraint for each pair of variables. For Montanari [MON 74] the central
problem is to make a constraint network minimal. This problem is NP-complete
[MAC 77a] and seeking a solution of a minimal network is not backtrack-free (unless∏P

2 = ΣP
2 ) [BES 06].

Finally, it may be interesting to relax the requirement that a locally consistent
instantiation of size i must be extendable to every additional set of j variables. The
existence of just one such additional set is sufficient in the following weak consistency
[DON 06].

DEFINITION 3.8.– [Weak (i, j)-consistency] Let P be a constraint network and i, j
be two integers such that 0 ≤ i < n, 1 ≤ j ≤ n and i + j ≤ n. P is weakly (i, j)-
consistent iff for every set X of i variables of P , there exists an additional set Y of j
variables of P such that a) X ∩Y = ∅ and b) every locally consistent instantiation of
X on P can be extended to a locally consistent instantiation of X ∪ Y on P .

This definition can be weakened further as follows: for every set X of i variables
of P and every locally consistent instantiation I of X on P , there exists an additional
set Y of j variables of P such that a) X ∩Y = ∅ and b) I can be extended to a locally
consistent instantiation of X ∪ Y on P . In other words, when this property holds on a
constraint network, it is always possible to find a way of extending a locally consistent
instantiation of i variables into a locally consistent instantiation of i+ j variables. The
theoretical or practical benefits of such weak forms remain to be demonstrated.

3.2. Stability of consistencies

Consistencies currently studied in the literature are those that identify nogoods.
With a simple additional property, called stability, we obtain, for any constraint
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network P and any stable consistency φ, the guarantee that there exists a unique
greatest φ-consistent network, denoted by φ(P ), smaller than or equal to P , and
equivalent to P . Such a consistency is said to be well-behaved and enforcing φ on
P means computing φ(P ). An algorithm that enforces a consistency φ on constraint
networks is called a φ algorithm.

Recall that a consistency is simply a general property (or condition) of a constraint
network. For a given network, either it holds or it doesn’t.

DEFINITION 3.9.– [φ-consistent Network] Let φ be consistency. A constraint network
P is said to be φ-consistent iff the property φ holds on P .

Sometimes, properties are combined as follows:

DEFINITION 3.10.– [φ+ψ-consistent Network] Let φ and ψ be two consistencies. A
constraint network P is φ+ψ-consistent iff P is both φ-consistent and ψ-consistent.

It is usually possible to enforce φ on a network P by computing the greatest φ-
consistent network smaller than or equal to P , according to a partial order, while
preserving the set of solutions. Without a great loss of generality, from now on, we
stipulate that any poset1 (P,!) is such that ∀P1 ∈ P,∀P2 ∈ P , P1 ! P2 ⇒
vars(P1) = vars(P2); constraint networks that are comparable are defined on the
same variables.

DEFINITION 3.11.– [Well-behaved Consistency] A consistency φ is well-behaved for
a poset (P,!) iff for every constraint network P ∈ P:

– there exists a φ-consistent constraint network P ′ ∈ P equivalent to P such that
P ′ ! P ; and

– for every φ-consistent constraint network P ′′ ∈ P such that P ′′ ! P , we have
P ′′ ! P ′.
P ′ is called the φ-closure of P for (P,!), and is denoted by φ(P ).

In other words, φ(P ) is equivalent to P and is the greatest element of the set
{P ′′ ∈ P | P ′′ is φ-consistent and P ′′ ! P}. A well-behaved consistency is valuable
if its enforcement simplifies (the resolution of) constraint networks. This is the case
for nogood-identifying consistencies which are, so far as we are aware, the only ones
studied in the literature.

1. Note that the symbol ! is different from ≼ used in Definition 1.50. The strict order associated
with ! is designated by ≺, but must not be confounded with the one associated with ≼.
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DEFINITION 3.12.– [Nogood-identifying Consistency] A consistency φ is nogood-
identifying iff the reason why a constraint network P is not φ-consistent is that some
instantiations, which are not in P̃ , are identified as globally inconsistent by φ. Such
instantiations correspond to (new) nogoods and are said to be φ-inconsistent (on P ).

Instantiations that are not in P̃ (i.e. are not current explicit nogoods; see Definition
1.43) and are not φ-inconsistent are said to be φ-consistent (on P ). The nice feature
of nogood-identifying consistencies is that they can be exploited to make a constraint
network more explicit by discarding φ-inconsistent instantiations. An instantiation I
is discarded from a constraint network P by applying the operation P \ I described
on page 77; stated otherwise, a new explicit nogood I is stored in P . Enforcing a
consistency φ on a network means taking into account (recording inside the network)
nogoods identified by φ in order to make it φ-consistent. It is important that a nogood-
identifying consistency can only identify new nogoods; this is a quite reasonable
assumption.

It is not necessary to define a consistency in a uniform manner. This means
that the property may integrate different levels of local coherence provided that it
remains a nogood-identifying consistency. For example, as we shall see, generalized
arc consistency is an important property defined uniformly on each constraint. We
can imagine a mixed consistency that holds if certain constraints are generalized
arc-consistent, and others are partially generalized arc-consistent. What is important
is the “stability” of any consistency that is introduced. Indeed, this property, defined
below, is useful for proving that a nogood-identifying consistency is well-behaved.

DEFINITION 3.13.– [Stable Consistency] A nogood-identifying consistency φ is stable
for a poset (P,!) iff for every constraint network P ∈ P , every constraint network
P ′ ∈ P | P ′ ! P and every φ-inconsistent instantiation I on P , we have: P ′ \ I !

P \ I ≺ P , and either I ∈ P̃ ′ or I is φ-inconsistent on P ′.

The fact that P ′ \ I ! P \ I ≺ P ensures that the partial order is large enough to
allow computation of φ-closures. On the other hand, the fact that either I ∈ P̃ ′ or I
is φ-inconsistent on P ′ guarantees that no φ-inconsistent instantiation on a constraint
network can be missed when the network is made tighter: either it is discarded (has
become an explicit nogood of P ′) or it remains φ-inconsistent.

We can now prove that a nogood-identifying consistency which is stable for a poset
(P,!) is necessarily well-behaved for (P,!).

THEOREM 3.14.– Any nogood-identifying consistency stable for a poset (P,!) is
well-behaved for (P,!).
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Proof. Let P ∈ P be a constraint network and let us consider a network P ′ obtained
from P by iteratively discarding (in any order) the φ-inconsistent instantiations
identified by φ. If I1 is the first discarded φ-inconsistent instantiation (on P ) and
P1 = P \ I1, we have (by stability) P1 ≺ P ; if I2 is the second discarded φ-
inconsistent instantiation (on P1) and P2 = P1 \ I2, we have P2 ≺ P1, . . . , With k
denoting the number of instantiations successively discarded (k must be finite since
there are a finite number of possible instantiations), we have P ′ = Pk−1 \ Ik with
P ′ ≺ Pk−1. At the end, we have a) P ′ ! P (more precisely, P ′ ! P if k = 0 and
P ′ ≺ P otherwise) by using the transitivity of ≺, b) P ′ φ-consistent since there are
no more φ-inconsistent instantiations, and c) P ′ equivalent to P since only nogoods
have been recorded.

Now, let us consider P0 = P , Pk = P ′ and the following induction hypothesis
H(i): every φ-consistent constraint network P ′′ ! P is such that P ′′ ! Pi. Let us
show that H(i) holds for 0 ≤ i ≤ k. First, H(0) clearly holds since P0 = P . Now,
with i < k, let us assume that H(i) holds and let us show H(i+1). As H(i) holds, by
hypothesis, we know that any φ-consistent constraint network P ′′ ! P is such that
P ′′ ! Pi. We also know that Pi+1 = Pi \ Ii+1 where Ii+1 is the (i + 1)th discarded
φ-inconsistent instantiation (on Pi). As Ii+1 is φ-inconsistent on Pi, we know (by
stability) that Ii+1 is either discarded or φ-inconsistent on every constraint network
smaller than or equal to Pi. If a constraint network P ′′ ! Pi is φ-consistent, this
means that Ii+1 is an explicit nogood of P ′′ and we have P ′′ = P ′′ \ Ii+1. As φ is
stable, we know that P ′′ \ Ii+1 ! Pi \ Ii+1, whence P ′′ ! Pi+1. Hence H(i+1) holds
and we can deduce that P ′ is the φ-closure of P .

Interestingly, the stability of a nogood-identifying consistency φ provides a
general procedure for computing the φ-closure of any constraint network: iteratively
discard (in any order) φ-inconsistent instantiations until a fixed point is reached (as
shown in the previous proof). Provided that the procedure is sound (each removal
corresponds to a φ-inconsistent instantiation) and complete (each φ-inconsistent
instantiation is removed), the procedure is guaranteed to compute φ-closures. More
generally, when different reduction rules are used, each must be shown to be correct,
monotonic and inflationary. We can then benefit from the generic iteration algorithm
given in [APT 03] (see Lemmas 7.5 and 7.8 and Theorem 7.11). Stability under
union can also be proved for a domain-filtering consistency (introduced later), thus
guaranteeing the presence of a fixed point [BES 06]. In our context, we obtain:
THEOREM 3.15.– Let φ be a nogood-identifying consistency stable for a poset
(P,!). Any procedure iteratively discarding φ-inconsistent instantiations from a
constraint network P computes φ(P ). φ is said to be iteration-free.

Proof. The proof of Theorem 3.14 shows that such a procedure, necessarily yields
φ(P ).
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Another nice consequence of stability is monotonicity. Any nogood-identifying
consistency that is stable for a poset (P,!) is monotonic, i.e. preserves !.

THEOREM 3.16.– Let φ be a nogood-identifying consistency stable for a poset
(P,!). For any two constraint networks P ∈ P and P ′ ∈ P , we have:
P ′ ! P ⇒ φ(P ′) ! φ(P ). φ is said to be monotonic.

Proof. Let S = {P ′′ ∈ P | P ′′ is φ-consistent and P ′′ ! P} and S′ = {P ′′ ∈ P |
P ′′ is φ-consistent and P ′′ ! P ′}. From P ′ ! P , we have S′ ⊆ S. By definition,
φ(P ′) is the greatest element of S′ so φ(P ′) ∈ S′. S′ ⊆ S implies φ(P ′) ∈ S. Finally,
as φ(P ) is the greatest element of S, we necessarily have φ(P ′) ! φ(P ).

The three foregoing theorems are given with respect to an abstract partial order.
This book specifically considers the three partial orders (P,≼d), (P,≼r) and
(P,≼) introduced in section 1.4.1. However, to relate to these, we need to introduce
a couple of definitions.

DEFINITION 3.17.– [kth-order Consistency] Let k ≥ 1 be an integer. A kth-order
consistency is a nogood-identifying consistency that allows the identification of
nogoods of size k.

kth-order consistency should not be confused with k-consistency. As seen earlier,
k-consistency holds iff every locally consistent instantiation of a set of k−1 variables
can be extended to a locally consistent instantiation involving any additional variable.
In our terminology, this is a (k − 1)th-order consistency. Furthermore, kth-order
consistencies may possibly identify nogoods that do not correspond to locally
consistent instantiations. This happens when such new nogoods are subsumed by
existing ones.

Domain-filtering and relation-filtering consistencies are the main topic of the first
part of this book. A domain-filtering consistency allows identification of inconsistent
values, which can then be removed from domains. Similarly, a relation-filtering
consistency can be enforced by removing some tuples from some (existing) constraint
relations. These consistencies are defined as follows.

DEFINITION 3.18.– [Domain-filtering Consistency] A domain-filtering consistency is
a first-order consistency.

DEFINITION 3.19.– [Relation-filtering Consistency] A relation-filtering consistency
φ is a nogood-identifying consistency such that, for every given constraint network
P , every φ-inconsistent instantiation on P corresponds to a tuple allowed by a (non-
implicit) constraint of P .
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The following corollaries can be derived from Theorems 3.14, 3.15 and 3.16:

COROLLARY 3.20.– Any domain-filtering consistency stable for (P,≼d) is well-
behaved, iteration-free and monotonic for (P,≼d).

COROLLARY 3.21.– Any relation-filtering consistency stable for (P,≼r) is well-
behaved, iteration-free and monotonic for (P,≼r).

COROLLARY 3.22.– Any nogood-identifying consistency stable for (P,≼) is well-
behaved, iteration-free and monotonic for (P,≼).

These properties hold because there is a unique way of discarding φ-inconsistent
instantiations; this shows the importance of normalizing constraint networks and
removing unary constraints. Note also that Corollary 3.21 can be extended to every
kth-order consistency if we consider networks completed with missing k-ary universal
constraints. Importantly, to the best of our knowledge, all consistencies in the current
literature are stable with respect to one of these posets. We shall essentially benefit
from Corollary 3.20 because, for practical reasons, mainly first-order consistencies
are studied.

Sometimes, by enforcing a (stable) consistency φ, we can demonstrate the
unsatisfiability of a constraint network P , in which case φ(P ) = ⊥. By definition,
φ(P ) is φ-consistent and corresponds to a precise network (not necessarily one with
all domains or relations empty). In practice, when P is found unsatisfiable (because
of a domain or relation wipe-out) while enforcing φ, the procedure enforcing φ
is immediately stopped, thereby indicating failure (symbolized by ⊥); by domain
wipe-out or relation wipe-out, we mean a domain or relation that has become empty.
In other words, φ(P ) is not exactly computed when it corresponds to ⊥ but this is not
a problem because P has been shown to be unsatisfiable. When the φ-closure of a
constraint network P is trivially unsatisfiable, i.e. when φ(P ) = ⊥, we say that P is
φ-inconsistent.

DEFINITION 3.23.– [φ-inconsistent Constraint Network] Let φ be a well-behaved
consistency. A constraint network is φ-inconsistent iff φ(P ) = ⊥.

Note that “P is not φ-consistent” is not equivalent to “P is φ-inconsistent”. The
first of these statements simply means that some instantiations are φ-inconsistent,
whereas the second means that P is proved unsatisfiable by means of φ. Although
this may seem disconcerting, this is the current usage.

In order to compare the pruning capability of different consistencies, we need to
introduce a preorder as in [DEB 01]. When some consistencies cannot be ordered
(none is stronger than another), we say that they are incomparable.
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DEFINITION 3.24.– [Preorder on Consistencies] Let φ and ψ be two consistencies.
– φ is stronger than ψ iff whenever φ holds on a constraint network P , ψ also holds

on P .
– φ is strictly stronger than ψ iff φ is stronger than ψ and there exists at least one

constraint network P such that ψ holds on P but not φ.

An interesting result follows:

THEOREM 3.25.– Let φ and ψ be two well-behaved nogood-identifying consistencies
for a poset (P,!). φ is stronger than ψ iff for every constraint network P ∈ P , we
have φ(P ) ! ψ(P ).

Proof. (⇒). As φ and ψ are well-behaved, for every constraint network P ∈ P , φ(P )
and ψ(P ) exist; by definition φ(P ) is φ-consistent. By hypothesis, φ is stronger than
ψ, which means that φ(P ) is also ψ-consistent. As φ(P ) is ψ-consistent and such that
φ(P ) ≼ P , we necessarily have φ(P ) ! ψ(P ). (⇐). If we have φ(P ) ! ψ(P ) for
every constraint network P ∈ P , then φ(P ) = P entails ψ(P ) = P . Therefore φ is
stronger than ψ.

This result can, of course, be exploited for posets (P,≼d), (P,≼r) and (P,≼).

P

x ̸= b

z ̸= a

x = a

y = c

x = b

y = a

z = c . . .

⊥

⊥

Figure 3.6. Two branches leading to dead-ends in a search tree built by
maintaining arc consistency (MAC)

Finally, we introduce a definition connecting nogoods and consistencies. Indeed
nogoods can be identified by means of a well-behaved consistency φ:

www.it-ebooks.info

http://www.it-ebooks.info/


150 Constraint Networks

DEFINITION 3.26.– [φ-nogood] Let P be a constraint network,∆ be a set of decisions
on P and φ be a well-behaved consistency.

– ∆ is a φ-nogood of P iff φ(P |∆) = ⊥.
– ∆ is a minimal φ-nogood of P iff !∆′ ⊂ ∆ such that φ(P |∆′) = ⊥.

As an illustration, Figure 3.6 shows two branches of a search tree built by the
algorithm MAC (presented in Chapter 8) which maintains arc consistency (AC for
short, presented later in this chapter) during search. In Figure 3.6 the branch {x =
b, y = a, z = c} is a (standard) nogood and is also (standard) AC-nogood; we have
AC (P |{x=b,y=a,z=c}) = ⊥. The other branch {x ̸= b, y = c, z ̸= a, x = a} is a
generalized nogood and also a generalized AC-nogood.

3.3. Domain-filtering consistencies

As already mentioned, a domain-filtering consistency is a first-order consistency,
i.e. a consistency that permits identification of inconsistent values. This has the
advantage that it does not modify the structure of the constraint network since existing
constraints are not modified and new constraints are not introduced. Figure 3.7
illustrates the practical effect of enforcing a domain-filtering consistency. Here,
nogoods (of size 1) that correspond to inconsistent v-values are supposed to be
identified by reasoning from the constraints of P that are not depicted.

vars(P )

vars(P )

(v, b)
(y, d)

(y, c)

(w, b)
(v, d)

(z, a)

dom(v) = {a, b, c, d}

dom(x) = {a, b, c, d}
dom(y) = {a, b, c, d}
dom(z) = {a, b, c, d}

cons(P )
cvxz
cvy
cwyz
cwx

dom(v) = {a, b, c, d}
dom(w) = {a, b, c, d}
dom(x) = {a, b, c, d}
dom(y) = {a, b, c, d}
dom(z) = {a, b, c, d}

cons(P )
cvxz
cvy
cwyz
cwx

dom(w) = {a, b, c, d}

Figure 3.7. Identification and recording of inconsistent v-values in a constraint network P .
Only domains are modified
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To define a domain-filtering consistency φ completely, it is sufficient to specify
the conditions under which a v-value (x, a) is considered as φ-inconsistent. Indeed,
once it is known, the concept of local consistency can automatically be extended to
variables, constraints and constraint networks as follows:

DEFINITION 3.27.– [φ-consistency] Let P be a constraint network, and let φ be a
domain-filtering consistency.

– A v-value (x, a) of P is φ-consistent on P iff {(x, a)} is φ-consistent on P .
– A value a in the domain of a variable x of P is φ-consistent on P iff (x, a) is

φ-consistent on P .
– A variable x of P is φ-consistent on P iff every value in the domain of x is

φ-consistent on P , i.e. ∀a ∈ dom(x), (x, a) is φ-consistent on P .
– A constraint network P is φ-consistent iff every v-value of P is φ-consistent on

P , i.e. ∀x ∈ vars(P ),∀a ∈ dom(x), (x, a) is φ-consistent on P .

Starting from previous definitions, we can henceforth restrict our definitions of
domain-filtering consistencies to v-values only. But for generalized arc consistency
(GAC), which is currently the most important consistency, we prefer to reintroduce
all items (v-values, variables and constraint networks). We focus first on constraints
because the usual way to perceive/enforce GAC is to iterate over each constraint.
When generalized arc consistency (also called hyper-arc consistency, e.g. in [APT 03],
and sometimes called domain consistency) holds, this guarantees the existence of a
support for each value on each constraint:

DEFINITION 3.28.– [Generalized Arc Consistency]
– A constraint c is generalized arc-inconsistent, or GAC-consistent iff ∀x ∈

scp(c),∀a ∈ dom(x), there exists a support for (x, a) on c.
– A constraint network P is generalized arc-inconsistent iff every constraint of P

is generalized arc-inconsistent.
Additionally, we have for any constraint network P :

– a v-value (x, a) of P is generalized arc-inconsistent on P iff for every constraint
c of P involving x, there is a support for (x, a) on c;

– a variable x of P is generalized arc-inconsistent on P iff ∀a ∈ dom(x), (x, a)
is generalized arc-inconsistent on P .

For unary and binary constraints, this property is classically known as node
consistency (NC) and arc consistency (AC), respectively. For binary constraint
networks, arc consistency is equivalent to (1, 1)-consistency. It is helpful that
generalized arc consistency is defined for constraints of any arity. The acronym GAC
plays the role of the symbol φ in Definition 3.27. For example, “generalized arc-
consistent” can be systematically replaced by “GAC-consistent”. Following Definition
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3.12, a value2 found to be globally inconsistent by generalized arc consistency is
said to be generalized arc-inconsistent or GAC-inconsistent. In short, a value is not
GAC-consistent iff it is GAC-inconsistent.
EXAMPLE.– For a (non-binary) constraint, Figures 3.8 and 3.9 illustrate generalized
arc consistency. Here we have a major block extracted from a Sudoku square (see
section 1.3.3) with its associated global allDifferent constraint. In Figure 3.8, the
constraint is clearly generalized arc-consistent since we can fill up the entire block
after inserting any remaining value. In Figure 3.9, the domains have already been
reduced by application of other Sudoku constraints. In this case, some values cannot
be put in the grid without leading to a failure. This is immediate for (w, 3) and
(z, 8) since 3 and 8 are already present in the block (e.g. if we choose 3 for w, we
obtain two occurrences of 3 in the block, violating the allDifferent constraint). If we
choose (w, 5), we must then choose (x, 2) followed by (z, 9), so there are no more
possibilities left for y. Hence, there is no support for (w, 5) on the global constraint,
and so, (w, 5) is GAC-inconsistent.

w

x y

z

dom(w) = {2, 5, 7, 9}

dom(z) = {2, 5, 7, 9}
dom(y) = {2, 5, 7, 9}

dom(x) = {2, 5, 7, 9}

Figure 3.8. An allDifferent constraint involving nine variables, of which w, x, y and z are
unfixed. The other five variables are fixed. This constraint is generalized arc-consistent

It is not surprising that generalized arc consistency is stable for (P,≼d). To see
that the conditions for stability hold (see Definition 3.13), consider two constraint
networks P ∈ P and P ′ ∈ P such that P ′ ≺d P , and consider a v-value (x, a) of P
that is GAC-inconsistent on P . Clearly, P ′ \{(x, a)} ≼d P \{(x, a)} ≺d P . Besides,
if (x, a) is a v-value of P ′ then (x, a) is necessarily GAC-inconsistent on P ′ because
for each constraint c involving x, the set of supports for (x, a) on c in P ′ is included
in the set of supports for (x, a) on c in P . Other consistencies discussed in this book
can also be proved to be stable, but these proofs will be omitted henceforth.

Because generalized arc consistency is stable, Corollary 3.20 implies that the
GAC-closure of any network P exists. This network, denoted by GAC (P ), can

2. Strictly speaking, we should refer to an instantiation of size 1, but this is basically equivalent,
as seen in Definition 3.27.

www.it-ebooks.info

http://www.it-ebooks.info/


Consistencies 153

w

x y

z

dom(w) = {3, 5, 7}

dom(z) = {2, 5, 8, 9}
dom(y) = {2, 5, 9}

dom(x) = {2, 5}

Figure 3.9. An allDifferent constraint involving nine variables, of which w, x, y and z are
unfixed. The other five variables are fixed. This constraint is not generalized arc-consistent.
The v-values (w, 3), (w, 5) and (z, 8) have no support on this constraint (and are said to be

GAC-inconsistent)

be computed by iteratively removing from P (in any order) all values that are not
generalized arc-consistent. Following Definition 3.23, if GAC (P ) = ⊥ then P is
said to be generalized arc-inconsistent or GAC-inconsistent. Contrary to what is the
case for values, a constraint network that is not GAC-consistent is not necessarily
GAC-inconsistent since we do not necessarily have GAC (P ) = ⊥. Note that Schiex
et al. [SCH 96] compute an arc-consistent network P ′ smaller than (or equal to) a
binary constraint network P with P ′ not necessarily being the AC-closure of P . This
lazy form of arc consistency filtering can be applied when we simply wish to detect
unsatisfiability of a constraint network.

An alternative to the foregoing definition is: “P is generalized arc-consistent iff
every variable of P is generalized arc-consistent”. Some authors also require that no
variable has an empty domain, but this additional restriction may distort the theoretical
foundations. If a constraint network cannot be considered as generalized arc-consistent
because it has a variable with an empty domain, how can we define the GAC-closure?
Of course, when GAC (P ) = ⊥, we obtain a constraint network equivalent to ⊥ that is
(considered to be) GAC-consistent although P is GAC-inconsistent. This may appear
disconcerting but, as mentioned previously, these two notions are not contradictory.
Systematically making explicit in definitions the cases where a domain or a relation is
wiped-out when enforcing a consistency would just make things more complicated.

GAC is the highest level of local consistency that can be defined when considering
constraints independently to make deductions (that are propagated from constraint
to constraint through shared variables). Enforcing GAC on a constraint network P
is equivalent to enforcing GAC on each constraint c of P , and enforcing GAC on a
constraint c means removing all values without any support on c. GAC enforcement
on a constraint c is denoted by GAC (c), and GAC (c) = ⊥ when a domain wipe-out
is detected. Because of propagation, enforcing GAC on a constraint network may
require enforcing GAC several times on the same constraint. We can associate a
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specific filtering algorithm, achieving generalized arc consistency, with certain types
of constraints. Many such GAC algorithms have appeared in the literature; their
number and diversity make it difficult to identify the most important or efficient
ones. Their number and diversity also make difficult the practical comparison of
complete constraint solvers. Fortunately, there also exist some generic procedures
for establishing generalized arc consistency. These can be used on all kinds of
constraints and their efficiency has been greatly improved (in particular, on extensional
constraints). They will be studied in Chapters 4 and 5.

We can now introduce singleton arc consistency (SAC) which is built upon
generalized arc consistency. SAC is stable, and as expected, the SAC-closure of a
constraint network P is denoted by SAC (P ). This consistency stronger than GAC
consists of looking one step in advance in all directions. Each value in turn is assigned
to each variable in turn. After each assignment, generalized arch consistency is
enforced and the satisfiability of the resulting constraint network is checked. This is a
technique commonly employed in many fields of automated reasoning [BES 06].

DEFINITION 3.29.– [Singleton Arc Consistency] A v-value (x, a) of a constraint
network P is singleton arc-consistent, or SAC-consistent, iff GAC (P |x=a) ̸= ⊥.

Of course, it is possible to generalize the principle of checking one step in advance
if a given local consistency holds as follows:

DEFINITION 3.30.– [Singleton φ] A v-value (x, a) of a constraint network P is
singleton φ-consistent, or Sφ-consistent, iff φ(P |x=a) ̸= ⊥, where φ is a well-
behaved consistency.

We shall generally use the acronym Sφ to refer to a consistency which is singleton
φ. However, as it can be observed above, we do not make a real distinction between
singleton arc consistency and singleton generalized arc consistency in this book: we
only use the acronym SAC even if GAC is referred to (some authors employ the
acronym SGAC). Note that Sφ identifies nogoods of size 1 (so is domain-filtering)
even if φ is not domain-filtering. Nevertheless, to prove directly (in particular, from
Theorem 3.16) that the consistency built on top of φ is stable, the following proposition
assumes that φ is first-order.

PROPOSITION 3.31.– If φ is a first-order consistency stable for (P,≼d), then
singleton φ, denoted by Sφ, is stable for (P,≼d). Furthermore, Sφ is stronger
than φ.

From this proposition we deduce directly that SAC is stronger than (G)AC. As
is the case for GAC, “singleton φ-consistent” can be replaced by “Sφ-consistent”. A
value that is not singleton φ-consistent is said to be singleton φ-inconsistent or Sφ-
inconsistent. Using different terminology, e.g. in the operations research literature,
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such a value is said to be φ-shavable (or simply shavable when the local consistency
enforced is implicit). A constraint network P such that its Sφ-closure, denoted by
Sφ(P ), is ⊥ is also said to be singleton φ-inconsistent or Sφ-inconsistent. Again,
differing to what is the case for values, a constraint network that is not Sφ-consistent is
not necessarily Sφ-inconsistent. Finally, for a given v-value (x, a), checking whether
Sφ(P |x=a) ̸= ⊥ is called a singleton φ-check on (x, a) or more simply, when φ =
GAC (or when φ can be ignored), a singleton check on (x, a); we also say that (x, a)
is singleton checked when GAC (P |x=a) ̸= ⊥ is checked.

Singleton φ consistencies represent a class of consistencies that is vast and indeed
infinite because it is possible to define a singleton consistency upon another singleton
consistency. In [PRO 00] some insight into this class is provided from theoretical
comparisons of various singleton consistencies, and also (i, j)-consistencies. For
example, if φ is stronger than ψ then Sφ is stronger than Sψ, and strong (i + 1, j)-
consistency is strictly stronger than singleton (i, j)-consistency. Moreover, Prosser et
al. [PRO 00] observe that enforcing a singleton consistency Sφ may require several
passes, i.e. iterating over all values several times, and may be expensive. In practice,
they propose to limit constraint propagation to a single pass and to call this a restricted
Sφ enforcing procedure; but this is only an operational point of view and is not a new
consistency.

Another well-known consistency is path inverse consistency (PIC) [FRE 96] which
is just an alias name for (1, 2)-consistency. It is the weakest original consistency of
the class of (1, j)-consistencies for j ≥ 2; recall that (1, 1)-consistency corresponds
to arc consistency. This class contains so-called inverse consistencies3 that are all
domain-filtering. Of course, in this class path-inverse consistency is the most cheaply
enforceable since the horizon is limited to two additional variables. We now provide a
refined definition for this special case of (i, j)-consistency.

DEFINITION 3.32.– [Path Inverse Consistency] A v-value (x, a) of a constraint
network P is path-inverse consistent, or PIC-consistent, iff for every set {y, z} of
two additional variables of P , there exist b ∈ dom(y) and c ∈ dom(z) such that
{(x, a), (y, b), (z, c)} is locally consistent.

On binary networks, path inverse consistency is strictly stronger than arc
consistency4 but is strictly weaker than max-restricted path consistency (MaxRPC),
which is another classical domain-filtering consistency [DEB 97a], itself strictly

3. An inverse consistency can be understood as a consistency defined from an existing one by
taking a different (or inverse) angle. Most of the time, inverse is considered as a synonym for
domain-filtering.
4. This is the case for constraint networks with less than three variables if we assume that y or
z in the definition may be equal to x.
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weaker than singleton arc consistency. Contrary to established usage, the definition
given below for MaxRPC is for general constraint networks, i.e. networks involving
constraints of any arity. However, even if non-binary constraints are involved, they
are simply ignored (as for path consistency introduced in section 3.4.1).

DEFINITION 3.33.– [Max-restricted Path Consistency] A v-value (x, a) of a
constraint network P is max-restricted path-consistent, or MaxRPC-consistent,
iff for every binary constraint cxy of P involving x, there exists a locally consistent
instantiation {(x, a), (y, b)} of scp(cxy) = {x, y} such that for every additional
variable z of P , there exists a value c ∈ dom(z) guaranteeing that {(x, a), (z, c)}
and {(y, b), (z, c)} are both locally consistent.

EXAMPLE.– The following examples (some being taken from [DEB 01]) illustrate
the differences between (some of) these consistencies. Figure 3.10 shows a simple
constraint network that is arc-consistent but not path-inverse consistent. For example,
the v-value (x, a) cannot be simultaneously successfully extended to y and z.
Figure 3.11 shows a constraint network that is path-inverse consistent but not
max-restricted path-consistent. To provide a clear picture, the constraint network is
demarcated into two main parts: a first part where (w, a) is not max-restricted path-
consistent (but path-inverse consistent) and a second where (w, a) has no additional
support. Hence, for the v-value (w, a) it is not possible to find a support on x that can
be successfully extended independently to y and z. Figure 3.12 shows a constraint
network that is max-restricted path-consistent but not singleton arc-consistent.

y

x

z

Figure 3.10. A constraint network with three binary constraints. Each value is arc-consistent
but no one is path-inverse consistent

In addition to PIC, another consistency has been proposed in [FRE 96]. This
defines a level of local consistency that is a function of the neighborhood of each
variable: the neighborhood of a variable consists of all variables that are constrained
with it. Such a consistency is strictly stronger than MaxRPC, but the time complexity
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Figure 3.11. A constraint network with six binary constraints. Each value is path-inverse
consistent but (w, a) is not max-restricted path-consistent

y

xw

z

Figure 3.12. A constraint network with four binary constraints. Each value is max-restricted
path-consistent, but none is singleton arc-consistent
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of its enforcement is unfortunately exponential in the size of the largest neighborhood,
which makes it inappropriate for dense problems.

DEFINITION 3.34.– [Neighborhood Inverse Consistency] A v-value (x, a) of a
constraint network P is neighborhood-inverse consistent, or NIC-consistent, iff there
exists a locally consistent instantiation I on P of ∪c∈cons(P )|x∈scp(c) scp(c) with
(x, a) ∈ I .

Some consistencies introduced above are naturally orientated toward binary
constraint networks. This is the case with path-inverse consistency and max-restricted
path consistency which are completely useless for networks that have constraint
arity that is not less than four. This may partially explain why they are not usually
implemented in constraint solvers. Another reason is certainly the simplicity of
implementing SAC compared to the relative complexity of implementing triangle-
based local consistencies (such as PIC and MaxRPC), for which 3-cliques of binary
constraints have to be managed. Moreover, because SAC is stronger, a user who
wishes a strong consistency to be enforced during the early steps of search (or during
preprocessing) may naturally be attracted by SAC.

In [STE 06, BES 08c], several domain-filtering consistencies have been proposed
specifically for non-binary constraints. The first is called relational path inverse
consistency (rPIC) by analogy with the variable-based path inverse consistency:
instead of trying to extend a value to two variables, try to extend it to two constraints.
This is another name for relational (1, 2)-consistency, which will be presented in
section 3.4.2. Roughly speaking, a value is rPIC-consistent when it can be extended
over the scope of any two constraints to become a valid instantiation that satisfies
them. More formally:

DEFINITION 3.35.– [Relational Path Inverse Consistency] A v-value (x, a) of a
constraint network P is relational path-inverse consistent, or rPIC-consistent, iff for
every set {c1, c2} of two constraints of P such that x ∈ scp(c1)∪ scp(c2), there exists
an instantiation I of scp(c1) ∪ scp(c2) such that (x, a) ∈ I , I is valid on P , and I
satisfies both c1 and c2.

This definition assumes that P involves at least two constraints, thus guaranteeing
that rPIC is strictly stronger than GAC. Another domain-filtering consistency, which is
inspired by the variable-based consistency MaxRPC (and follows the same scheme), is
called max-restricted pairwise consistency (MaxRPWC). Roughly speaking, a value
is MaxRPWC-consistent when a support for it can be found on each constraint and
extended over the scope of any other constraint to constitute a valid instantiation that
satisfies it. More formally:

DEFINITION 3.36.– [Max Restricted Pairwise Consistency] A v-value (x, a) of a
constraint network P is max-restricted pairwise consistent, or MaxRPWC-consistent,
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iff for every constraint c of P involving x, there exists an instantiation I of scp(c) such
that (x, a) ∈ I , I is valid on P , I satisfies c, and for every additional constraint c′ of
P , there exists an extension I ′ of I over scp(c′)\scp(c) that is valid on P and satisfies
c′.

The definition can equivalently be limited to consider each constraint c′ ̸= c of P
such that | scp(c) ∩ scp(c′)| ≥ 2.
EXAMPLE.– Figure 3.13 provides examples of rPIC and MaxRPWC: there are three
non-binary constraints c1, c2 and c3 that intersect on the variables x and y, i.e. such
that scp(c1) ∩ scp(c2) = scp(c1) ∩ scp(c3) = scp(c2) ∩ scp(c3) = {x, y}. We
also have dom(x) = {a, b} and dom(y) = {a, b, c}. The v-values (y, b) and (y, c) are
clearly rPIC-inconsistent. For example, the v-value (y, b) is rPIC-inconsistent because
for {c1, c2} there is no valid instantiation involving (y, b) that satisfies both c1 and c2.
On the other hand, although rPIC-consistent, the v-value (x, a) is not MaxRPWC-
consistent. To see this, consider the constraint c1. The first support5 for (x, a) on c1 is
(a, a, . . . ). This support can be extended to c2 but not to c3 since there is no support on
c3 involving (x, a) and (y, a). The second support for (x, a) on c1 is (a, b, . . . ). This
support can be extended to c3 but not to c2 since there is no support on c2 involving
(x, a) and (y, b). As a consequence, (x, a) is detected MaxRPWC-inconsistent.

rel(c3)

x y . . .

(a, b, . . . )
(a, c, . . . )
(b, a, . . . )

x y . . .

(a, a, . . . )
(a, b, . . . )
(b, a, . . . )
(b, c, . . . )

rel(c1) rel(c2)

(a, c, . . . )

x y . . .

(b, a, . . . )

(a, a, . . . )

(b, b, . . . )

Figure 3.13. Three non-binary constraints c1, c2 and c3 that only intersect on {x, y}. The
v-values (y, b) and (y, c) are rPIC-inconsistent (and consequently MaxRPWC-inconsistent).

The v-value (x, a) is rPIC-consistent but MaxRPWC-inconsistent

MaxRPWC is strictly stronger than rPIC which is itself strictly stronger than
GAC. However, on networks where constraints intersect on at most one variable,
MaxRPWC and rPIC collapse down to GAC [BES 08c]. Additional domain-filtering
consistencies for non-binary constraints have been introduced in [STE 07]. For
example, by increasing the horizon to three constraints, rPIC and MaxRPWC

5. A support for (x, a) on c is basically equivalent to a valid instantiation of scp(c) involving
(x, a) and satisfying c.
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can be adapted to become relational (1, 3)-consistency and max-restricted 3-wise
consistency, respectively. Inspired by w-consistency [NAG 03], a new consistency
called inverse w-consistency (IwC) is identified:

DEFINITION 3.37.– [Inverse w-consistency] A v-value (x, a) of a constraint network
P is inverse w-consistent, or IwC-consistent, iff for every constraint c of P involving
x, there exists an instantiation I of scp(c) such that (x, a) ∈ I , I is valid on P , I
satisfies c, and for every additional constraint c′ of P , there exists an extension I ′ of
I over scp(c′) \ scp(c) that is locally consistent.

Comparison of Definitions 3.36 and 3.37 reveals that the definition of inverse w-
consistency is similar to the definition of MaxRPWC. The (important) difference
is that the extension I ′ of a valid instantiation I over an additional constraint c′

must correspond to a locally consistent instantiation. This means that, contrary to
MaxRPWC, any constraint c′′ covered by I ′, i.e. such that scp(c′′) ⊆ vars(I ′) =
scp(c) ∪ scp(c′) must also be satisfied by I ′. Clearly, IwC is strictly stronger than
maxRPWC. An extension of IwC, called extended inverse w-consistency, can be made
by recognizing that any constraint intersecting with both c and c′ (in the definition),
must be satisfied. In general, enforcement of the following relational adaptation of
neighborhood inverse consistency may appear quite utopian, but this provides a nice
upper bound in terms of filtering strength.

DEFINITION 3.38.– [Relational Neighborhood Inverse Consistency] A v-value (x, a)
of a constraint network P is relational neighborhood inverse-consistent, or rNIC-
consistent, iff for every constraint c of P involving x, there exists an instantiation I of
∪c′∈cons(P )|scp(c)∩scp(c′ )̸=∅ scp(c′) such that (x, a) ∈ I , and I is locally consistent.
EXAMPLE.– The following example illustrates the differences between the last three
consistencies. Figure 3.14 shows successive steps that would (at least) be performed
by a Max-RPWC algorithm to prove that a v-value (x, a) is Max-RPWC-consistent.
As x belongs to the scopes of two constraints (a “horizontal” and a “vertical” one), in
a first stage an instantiation I on the horizontal constraint is (successfully) extended
over the scope of any other intersecting constraint. This corresponds to Figures
3.14(b) to 3.14(e). In a second stage, an instantiation I on the vertical constraint
is (successfully) extended over the scope of any other intersecting constraint; this
corresponds to Figures 3.14(f) to 3.14(h). This example assumes that no failure
occurs, and does not consider constraints that do not intersect with the current
constraint involving x since these can be ignored.

Let us now consider the first successive steps that would (at least) be performed
by an IwC algorithm to prove that (x, a) is IwC-consistent. Figure 3.15 shows the
behavior of this algorithm for the first stage (i.e. the horizontal constraint). Here,
instead of systematically checking two constraints as for MaxRPWC, the IwC
algorithm simultaneously checks three constraints at Figure 3.15(d) because one of
these is covered by the two initial constraints. Figure 3.16, shows the two (successful)
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Figure 3.14. Illustration of successive steps performed by a MaxRPWC algorithm when
checking a v-value (x, a). Ovals represent scopes of constraints

x

(a)

x

I

(b)

x

I

I
′ \ I

(c)

x

I

I
′ \ I
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Figure 3.15. Illustration of the first steps performed by an IwC algorithm when checking a
v-value (x, a). Ovals represent scopes of constraints
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x

(a)

x

(b)

x

(c)

Figure 3.16. Illustration of the first steps performed by a rNIC algorithm when checking a
v-value (x, a). Ovals represent scopes of constraints

tentative instantiations performed by a rNIC algorithm. The first instantiation starts
from the horizontal constraint, and covers all constraints intersecting with it, whereas
the second instantiation starts from the vertical constraint, and covers all constraints
intersecting with it.

Figure 3.17 shows the relationships between consistencies introduced in this
section. sPC and sPWC respectively represent the strong form of path consistency
and pairwise consistency introduced in the next section. This means that these
properties are combined with (generalized) arc consistency. More about this hierarchy
of consistencies can be found in [DEB 01, BES 06, BES 08c, STE 07].

Finally, it is worth mentioning that several domain-filtering consistencies can be
captured by a general framework which allows the definition of such inverse local
consistencies [VER 99]. Each consistency φ in this framework is defined by describing
a sub-network extracted from any given constraint network. The viability of each value
is checked with respect to this sub-network: if after assigning it there is no solution,
then this value is φ-inconsistent. For example, GAC and NIC can easily be defined in
this way.

3.4. Higher-order consistencies

The previous section has dealt with first-order consistencies, which are also known
as domain-filtering or inverse consistencies. We now move on to consider higher-
order consistencies which permit identification of nogoods of size greater than one.
Before going further we note that algorithms enforcing higher-order consistencies
have potentially major drawbacks:
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φ ψ

φ ψ

Figure 3.17. Relationships existing between some domain-filtering consistencies

– these algorithms modify the general structure of constraint networks: recording
identified nogoods requires either adding new extensional constraints or modifying
existing ones;

– the number of nogoods that may be identified increases exponentially with their
size. For example, with a kth-order consistency, i.e. a consistency that only detects
nogoods of size k, there may be as many as (n

k )dk distinct nogoods.

Figure 3.18 illustrates what nogood recording can do to the “structure” of a
constraint network. This figure illustrates four possible effects when nogoods are of
size greater than one:

– the negative table (i.e. table of forbidden tuples) of an extensional constraint is
modified by adding some nogoods – see constraint cvxz;

– the positive table (i.e. table of allowed tuples) of an extensional constraint is
modified by removing some nogoods – see constraint cvy;

– the semantics of an intensional constraint is modified by the addition of nogoods
– see constraint cwyz;

– a new extensional constraint is introduced by using a negative table – see
constraint cxy.
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Of course, if data structures other than tables (i.e. simple enumerating arrays)
assumed here are used to represent extensional constraints, then these structures
(such as matrices or hash maps) are updated appropriately. Another idea is to collect
nogoods in a special pool (called base) so that the structure of the network can be left
unchanged. This idea stretches the formalism but it can be seen as a very particular
global constraint. This will be considered further in Chapter 10 in the context of
restarting search.

v − y w − y − z
w − y − z

x − y
v − x − z

v − y
v − x − z

x − y
x − y

cvxz cvy cwyz

w = y + z

cwx

cvxz cvy cwyz

w = y + z

cwx

cxy

+
¬¬

Figure 3.18. Identification and recording of nogoods. Rectangles with an horizontal (resp.
vertical) zigzagging pattern represent negative (resp. positive) tables

There are basically two pragmatic approaches to deal with higher-order
consistencies. One of these approaches avoids combinatorial space explosion by
deliberately limiting the size of identified nogoods to a small value k. For example,
second-order consistencies identify inconsistent pairs of values6, and to record them
the worst-case space complexity is “only” O(n2d2). Path consistency is a famous
representative of this class. Another approach avoids making drastic changes in the
structure of constraint networks by restricting identified nogoods to tuples allowed by
existing constraints. This conservative approach amounts to using relation-filtering
consistencies, which are particularly appropriate for extensional constraints. Pairwise

6. Strictly speaking, globally inconsistent instantiations composed of exactly two v-values, or
nogoods of size 2.
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consistency is a representative example of the relation-filtering class of consistencies.
In practice, we may be tempted to combine both approaches as, for example, with
conservative path consistency.

In this section, our first topic is path consistency; we hopefully address a
common misunderstanding about it. We then present some higher-order relation-
based consistencies; some of these underly certain domain-filtering consistencies.

3.4.1. Taking the right path

Among the consistencies that allow us to identify inconsistent pairs of values, path
consistency plays a central role. Introduced by Montanari [MON 74], its definition
has often been misinterpreted. The problem is that a path in this context must
be understood as any sequence of variables and not as a sequence of variables that
corresponds to a path in the constraint graph. A footnote in the original paper indicates
that “A path in a network is any sequence of vertices. A vertex can occur more than
once in a path even in consecutive positions”. There is no need for two successive
variables in a path to be linked by a constraint. In this section, we introduce path
consistency and show that the original definition is the right choice.

We require a precise definition of “path”. The first definition below is given in
[MON 74] and used implicitly in [MAC 77a, DEB 98] while the second is used, for
example, in [TSA 93, BLI 99]. A graph-path is defined to be a sequence of variables
such that there exists a binary constraint between any two variables adjacent in
the sequence. A path in a binary constraint graph is a graph-path. If all non-binary
constraints are discarded (i.e. ignored) then a path in the resulting constraint graph
is also a graph-path. Note that any given variable may occur several times in a path.
Figure 3.19 gives an illustration.

x

v

w y

z

Figure 3.19. The constraint graph of a binary constraint network P . ⟨v, z, x⟩ is a path of P .
⟨v, y, w, y⟩ is another one. ⟨v, z, y, w⟩ is a closed path of P . ⟨v, x, y⟩ is a graph-path of P .

⟨v, x, w⟩ and ⟨z, x, v, w, x, y⟩ are two closed graph-paths of P
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DEFINITION 3.39.– [Path] Let P be a constraint network.
– A path of P is a sequence ⟨x1, . . . , xk⟩ of variables of P such that x1 ̸= xk and

k ≥ 2; the path is from variable x1 to variable xk, and k− 1 is the length of the path.
– A graph-path of P is a path ⟨x1, . . . , xk⟩ of P such that ∀i ∈ 1..k − 1,∃c ∈

cons(P ) | scp(c) = {xi, xi+1}.
– A closed path of P is a path ⟨x1, . . . , xk⟩ of P such that ∃c ∈ cons(P ) |

scp(c) = {x1, xk}.

The central concept is that of consistent path defined as follows:
DEFINITION 3.40.– [Consistent Path] Let P be a constraint network.

– An instantiation {(x1, a1), (xk, ak)} on P is consistent on a path ⟨x1, . . . , xk⟩
of P iff there exists a tuple τ ∈

∏k
i=1 dom(xi) such that τ [x1] = a1, τ [xk] = ak and

∀i ∈ 1..k − 1, {(xi, τ [xi]), (xi+1, τ [xi+1])} is a locally consistent instantiation7 on
P . The tuple τ is said to be a support for {(x1, a1), (xk, ak)} on ⟨x1, . . . , xk⟩ (in P ).

– A path ⟨x1, . . . , xk⟩ of P is consistent iff every locally consistent instantiation of
{x1, xk} on P is consistent on ⟨x1, . . . , xk⟩.

w y

x

zv

Figure 3.20. The compatibility graph of a binary constraint network P . ⟨v, z, x⟩ is a consistent
path of P . The closed graph-path ⟨v, x, w⟩ is not consistent contrary to ⟨z, x, v, w, x, y⟩

EXAMPLE.– In the example in Figure 3.20, ⟨v, z, x⟩ is a consistent path of P since for
the locally consistent instantiation {(v, a), (x, b)} we can find b in dom(z) such that
{(v, a), (z, b)} is locally consistent (this is trivial since there is an implicit universal
binary constraint between v and z) and {(x, b), (z, b)} is locally consistent. Similarly,
the second locally consistent instantiation {(v, b), (x, a)} can be extended to z. The

7. If xi = xi+1, then necessarily τ [xi] = τ [xi+1] because an instantiation cannot contain two
distinct v-values involving the same variable.
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closed graph-path ⟨v, x, w⟩ is not consistent; the locally consistent instantiation
{(v, b), (w, a)} cannot be extended to x. You might be surprised that ⟨z, x, v, w, x, y⟩
is consistent. It is important to note that we are free to select different values for x
along the path (if this was not the case, a path-consistent binary constraint network
would necessarily be minimal). For example, for the locally consistent instantiation
{(z, b), (y, a)}, we can find the support τ = (b, b, a, b, a, a) on ⟨z, x, v, w, x, y⟩. This
tuple belongs to dom(z) × dom(x) × dom(v) × dom(w) × dom(x) × dom(y),
satisfies τ [z] = b, τ [y] = a and all encountered binary constraints along the path.
Along this path we have first (x, b) and subsequently (x, a).

We can now introduce the historical definition of path consistency (PC) [MON 74,
MAC 77a].

DEFINITION 3.41.– [Path Consistency] A constraint network P is path-consistent, or
PC-consistent, iff every path of P is consistent.

We shall ignore paths of length one (i.e. sequences of two variables) because, by
definition, these are consistent. Montanari has shown that it is sufficient to consider
paths of length two (i.e. sequences of three variables) only. Note that it is not necessary
for the constraint graph to be complete (but, when path consistency is enforced, the
resulting network may become complete).

THEOREM 3.42.– [Montanari [MON 74]] A constraint network P is path-consistent
iff every 2-length path of P (i.e. every sequence of three variables) is consistent.

This leads to the following classical definition:

DEFINITION 3.43.– [Path Consistency] Let P be a constraint network.
– A locally consistent instantiation {(x, a), (y, b)} on P (with x ̸= y) is path-

consistent, or PC-consistent, iff it is 2-length path-consistent, that is to say, iff there
exists a value c in the domain of every third variable z of P such that {(x, a), (z, c)}
and {(y, b), (z, c)} are both locally consistent; if {(x, a), (y, b)} is not path-consistent,
it is said to be path-inconsistent or PC-inconsistent.

– P is path-consistent iff every locally consistent instantiation {(x, a), (y, b)} on
P is path-consistent.

The question is: can we restrict our attention to graph-paths (see Definition 3.39)?
Consider, for example, a constraint network composed of three variables x, y and z
such that dom(x) = {a, b}, dom(y) = {a} and dom(z) = {a} and a single constraint
cxy such that rel(cxy) = {(a, a)}. This network is not path-consistent since the locally
consistent instantiation {(x, b), (z, a)} is not consistent on the path ⟨x, y, z⟩. If we
now limit our attention to graph-paths, these consist only of the variables x and y and
there is no local inconsistency. However, for a binary constraint network that has a
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connected constraint graph (i.e. a constraint graph composed of a single connected
component), the restriction to graph-paths is valid.
PROPOSITION 3.44.– Let P be a binary constraint network such that P ̸= ⊥ and the
constraint graph of P is connected. P is path-consistent iff every graph-path of P is
consistent.

Proof. For one direction (⇒), this is immediate. If P is path-consistent, then by
definition every path of P is consistent, including graph-paths. For the other direction
(⇐), we show that if every graph-path of P is consistent, then every 2-length path of
P is consistent (and so P is path-consistent using Theorem 3.42). In practical terms,
we consider a locally consistent instantiation {(x, a), (y, b)} and show that for each
third variable z of P , the following property Pr(z) holds: ∃c ∈ dom(z) such that
{(x, a), (z, c)} and {(y, b), (z, c)} are both locally consistent instantiations. For each
variable z three cases must be considered, depending of the existence of the constraints
cxz , between x and z, and cyz , between y and z. a) Both constraints exist: so there
exists a graph-path ⟨x, z, y⟩ and as this path is consistent by hypothesis, the property
Pr(z) holds. b) Neither of the constraints exists: P ̸= ⊥ implies dom(z) ̸= ∅, so
Pr(z) holds because cxz and cyz are implicit and universal. c) Only the constraint cxz

exists (similarly, only the constraint cyz exists): as the constraint graph is connected,
there exists at least one graph-path from z to y, and consequently a graph-path from
x to y of the form ⟨x, z, . . . , y⟩. This means that there is a value in dom(z) which is
compatible with (x, a), by using the hypothesis (every graph-path is consistent). This
value is also compatible with (y, b) because there is an implicit universal constraint
between z and y. Hence, Pr(z) holds.

Note that a constraint network P such that every 2-length graph-path of P is
consistent, is not necessarily path-consistent. In the special case where the constraint
graph is complete, the constraint network is path-consistent because every path of P
is also a graph-path of P .
PROPOSITION 3.45.– For some constraint networks, the following properties are not
equivalent.
(a) Every graph-path is consistent.
(b) Every 2-length graph-path is consistent.

Proof. See Figure 3.21.

We have the following proposition for 2-length graph-paths:
PROPOSITION 3.46.– Let P be a binary constraint network such that P ̸= ⊥ and P is
arc-consistent. P is path-consistent iff every 2-length graph-path of P is consistent.
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x

v

w y

z

Figure 3.21. Every 2-length graph-path of this constraint network is consistent. The
graph-path ⟨x, w, v, x, z⟩ is not consistent for {(x, a), (z, a)}

Proof. The proof is similar to the proof of Proposition 3.44 by considering 2-length
graph-paths instead of graph-paths. Only case c) in the demonstration differs. c)
Only the constraint cxz exists (similarly, only the constraint cyz exists): as P is
arc-consistent, there exists a value in dom(z) that is compatible with (x, a). Because
there is an implicit universal constraint between z and y, this value is also compatible
with (y, b). Hence, Pr(z) holds.

Theorem 3.42 and Propositions 3.44 and 3.46 suggest that the historical definition
of path consistency is appropriate since this is the only one that is unrestricted (even
if considering graph-paths seems more natural than considering paths). In practice, to
check path consistency we only need to consider 2-length graph-paths, provided that
binary constraints are arc-consistent.

Two different relation-filtering consistencies can be defined in terms of closed
graph-paths. The first is partial path consistency (PPC) [BLI 99] and the second is
conservative path consistency (CPC) [DEB 99].

DEFINITION 3.47.– [Partial Path Consistency] A constraint network P is partially
path-consistent, or PPC-consistent, iff every closed graph-path of P is consistent.

DEFINITION 3.48.– [Conservative Path Consistency] A constraint network P is
conservative path-consistent, or CPC-consistent, iff every closed 2-length graph-path
of P is consistent.

For binary constraints, PPC and CPC are equivalent when the constraint graph is
triangulated. Recall that a graph is triangulated (or chordal) if every cycle composed
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of four or more vertices has a chord, which is an edge joining two vertices that are not
adjacent in the cycle.

PROPOSITION 3.49.– [PPC on triangulated constraint graphs [BLI 99]] Let P be
a binary constraint network P with a triangulated constraint graph. P is PPC-
consistent iff P is CPC-consistent.

Enforcing path consistency simply means discarding instantiations that are path-
inconsistent (i.e. recording new explicit nogoods of size 2), since we know that the
PC-closure, denoted by PC (P ), of any constraint network P exists (path consistency
is well-behaved). To enforce path consistency, it may be necessary to introduce some
new binary constraints, and so path consistency is not a relation-filtering consistency.
PPC and CPC differ in that only existing constraints are altered. Two further relation-
filtering forms can be derived from path consistency, the first by considering only
closed paths, and the second by considering only closed 2-length paths. These will not
be developed in this book.

3.4.2. Relation-based consistencies

Pairwise consistency [JAN 89] is a simple and natural relation-filtering consistency
that allows reasoning about connections between constraints through shared variables.
Pairwise consistency, which is also sometimes called inter-consistency [JÉG 91], is
based on relational database work [BEE 83]. The following definition is in the spirit
of nogood identification:

DEFINITION 3.50.– [Pairwise Consistency]
– Given a constraint c, a valid instantiation of scp(c) that satisfies c is pairwise-

consistent, or PWC-consistent, with respect to an additional constraint c′ iff it can be
extended over scp(c′) \ scp(c) into a valid instantiation that satisfies c′.

– A constraint network P is pairwise-consistent iff for every constraint c of P ,
every valid instantiation of scp(c) that satisfies c is pairwise-consistent with respect
to every additional constraint c′ of P .

Equivalently, a valid tuple τ allowed by a constraint c, i.e. a support τ ∈ sup(c),
is pairwise-consistent with respect to a constraint c′ iff ∃τ ′ ∈ sup(c′) | τ [scp(c) ∩
scp(c′)] = τ ′[scp(c) ∩ scp(c′)]. Note that any normalized binary constraint network
which is arc-consistent is necessarily pairwise-consistent because there is not more
than one shared variable between any two binary constraints. Therefore pairwise
consistency should only be used with non-binary constraint networks. More precisely,
pairwise consistency should be applied only to pairs (c, c′) of constraints such that
c ̸= c′ and | scp(c) ∩ scp(c′)| ≥ 2.
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A natural generalization of pairwise consistency considers k constraints instead of
two [JÉG 91].

DEFINITION 3.51.– [k-wise Consistency]
– Given a constraint c, a valid instantiation of scp(c) that satisfies c is k-wise-

consistent, or kWC-consistent, with respect to a set C of k − 1 additional constraints
iff it can be extended over ∪c′∈C scp(c′)\scp(c) into a valid instantiation that satisfies
every constraint in C.

– A constraint network P is k-wise-consistent iff for every constraint c of P , every
valid instantiation of scp(c) that satisfies c is k-wise-consistent with respect to every
set C of k − 1 additional constraints of P .

For k > 2, k-wise consistency can be applied successfully to binary constraint
networks. For binary constraint networks, 3-wise consistency is strongly related to
conservative path consistency; see Definition 3.48. Figure 3.22 illustrates pairwise
and 3-wise consistencies.

(a, a, b)
(a, b, a)
(b, a, a)
(b, b, b)

w x y

rel(cwxy)

(a, b)
(b, a)

w z

rel(cwz)

(a, a, a)
(a, b, b)
(b, b, a)
(b, b, b)

x y z

rel(cxyz)

Figure 3.22. Three constraints “intersecting”. The tuple (a, b, a) in rel(cwxy) is
PWC-inconsistent since it cannot be extended to cxyz . The tuple (b, b, b) in rel(cxyz) is

3WC-inconsistent since it cannot be extended to the two other constraints

Relational (i,m)-consistencies constitute another important class of consistencies
defined in terms of (existing) constraints. Recall that (i, j)-consistencies are basically
expressed in terms of variables: given a set (locally consistent instantiation) of i
variables, is it true that for every additional set of j variables there exists a locally
consistent instantiation involving the i + j variables? Except when i = 1, such
variable-based consistencies may modify the structure of the constraint hypergraph
by inserting new constraints whose arity depends on i. It may be desirable, in some
cases, to preserve the structure of the network and also to avoid referring to a precise
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arity. This is why relational consistencies have been introduced [BEE 95, BEE 94b,
DEC 97]. Let us begin with the the general class of relational (i,m)-consistencies:

DEFINITION 3.52.– [Relational (i,m)-consistency] Let P be a constraint network
and i,m be two integers such that 0 ≤ i ≤ n and 1 ≤ m ≤ e. P is relationally (i,m)-
consistent iff for every set X of i variables of P and every set C of m constraints
of P such that X ⊆

⋃
c∈C scp(c), every locally consistent instantiation of X can be

extended to a solution of the constraint network (
⋃

c∈C scp(c), C).

Note that an instantiation I extended to a solution of the constraint network
(
⋃

c∈C scp(c), C) is a valid extension of I over ⋃
c∈C scp(c) \ vars(I) that satisfies

all constraints in C. It is important to emphasize similarities and differences between
(i, j)-consistency and relational (i,m)-consistency. In both cases, we start with a
set X of i variables and try to extend a locally consistent instantiation of this set of
variables. However, while j refers to an additional disjoint set Y of variables, m refers
to a set C of constraints involving the variables in X . In (i, j)-consistency we have to
find a locally consistent instantiation of X ∪ Y on P ; in relational (i,m)-consistency
we have to find a locally consistent instantiation of ⋃

c∈C scp(c) on a new network
composed of constraints in C.

DEFINITION 3.53.– [Strong Relational (i,m)-consistency] Let P be a constraint
network and i,m be two integers such that 0 ≤ i ≤ n and 1 ≤ m ≤ e. P is strongly
relationally (i,m)-consistent iff P is relationally (j,m)-consistent for every integer j
such that 0 ≤ j ≤ i.

Further (classes of) consistencies have been introduced: relational m-consistency,
relational arc consistency and relational path consistency. Definitions given in the
literature may slightly differ and are not always equivalent. Some definitions of
relational arc, path and m-consistency refer to a strong form (as above), while others
refer to the extension of a locally consistent instantiation to a unique variable (possibly
within the scope of any given constraint). The reader is invited to compare definitions
given in [BEE 95, BEE 94b, DEC 97, DEC 03, WAL 01, BES 06, BES 08c].

Relational consistencies capture [APT 03] various local consistencies introduced
in the literature. For example:

– a constraint network is generalized arc-consistent iff it is relationally (1, 1)-
consistent;

– a (normalized) binary constraint network is path-consistent if it is relationally
(2, 3)-consistent;

– a constraint network is relationally path-inverse-consistent [BES 08c] iff it is
relationally (1, 2)-consistent;

– a constraint network is satisfiable iff it is relationally (0, e)-consistent.
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Moreover, relational consistencies are useful for characterizing relationships
between properties of constraint networks and the level of local consistency needed
to ensure global consistency (e.g. see [BEE 95, DEC 97, ZHA 03b]).

3.5. Global consistency

Global consistency (see Definition 3.3) is the ideal property. It guarantees not
only that a constraint network is satisfiable, but also that any locally consistent partial
instantiation can be extended to a solution in a backtrack-free manner by a simple
depth-first search algorithm; see Theorem 3.4. As would be expected, the tasks of
enforcing global consistency and of finding whether a constraint network is globally
consistent are generally intractable. Nevertheless, for some structured problems under
certain conditions, global consistency can be identified, and even better, can be
reached by simple polynomial transformations.

3.5.1. Identifying global consistency

There has been much work on identification of conditions for a constraint network
to be guaranteed to be globally consistent. A first interesting result [DEC 92b] has
established a relationship between the size of the domains, the arity of the constraints
and the level of local consistency. In the following, a constraint network P is d-valued
iff the greatest domain size in P is equal to d and r-ary iff the greatest constraint arity
in P is equal to r.

THEOREM 3.54.– If a d-valued r-ary constraint network is strongly d(r − 1) + 1-
consistent, then it is globally consistent. There are two immediate corollaries.

COROLLARY 3.55.– If a d-valued binary constraint network is strongly d + 1-
consistent, then it is globally consistent.

COROLLARY 3.56.– If a bi-valued binary constraint network is strongly 3-consistent,
then it is globally consistent.

This last corollary suggests that any bi-valued binary constraint network can be
solved efficiently (i.e. in polynomial time). Strong 3-consistency can be enforced in
polynomial time, yielding a network that is still bi-valued and binary.

Theorem 3.54 can be refined by taking account of the tightness of the constraints.
Theorem 3.58 [BEE 97] specifies a level of strong consistency that is always less than
or equal to the level of strong consistency required by Theorem 3.54.
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DEFINITION 3.57.– [m-tight]
– A constraint c is m-tight iff for every variable x ∈ scp(c) and every valid

instantiation I of scp(c) \ {x}, there are at most m valid extensions of I over x that
satisfy c, or there are exactly |dom(x)| such extensions.

– A constraint network P is m-tight iff every constraint of P is m-tight.

THEOREM 3.58.– If anm-tight r-ary constraint network is strongly (m+1)(r−1)+1-
consistent, then it is globally consistent.

If m∗ is the smallest value such that the constraint network P is m∗-tight, then
the smaller the value of m∗ the stronger Theorem 3.58. Definition 3.57 implies that
m∗ ≤ d − 1 since the case where, in the condition, d extensions exist imposes no
restriction on m-tightness (see also the definition for binary constraints introduced in
[BEE 94b]). Consequently, any constraint network is at least d − 1-tight, so Theorem
3.58 is a refinement of Theorem 3.54.

COROLLARY 3.59.– If an m-tight binary constraint network is strongly m + 2-
consistent, then it is globally consistent.

x

z

w

y

Figure 3.23. A 1-tight binary constraint network which is strongly 3-consistent and
consequently, globally consistent

EXAMPLE.– The binary constraint network P in Figure 3.23, which illustrates these
last two results, has four variables and five constraints; there is a constraint between
each pair of variables, except between w and y. With Theorem 3.54, we can deduce
that P is globally consistent if it is strongly 4-consistent since P is 3-valued (the
greatest domain size is 3). This is not very helpful here since by definition, P is
globally consistent iff it is strongly 4-consistent (n = 4). With Theorem 3.58, we
can deduce that P is globally consistent if it is strongly 3-consistent since P is 1-tight.
Checking strong 3-consistency is then sufficient to prove global consistency. To show

www.it-ebooks.info

http://www.it-ebooks.info/


Consistencies 175

that P is 1-tight, we only need to observe that every value of every variable involved in
a constraint c is either compatible with exactly 1 value of the second variable involved
in c or compatible with all values of the second variable involved in c.

Before identifying another connection between constraint tightness and global
consistency [ZHA 03b, ZHA 06], we need the following definitions:

DEFINITION 3.60.– [Properlym-tight] A constraint c is properly m-tight iff for every
variable x ∈ scp(c) and every valid instantiation I of scp(c) \ {x}, there are at most
m valid extensions of I over x that satisfy c.

DEFINITION 3.61.– [Weakly m-tight] A constraint network P is weakly m-tight at
level k, with 1 ≤ k < n, iff for every set X of variables of P such that k ≤ |X| < n
and every additional variable x of P not present in X , there exists a properly m-tight
constraint in {c ∈ cons(P ) | x ∈ scp(c) ⊆ X ∪ {x}}.

THEOREM 3.62.– If an r-ary constraint network is weaklym-tight at level (m+1)(r−
1) + 1 and strongly (m + 1)(r − 1) + 1-consistent, then it is globally consistent.

Whereas Theorem 3.58 requires every constraint to be m-tight, Theorem 3.62 does
not require all constraints to be properly m-tight.

Some complementary results can be obtained by taking account of the looseness of
constraints [BEE 94a, BEE 97]. These results indicate a lower bound of the inherent
level of local consistency of any constraint network, and this may, for example, be
useful for adjusting the preprocessing stage before searching for a solution.

DEFINITION 3.63.– [m-loose]
– A constraint c is m-loose iff for every variable x ∈ scp(c) and every valid

instantiation I of scp(c) \ {x}, there are at least m valid extensions of I over x that
satisfy c.

– A constraint network P is m-loose iff every constraint of P is m-loose.

Here is the revised version by Zhang and Yap [ZHA 03c] of Theorem 4.2 in
[BEE 97]:

THEOREM 3.64.– A d-valued m-loose r-ary constraint network, with r ≥ 2, is
strongly k-consistent where k is the minimum value such that the following inequality
holds: (k−1

r−1) ≤ ⌈d/(d − m)⌉ − 1

COROLLARY 3.65.– A d-valued m-loose binary constraint network is strongly
⌈d/(d − m)⌉-consistent.
EXAMPLE.– To illustrate the significance of this last result, let us consider the
n-queens problem (each instance being modeled as a normalized binary constraint
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network – see the second model in section 1.3.1). For this, the number of supports of
every c-value is at least d − 3, so the network is at least strongly ⌈d/3⌉-consistent.
Table 3.1, which is taken from [BEE 94a], allows us to compare the level of strong
consistency predicted by Corollary 3.65 with the actual one.

level of strong n
consistency 4 5 6 7 8 9 10 11 12 13 14 15
predicted 2 2 2 3 3 3 4 4 4 5 5 5

actual 2 2 2 3 4 4 5 5 6 6 7 7

Table 3.1. Predicted and actual level of strong consistency for n-queens instances

Tree-convexity [ZHA 03b, ZHA 04, ZHA 06, ZHA 08] is another important
property of constraints. It shows how some relationships between local and global
consistencies can be established through the properties of set intersection on special
sets. We will not go into the details of this general approach, which is based on a proof
schema whence many consistency results can be derived. We first define tree-convex
sets and tree-convex constraints.

DEFINITION 3.66.– [Tree-convex Set] Let X be a finite set and T be a tree on X , i.e.
the set of vertices of T is X . A subset X ′ ⊆ X is tree-convex under T if the subgraph
of T vertex-induced by X ′ is a tree.

An illustration is given in Figure 3.24.

Figure 3.24. A tree T on a set X = {1, 2, . . . , 9}. As examples of tree-convex subsets of X
under T , we have {1, 2, 3, 4}, {1, 2, 5} and {5, 6}. {1, 2, 9} and {6, 7} are not tree-convex

under T
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DEFINITION 3.67.– [Tree-convex Constraint]
– A constraint c is tree-convex under a tree T on ∪x∈scp(c) dom(x) iff for every

variable x ∈ scp(c) and every valid instantiation I of scp(c) \ {x}, the set {a ∈
dom(x) | I ∪ {(x, a)} satisfies c} is either empty or tree-convex under T .

– A constraint network P is tree-convex if there exists a tree T on
∪x∈vars(P ) dom(x) such that every constraint of P is tree-convex under T .

An alternative definition is proposed in [ZHA 08], in which domains are
considered independently: tree convexity is then defined under a forest instead
of a tree. Tree-convexity, which may occur naturally in some contexts (e.g. scene
labeling), generalizes row-convexity introduced in [BEE 92, BEE 95]. Indeed, by
noticing that a total ordering corresponds to a tree in which each node has at most one
child, we obtain the following definition:

DEFINITION 3.68.– [Row-convex Constraint] A constraint network P is row-convex
if there exists a total order T on ∪x∈vars(P ) dom(x) such that every constraint of P is
tree-convex under T .

Hence a binary constraint is row-convex when its (0, 1)-matrix is such that in
each row and in each column8, all the ones are consecutive. In the example shown
in Figure 3.25 a total order on dom(x) ∪ dom(y) can be obtained by considering for
example a4 < b1.

a3a1 a2 a4

b2 b4b1 b3

x

y

(a)

x

a1

a2

a3

a4

b1 b2 b3 b4

y

(b)

Figure 3.25. A binary constraint cxy between variables x and y, and its representation by a
(0, 1)-matrix using the total orderings a1 < a2 < a3 < a4 and b1 < b2 < b3 < b4. This

constraint is row-convex (and then tree-convex)

8. The fact that the condition also holds on columns is sometimes implicit in the literature
because some authors consider the presence of two symmetric and equivalent constraints cxy

and cyx (or relations) between any two constrained variables x and y.
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Using the property of set intersection on tree-convex sets and the proof schema
described in [ZHA 06], the following result is obtained:
THEOREM 3.69.– If an r-ary tree-convex constraint network is strongly 2(r− 1)+1-
consistent, then it is globally consistent.

COROLLARY 3.70.– If a binary tree-convex constraint network is strongly 3-
consistent, then it is globally consistent.

Interestingly, Jeavons et al. [JEA 98] show that a simple algebraic property
characterizes all possible constraint relations for which k-consistency is sufficient
to ensure global consistency (for k > 2). Before presenting this result, we need to
introduce the closure property of relations as well as “near-unanimity operations”.
DEFINITION 3.71.– [Closure of Relations] Let D be a set (domain) and ϕ :
Dk → D be a k-ary operation defined on D. For any list τ1 . . . τk of k r-
ary tuples not necessarily distinct of Dr, ϕ(τ1, . . . , τk) defines the r-ary tuple
(ϕ(τ1[1], . . . , τk[1]), . . . , ϕ(τ1[r), . . . , τk[r])). An r-ary relation R ⊆ Dr defined on
D is closed under ϕ iff ϕ(R) ⊆ R where ϕ(R) = {ϕ(τ1, . . . , τk) | τ1 ∈ R, . . . , τk ∈
R}.

DEFINITION 3.72.– [Near Unanimity Operation] Let D be a set (domain) and
ϕ : Dk → D be a k-ary operation defined on D with k ≥ 3. ϕ is a near-
unanimity operation iff ∀a ∈ D,∀b ∈ D,ϕ(a, b, . . . , b) = ϕ(b, a, b, . . . , b) = · · · =
ϕ(b, . . . , b, a) = b.

A near-unanimity k-ary operator ϕ is such that whenever k − 1 arguments are
equal to a value b, this value is necessarily returned by ϕ. In all other cases, any value
can be returned by ϕ. We can now establish a link between closure of relations under
near-unanimity operations and global consistency. Note that [JEA 98] also establishes
a connection with a concept of decomposability.
THEOREM 3.73.– Let D be a set (domain), Γ be a set of relations defined on D, and
r ≥ 3 be an integer. Every relation in Γ is closed under a near-unanimity operation
of arity r iff for every constraint network P such that for every variable x of P ,
dom(x) = D and for every constraint c of P , rel(c) ∈ Γ, establishing strong r-
consistency ensures global consistency.

Of course, this result can be generalized to take into account distinct domains of
variables.

3.5.2. Toward tractability
The theory in the previous section does not enable precise circumscription of

tractable CSP classes. A CSP class is a set of CSP instances usually characterized
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by a structural or relational property. The definition of a structural class is based on
the constraint hypergraph; for example, the set of CSP instances whose hypergraph
is acyclic is a structural class. A relational class is defined in terms of a given set of
constraint relations, also called a constraint language. For example, the set of CSP
instances confined to monotonic constraints [HEN 92] is a relational class.

A problem is tractable if there exists a polynomial algorithm to solve it. For a
given CSP instance there are, in fact [GRE 08], two tractability problems. First, we
have to determine whether the given CSP instance belongs to a specified tractable
class: this is the identification problem. Second, we have to solve the given instance
and show a solution if one exists: this is the search problem. A CSP class is said to
be tractable iff both its identification problem and its search problem are tractable,
intractable otherwise.

3.5.2.1. Relational CSP classes
Relational classes of CSP instances are defined in terms of constraint relations

and/or variable domains (which can be considered as unary constraints). Even if
theorems in section 3.5.1 seem attractive, they do not always lead to efficient solving
procedures. We now discuss this aspect and introduce some well-known tractable
relational classes.

First, the “class” of bi-valued binary constraint networks is tractable. Recognition
of bi-valued binary networks is immediate, and enforcing strong 3-consistency (in
polynomial time) ensures that modified networks are bi-valued and binary. On the
other hand, the class of d-valued r-ary constraint networks is obviously intractable
when d > 2 or r > 2. The reason is that enforcing strong d(r − 1) + 1-consistency
(see Theorem 3.54) may induce new constraints of arity strictly greater than r.
Consequently we have to enforce a new strong level of consistency that may induce
new constraints of arity still higher, and so on (see also the discussion in [DEC 92b]
about recursive classes of tractability). The class of m-tight r-ary constraint networks
is not tractable either. In this case, both the value of m and the value of r may change
when enforcing the strong level of consistency. Similarly, the class of weakly m-tight
r-ary constraint networks is not tractable.

In [ZHA 06] the authors claim that there exists a polynomial algorithm to
recognize a tree-convex constraint network. Moreover, [BEE 95] provides a method
for efficient identification of a row-convex binary constraint network. But even if a
given constraint network is tree-convex (or simply row-convex), there is no guarantee
that it can be solved efficiently (i.e. in polynomial time). Enforcement of strong
2(r − 1) + 1-consistency may disrupt convexity: the resulting network may not be
more tree-convex (row-convex). In other words, the class of tree-convex (row-convex)
constraint networks is not tractable. Although [ZHA 04] has shown that tree-convex
constraint networks which are locally chain convex and union closed can be made
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globally consistent in polynomial time, the identification problem for such networks
remains an open question.

Various subclasses of row-convex binary constraint networks have been studied.
First, the class of binary 0/1/all constraints [COO 94] (equivalent to implicational
relations [KIR 93]) has been identified as a tractable subclass of the row-convex
constraints class. This follows from Theorem 3.73 because the relations associated
with these constraints are all closed under a near-unanimity operator called the
majority operator [JEA 95a]. Because this operator is ternary, strong 3-consistency is
sufficient to ensure global consistency. The connected row-convex (CRC) constraints
[DEV 99] are a further special case of row-convex constraints; they have the nice
features of being closed under composition, intersection and transposition, which
are the basic operations of 3-consistency algorithms. Thus enforcement of strong
3-consistency preserves row convexity, so it is possible to make any CRC network
globally consistent in polynomial time. Since connected row-convex constraints
can be identified in polynomial time when domains are 3-valued, the class of CRC
3-valued constraint networks is also tractable. However, the connected row convex
identification problem is intractable for domains of size four or more [GRE 08].

Finally, max-closed constraints [JEA 95b] constitute another important relational
class. An r-ary constraint c is max-closed iff ∀τ1 ∈ rel(c), ∀τ2 ∈ rel(c), the tuple
τ = (max(τ1[1], τ2[1]), . . . , max(τ1[r], τ2[r])) ∈ rel(c). Informally, the constraint is
also satisfied by the tuple in which the value of each variable is the maximum of the
values of this variable in two accepted tuples. Identification of a max-closed constraint
is tractable if the constraint is given in extension; a max-closed constraint network can
be solved9 by establishing generalized arc consistency [COH 03b]. It is sufficient to
check that no domain is empty and to select the maximum value in each domain to
build a solution. A similar result holds for the class of min-closed constraints.

Tractable relational classes can be enlarged by domain permutation [GRE 08].
This mechanism independently permutes the domain of each variable of a CSP
instance so that the resulting instance belongs to a tractable class. Finding such
a permutation with respect to a targeted tractable relational class (or constraint
language) is called the reduction problem. This amounts to solving, for any CSP
instance P , an associated lifted instance whose solutions are the domain permutations
that transform P into a tractable one. When the reduction problem is itself tractable,
we obtain a new tractable class. The elegant theory in [GRE 08] allows definition
of new tractable classes and unifies disparate known results. This work addresses
the challenge of discovering domain permutations that make instances row-convex,
connected row-convex or max-closed. Reduction tractability is proved for row-convex
constraints (also proved in [BEE 95]), but row convex constraints do not form a

9. Initially, it was shown [JEA 95b] with pairwise consistency.
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tractable language. Reduction intractability is shown (in general) for connected
row-convex and max-closed constraints (also proved differently in [BES 08b]).
Among other things, it is also shown that triangulated [COH 03a] and stable marriage
instances are reducible, via domain permutations, to max-closed instances. Readers
interested in tractability are invited to consult the paper of Green and Cohen [GRE 08].

3.5.2.2. Structural CSP classes
There has been much work on identification of structural properties of constraint

networks that guarantee global consistency, or more simply, guarantee backtrack-free
search. Some classical results are as follows.

First, Freuder [FRE 82, FRE 85a] identified a relationship between the width of
the primal graph and the level of local consistency which ensures that a solution can
be found without backtracking. The variable ordering used during search must be
“compatible” with the width of the primal graph.

DEFINITION 3.74.– [Width wrt▹] LetG = (V,E) be a graph and▹ be a total order
on V . The width of a node ofG wrt▹ is the number of edges that connect it to previous
(in the order) nodes ofG. The width ofG wrt▹ is the the maximum width of the nodes
of G with respect to ▹.

DEFINITION 3.75.– [Width] Let G = (V,E) be a graph. The width of G is the
minimum width of G with respect to all total orders of V .

THEOREM 3.76.– Let P be a constraint network and w be the width of the primal
graph of P . A solution of P can be found by backtrack-free depth-first search if P is
strongly w + 1-consistent.

To guarantee this result, the width of the primal graph of P with respect to the variable
ordering used during search must be equal to w.

COROLLARY 3.77.– If the width of the primal graph of P is 1 (i.e. the primal graph is
a tree or more generally a forest) and P is strongly 2-consistent, a solution of P can
be found by a backtrack-free depth-first search.

EXAMPLE.– For example, Figure 3.26 shows the constraint graph of a constraint
network P . As this network only has binary constraints, the primal graph of P is
equivalent to the constraint graph of P , which is a tree: its width is equal to 1. This
minimum width is obtained for instance with the total variable ordering x6 ▹ x5 ▹

x4 ▹ x3 ▹ x2 ▹ x1. Strong 2-consistency can be enforced on such a network:
Figure 3.27 shows the result. Enforcing strong 2-consistency does not modify the
width of the constraint graph of P : it remains a tree since only domains are modified.
It is easy to verify that a solution of P can be found by a backtrack-free depth-first
search that selects variables according to ▹ (defined above). A search process that
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x1 : {1, 2, 3}

x2 : {1, 2, 3} x3 : {1, 2, 3}

x4 : {1, 2, 3} x6 : {1, 2, 3}x5 : {1, 2, 3}

= ̸=

<<
<

Figure 3.26. A constraint network whose constraint graph is a tree

x2 : {1, 2, 3} x3 : {1, 2, 3}

x6 : {1, 2, 3}x5 : {1, 2, 3}

= ̸=

<<
<

x4 : {1, 2, 3}

x1 : {1, 2, 3}

Figure 3.27. The constraint network of Figure 3.26 made strongly 2-consistent

employs a “non-optimal” variable ordering is not backtrack-free. For example, if the
search procedure selects x2, next x3, next x1, etc., the locally consistent instantiation
{(x2, 2), (x3, 2)} cannot be extended: every value of x1 is incompatible and therefore
backtrack occurs.

You might imagine that when the width of the primal graph of a given network P
is 2, enforcement of strongly 3-consistency could be sufficient to solve P efficiently.
However, unlike 2-consistency, enforcement of 3-consistency may modify the
constraint (hyper)graph: some new binary constraints may be added to the network,
thus increasing its width. This is discussed in [DEC 88], which also considers some
directional forms of 2- and 3-consistency that make Theorem 3.76 slightly more
applicable.

The class of CSP instances whose structure is acyclic is a tractable structural class.
Structural tractability can be extended by decomposition methods that polynomially
make “nearly acyclic” structures acyclic. This is the subject of section 2.2.3.
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3.5.2.3. Hybrid CSP classes
Some tractable classes of CSP instances are called hybrid because they do not fall

into one of the two main categories introduced above. This means that the underlying
properties of instances of such classes depend both on the structure of the networks
and also on the nature of the constraints. A first example of a tractable hybrid class
is the class of triangulated CSP instances [COH 03a], i.e. instances for which the
complement of the compatibility (hyper)graph is triangulated. For such instances,
arc consistency is a decision procedure for satisfiability, and a domain permutation
reduction exists to max-closed constraints. A new general property has more recently
been introduced [COO 08]:

DEFINITION 3.78.– [Broken-triangle Property] Let P be a binary constraint network.
– P satisfies the broken-triangle property with respect to a total order ▹ on

vars(P ) iff for every set {x, y, z} of three variables of P , with x ▹ y ▹ z, if
{(x, a), (y, b)}, {(x, a), (z, c)} and {(y, b), (z, c′)} are locally consistent then either
{(x, a), (z, c′)} or {(y, b), (z, c)} is locally consistent.

– P satisfies the broken-triangle property iff there exists a a total order ▹ on
vars(P ) such that P satisfies the broken-triangle property with respect to ▹.

Figure 3.28 illustrates this.

a

b

c
z

y

x

c′

Figure 3.28. If the broken-triangle property holds, at least one of the dotted edge is present,
i.e. corresponds to a locally consistent instantiation

The class of binary CSP instances satisfying the broken-triangle property (BTP)
has been shown to be tractable. More precisely, there is a polynomial time procedure
that finds a variable ordering which makes a binary CSP instance satisfying the
broken-triangle property with respect to that ordering, or finds that no such ordering
exists. An instance that satisfies the broken-triangle property can be solved in O(ed2).
Note also that the broken-triangle property is closed under domain reduction. Thus
enforcement of any domain-filtering consistency on a constraint network cannot
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destroy the broken-triangle property. The class of BTP instances is hybrid because it
generalizes (contains) both the tractable structural class of tree-structured instances
and the tractable relational class of renamable right monotone instances.

3.6. Caveats about node, arc and path consistencies
There is often confusion, in the literature, between classical node, arc and path

consistencies and 1-, 2- and 3-consistencies. This deserves mention even if, under
certain assumptions, the consistencies are equivalent. In particular, when constraint
networks are binary and normalized, arc and path consistency do correspond to 2- and
3-consistencies.
REMARK 3.79.– Node consistency is different from 1-consistency.

This is true at least with our definitions and assumptions: in this book, we assume
that 1-consistency is equivalent to (0, 1)-consistency and we assume that ∅ is a locally
consistent instantiation. A constraint network P is node-consistent when each v-value
(x, a) of P has a support on each unary constraint involving x, whereas P is 1-
consistent when there is no empty domain in P . This is quite different. This difference
is clear in P , even if networks do not have unary constraints.
REMARK 3.80.– [BES 06] Arc consistency is different from 2-consistency.

Let us consider a constraint network P such that vars(P ) = {x, y} with
dom(x) = dom(y) = {1, 2} and cons(P ) = {c1 : x ≤ y, c2 : x ̸= y}. P is arc-
consistent since each value has a support on each constraint; but P is not 2-consistent
since for example the locally instantiation {(x, 2)} cannot be extended to y. The
problem here is that P is not normalized. Normalization yields a unique constraint
c3 : x < y and both consistencies become equivalent. In P2, it is always true that
arc consistency is equivalent to 2-consistency because networks are normalized.
However, generalized arc consistency and 2-consistency are completely different for
non-binary constraints.
REMARK 3.81.– [DEC 03] Path consistency is different from 3-consistency.

For binary constraint networks, and more generally for networks that have
no ternary constraints, both consistencies are equivalent. The presence of ternary
constraints may make a difference. Consider, for example, a constraint network P
such that vars(P ) = {x, y, z} with dom(x) = dom(y) = dom(z) = {1, 2} and
cons(P ) = {c : x + y + z = 0}. Every valid instantiation of two variables of P is
locally consistent since there are no binary (and no unary) constraints. P is therefore
path-consistent. For example, {(x, 1), (y, 1)} is locally consistent and we can find a
value in the domain of z, e.g. (z, 1), such that both {(x, 1), (z, 1)} and {(y, 1), (z, 1)}
are locally consistent. But P is not 3-consistent.
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Chapter 4

Generic GAC Algorithms

Generalized arc consistency (GAC) is the key property in constraint programming.
When constraints are considered independently, GAC corresponds to the strongest
form of local reasoning. Each constraint c can be regarded as an elementary sub-
network Pc = (scp(c), {c}), comprising the variables in scp(c) and the unique
constraint c. Any v-value (x, a) of Pc that participates in at least one solution of Pc is
said to be generalized arc-consistent on c. Generalized arc consistency of a constraint
network guarantees the existence of a support for each c-value.

Reasoning locally at the level of each constraint facilitates integration of
propagation algorithms into constraint solvers. Algorithms for enforcing generalized
arc consistency, called GAC algorithms, are interesting in that they basically
correspond to associating one filtering procedure with each constraint. Among
such algorithms, some are specifically developed for certain types of constraints,
whereas others can be applied to any type of constraints and are therefore said to
be generic or general-purpose. Although specialized algorithms are attractive for
solving particular problems, general-purpose algorithms are intended to simplify the
life of developers and engineers/researchers who aim to generate scientific results,
i.e. results that can be reproduced easily. Moreover, when a constraint has unknown
semantics (or has no known features that can be exploited efficiently) a generic
filtering algorithm is the only practical option. Hence the value of generic GAC
algorithms presented in this chapter.

Generally speaking, constraint propagation is guided by events concerning
variables. Examples of these events are an assignment of a value to a variable, a
change in the membership of the domain of a variable, or a change in the smallest
value in the domain. A coarse-grained filtering algorithm simply stores the identity of
the variable that is involved, without storing an indication of what has happened to the
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variable or to its domain. For example, if values are deleted from a variable’s domain,
a coarse-grained algorithm stores the variable’s identity but does not store the values
that have been deleted. A fine-grained filtering algorithm actually records which
values of which variables have changed. Examples of coarse-grained algorithms are
(G)AC3 [MAC 77a, MAC 77b] and (G)AC2001 [BES 01b, ZHA 01b, BES 05c],
while examples of fine-grained algorithms are (G)AC4 [MOH 86, MOH 88] and AC6
[BES 94]. Recall that when AC is used instead of GAC, this means that the constraints
are binary.

This chapter is organized as follows. For enforcing generalized arc consistency,
section 4.1 presents two coarse-grained propagation schemes that are basically
equivalent. Of these, the variable-oriented propagation scheme is used predominantly
in this book. In section 4.2, we introduce functions related to the support-seeking
scheme called GAC-valid, while in section 4.3, this scheme is instantiated to produce
two important coarse-grained GAC algorithms, namely GAC3 and GAC2001. Next,
in section 4.4, we introduce general ideas concerning GAC and briefly review
classical (G)AC algorithms, including fine-grained ones. Finally, before presenting a
few experimental results, we explain in section 4.5 how the performance of general-
purpose GAC algorithms can be improved by a) avoiding useless revisions and
constraint checks, b) using residual supports and c) using the natural parallelism of
bitwise operations.

4.1. Coarse-grained propagation schemes

To enforce a consistency1 on a constraint network, local deductions or inferences
are iteratively performed until a fixed point is reached or more generally a certain
stopping condition is met. Quite often in practice, a local inference is made possible
by reasoning from a single constraint, and corresponds to the removal of a value
belonging to the domain of a variable involved in this constraint – the targeted
consistency being domain-filtering. Interestingly, as soon as a local inference is
performed, the conditions to trigger new inferences may hold since variables are
typically shared by several constraints. This mechanism of propagating the results of
local inferences from constraints to constraints is called constraint propagation and is
achieved by filtering algorithms.

Classically, constraint propagation is guided by events concerning variables. In
the context of generic (coarse-grained) filtering, where a unique procedure is used
no matter what the constraints are, the only kind of events considered are when

1. Some constraint solvers may enforce different levels of local consistency in different parts of
the constraint networks, but the principle of constraint propagation described here remains the
same.
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the domain of a variable changes (i.e. when it loses one or more values). In the
context of specialized filtering, where one or even several dedicated procedures, called
propagators, can be associated with each type of constraints, three other kinds of
events are usually considered [SCH 06]:

– the variable becomes fixed (i.e. its domain becomes a singleton);
– the minimum value of a variable domain is modified;
– the maximum value of a variable domain is modified.

On the other hand, generic fine-grained filtering is guided by (deleted) values.
We shall discuss this alternative in section 4.4.2 and, more generally, discuss the
advantages and disadvantages of generic filtering in the conclusion of this chapter.

In this section, we describe two generic coarse-grained propagation schemes that
can be employed to enforce generalized arc consistency on a given constraint network.
Coarse-grained essentially means that the algorithms apply successive revisions of
arcs, as described below. These schemes are so closely related that they collapse
into a unique form when we simplify them to enforce a limited form of (generalized)
arc consistency that corresponds to the amount of filtering performed at each search
step by the backtracking algorithm called forward checking (FC). Nevertheless, we
believe that it is worthwhile to present both of them. The former is the well-known
arc-oriented scheme, and the latter is the variable-oriented scheme, which has some
nice features.

4.1.1. Arc-oriented propagation scheme

We first introduce a classical arc-oriented coarse-grained propagation scheme for
enforcing GAC on a given constraint network. An arc is a pair (c, x) where c is a
constraint and x a variable in scp(c). An arc of a constraint network P is an arc
(c, x) such that c ∈ cons(P ). An arc-oriented propagation scheme records arcs in
a dedicated set called the queue2 of the propagation, although propagation is actually
determined by events concerning variables. The arc-oriented approach is characterized
by revision of arcs that are successively picked from the queue.

Revisions are at the heart of generic coarse-grained filtering algorithms. The
revision of an arc (c, x), which means revision of dom(x) with respect to constraint
c, removes from dom(x) all values that are not compatible with c, or more formally
all values for which no support exists on c. We also say that x is revised against c. A
revision is said to be effective or fruitful if it removes at least one value; otherwise, it

2. Following the usage, the queue must be seen as a set here, even if the term classically refers
to a particular data structure in computer science.
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is said to be fruitless. A revision is useless if we can predict that it will be fruitless.
Obviously, we avoid wasting time by not performing useless revisions.

Stand-alone enforcement of generalized arc consistency means enforcement that is
not done during backtrack search. The call enforceGACarc(P, vars(P )), Algorithm 7,
achieves stand-alone enforcement of generalized arc consistency on a given constraint
network P , and returns false if P is detected GAC-inconsistent, i.e. if GAC (P ) = ⊥.
The set past(P ) is the set of past variables of P , i.e. the variables of P that have been
explicitly instantiated by a backtrack search algorithm such as FC or MAC, which
are described in Chapter 8. When enforcement is stand-alone, we have past(P ) =
∅ because there has been no variable assignment, and enforceGACarc(P, vars(P ))
simply computes the GAC-closure of P . Moreover, when enforcement is stand-alone
the formal parameter Xevt is set to vars(P ), and in this case the initialization part
(lines 1 to 3) of the algorithm is equivalent to:

Q ← {(c, x) | c ∈ cons(P ) ∧ x ∈ scp(c)} // all arcs are put in Q

Algorithm 7 iteratively selects arcs from Q and calls revise, Algorithm 8, to
perform revisions of arcs. For a given arc (c, x), the function revise returns true if at
least one value has been removed from dom(x), i.e. if the revision of (c, x) has been
effective. For each value a in dom(x) the function seekSupport determines whether
or not there exists a support for (x, a) on c. Various implementations of seekSupport
have been published; some of these will be discussed later in this chapter. When
revision is effective, Algorithm 7 at lines 9 to 11 inserts into Q all arcs that need to
be revised due to the modification of dom(x). Note that some useless revisions are
avoided by not inserting the arcs involving x, because these have just been processed.
If a domain becomes empty, known as domain wipe-out, Algorithm 7 returns false at
line 8.

This algorithm can also be used during search. Then the set Xevt only contains
the variables for which a recent event has occurred (evt is an abbreviation for event).
A classical backtrack search algorithm iteratively considers two subproblems after a
v-value (x, a) is selected: the first one is obtained from P by posting a branching
constraint of the form x = a and the second one by posting a branching constraint
of the form x ̸= a. To enforce GAC on P after instantiating a variable x, i.e. after
taking the positive search decision x = a (consequently, x belongs to past(P )), we
must call enforceGACarc(P, {x}). After refuting the value a from the domain of x,
i.e. after taking the negative search decision x ̸= a (x does not belong to past(P )),
we must also call enforceGACarc(P, {x}). In both cases, Xevt is only composed of
the variable x since x is the only variable concerned by the search decisions (that can
be perceived as events). Chapter 8 provides more information, which is not required
now, about backtrack search (MAC, binary branching, etc.) and about the statements
between square brackets.
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Algorithm 7: enforceGACarc(P : P , Xevt: set of variables): Boolean [nogood]
Output: true iff GAC (P ) ̸= ⊥
// Initialization of Q; Q contains arcs
Q ← ∅1
foreach arc (c, x) of P such that x /∈ past(P )∧ ∃y ∈ scp(c)∩Xevt | y ̸= x do2

Q ← Q ∪ {(c, x)}3

// Propagation through Q
while Q ̸= ∅ do4

pick and delete (c, x) from Q5
if revise(c, x) then6

// dom(x) has been reduced
if dom(x) = ∅ then7
return false [return handleEmptyDomain(x)]8

foreach constraint c′ ∈ cons(P ) | c′ ̸= c ∧ x ∈ scp(c′) do9
foreach variable x′ ∈ scp(c′) | x′ ̸= x ∧ x′ /∈ past(P ) do10

Q ← Q ∪ {(c′, x′)}11

return true [return nil]12

Algorithm 8: revise(c: constraint, x: variable): Boolean
Output: true iff the revision of the arc (c, x) is effective
nbElements ← |dom(x)|1
foreach value a ∈ dom(x) do2
if ¬seekSupport(c, x, a) then3

remove a from dom(x) [expl(x ̸= a) ← getExplanation(c, x, a)]4

return nbElements ̸= |dom(x)|5

EXAMPLE.– To illustrate constraint propagation, the domino-4-4 instance has a
constraint network P such that:

– vars(P ) = {w, x, y, z} with dom(w) = · · · = dom(z) = {0, 1, 2, 3};
– cons(P ) = {cwx: w = x, cxy: x = y, cyz: y = z, cwz: w = z+1∨w = z = 3}.
In this example, Algorithm 7 is used stand-alone, and Q has first-in first-out (FIFO)

structure, meaning that the oldest arc is always selected from Q. All arcs are put in Q
initially, and then each in turn is selected as follows.

– Step 0: initialization
⇒ Q = {(cwx, w), (cwx, x), (cxy, x), (cxy, y), (cyz, y), (cyz, z), (cwz, w), (cwz, z)}
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– Step 1: pick (cwx, w) from Q
revise(cwx, w) is fruitless
⇒ Q = {(cwx, x), (cxy, x), (cxy, y), (cyz, y), (cyz, z), (cwz, w), (cwz, z)}

– Step 2: pick (cwx, x) from Q
revise(cwx, x) is fruitless
⇒ Q = {(cxy, x), (cxy, y), (cyz, y), (cyz, z), (cwz, w), (cwz, z)}

– Step 3: pick (cxy, x) from Q
revise(cxy, x) is fruitless
⇒ Q = {(cxy, y), (cyz, y), (cyz, z), (cwz, w), (cwz, z)}

– . . .

– Step 7: pick (cwz, w) from Q = {(cwz, w), (cwz, z)}
revise(cwz, w) is fruitless
⇒ Q = {(cwz, z)}

– Step 8: pick (cwz, z) from Q
revise(cwz, z) removes (z, 0)
⇒ Q = {(cyz, y)}

– Step 9: pick (cyz, y) from Q
revise(cyz, y) removes (y, 0)
⇒ Q = {(cxy, x)}

– . . .

The first effective revision occurs at Step 8, where (cwz, z) is picked from Q. Then,
(cyz, y) is included in Q because z ∈ cyz and y ̸= z. Subsequent steps remove values
until a fixed point is reached, which means that further iterations make no further
change. Figure 4.1 shows the compatibility graphs of:

– the initial constraint network P ;
– the constraint network obtained after the first inference (Step 8);
– the constraint network after the second inference (Step 9);
– the final constraint network that corresponds to the AC-closure of P .

4.1.2. Variable-oriented propagation scheme

A second approach to enforcing GAC on a given constraint network is based on
variable-oriented coarse-grained propagation, initially introduced in [MCG 79]. Here
the propagation queue Q is a set of variables that capture any(x) events [SCH 06]:
when a value is deleted from the domain of a variable, this variable is included in
the set Q. A variable-oriented scheme can avoid unnecessary work by using time-
stamps. A time-stamp is a value denoting the time at which a certain event occurred;
time-stamps allow the progress of algorithms to be tracked over time. The practice
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(d) The constraint network made (G)AC

Figure 4.1. Evolution of the constraint network during propagation. Dotted circles indicate
deleted values

of recording time-stamps consistently is called time-stamping; this will be useful for
determining whether or not a given revision is useless.

By introducing a global counter time and by associating a time-stamp stamp[x]
with every variable x and a time-stamp stamp[c] with every constraint c, it is possible
to determine which revisions are relevant. The value of stamp[x] indicates at which
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moment a value was most recently removed from dom(x), while the value of stamp[c]
indicates at which moment c was most recently made to be GAC-consistent. Initially,
variables time, stamp[x] for each variable x and stamp[c] for each constraint c are
set to 0. The value of time is incremented whenever a variable is added to Q and
whenever a constraint made GAC-consistent.

The call enforceGACvar(P, vars(P )), Algorithm 9, enforces generalized arc
consistency stand-alone on a given constraint network P . The Boolean value false is
returned if P is detected GAC-inconsistent, i.e. if GAC (P ) = ⊥. As before, we have
past(P ) = ∅ for stand-alone GAC enforcement. To maintain GAC during the search,
we can call enforceGACvar(P, {x}) after having taken a positive or negative decision
on a variable x; for a positive decision, we know that x belongs to past(P ).

To enforce GAC, variables are selected iteratively from Q. Each constraint c
involving the selected variable x must be considered if stamp[x] > stamp[c]. In
this case, every uninstantiated variable y ̸= x in scp(c) is revised with respect to c.
Each revision is accomplished by function revise, Algorithm 8, which returns true if
at least one value has been removed. If the revision is effective, the y is inserted in
the Q. To guarantee that c is made GAC-consistent, we have to determine whether
the domain of a variable other than x in c has been modified since c was last made
GAC-consistent. This is managed by the second part of the condition at line 8 of
Algorithm 9. If this second part is satisfied then x is one of the revised variables.

Instructions shown in gray in Algorithm 9 are used when GAC is enforced3 on
c using a specific filtering procedure (propagator) that is not revision-based. The
special function denoted here by enforceGAC-type, where type stands for the name of
the filtering approach related to the type of c, specifically enforces GAC and returns
the set of variables whose domain has been reduced. For example, enforceGAC-case
and enforceGAC-str, which are described in Chapter 5, are two filtering procedures
dedicated to table constraints. Such procedures are not revision-based because
they globally enforce the local consistency GAC. Additional (input and/or output)
information may be required to manage the incrementality/decrementality of some
propagators, but this is clearly beyond the scope of this book, which is focused mainly
on generic approaches.

The following examples are intended to enhance understanding of the role of time-
stamps. First, consider a binary constraint cxy involving the variables x and y. If the
selection of the variable x from Q entails effective revision of (cxy, y), and if later
the selection of y from Q entails effective revision of (cxy, x), then necessarily x is
inserted again in Q. However, there is no need to perform the revision of (cxy, y)

3. In practice, this may be some partial form of GAC, in which case the computation of GAC-
closure of P is not guaranteed.
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Algorithm 9: enforceGACvar(P : P , Xevt: set of variables): Boolean [nogood]
Output: true iff GAC (P ) ̸= ⊥
// Initialization of Q; Q contains variables
Q ← ∅1
foreach variable x ∈ Xevt do2

insert(Q,x)3

// Propagation through Q
while Q ̸= ∅ do4

pick and delete x from Q5
foreach constraint c ∈ cons(P ) | x ∈ scp(c) ∧ stamp[x] > stamp[c] do6
foreach variable y ∈ scp(c) | y /∈ past(P ) do7
if y ̸= x or ∃z ∈ scp(c) | z ̸= x ∧ stamp[z] > stamp[c] then8
if revise(c, y) then9

// dom(y) has been reduced
if dom(y) = ∅ then10
return false [return handleEmptyDomain(y)]11

insert(Q, y)12

// If enforcing GAC on c is not revision-based, the
// foreach construct above (lines 7 to 12) is replaced by:
Yevt ← enforceGAC-type(P, c)
foreach variable y ∈ Yevt do
if dom(y) = ∅ then
return false

insert(Q, y)

time ← time + 113
stamp[c] ← time14

return true [return nil]15

Algorithm 10: insert(Q: set of variables, x: variable)
Q ← Q ∪ {x}1
time ← time + 12
stamp[x] ← time3

again when x is selected from Q provided that the domain of x has not been modified
by propagating another constraint. In this case, all supports found for values of y
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when revising (cxy, y) are still valid because of a property of constraints called bi-
directionality: if a v-value (y, b) is supported by (x, a) on cxy, we know that (x, a) is
symmetrically supported by (y, b) on cxy, and is therefore not deleted when revising
(cxy, x). Here (y, b) is guaranteed to remain supported after revision of (cxy, x).
Further revision of (cxy, y) will be useless so long as no new event concerning x
occurs.

As another example (as given in [BES 01b]), let cxyz be a ternary constraint whose
scope is {x, y, z}. If selection of the variable x entails effective revision of (cxyz, y)
and of (cxyz, z) then there is no need to perform again the revision of (cxyz, z) if
the variable y is selected and if the domains of x and y have not been modified
elsewhere. Time-stamps allow identification of useless revisions. An important and
desirable feature of time-stamping is that it is a backtrack-stable mechanism, meaning
that no restoration or additional treatment is required when a tree search algorithm
such as MAC backtracks. Time-stamps can safely remain unchanged by backtrack.
EXAMPLE.– To illustrate variable-oriented propagation, let us again consider stand-
alone propagation for the domino-4-4 instance. Initially, to enforce GAC, all variables
are put in Q; each variable is then selected in turn. In this example Q is again a FIFO
structure, and successive steps in the execution of Algorithm 9 are as follows.

– Step 0: initialization
⇒ Q = {w, x, y, z}

– Step 1: pick w from Q
constraint cwx: revise(cwx, w) is fruitless – revise(cwx, x) is fruitless
constraint cwz: revise(cwz, w) is fruitless – revise(cwz, z) deletes (z, 0)
⇒ Q = {x, y, z}

– Step 2: pick x from Q
constraint cwx: no revisions
constraint cxy: revise(cxy, x) is fruitless – revise(cxy, y) is fruitless
⇒ Q = {y, z}

– Step 3: pick y from Q
constraint cxy: no revisions
constraint cyz: revise(cyz, y) deletes (y, 0) – revise(cyz, z) is fruitless
⇒ Q = {z, y}

– Step 4: pick z from Q
constraint cyz: no revisions
constraint cwz: no revisions
⇒ Q = {y}

– Step 5: pick y from Q
constraint cxy: revise(cxy, x) deletes (x, 0)
constraint cyz: no revisions
⇒ Q = {x}

– Step 6: pick x from Q
constraint cwx: revise(cwx, w) deletes (w, 0)
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constraint cxy: no revisions
⇒ Q = {w}

– Step 7: pick w from Q
constraint cwx: no revisions
constraint cwz: revise(cwz, z) deletes (z, 1)
⇒ Q = {z}

– . . .

Where there are no revisions in this example, useless work has been avoided by
time-stamping. Figure 4.1 shows the evolution of the compatibility graph of P during
propagation.

Arc-oriented and variable-oriented approaches are basically equivalent. These
approaches differ in the instructions that must be executed when an element from
the queue has just been selected and also when the queue is updated. This difference
can be seen clearly by comparing lines 9 and 10 of Algorithm 7 with lines 6 and 7
of Algorithm 9. Note that, although not described in this book, a constraint-oriented
propagation scheme [BOU 04a] is also possible.

There are many reasons for judging that the variable-oriented propagation scheme
is better than the other two schemes. First, the space complexity of managing the queue
is only O(n) while it is (er) for the arc-oriented scheme and O(e) for the constraint-
oriented scheme. Second, if selecting an element from the queue requires iterating
over all elements, then the worst-case time complexities of selecting an element are
O(n), O(er) and O(e) for the variable-oriented, arc-oriented and constraint-oriented
schemes, respectively, assuming that each element is evaluated in constant time. Third,
since the seminal work of Wallace and Freuder [WAL 92], it has been shown that the
variable-oriented approach provides the best practical results when combined with
the revision ordering heuristic dom [BOU 04a] which selects from the queue the
variable with the minimum domain size, or more recently the heuristic dom/wdeg
[BAL 08a]. Fourth, the algorithm given here to enforce GAC using a variable-oriented
propagation scheme is simpler than the one proposed in [BOU 04a], making it almost
as simple as the arc-oriented scheme. Finally, the variable-oriented approach facilitates
simultaneous management of generic and specific filtering algorithms.

4.1.3. Applying forward checking

In the following, we shall refer to forward checking (FC), which is a backtrack
search algorithm [MCG 79, HAR 80] that maintains a partial form of (generalized)
arc consistency. For binary constraint networks, whenever a variable x is instantiated
during search, only uninstantiated variables connected to it are revised. Given a
constraint network P , FC (P, x) denotes the constraint network obtained from P
after removing all values that have (initially) no support on a constraint involving x;
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this can be regarded as enforcing a particular consistency. Of course, if a domain is
wiped-out, we have FC (P, x) = ⊥. To apply FC to a given constraint network P
after a variable x has been instantiated, we call applyFC(P, x), Algorithm 11. This
function is never called before search (i.e. at preprocessing time when no variable
has been instantiated) and is never called after a value refutation. The overloaded
function applyFC, Algorithm 12, differs from that in Algorithm 11 in that the second
parameter is a set of variables instead of a variable. Calling applyFC(P, x) means
calling applyFC(P, {x}). In this case, the formal parameter Xevt of Algorithm 12 is
set to {x} and the instruction at line 1 of Algorithm 12 is equivalent to:

foreach constraint c ∈ cons(P ) | x ∈ scp(c) do

There is no propagation queue, meaning that FC does not involve either of the
propagation schemes introduced earlier in this section. For non-binary constraint
networks, applyFC corresponds to nFC2 [BES 02] which is a generalization of binary
forward checking: for each constraint c that involves the variable which has just been
instantiated, we revise every uninstantiated variable in scp(c) against c. The second
parameter of Algorithm 12 is a set of variables because it will allow us to simulate
several simultaneous variable instantiations in a dynamic backtracking context; see
Algorithm 73 of Chapter 8. Statements between square brackets will also be useful in
Chapter 8.

Algorithm 11: applyFC(P : P , x: variable): Boolean [nogood]
Require: the variable x is instantiated, i.e. x ∈ past(P )
Output: true iff FC (P, x) ̸= ⊥
return applyFC(P, {x})1

Algorithm 12: applyFC(P : P , Xevt: set of variables): Boolean [nogood]
Require: all variables in Xevt are instantiated, i.e. Xevt ⊆ past(P )

foreach constraint c ∈ cons(P ) | Xevt ∩ scp(c) ̸= ∅ do1
foreach variable y ∈ scp(c) | y /∈ past(P ) do2
if revise(c, y) then3
if dom(y) = ∅ then4
return false [return handleEmptyDomain(y)]5

return true [return nil]6

EXAMPLE.– To illustrate forward checking, Figure 4.2 shows compatibility graphs
for an example in which there are two binary constraints involving a variable y that
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has just been instantiated with the value c. The two constraints and the reduction
of dom(y) to {c} are shown in Figure 4.2(a). The call applyFC(P, y) removes all
values from dom(x) and dom(z) that are not compatible with (y, c), as can be seen in
Figure 4.2(b).

y z
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b

c

dd

c

b

a

c

b

a

d

x

(a) Before calling applyFC(P, y)

y z

a

b

c

a

b

c

d

a

b

c

dd

x

(b) After calling applyFC(P, y)

Figure 4.2. Illustration of FC: y has just been instantiated with c, and there are two binary
constraints involving y

On a binary constraint network, the cost of forward checking is limited:

PROPOSITION 4.1.– The function applyFC admits a worst-case space complexity in
O(1), and on a binary constraint network, a worst-case time complexity in O(ed).

Proof. We only consider specific data structures of algorithms. For FC, there is none,
so the worst-case space complexity in O(1). On the other hand, there are at most k
revisions where k denotes the number of constraints involving the last instantiated
variable, and the revision of a variable against an instantiated variable is O(d). As k
is O(e), we obtain O(ed).

4.2. Iterating over valid tuples

At the heart of many filtering algorithms there is a search for supports of values,
as in Algorithm 8. A support for a c-value (c, x, a), i.e. a support for (x, a) on c,
can be sought by iterating over the set of valid tuples until an allowed one is found.
When the targeted consistency is GAC, this support-seeking scheme is called GAC-
valid. This is an universal approach since it can be theoretically used with all kinds of
constraints, assuming that it is always possible to check that a given tuple is accepted
by a constraint4. In this section, we present several functions related to GAC-valid.

4. We assume in this book that a constraint check is O(r) where r is the constraint arity.
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These functions will be used later to describe some filtering algorithms such as GAC3
and GAC2001.

Algorithm 13: getFirstValidTuple((c, x, a): c-value): tuple
Require: val(c)x=a ̸= ∅
Output: the smallest tuple τ ∈ val(c)x=a

// let τ be an array of size | scp(c)|
τ [x] ← a1
foreach variable y ∈ scp(c) | y ̸= x do2

τ [y] ← dom(y).head3

return τ4

Algorithm 14: getNextValidTuple((c, x, a): c-value, τ : tuple): tuple
Require: τ ∈ val(c)x=a

Output: the smallest tuple τ ′ ∈ val(c)x=a such that τ ′ >lex τ , or nil

for i ranging from | scp(c)| down-to 1 do1
y ← scp(c)[i] // y is the ith variable of scp(c)2
if y ̸= x then3
if dom(y).next [τ [y]] = −1 then4

τ [y] ← dom(y).head5
else6

τ [y] ← dom(y).next [τ [y]]7
return τ8

return nil9

Valid tuples are reviewed in the search for a support. Recall that val(c)x=a is
the set of valid tuples involving (x, a) on c; see Notation 1.16. If, for example, we
have a ternary constraint cxyz such that dom(x) = {1, 4, 5}, dom(y) = {2, 4} and
dom(z) = {1, 2}, then:

val(cxyz)y=4 = {(1, 4, 1), (1, 4, 2), (4, 4, 1), (4, 4, 2), (5, 4, 1), (5, 4, 2)}.

To iterate over valid tuples, we may employ functions getFirstValidTuple and
getNextValidTuple, assuming, as always, a total order on values and a total order on
the scope of each constraint such that tuples can be processed in a lexicographic
order ≤lex. Moreover, we have a linked list of elements present in each domain,
implemented using the variable head and the array next ; see section 1.5.1. The call
getFirstValidTuple((c, x, a)), Algorithm 13, returns the smallest tuple τ in val(c)x=a,
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i.e. the smallest valid tuple τ built from current domains of variables in scp(c) such
that τ [x] = a; it is assumed that val(c)x=a ̸= ∅. The time complexity is Θ(r) where
r is the arity of the constraint c. Tuple τ , is composed of the first element in the
domain of each variable (except x) in scp(c). The call getNextValidTuple((c, x, a), τ),
Algorithm 14, either returns the smallest tuple τ ′ in val(c)x=a such that τ ′ >lex τ , or
returns the special value nil if there is no such tuple. The worst-case time complexity
is O(r). Here getNextValidTuple is always assumed to be called with a parameter τ in
val(c)x=a.

EXAMPLE.– For our most recent example:
– getFirstValidTuple((c, y, 4)) returns (1, 4, 1);
– getNextValidTuple((c, y, 4), (1, 4, 1)) returns (1, 4, 2);
– getNextValidTuple((c, y, 4), (1, 4, 2)) returns (4, 4, 1);
– . . .
– getNextValidTuple((c, y, 4), (5, 4, 2)) returns nil .

It is sometimes necessary to check the validity of a support found earlier during
propagation. This is called a validity check and it is implemented by checking that each
value in the tuple is present in the appropriate domain, as in Algorithm 15. As before,
nil is a special value. This special value is not valid. On the other hand, within a given
tuple, we sometimes need to locate the first (starting from the left) invalid value, if
there is one. For this, we employ function getFirstInvalidPosition, Algorithm 16, which
takes as input a tuple τ ̸= nil and returns −1 when the tuple is valid.

Algorithm 15: isValidTuple(c: constraint, τ : tuple): Boolean
Output: true iff τ ∈ val(c)x=a

if τ = nil then1
return false2

foreach variable x ∈ scp(c) do3
if τ [x] /∈ dom(x) then4
return false5

return true6

Finally, the overloaded function getNextValidTuple, Algorithm 17, differs from that
in Algorithm 14 in that there is an additional parameter; furthermore, the tuple τ that is
given as parameter is not valid. The third parameter is assumed to indicate the position
of the first invalid value in τ , as it would be computed by getFirstInvalidPosition. It is
also assumed that val(c)x=a ̸= ∅. In Algorithm 17, each variable y whose position in
scp(c) is strictly greater than limit is given in τ the first value in dom(y); see lines 1
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Algorithm 16: getFirstInvalidPosition(c: constraint, τ : tuple): integer
Require: τ ̸= nil
Output: the position of the first variable y ∈ scp(c) s.t. τ [y] invalid, or −1

for i ranging from 1 to | scp(c)| do1
y ← scp(c)[i] // y is the ith variable of scp(c)2
if τ [y] /∈ dom(y) then3
return i4

return −15

to 4. To find a valid tuple strictly greater than τ , lines 5 through 14 seek the next value
following τ [y] where y is the first encountered variable such that τ [y] < dom(y).tail .
In our implementation (see section 1.5.1), we know that if τ [y] ∈ dom(y) then
dom[y].next [τ [y]] is the smallest value of dom(y) strictly greater than τ [y], but we
also know that if τ [y] /∈ dom(y) then dom[y].next [τ [y]] is less than or equal to the
smallest value of dom(y) strictly greater than τ [y]. If there is no valid tuple strictly
greater than τ then getNextValidTuple returns nil .
EXAMPLE.– If, for example, we have a 5-ary constraint c such that scp(c) =
{v, w, x, y, z}, and

– dom(v) = {1, 3},
– dom(w) = {3, 4},
– dom(x) = {1, 4, 5},
– dom(y) = {2, 4}, and
– dom(z) = {1, 2}

then the effects of function calls are as follows.
– getFirstInvalidPosition(c, (3, 4, 4, 2, 2)) returns −1 (all values are valid).
– getFirstInvalidPosition(c, (3, 4, 6, 2, 2)) returns 3 (the position of x).
– getNextValidTuple((c, y, 2), (3, 4, 6, 2, 2), 3) returns nil , since there is no valid

tuple strictly greater than (3, 4, 6, ∗, ∗), where a * symbol stands for any value.
– getFirstInvalidPosition(c, (3, 3, 6, 2, 3)) returns 3.
– getNextValidTuple((c, y, 2), (3, 3, 6, 2, 3), 3) returns (3, 4, 1, 2, 1).

4.3. GAC3 and GAC2001

GAC3 and GAC2001 are classical generic coarse-grained algorithms for
establishing generalized arc consistency. Together with GAC3rm, which is introduced
later, these algorithms are certainly implemented in most general-purpose constraint
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Algorithm 17: getNextValidTuple((c, x, a): c-value, τ : tuple, limit : int): tuple
Require: τ [x] = a, τ /∈ val(c)x=a and val(c)x=a ̸= ∅
Require: limit = getFirstInvalidPosition(c, τ)
Output: the smallest tuple τ ′ ∈ val(c)x=a such that τ ′ >lex τ , or nil

for i ranging from limit + 1 to | scp(c)| do1
y ← scp(c)[i] // y is the ith variable of scp(c)2
if y ̸= x then3

τ [y] ← dom(y).head4

for i ranging from limit down-to 1 do5
y ← scp(c)[i] // y is the ith variable of scp(c)6
if y ̸= x then7
if τ [y] ≥ dom(y).tail then8

τ [y] ← dom(y).head9
else10

τ [y] ← dom(y).next [τ [y]]11
while dom(y).absent [τ [y]] ̸= −1 do12

τ [y] ← dom(y).next [τ [y]]13

return τ14

return nil15

solvers. We can arrive at these algorithms by specifying the precise manner of seeking
supports for values in the propagation schemes presented in the first section of this
chapter. We will define GAC3 and GAC2001 in this way. The basic seeking-support
scheme followed by these two algorithms is GAC-valid. Hence functions introduced
in section 4.2 will be useful.

The simplest generic GAC algorithm is undoubtedly GAC3 [MAC 77a, MAC 77b],
if we disregard the inefficient (G)AC1 [MAC 77a]. GAC3 can employ either of the two
propagation schemes described in section 4.1. For example, in [MCG 79, CHM 98]
AC3 has a variable-oriented propagation scheme. To formulate GAC3, we need only to
provide an implementation of the function seekSupport called by revise, Algorithm 8,
which is called in Algorithms 7 and 9. Specifically, GAC3 uses seekSupport-
3, Algorithm 18, which calls functions getFirstValidTuple and getNextValidTuple
described in the previous section. Recall that the idea is to iterate over the valid tuples
for (x, a) on c until one is accepted by c, which is tested by means of a constraint
check. A constraint check is of the form τ ∈ rel(c), and this can be implemented
in different ways (by evaluating a Boolean expression, querying a database, looking
for a tuple in a list, etc.). Whatever the implementation, a constraint check is simply
executing a Boolean function.
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Algorithm 18: seekSupport-3((c, x, a): c-value): Boolean
Output: true iff sup(c)x=a ̸= ∅
τ ← getFirstValidTuple((c, x, a))1
while τ ̸= nil do2
if τ ∈ rel(c) then3
return true4

τ ← getNextValidTuple((c, x, a), τ)5

return false6

Algorithm 19: seekSupport-2001((c, x, a): c-value): Boolean
Output: true iff sup(c)x=a ̸= ∅
if last [c, x, a] = nil then1

τ ← getFirstValidTuple((c, x, a))2
else3

j ← getFirstInvalidPosition(c, last [c, x, a])4
if j = −1 then5
return true6

else7
τ ← getNextValidTuple((c, x, a), last [c, x, a], j)8

while τ ̸= nil do9
if τ ∈ rel(c) then10

last [c, x, a] ← τ11
return true12

τ ← getNextValidTuple((c, x, a), τ)13

return false14

A development of (G)AC3 [BES 05c] has appeared in [BES 01b] and [ZHA 01b],
which refer to it as (G)AC2001 and (G)AC3.1, respectively. The important difference
between GAC3 and GAC2001/3.1 is that when a support is sought for a value, GAC3
starts the search from scratch, whereas GAC2001/3.1 resumes the search from the
point where the last support was found for this value. This simple modification makes
GAC2001 optimal for binary constraints. GAC2001 has an array, denoted by last ,
that stores (the identity or reference of) the last support which has been found for
each c-value (c, x, a): last [c, x, a] is the last support found for (x, a) on c. Initially, all
elements of this three-dimensional array last must be initialized to the special value
nil .
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GAC2001 uses seekSupport-2001, Algorithm 19, which is called by revise,
Algorithm 8, which is itself called in Algorithms 7 and 9. Revision of an arc involves
checking the validity of the last support, for each c-value, and if necessary seeking a
new support. This does not affect the first call: when last [c, x, a] = nil , seekSupport-
3 and seekSupport-2001 behave identically. When last [c, x, a] ̸= nil , a validity check
is performed by calling getFirstInvalidPosition. If −1 is the integer value returned by
this function, the tuple last [c, x, a] is still a support; this is why true is returned at
line 6. Otherwise, the smallest valid tuple τ such that τ >lex last [c, x, a] and τ [x] = a
is computed at line 8 (τ may also be nil ) by calling Algorithm 17. For GAC2001,
when a new support is found, this support (or its identity) is recorded in the structure
last (see line 11).
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(a) First call: eight constraint checks for both
AC3 and AC2001
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(b) Second call: seven constraint checks
for AC3 but only one constraint check for
AC2001

Figure 4.3. Binary constraint used to illustrate the effort required to perform revise(cxy, x)

EXAMPLE.– With the binary constraint cxy in Figure 4.3 we can illustrate the
difference of behavior between (G)AC3 and (G)AC2001. When revise(cxy, x) is called
for the first time by AC3 (Figure 4.3(a)), the following operations are performed.

– For (x, a): (y, a) is successfully checked, i.e. the valid tuple (a, a) is found to
belong to rel(cxy).

– For (x, b): (y, a) and (y, b) are unsuccessfully checked, but (y, c) is successfully
checked.

– For (x, c): (y, a), (y, b) and (y, c) are unsuccessfully checked, but (y, d) is
successfully checked.
Exactly eight constraint checks are needed to find that all values in dom(x) have
at least one support in cxy. Now consider the first revision of (cxy, x) by AC2001.
Because this is the first revision, all elements of the array last have been initialized to
nil . In this case AC2001, like AC3, requires eight constraint checks. But after the first
revision by AC2001, we have:

– last [cxy, x, a] = a;
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– last [cxy, x, b] = c;
– last [cxy, x, c] = d.

Here, adopting a simplification that is usual for the binary case, we only show strict
supports, i.e. single values instead of pairs of values. Without this simplification,
last [cxy, x, a] designates (a, a) or ((x, a), (y, a)) in extended notation, which is easily
seen to be equivalent.

Suppose now that the v-value (y, c) has been deleted elsewhere (by another
revision involving y and a constraint other than cxy) and that revise(cxy, x) is called
again. In Figure 4.3(b), AC3 needs 1 + 3 + 3 = 7 constraint checks, whereas AC2001
only needs one constraint check (plus three validity checks) because:

– last [cxy, x, a] = a, which remains valid;
– last [cxy, x, b] = c, which is not valid; but as (y, d) is successfully checked, we

obtain last [cxy, x, b] = d;
– last [cxy, x, c] = d, which remains valid.

Comparison of the worst-case time complexities of GAC3 and GAC2001 confirms
the theoretical interest of GAC2001. We now consider versions of these algorithms
that use variable-oriented propagation. For GAC3, the worst-case time complexity
is as stated in [BES 06], but the worst-case space complexity is different since the
propagation schemes are different. Here, GAC3 corresponds to Algorithm 9 which
calls Algorithm 18 indirectly.
PROPOSITION 4.2.– GAC3 admits a worst-case time complexity in O(er3dr+1) and
a worst-case space complexity in O(n + e).

Proof. First, note that the space complexity of introducing time-stamps (for the
variable-oriented scheme) is Θ(n + e) while the time complexity of managing them
has no impact on the overall worst-case time complexity of the algorithm. If we
consider the total5 worst-case time complexity of revise for a given c-value (c, x, a)
with r being the arity of c, we know that it can be called at most (r − 1)d (each time
a value is removed from the domain of a variable which is different from x and in the
scope of c), and that for each call, at most dr−1 tuples will be checked. Assuming that
a constraint check is O(r), we obtain a total worst-case time complexity of revise for
a given c-value (c, x, a) in O(r2dr). Assuming that r is the largest constraint arity,
as the number of c-values is O(erd), we obtain a total worst-case time complexity
of revise in O(er3dr+1). We can show that the rest (i.e. when ignoring the calls to
revise) of Algorithm enforceGACvar is O(n + der2). As n is O(er), the worst-case

5. Total means considering the cost of all successive calls to the mentioned procedure or
algorithm.
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time complexity of enforceGACvar is O(er3dr+1). In terms of space, Q is O(n) and
time-stamps are Θ(n + e). So, we obtain an overall worst-case space complexity in
O(n + e).

COROLLARY 4.3.– On a binary constraint network, GAC3, which is classically
called AC3, admits a worst-case time complexity in O(ed3) and a worst-case space
complexity in O(e).

For GAC2001, we obtain the following complexities; proofs can be found in
[BES 05c]. Here GAC2001 is Algorithm 7 or Algorithm 9 calling Algorithm 19
indirectly.

PROPOSITION 4.4.– GAC2001 admits a worst-case time complexity in O(er2dr) and
a worst-case space complexity in O(erd).

COROLLARY 4.5.– On a binary constraint network, GAC2001, which is classically
called AC2001, admits a worst-case time complexity inO(ed2) and a worst-case space
complexity in O(ed).

Interestingly enough, for binary networks, AC2001 has optimal worst-case time
complexity.

4.4. More about general-purpose GAC algorithms

Incrementality, multi-directionality and substitutability are important properties of
GAC algorithms. These properties allow better characterization of general-purpose
GAC algorithms. After an introduction to these properties, this section provides an
overview of classical generic GAC algorithms, including fine-grained ones. Various
recent developments are postponed to the next section.

4.4.1. Important properties

4.4.1.1. Incrementality
GAC3, GAC2001 and other known generic GAC algorithms, are incremental, as

defined below. This property is used in the development of further efficient algorithms
based on (generalized) arc consistency (e.g. see SAC-Opt and SAC3 described later in
Chapter 6).

The general meaning of incrementality is as follows. Many algorithms repeatedly
compute a new value from an old one after a small modification to the computation
context. An algorithm is incremental if it does not compute the new value from scratch
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but exploits both the old value and the modifications made to the environment. For
example, if f is a function that computes the sum of a set of integers, f is incremental
if after including a further integer in the set, the new sum is computed from the old
one simply by adding this new integer. Inside MAC, when a search decision (variable
assignment or value refutation) is made, there is a transition from a search node to a
new one after enforcing GAC. Here GAC is enforced on the current network (not the
initial one) with a modification of the domain of the variable involved in the search
decision. In this respect, GAC algorithms are incremental. Incrementality of GAC
algorithms is more specifically understood in terms of worst-case time complexity as
follows:

DEFINITION 4.6.– [Incrementality] A GAC algorithm is said to be incremental iff its
worst-case time complexity is the same when it is applied once on a given network
P and when it is applied up to nd times on P where, between any two consecutive
executions, at least one value has been deleted.

x = a x = a

y ̸= b

. . .

O(ed2)

O(ed2)

O(ed2)

Figure 4.4. Consequence of the incrementality of GAC algorithms: the worst-case time
complexity of enforcing GAC on a node is the same as enforcing GAC all along a branch. This

is illustrated here with an optimal AC algorithm

For example, on the left of Figure 4.4 (G)AC is enforced on a binary constraint
network. Assuming an optimal AC algorithm, the worst-case time complexity is then
O(ed2). At the center, the search decision x = a is taken and AC is maintained. The
(total) worst-case time complexity of these two AC enforcements remains O(ed2).
After each new decision we remain in O(ed2), so AC is enforced (maintained) all
along a branch of a search tree in O(ed2).
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4.4.1.2. Multi-directionality
Multi-directionality is a very general property that enables GAC algorithms to

avoid useless work such as unnecessary constraint checks.

DEFINITION 4.7.– [Multi-directionality] Let c be a constraint and τ be a support on
c. The constraint c is said to be multi-directional (bi-directional if c is binary) because
for each variable x ∈ scp(c), τ is a support for (x, τ [x]) on c.

For example, if cxyz is a ternary constraint and if τ = (a, b, c) is a support on cxyz ,
then τ is a support on cxyz for (x, a), (y, b) and (z, c). Although trivial, this general
property of constraints is not always exploited by algorithms. Ideally, a GAC algorithm
should verify the following related properties. But first, note that in any generic GAC
algorithm, a constraint check τ ∈ rel(c) is always performed with respect to a c-value
(c, x, a).

DEFINITION 4.8.– For any given c-value (c, x, a) and for any given tuple τ , a GAC
algorithm exploits:

– positive uni-directionality iff τ ∈ rel(c) is not checked wrt (c, x, a) if there exists
a support τ ′ for (x, a) on c already successfully checked wrt (c, x, a);

– negative uni-directionality iff τ ∈ rel(c) is not checked wrt (c, x, a) if it has
already been unsuccessfully checked wrt (c, x, a);

– positive multi-directionality iff τ ∈ rel(c) is not checked wrt (c, x, a) if there
exists a support τ ′ for (x, a) on c already successfully checked wrt a c-value (c, y, b)
such that y ̸= x;

– negative multi-directionality iff τ ∈ rel(c) is not checked wrt (c, x, a) if τ ∈
rel(c) has already been unsuccessfully checked wrt a c-value (c, y, b) such that y ̸= x.

Roughly speaking, these properties correspond to properties 1, 3a, 2 and 3b of
[BES 99]. For some values, these properties allow inference of existence or non-
existence of a support without requiring any search effort. Before going any further, it
is already easy to see that GAC2001/3.1 uses positive and negative uni-directionality.

4.4.1.3. Substitutability
Substitutability is defined with respect to all solutions of a constraint network;

see Definition 1.62. Neighborhood substitutability [FRE 91] is a restricted form of
substitutability defined with respect to all constraints of a constraint network. We
now consider a further restricted form of substitutability that is defined independently
for each constraint; this is a direct adaptation of neighborhood interchangeability
according to one constraint introduced in [HAS 93]. Restricting such a property to
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a unique constraint may lead to a great number of locally substitutable values, which
can be useful in our context. The following definition uses Notation 1.16:

DEFINITION 4.9.– [Substitutability] Let c be a constraint, x ∈ scp(c) and {a, b} ⊆
dom(x). (x, a) is c-substitutable for (x, b) iff sup(c)↓x=a⊇ sup(c)↓x=b.

In the example in Figure 4.5, we have (x, b) cxy-substitutable for (x, a) because
sup(cxy)↓x=b= {a, b, c} ⊇ sup(cxy)↓x=a= {b, c}. Note that this substitutability
relation restricted to a constraint is a preorder. The following proposition (the proof of
which is trivial) establishes that when (x, a) is c-substitutable for (x, b), the presence
of a support for (x, b) on c guarantees the presence of a support for (x, a) on c, and
conversely, the absence of supports for (x, a) on c guarantees the absence of supports
for (x, b) on c.

yx

a

b

c

d

a

b

c

d

sup(cxy)↓x=b⊇ sup(cxy)↓x=a

sup(cxy)↓x=c⊇ sup(cxy)↓x=d

sup(cxy)↓y=c⊇ sup(cxy)↓y=b

sup(cxy)↓y=b⊇ sup(cxy)↓y=a

Figure 4.5. Presence of cxy-substitutable values

PROPOSITION 4.10.– Let c be a constraint, x ∈ scp(c) and {a, b} ⊆ dom(x) such
that (x, a) is c-substitutable for (x, b). If sup(c)↓x=b ̸= ∅ then sup(c)↓x=a ̸= ∅.

EXAMPLE.– Figure 4.6 illustrates how application of Proposition 4.10 can reduce
effort of consistency checking. This example assumes that the domain of y has been
reduced to the two values a and b, and that the domain of x is to be revised. First,
when trying to find a support for (x, a), (y, b) is found. Substitutability information
in Figure 4.5 implies directly that (x, b) also admits a support. Second, absence of
support for (x, c) implies absence of support for (x, d).

Note finally that two values related by a substitutability relation restricted to a
constraint remain in this relation when the domain of some variables in scp(c) are
reduced. In other words, the relation is preserved under domain reduction. We can
say that a GAC algorithm (partially) exploits substitutability iff it (partially) exploits
Proposition 4.10.
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yx

a

b

c

d

b

c

d

a

sup(cxy)↓x=a ̸= ∅ ⇒ sup(cxy)↓x=b ̸= ∅
sup(cxy)↓x=c= ∅ ⇒ sup(cxy)↓x=d= ∅

Figure 4.6. Inferences made by exploiting substitutability information from Figure 4.5

4.4.2. Overview

This section gives a brief account of published generic algorithms that enforce
(generalized) arc consistency. We omit AC1 [MAC 77a] which is a brute-force
algorithm, AC2 [WAL 72, MAC 77a] which corresponds to a particular case of AC3,
and AC5 [HEN 92] which is a parameterized algorithm that can be instantiated to
be the same as AC3 or AC4 (or to exploit some properties of constraints). We also
omit algorithms GAC3, GAC2001 and GAC3rm because these are described in other
sections.

For binary constraint networks, AC4 [MOH 86] is the first published algorithm
admitting an optimal worst-case time complexity. By explicitly storing the list of
supports for each value, AC4 allows direct identification of values that become
unsupported when values are deleted. Unluckily, its initialization phase is expensive
because it requires performance of all possible constraint checks on all constraints.
This is why AC3 is on average better than AC4 [WAL 93]. Anyway, here is a brief
description of AC4 which, when applied to a binary constraint network P , requires
the following data structures:

– a propagation queue (set) Q containing values in P that have been deleted but
not yet processed;

– for each v-value (x, a) of P , a set sup[x, a] containing the (initial) supports for
(x, a) over all constraints (here sup[x, a] = ∪c∈cons(P )|x∈scp(c) sup(c)↓x=a);

– for each c-value (c, x, a) of P , a counter cnt [c, x, a] indicating the number of
(current) supports for (x, a) on c, i.e. cnt [c, x, a] = | sup(c)↓x=a|.

The structure cnt of counters is updated during the search, permitting the identification
of values that no longer have support on a constraint. The structure sup of supports
remains unchanged after its initial computation (during a preprocessing phase). In
fine-grained algorithms, constraint propagation is guided by (deleted) values (recorded
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in Q). AC4, which is the first published fine-grained algorithm, admits a worst-case
time complexity in O(ed2) and a worst-case space complexity in O(ed2).

The non-binary generalization of AC4 to non-binary constraints also reaches
worst-case time optimality; specifically, GAC4 [MOH 88] admits a O(erdr) time
complexity, which is optimal [MOH 88, BES 06]. Its data structures are:

– a propagation queue (set) Q containing values of P that have been deleted but
not yet processed;

– for each c-value (c, x, a) of P , a set sup[c, x, a] containing the current supports
for (x, a) on c, i.e. sup[c, x, a] = sup(c)x=a.

Initialization of GAC4, Algorithm 20, iterates over the set of supports sup(c)
of every constraint c. For an intensional constraint, this set can be obtained by
“computing” val(c) ∩ rel(c): building the three-dimensional array sup[] is then
O(rdr) per constraint. For an extensional (positive) constraint, we initially have
table[c] = rel(c) = sup(c): building the three-dimensional array sup[] is then
O(rt) per constraint where t = table[c].length . After the initialization phase, all
constraints are represented extensionally by means of the structure sup[]. This means
that AC4 and GAC4 are essentially filtering algorithms for table constraints. Note
that GAC4 applied to binary constraint networks is not exactly equivalent to AC4
(the data structures are slightly different). More information about GAC4 and its
implementation will be provided in section 5.5.3.

(G)AC4 suffers both from its space complexity and its time-expensive initialization
phase. For the binary case, to reach optimality, it is only necessary to process a single
support for each value, instead of collecting and counting all supports. As soon as a
support is found for a value, we can simply record this support and consider another
value. More precisely, at any moment, if (y, b) is the smallest (strict) support on a
binary constraint cxy that has been found for a v-value (x, a), then (x, a) can be
recorded in a list S[y, b] associated with (y, b). S[y, b] is a set (list) containing the
v-values whose smallest support found most recently is (y, b). AC6 [BES 94] is a fine-
grained algorithm that works in this way. In AC6, propagation is guided by (deleted)
values as in AC4: when a v-value (y, b) is removed, a new support for each value in
S[y, b] is sought. The fine-grained algorithm AC6 admits an optimal worst-case time
complexity in O(ed2) and a worst-case space complexity in O(ed).

The algorithm AC7 [BES 99] can be seen as an optimization of AC6 using
bi-directionality of constraints. Whereas AC6 exploits positive and negative
uni-directionality, AC7 is additionally able to exploit positive and negative bi-
directionality. AC4 also benefits from this nice feature but at the cost of systematically
performing all constraint checks at preprocessing time. To complete our comparison,
note that the coarse-grained AC3 does not exploit any of these basic properties (this
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Algorithm 20: GAC4(P : P): Boolean
Output: true iff GAC (P ) ̸= ⊥
// Initialization of Q; Q contains v-values
Q ← ∅1
foreach constraint c of P do2
foreach pair (x, a) such that x ∈ scp(c) ∧ a ∈ dom(x) do3

sup[c, x, a] ← ∅4

foreach support τ ∈ sup(c) do5
foreach variable x ∈ scp(c) do6

sup[c, x, τ [x]] ← sup[c, x, τ [x]] ∪ {τ}7

foreach pair (x, a) such that x ∈ scp(c) ∧ a ∈ dom(x) do8
if sup[c, x, a] = ∅ then9

remove a from dom(x)10
Q ← Q ∪ {(x, a)}11
if dom(x) = ∅ then12
return false13

// Propagation through Q
while Q ̸= ∅ do14

pick and delete (x, a) from Q15
foreach constraint c of P such that x ∈ scp(c) do16
foreach tuple τ ∈ sup[c, x, a] do17
foreach variable y ∈ scp(c) | y ̸= x do18

b ← τ [y]19
if b ∈ dom(y) then20

remove τ from sup[c, y, b]21
if sup[c, y, b] = ∅ then22

remove b from dom(y)23
Q ← Q ∪ {(y, b)}24
if dom(y) = ∅ then25
return false26

return true27

www.it-ebooks.info

http://www.it-ebooks.info/


212 Constraint Networks

explains its sub-optimality), whereas AC2001 exploits positive and negative uni-
directionality, just like AC6. Recall that bi-directionality means that if a v-value (y, b)
supports (is compatible with) a v-value (x, a) on a binary constraint cxy then (x, a)
symmetrically supports (y, b) on cxy. Hence, if a constraint check (a, b) ∈ rel(cxy)
is performed when looking for a support of (x, a), there is no need to perform
the same constraint check when looking for a support of (y, b) provided that the
constraint check has been recorded as a success or a failure (positive and negative
bi-directionality exploitation). Among all algorithms cited above, AC7 is the only one
that fully takes bi-directionality into account

Like AC6, the fine-grained algorithm AC7 admits an optimal worst-case time
complexity in O(ed2) and a worst-case space complexity in O(ed). However, AC7
can save a substantial number of constraint checks due to its refined construction.
Unfortunately, although attractive, AC7 is certainly one of the most complex
AC algorithms to implement. In particular, management of its data structures
upon backtracking in MAC is not trivial; nor is its generalization to non-binary
constraints. This is certainly one of the reasons for more recent development of
simpler algorithms. One of these is AC3d [DON 02] which, following AC7, partially
exploits bi-directionality. AC3d is a coarse-grained hybrid of AC3 and dead-end
elimination (DEE) [GAS 78]. The main difference between AC3 and AC3d is that
AC3d sometimes simultaneously revises the domain of two variables involved in the
same (binary) constraint. When the revision ordering heuristic of arc-oriented scheme
selects an arc (cxy, x) from Q, AC3d checks whether the arc (cxy, y) is also present
in Q. If this is the case, then AC3d uses a double-support domain heuristic to revise
the domains of x and y simultaneously. This heuristic checks in priority sequence two
values whose status is unknown. The advantage of a double support is that, for price
of a single constraint check, it shows that two values are supported. AC3dl and AC3ds

[MEH 04] are closely related to AC3d.

In the context of coarse-grained algorithms, constraint multi-directionality has
also been considered in [LEC 03a]. By simply grafting residual supports (which easily
permit partial exploitation of positive multi-directionality) to GAC2001/3.1, GAC3.2
has produced quite competitive results. GAC3.2 can be defined as GAC2001/3.1
+ GAC3rm because it uses the smallest supports of GAC2001/3.1 and the residual
supports of GAC3rm. Residual supports, and the algorithm GAC3rm, are introduced
in section 4.5.2.

AC3.3 is the only coarse-grained algorithm that takes bi-directionality fully into
account. AC3.3 records, for each v-value, the last smallest support that has been
found, as in AC2001. AC3.3 also records, for each v-value the number of its current
extern supports. An extern support for a v-value (x, a) on cxy is a support found for
another v-value (y, b) on cxy . The structure last in AC2001 is used to benefit from
positive and negative uni-directionality and a new structure denoted ext is introduced
to exploit positive bi-directionality. For every c-value (c, x, a), ext [c, x, a] is the
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number of current extern supports for (x, a) on c. For a binary constraint cxy , we
have: ext [cxy, x, a] = |{(y, b) | last [cxy, y, b] = (x, a)}|.

Algorithm 21: seekSupport-3.3((c, x, a): c-value): Boolean
Require: adapting seekSupport-2001 to deal with v-values as last supports
Output: true iff sup(c)x=a ̸= ∅
if ext [c, x, a] > 0 then1
return true2

(y, b) ← last [c, x, a] // last [c, x, a] is either a v-value or nil3
if (y, b) ̸= nil then4
if b ∈ dom(y) then5
return true6

else7
ext [c, y, b] ← ext [c, y, b] − 18

τ ← seekSupport-2001((c, x, a)) // τ is a v-value or nil9
if τ = nil then10

remove a from dom(x)11
foreach constraint c′ ∈ cons(P ) | x ∈ scp(c′) ∧ c′ ̸= c do12
if last [c′, x, a] ̸= nil then13

(z, c) ← last [c′, x, a]14
ext [c′, z, c] ← ext [c′, z, c] − 115

return false16
else17

last [c, x, a] ← τ18
(y, b) ← last [c, x, a]19
ext [c, y, b] ← ext [c, y, b] + 120
return true21

Initialization of AC3.3 sets all last elements to nil and all ext counters to 0. Then
AC3.3 uses seekSupport-3.3, Algorithm 21, which is called by revise, Algorithm 8,
itself called in Algorithms 7 and 9. For every c-value (c, x, a), last [c, x, a] designates
here a v-value (or nil ). Counters are carefully updated when a support is lost (line 8),
or when a support is found (line 20) or when a value is removed (line 15). AC3.3 has
a space complexity in O(ed) and an optimal worst-case time complexity in O(ed2).
Indeed, the total worst-case time complexity of updating counters (lines 12 to 15)
when values are removed is O(ed) because the total cost of updating counters n times
(one value per domain) is O(e). All other operations are performed in constant time,
except for seekSupport-2001 (assumed to deal with v-values as last supports without
any loss of generality because constraints are binary), which gives a complexity
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in O(ed2). Like GAC2001/3.1 and GAC3.2, AC3.3 can exploit negative multi-
directionality by focusing the search for supports on so-called candidates [BES 97],
which are tuples that have never been checked. A full description can be found in
[LEC 03a].

Attempting a synthesis of many related algorithms, Régin [RÉG 05] has devised
a general algorithm, called CAC. CAC is claimed to be a configurable, generic
and adaptive algorithm for establishing arc consistency on binary constraints. A
proposed new nomenclature for different arc consistency algorithms is based on CAC.
This nomenclature indicates features of AC algorithms, such as the values that are
reconsidered when a domain is modified, or whether bi-directionnality is taken into
account, or how a new support is sought. Several new combinations are available.
The important concept of residual supports should also be integrated to this general
schema.

Another framework [LIK 07] addresses the central issue of enforcing (maintaining)
AC during search. New algorithms, called arc consistency during search (ACS), are
designed to take advantage of residual data left by previous invocations of the basic
AC enforcement procedure, or to employ an adaptive domain re-ordering technique
when values are deleted and restored. Some variants of ACS are original and may
open some perspectives for existing filtering algorithms, including those that achieve
a stronger form of local consistency.

Finally, as shown earlier (following [HAS 93, BOU 04c]), substitutability is a
general constraint property allowing inference of support. Substitutability can be
integrated into AC-Inference [BES 99] which is an arc consistency algorithm that
avoids useless constraint checks by taking account of generic and specific properties
of constraints. AC7 is a derivative of AC-Inference that simply uses bi-directionality.
It should be possible to derive from AC-Inference a general-purpose fine-grained arc
consistency algorithm exploiting both bi-directionaly and substitutability. Although
substitutability is promising, its practical value appears to be limited to certain
applications, such as job shop scheduling, where the number of substitutable values is
substantial.

4.5. Improving the efficiency of generic GAC algorithms

This section presents three simple mechanisms for improving performance
of general-purpose GAC algorithms. The first mechanism avoids some useless
revisions and constraint checks, which are operations at the heart of generic GAC
algorithms. This mechanims uses static information, computed in a preprocessing
stage, concerning cardinality of conflict sets. Next, residual supports, also called
residues, deal simply and efficiently with supports. Grafted to GAC3, known
pathological cases disappear. Furthermore, when residues are used within MAC,
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no maintenance has to be done upon backtracking, and so there is no overhead;
in contrast, other sophisticated (and optimal) GAC algorithms have backtracking
overheads. The final idea in this section is to use bitwise operations to speed up
important computations such as the search of supports.

4.5.1. Exploiting cardinality of conflict sets

When a local consistency is maintained during search, this means that a
propagation phase is repeated at each elementary step of the search process, i.e.
after each search decision. The idea presented here, following [BOU 04c, MEH 05a],
is to do substantial computation during a preprocessing stage in order to reduce
the cost of the successive propagation phases. More precisely, [BOU 04c] proposes
a static analysis of the nature of each constraint in order to extract interesting
information about conflict sets, covering sets and substitutability. This knowledge
can be used by any backtracking algorithm that alternates between search decisions
and constraint propagation enforcing a domain-filtering consistency. In this book,
we concentrate on using the cardinality of conflict sets to make some inferences
about the presence of supports. We believe that it is well worthwhile to integrate this
quite simple idea into any (coarse-grained) GAC algorithm in order to improve its
performance.

The following proposition (whose proof is immediate) shows that if P is a network
obtained from P init after deleting some values, it is possible to infer directly that
a value is supported by a constraint in P from information about the conflict set
of this value in P init. Roughly speaking, we can say it allows a partial exploitation
of uni-directionality. To distinguish between conflict sets in P and P init, we note
coninit(c)x=a the set of conflicts for (x, a) on c in P init; sup(c)x=a is the set of
supports for (x, a) on c in P . Recall that a conflict on a constraint c is a valid tuple
τ on c that is not accepted by c; if a conflict τ on c involves a v-value (x, a), τ is a
conflict for (x, a) on c.

PROPOSITION 4.11.– Let P and P init be two constraint networks such that P ≼d

P init, and (c, x, a) be a c-value of P . If | coninit(c)x=a| < |
∏

y∈scp(c)\{x} dom(y)|
then sup(c)x=a ̸= ∅.

EXAMPLE.– To illustrate Proposition 4.11, consider a binary constraint cxy. In
Figure 4.7, (a, b) and (a, e) are two conflicts for (x, a) on cxy (in P init); this is why
| coninit(cxy)x=a| = 2. For every value a ∈ dom(x), when the number of conflicts
for (x, a) on cxy in P init is strictly less than the size of dom(y), this implies the
existence of a support for (x, a) on cxy in P . Figures 4.7 and 4.8 provide an example.
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Figure 4.7. Cardinality of conflict sets for the arc (cxy, x)
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|coninit(cxy)x=a| = 2 ∧ |dom(y)| > 2 ⇒ sup(cxy)x=a ̸= ∅
|coninit(cxy)x=b| = 1 ∧ |dom(y)| > 1 ⇒ sup(cxy)x=b ̸= ∅
|coninit(cxy)x=c| = 4 ∧ |dom(y)| ≤ 4 ⇒ sup(cxy)x=c

Figure 4.8. Inferences made by exploiting cardinality information from Figure 4.7

Some useless constraint checks can be avoided by an algorithm that exploits this
property. Moreover the following corollary allows avoidance of full revision:

COROLLARY 4.12.– Let P and P init be two constraint networks such that
P ≼d P init, c ∈ cons(P ) and x ∈ scp(c). If maxa∈dom(x) | coninit(c)x=a| <
|
∏

y∈scp(c)\{x} dom(y)| then for every value a in dom(x), we have sup(c)x=a ̸= ∅.
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To use Proposition 4.11 and Corollary 4.12 in practice, we need first to count the
initial conflicts for each value. Also, to avoid the overhead of iterating over values in
the current domain, it is certainly worth considering maxa∈dominit(x) | coninit(c)x=a|
instead of maxa∈dom(x) | coninit(c)x=a| in Corollary 4.12. Two data structures are
required:

– a three-dimensional array nbConflicts that gives for each c-value (c, x, a) the
number of elements in coninit(c)x=a;

– a two-dimensional array nbMaxConflicts that gives for each arc (c, x) the
maximum number of conflicts on c for all values in dominit(x).

These arrays can be initialized by function initializeCS, Algorithm 22 (CS stands for
Conflict Sets); the formal parameter P is certainly P init in practice (or the constraint
network obtained after having preprocessed P init as explained below). The worst-case
space complexity of this algorithm is O(erd), and the worst-case time complexity is
O(erdr), assuming, as usual, that a constraint check is O(r).

Algorithm 22: initializeCS(P : P)
∀c ∈ cons(P ), ∀x ∈ scp(c), ∀a ∈ dom(x)1

nbConflicts[c, x, a] ← 02
∀c ∈ cons(P ), ∀τ ∈ val(c) \ rel(c), ∀x ∈ scp(c)3

nbConflicts[c, x, τ [x]] ← nbConflicts[c, x, τ [x]] + 14
∀c ∈ cons(P ), ∀x ∈ scp(c)5

nbMaxConflicts[c, x] ← max{nbConflicts[c, x, a] | a ∈ dom(x)}6

After initialization of the structures, revisions can be made more efficient. It is
sufficient to employ Algorithm 23 instead of Algorithm 8. Line 2 avoids some useless
revisions simply by testing whether the presence of a support for every value can be
inferred from knowledge of the maximum number of conflicts. For each value, line 5
avoids useless constraint (or validity) checks by using the number of conflicts initially
computed for this value.

Of course, this variant is not very interesting for establishing GAC stand-alone.
The initialization phase is heavy (similar to that of GAC4), and indeed penalizing if
no search is performed. Therefore this variant should be used within MAC, which
maintains GAC during a backtrack search. Initializing the new data structures before
or after preprocessing and using them throughout search balances the initialization
cost against the benefit that can be obtained.

Initialization can be achieved with no overhead if the number of conflicts (or an
upper approximation) is known in advance. More precisely, for some constraints, the
semantics provides this information directly. For example, for an inequation constraint
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Algorithm 23: reviseCS(c: constraint, x: variable): Boolean
Output: true iff the revision of the arc (c, x) is effective
nbTuples ← |

∏
y∈scp(c)\{x} dom(y)|1

if nbTuples > nbMaxConflicts[c, x] then2
return false3

nbElements ← |dom(x)|4
foreach value a ∈ dom(x) | nbTuples ≤ nbConflicts[c, x , a] do5
if ¬seekSupport(c, x, a) then6

remove a from dom(x) [expl(x ̸= a) ← getExplanation(c, x, a)]7

return nbElements ̸= |dom(x)|8

x ̸= y, the number of conflicts for each c-value is at most 1. For such a constraint we
can use this fact to initialize the data structures in O(d), whereas function initializeCS

is O(d2). In any case, once the counters are initialized there will be no revision
concerning an inequation constraint unless a variable becomes fixed. This means that,
for some constraints, generic filtering, i.e. the general function reviseCS, may become
as efficient as specialized filtering procedures.

The idea described here has been generalized in [MEH 05a] by associating a
weight with every support and reasoning with weights to avoid useless constraint
checks and useless revisions, with so-called support conditions and revision
conditions. Actually finding a weighting function that gives better practical results (in
terms of CPU time) than the one given here (the weight of each support being equal
to 1) is not easy.

In related work, probabilistic support conditions and probabilistic revision
conditions have been investigated in [MEH 07]. The probabilistic support condition
holds for a v-value (x, a) with respect to a constraint c, if the probability of having
a support for (x, a) on c exceeds a carefully chosen threshold. The probabilistic
revision condition holds for an arc (c, x) if the probability of having some support on
c for each value a in dom(x) is above some threshold. Even if choosing the threshold
value seems a little bit tricky, the practical value of these probabilistic conditions has
been shown on many problems (with a threshold value set to 0.9).

We develop the idea of probabilistic revision condition below for binary
constraints. Similarly to nbMaxConflicts , we define nbMinSupports[c, x] to
be the minimum number of supports on c for values in dominit(x); we have
nbMinSupports[c, x] = mina∈dominit(x) | supinit(c)x=a|. For a binary constraint cxy,
if we assume that each value in dominit(y) is equally likely to be removed during
inference or search processes, the probability Pr(cxy, x) that there exists a support
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on cxy for each value of x is:

Pr(cxy, x) = 1 −
(

|dominit(y) \ dom(y)|
nbMinSupports[cxy, x]

)/(
|dominit(y)|

nbMinSupports[cxy, x]

)

If |dominit(y)\dom(y)| < nbMinSupports[cxy , x ], then
(
| dominit(y)\dom(y)|
nbMinSupports[cxy ,x ]

)
=

0. In that case, we deduce that all values in dom(x) are arc-consistent, i.e. have a
support on cxy because Pr(cxy, x) = 1; this deduction is made differently by
means of the test at line 2 of Algorithm 23. Concretely, the probabilistic revision
condition allows us to generalize the procedure reviseCS: considering a threshold
value T ∈ [0, 1], we replace lines 2 and 3 of Algorithm 23 by:
if Pr(c, x) ≥ T then
return false

When T is set to 1, we have the guarantee that arc consistency is fully enforced.
Otherwise, one may only reach a partial form of arc consistency.

4.5.2. Exploiting residues

We now introduce residual supports, which are also known as residues. A residue
for a c-value is a support that has previously been found and stored for future use.
The point is that a residue is not required (guaranteed) to represent a lower bound of
the smallest current support for a value. Multi-directional residues were introduced in
[LEC 03a], uni-directional residues were introduced in [LIK 04] andmultiple residues
were studied in [LEC 08b].

4.5.2.1. Algorithm GAC3rm

The basic algorithm GAC3 can be refined as follows: before searching for a
support for a value from scratch, the validity of the residue associated with this
value is checked. This development of GAC3 is denoted by GAC3rm. GAC3rm

partially exploits positive multi-directionality (and also uni-directionality), by using
Algorithm 24 instead of Algorithm 18. Every element of a three-dimensional array
res is initialized to the special value nil . For a c-value (c, x, a), res[c, x, a] stores
the residue for (x, a) on c. Whenever a support is required for a c-value (c, x, a), the
validity of the residue associated with (c, x, a) is tested first (line 1, Algorithm 24). If
this fails, a new support is sought from scratch (lines 3 through 9). If a support τ is
found, multi-directionality is exploited to update the residues of all values present in
τ (lines 6 and 7), since τ is also a support for (y, τ [y]) on c for each y ∈ scp(c). Thus
r − 1 residues (where r is the arity of c) are obtained for the other values of the tuple
without any effort.
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To derive the variant GAC3r that partially exploits positive uni-directionality, we
replace lines 6 and 7 of Algorithm 24 with:

res[c, x, a] ← τ

For establishing GAC stand-alone on a given constraint network, GAC3r (which
is a derivative of GAC3 exploiting uni-directional residues) can be replaced
advantageously by GAC2001. However, when GAC has to be maintained during
search, MAC3r which corresponds to mac3.1residue in [LIK 04] becomes quite
competitive. GAC3rm is interesting in its own right because it exploits multi-
directional residues just like GAC3.2 [LEC 03a].

Algorithm 24: seekSupport-3rm((c, x, a): c-value): Boolean
Output: true iff sup(c)x=a ̸= ∅
if isValidTuple(c, res [c, x, a]) then1
return true2

τ ← getFirstValidTuple((c, x, a))3
while τ ̸= nil do4
if τ ∈ rel(c) then5
foreach variable y ∈ scp(c) do6

res[c, y, τ [y]] ← τ7

return true8

τ ← getNextValidTuple((c, x, a), τ)9

return false10

EXAMPLE.– Figure 4.3 on page 203 provides an example illustrating the new
algorithm GAC3rm. When revise(cxy, x) is called for the first time by AC3rm,
Figure 4.3(a), all elements of the array res have been initialized to nil (assuming that
revise(cxy, y) has not yet been called). At this time AC3rm requires eight constraint
checks, but after the revision we have:

– res[cxy, x, a] = a;
– res[cxy, x, b] = c;
– res[cxy, x, c] = d.

Here we record strict supports. Suppose now that the v-value (y, c) has been deleted
elsewhere, that residues have not changed, and that revise(cxy, x) is called again; see
Figure 4.3(b). At this time AC3rm requires three constraint checks (plus three validity
checks) since:

– res[cxy, x, a] = a, which remains valid;
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– res[cxy, x, b] = c, which is no longer valid ((y, a) and (y, b) are unsuccessfully
checked, but (y, d) is successfully checked yielding res[cxy, x, b] = d);

– res[cxy, x, c] = d which remains valid.
Remember that here seven constraint checks were required by AC3 but only one by
AC2001. However, as will be explained, GAC3rm has some nice features that make it a
good candidate for service as a general-purpose GAC algorithm in constraint solvers.

For the binary case, theory proves that AC3rm, unlike AC3, behaves optimally
when constraints are tight. Consider, for example, the Domino problem introduced in
[BES 05c] and briefly described in section 2.2.5. In this, all constraints except one are
equality constraints. Table 4.1 shows experimental results obtained with AC2001, AC3
and the new algorithm AC3rm on some instances of this problem. The time in seconds
(CPU) and the number of constraint checks (#ccks) are given for each instance. In an
instance named domino-n-d, n is the number of variables and d the number of values
in each domain. These results show that the Domino problem is a pathological case
for AC3 but not for AC3rm.

Instance AC2001 AC3 AC3rm

domino-100-100 CPU 0.23 1.81 0.16
#ccks 1.5 M 18 M 0.9 M

domino-300-300 CPU 6.01 134 3.40
#ccks 40 M 1,377 M 27 M

domino-500-500 CPU 21.4 951 15.0
#ccks 187 M 10,542 M 125 M

domino-800-800 CPU 87 6,144 60
#ccks 767 M 68,778 M 511 M

Table 4.1. Establishing arc consistency on Domino instances

4.5.2.2. Complexity issues
To understand why residues work, we present some theoretical results for binary

instances. In particular, we study the complexity of AC3rm when used stand-alone and
when embedded in MAC. Without any loss of generality, we assume that each domain
contains exactly d values.

PROPOSITION 4.13.– AC3rm admits a worst-case time complexity in O(ed3) and a
worst-case space complexity in O(ed).

Proof. The space complexity of AC3rm is O(ed) since the space for Q (the
propagation queue when using a variable-oriented propagation scheme) is O(n)
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and the space for res is O(e ∗ 2 ∗ d) = O(ed). Like the optimality proof of AC2001
[BES 05c], the number of validity checks performed by AC3rm cannot exceed the
number of constraint checks performed by AC3. As AC3 is in O(ed3) in the worst
case, so is AC3rm.

AC3rm is clearly not optimal. However, it is possible to refine the previous result
by taking into account the tightness of constraints.

PROPOSITION 4.14.– In AC3rm, the total worst-case time complexity of seekSupport-
3rm for any c-value (c, x, a) is O(CS + d) where C = | con(c)x=a| and S =
| sup(c)x=a|.

Proof. Let P be the constraint network that must be enforced AC, and let cxy be a
binary constraint of P . After observing that C + S = d, we can show that the worst
case (in terms of constraint checks with respect to a c-value (cxy, x, a)) occurs when:

– only one value is removed from dom(y) between two successive calls to
revise(cxy, x);

– initial values of dom(y) are ordered in such a way that the C first values
correspond to values that do not support a and the S last values correspond to values
that do support a;

– the first S values removed from dom(y) systematically correspond to the residual
supports successively recorded by AC3rm (until a domain wipe-out is encountered).

Figure 4.9 provides an illustration. For these S + 1 calls (note the initial call) to
seekSupport-3rm(cxy, x, a), there are S × (C + 1) + C constraint checks. The number
of other operations (validity checks and updates of the res structure) in Algorithm 24
performed with respect to (cxy, x, a) is O(d). Hence we have a total worst-case
complexity in O(SC + S + C + d) = O(CS + d).

We can directly exploit this result for tightness-bounded constraints:

DEFINITION 4.15.– [Tightness-bounded Constraint] A constraint c is tightness-
bounded iff for every v-value (x, a) such that x ∈ scp(c), either the number of
supports for (x, a) on c is O(1) or the number of conflicts for (x, a) on c is O(1)
when the greatest domain size d → ∞.

Many common constraints are tightness-bounded; for example, an equality
constraint x = y or an inequation constraint x ̸= y. For equations, each value is
supported at most once, whereas for inequations, each value allows at most one
conflict. A less-than constraint x ≤ y is also tightness-bounded. More precisely, if we
consider that dom(x) = 1..d and dom(y) = 1..d then, when d → ∞, the number of

www.it-ebooks.info

http://www.it-ebooks.info/


Generic GAC Algorithms 223

y

a

x

. . .

. . .

d

Figure 4.9. Worst-case configuration for a c-value (cxy, x, a) in AC3rm: conflicts precede
supports, and between two successive calls to seekSupport-3rm(cxy, x, a), only the value in

dom(y) that corresponds to res[cxy, x, a] is removed

conflicts for any value i of dom(x) is bounded by i while the number of supports for
any value j of dom(y) is bounded by j.

We can now show that AC3rm behaves in an optimal way (for a general-purpose
AC algorithm) when it is applied to constraints of small or high tightness, or more
precisely to tightness-bounded constraints.

PROPOSITION 4.16.– Applied to a binary constraint network only involving tightness-
bounded constraints, AC3rm admits a worst-case time complexity in O(ed2), which is
optimal.

Proof. From Proposition 4.14 the total worst-case time complexity of seekSupport-
3rm for every c-value (c, x, a) is O(CS + d) where C is the number of conflicts for
(x, a) on c and S the number of supports for (x, a) on c. If the binary constraint c is
tightness-bounded, then either C = O(1) and S = O(d), or C = O(d) and S = 0(1)
since C+S = d. This implies that the total worst-case time complexity of seekSupport-
3rm for a c-value (c, x, a) is O(d + d) = O(d). The overall complexity of AC3rm is
therefore O(ed2).

Proposition 4.16 shows that AC3rm behaves optimally when constraints are
tightness-bounded. The (non-optimal) worst-case is when the tightness of the
constraints is medium, i.e. equal to 0.5.

4.5.2.3. Residues within MAC
The previous results are confirmed when the state-of-the-art complete search

algorithm MAC (presented in Chapter 8) is considered. The following results are
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directly obtained from previous propositions, the fact that AC3rm is an incremental
algorithm, and the fact that residues are backtrack-stable structures. This last
observation means that no maintenance of data structures is necessary when
backtracking, as illustrated in Figure 4.10. MAC3rm is MAC maintaining arc
consistency using algorithm AC3rm.

PROPOSITION 4.17.– MAC3rm admits a worst-case time complexity in O(ed3) for
any given branch of the search tree.

PROPOSITION 4.18.– Applied to a binary constraint network only involving tightness-
bounded constraints, MAC3rm admits a worst-case time complexity inO(ed2) for any
given branch of the search tree, which is optimal.

Proof. AC3rm is easily shown to be incremental. The only difference, for the worst-
case scenario, between a single execution of AC3rm and all successive executions
along a branch of the search tree is that residues may be modified when exploring a
subtree. More precisely, imagine that at a given node v of the search tree, we have
a residue τ for a c-value (c, x, a). Next, assume that a positive decision y = b is
taken, and the corresponding subtree is proved to be unsatisfiable. During exploration
of this subtree, a new residue τ ′ may be associated with (c, x, a). The point is that τ ′

is also a valid residue for (c, x, a) at node v. Hence, if the branch (considered in the
proposition) contains the node v followed by the negative decision y ̸= b, even if the
residue τ associated with (c, x, a) at node v is replaced by τ ′ due to the exploration
of the left subtree, this will have no impact, concerning (c, x, a), in the worst-case
scenario of AC3rm.

These theoretical results justify the data in [LIK 04, LEC 07c]. Besides, it is easy
to embed GAC3rm in MAC and SAC algorithms because GAC3rm does not require
any maintenance of data structures during MAC search and SAC inference. On the
other hand, embedding an optimal algorithm such as GAC2001 entails an extra
development effort, with an additional overhead during execution. For MAC2001, on
binary constraint networks this overhead is O(µed) per branch of the binary tree built
by MAC, as we have to take into account the reinitialization of the structure last.
Here, µ denotes the number of refutations (negative decisions) of the branch.

4.5.3. Exploiting bitwise operations

Bitwise parallel operations can improve the practical performance of arc
consistency operations. To enforce arc consistency within a MAC framework,
Ullmann [ULL 76] gave a detailed description of bitwise parallel operations on bit
vectors representing domains and sets of supports. Using this mechanism in a more
general context within MAC and also within FC, McGregor [MCG 79] enhanced
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x ̸= b

w = a

x = b

y ̸= cy = c

z = d

. . .

(a) MAC with backtrack-stable structures

x ̸= b

w = a

x = b

y ̸= cy = c

z = d

. . .

(b) MAC with non-backtrack-stable structures

Figure 4.10. MAC embedding optimal generic GAC algorithms such as GAC2001 requires a
restoration effort before each negative decision along a branch of the search tree. Optimal

GAC algorithms employ non-backtrack-stable data structures, unlike GAC3rm
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speed by using bitwise parallel operations. Bit parallel FC was used subsequently
in [HAR 80, NUD 83]. Following [BLI 96, LEC 08c] we now provide a precise
description of bitwise parallel operations in the enforcement of arc consistency.

It is usual to employ the O notation when presenting results of asymptotic
analysis of time (and space) complexities of algorithms; see Appendix A.2.1.
Asymptotic analysis is relevant to the assessment of algorithms provided that terms
and coefficients ignored from the raw complexity expression are not too large.
Consider, for example, a constraint network having n variables, their domains
comprising d values, and suppose that this network has e binary max-support
constraints. A max-support constraint involving the variables x and y is defined as
follows: the greatest value in the domain of x supports all values in the domain of y,
and vice versa. An example is shown in Figure 4.11.

yx

. . . . . .

Figure 4.11. A max-support constraint. As usual, an edge represents an allowed tuple

If we enforce AC on this network using AC3 or AC2001, exactly 2e.(d2 − d + 1)
constraint checks are necessary to prove that the network is arc-consistent. Suppose
now (without any loss of generality) that the current state of a domain is represented
by a bit vector, in which a bit is associated with each value. A bit is 1 or 0 according
as the associated value is currently present in, or absent from, the domain. Assume
that constraints are represented similarly, so a bit vector represents all allowed and
forbidden values for each c-value (c, x, a). When seeking a support for (x, a) on c, we
can simply apply the bitwise operator AND to two vectors: if the result is not ZERO
(a vector whose each bit is 0), then a support exists.

When each bit vector is implemented as an array of words (natural data units of the
computer architecture), each bitwise operation on two complete bit-vectors requires
a sequence of elementary bitwise operations on pairs of constituent words. If p is the
word size (which is the number of bits per word, usually 32 or 64), then a bitwise
parallel operation on two operand words does p operations on pairs of bits. Returning
to our example, a bitwise parallel operation on two words accomplishes p constraint
checks, so we need up to p times fewer operations when enforcing AC using this
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mechanism (which we call AC3bit) instead of classical AC3, AC2001 and AC3rm

algorithms. Table 4.2 shows experimental results that we have obtained for instances
of this problem on a 64-bit processor. Here instances are denoted by n-d-e, and #ops
is the number of bitwise operations performed by AC3bit or the number of constraint
checks performed by AC3, AC3rm and AC2001. As expected, AC3bit is about 60
times more efficient although AC3bit and AC3 both are O(ed3).

Instance AC2001 AC3 AC3rm AC3bit

250-50-5000 CPU 1.61 1.58 1.56 0.05
#ops 24.5 M 24.5 M 24.3 M 0.5 M

250-100-5000 CPU 6.26 6.17 6.15 0.10
#ops 99.0 M 99.0 M 98.5 M 2.0 M

500-50-10000 CPU 3.21 3.11 3.11 0.11
#ops 49.0 M 49.0 M 48.5 M 1.0 M

500-100-10000 CPU 12.48 12.29 12.27 0.19
#ops 198.0 M 198.0 M 197.0 M 4.0 M

Table 4.2. Establishing arc consistency onmax-support instances

4.5.3.1. Binary representation
This section provides some details of binary representation of domains and

constraints, assuming that each bit vector is implemented as an array of words
(natural data units of the computer architecture). Some programming languages do
not include bit vector syntax and semantics that hide the packing of bit vectors into
words. However, we show that for some bitwise computations, explicit use of arrays
of words allows greater efficiency than can be achieved with monolithic bit vectors.

Without any loss of generality, we assume the use of a 64-bit processor. This means
for example that the declaration of arrays in the Java language would be long[] since
one long corresponds to 64 bits. In this section, we also assume that indices of arrays
start at 0 rather than at 1.

4.5.3.1.1. Representing domains
When a copying mechanism [SCH 99] is used to manage domains during a

backtrack search, a single bit can be associated with each value of each domain.
More precisely, a bit can be associated with the index (starting at 0) of each value
of a domain. When this bit is 1 (resp. 0), this means that the corresponding value is
present in (resp. absent from) the domain. We will call arrays of words, constituting
a compact bit vector representation, the binary representation of domains. For any
variable x, the space complexity is Θ(|dom(x)|), which is optimal.
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Another mechanism used in many current CP systems is called trailing.
Section 1.5.1 precisely describes a possible representation of domains using trailing.
The space complexity of this representation is also Θ(|dom(x)|) for any variable
x, and the time complexity of all elementary operations (determining if a value is
present, removing a value, adding a value, etc.) is O(1). In this context, including and
maintaining the structures for the binary representation of domains does not modify
worst-case space and time complexities as shown below.

In addition to structures proposed in section 1.5.1, we now introduce a two-
dimensional array called bitDom that associates with the domain of each variable
x the binary representation bitDom[x] of dom(x), and:

– when adding (or restoring) the ith value in dom(x), the only operation required
on the structure bitDom is the following:

bitDom[x][i div 64] ← bitDom[x][i div 64] OR masks1 [i mod 64];
– when removing the ith value from dom(x), the only operation required on the

structure bitDom is the following:
bitDom[x][i div 64] ← bitDom[x][i div 64] AND masks0 [i mod 64].

Here, div denotes integer division, mod the remainder operator, OR the bitwise
operator that performs a logical OR operation on each pair of corresponding bits and
AND the bitwise operator that performs a logical AND operation on each pair of
corresponding bits. The structure masks1 (resp. masks0 ) is a predefined array of 64
words that contains in its ith word a value that represents a sequence of 64 bits that are
all set to 0 (resp. 1) except for the ith one. Figures 4.12 and 4.13 illustrate this, using
16-bit words because 64-bit words would be too big for these figures.

4.5.3.1.2. Representing constraints
We shall only consider binary constraints (although this mechanism could be

extended to non-binary constraints of small arity). Recall that a binary constraint
can be represented in extension using a two-dimensional array of Booleans (called
a (0, 1)-matrix) or a list of tuples (called a table), or in intension using a predicate
expression.

. . .

. . .masks1

masks0

Figure 4.12.Masks used for elementary bitwise operations, considering here words of size 16
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bitDom[x ]

bitDom[x ]dominit(x) = {0, 1, . . . , 21} ⇒

dom(x) = {7, 14, 19, 21} ⇒

Figure 4.13. Binary representation of a domain, considering here words of size 16

x

y

(a) (0, 1)-matrix of c

bitSup[c, x , 0 ]

bitSup[c, x , 1 ]

bitSup[c, x , 2 ]

bitSup[c, y , 0 ]

bitSup[c, y , 1 ]

bitSup[c, y , 2 ]

bitSup[c, y , 3 ]

bitSup[c, y , 4 ]

bitSup[c, y , 5 ]

(b) Binary representation of c

Figure 4.14. Binary representation of a constraint c, considering here words of size 16. We
have scp(c) = {x, y} with dom(x) = {0, 1, 2} and dom(y) = {0, 1, 2, 3, 4, 5}

We propose to use a multi-dimensional array called bitSup to obtain a binary
representation of constraints. More precisely, for each c-value (c, x, a), bitSup[c, x, a]
represents the binary representation of the (initial) supports for (x, a) on c. To simplify
the presentation and without any loss of generality, we can assume that each (initial)
domain contains all positive integer values strictly smaller than a given value: a
domain whose size is d is {0, 1, . . . , d − 1}. If c is such that scp(c) = {x, y}, then
(a, b) ∈ rel(c) iff the bit at index b in bitSup[c, x, a] is set to 1 and the bit at index a
in bitSup[c, y, b] is set to 1. An illustration is given in Figure 4.14, again using 16-bit
words.
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Building the bitSup array does not present any particular difficulty if the
constraints are initially given to the solver in extensional form. On the other hand, if
the constraints are given in intension, then all constraints checks have to be performed
initially (by evaluating a predicate) in order to build bitSup. Assuming that each
constraint check is performed in constant time, this incurs an initial overhead of
Θ(ed2). However, for similar predicates and similar signatures of constraints (i.e.
similar Cartesian products built from the domains associated with the variables
involved in the constraints), sub-arrays of bitSup can be shared, potentially saving a
large amount of space and initial constraint checks.

The worst-case space complexity of the binary representation of constraints is
Θ(ed2), while the best-case space complexity is Θ(e + d2), which corresponds to
sharing the same binary representation between all constraints. The worst-case is
associated with unstructured (random) instances, while the best-case corresponds to
structured (academic or real-world) instances that usually involve similar constraints.

4.5.3.1.3. Exploiting binary representations
We can now use binary representations of domains and constraints to implement

some computations efficiently by using bitwise operators. We illustrate our purpose
in three different contexts. Note that for any array t, t[0] denotes its first element and
t.length its size.

First, the following sequence of instructions can be used to determine whether
the domain of a variable x is a subset of the domain of another variable y (such that
dominit(x) = dominit(y)):
foreach i from 0 to bitDom[x].length − 1 do
if (bitDom[x][i] OR bitDom[y][i]) ̸= bitDom[y][i] then
return false

return true

This kind of computation may be useful, for example, when implementing a
symmetry-breaking method by dominance detection; see Chapter 12. In that case,
we can compare the current domain of a variable with one that was recorded earlier,
perhaps from the same variable. This computation can determine efficiently whether
one state is dominated by another.

Second, the following sequence of instructions checks whether, for a binary
constraint c involving a variable x, a v-value (x, a) is c-substitutable for a v-value
(x, b) (see Definition 4.9):
foreach i from 0 to bitSup[c, x, a].length − 1 do
if (bitSup[c, x, a][i] OR bitSup[c, x, b][i]) ̸= bitSup[c, x, a][i] then
return false

return true
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Neighborhood substitutability has been introduced in [FRE 91] and is defined as
follows: given a variable x and two values {a, b} ⊆ dom(x), (x, a) is neighborhood-
substitutable for (x, b) iff for every constraint c | x ∈ scp(c), (x, a) is c-substitutable
for (x, b). The code presented above can be useful in practice to reduce the search
space by eliminating neighborhood-substitutable values (e.g. see [BEL 94, COO 97]).

Finally, the following sequence of instructions can be used to check whether there
exists at least one support for a v-value (x, a) on a constraint c (involving x and a
second variable y):
foreach i from 0 to bitDom[y].length − 1 do
if (bitSup[c, x, a][i] AND bitDom[y][i]) ̸= ZERO then
return true

return false

Note that ZERO denotes a word defined as a sequence of bits all set to 0. This way
of seeking a support was described and used in [ULL 76, MCG 79]. We now provide
a detailed modern formulation of this approach.

For all operations described above, a Boolean answer may be obtained before all
the words have been iterated over. For example, for all three operations, it is possible
to obtain a result after a bitwise operation on the first pair of words (i.e. where i = 0).
However, performing a bitwise operation on bit vectors, and then comparing the result
with another bit vector, can be much more expensive.

4.5.3.2. Algorithms AC3bit and AC3bit+rm

Algorithm AC3bit [LEC 08c] is a derivative of AC3 in which revision is performed
by the function revise, Algorithm 8 or the function reviseCS, Algorithm 23. In AC3bit

the function used to seek supports is seekSupport-3bit, Algorithm 25. Given the binary
representation bitDom[y] of dom(y) and the binary representation bitSup[cxy, x, a]
of the (initial) supports for (x, a) on cxy, AC3bit executes the code presented earlier.

Algorithm 25: seekSupport-3bit((cxy, x, a): c-value): Boolean
Require: cxy is binary with scp(cxy) = {x, y}
Output: true iff sup(cxy)x=a ̸= ∅
foreach i from 0 to bitDom[y].length − 1 do1
if (bitSup[cxy, x, a][i] AND bitDom[y][i]) ̸= ZERO then2
return true3

return false4
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PROPOSITION 4.19.– The worst-case time complexity of AC3bit is O(ed3).

The proof is immediate. The following observation indicates that in practice,
AC3bit can be far more efficient than the other AC3-based variants. This was
illustrated in the introduction to this section.

OBSERVATION 4.20.– The number of bitwise operations performed by AC3bit can be
up to p times less than the number of constraint checks performed by AC3, AC2001
and AC3rm, where p is the word size of the computer.

At this point, one can wonder if there is still an interest of exploiting residues for
binary instances. For domains having up to 300 values, checking whether a c-value has
a support requires not more than five operations (on a 64-bit architecture). However,
when domains become larger, the cost of simple bitwise operations can become
penalizing. This is why bit vectors are combined with residues in Algorithm 26,
which uses a three-dimensional array res of integers (all set to 0 initially). We obtain
a new AC3 variant called AC3bit+rm. Whenever a support is detected, its position
in the binary representation of the constraint is recorded. When seeking a support in
Algorithm 26, the residual position is first checked (line 2), and when a support is
found, its position is recorded (line 6).

Algorithm 26: seekSupport-3bit+rm((cxy, x, a): c-value): Boolean
Require: cxy is binary with scp(cxy) = {x, y}
Output: true iff sup(cxy)x=a ̸= ∅
i ← res[cxy, x, a]1
if (bitSup[cxy, x, a][i] AND bitDom[y][i]) ̸= ZERO then2
return true3

foreach i from 0 to bitDom[y].length − 1 do4
if (bitSup[cxy, x, a][i] AND bitDom[y][i]) ̸= ZERO then5

res[cxy, x, a] ← i6
return true7

return false8

To illustrate the importance of combining bitwise operations with residues
when domains are large, Table 4.3 shows results obtained on instances of the
Domino problem. Remember that this problem was introduced to emphasize the
sub-optimality of AC3. For the most difficult instance, where domains contain 3000
values, AC3bit+rm is about 5 times more efficient than AC3bit and AC3rm, and is 9
times more efficient than AC2001.
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Instance AC2001 AC3 AC3rm AC3bit AC3bit+rm

domino- CPU 12.7 403 9.4 4.3 3.7
500-500 mem 27 23 27 23 23
domino- CPU 89.5 5,911 62.4 25.1 14.3

1000-1000 mem 66 42 54 42 46
domino- CPU 678 > 5 hours 443 289 91

2000-2000 mem 210 156 117 132
domino- CPU 2,349 > 5 hours 1,564 1,274 278

3000-3000 mem 454 322 240 275

Table 4.3. Establishing arc consistency on Domino instances

4.6. Experimental results
This section reports a few experimental results, starting with binary networks.

These are experiments with different AC algorithms embedded in MAC which is the
algorithm that maintains arc consistency during the search for a solution; MAC is
presented in Chapter 8. MAC is used here because this is the usual way of solving
constraint networks (when a complete approach is employed), so the behavior of
arc consistency algorithms in this context is particularly important. During the
search, these experiments use the variable ordering heuristic dom/wdeg and the
value ordering heuristic min-conflicts: these heuristics are presented in Chapter 9.
These experiments do not use any restart policy. The general algorithm used is
enforceGACvar, Algorithm 9, calling the function reviseCS, Algorithm 23. Within this
framework, we report experimental results obtained with arc consistency algorithms
AC3, AC2001, AC3rm and AC3bit running on our platform Abscon using a computer
equipped with a 2.4 GHz i686 Intel CPU, 512MB of RAM and Sun JRE 5.0 for Linux.
We report results for random, academic and real-world problems. Performance6 is
measured in terms of the CPU time in seconds and the amount of memory (mem) in
megabytes.

We have experimented with seven classes of binary random instances generated by
Model D. For each class ⟨n, d, e, t⟩, the number of variables n has been set to 40, the
domain size d set between 8 and 180, the number of constraints e set between 753 and
84 (so the density between 0.1 and 0.96) and the tightness t, which here denotes the
probability that a relation forbids a pair of values, set between 0.1 and 0.9. In Table 4.4,
even for small domains (e.g. d = 8), MAC3bit is the fastest algorithm on binary
random instances; it is from two to four times faster than MAC2001 and from 1.5 to

6. In these experiments, all constraint checks are performed in constant time and are as cheap
as possible since constraints are represented in extension.
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MAC embedding
Instance AC2001 AC3 AC3rm AC3bit

Random instances (100 instances per series)
⟨40, 8, 753, 0.1⟩

CPU 13.8 9.8 10.4 7.7
mem 11 9.5 10 9.5

⟨40, 11, 414, 0.2⟩ CPU 19.6 15.0 14.5 10.0
mem 8.8 8.0 8.4 8.0

⟨40, 16, 250, 0.35⟩ CPU 21.6 18.5 16.1 9.7
mem 8.5 7.9 8.2 7.9

⟨40, 25, 180, 0.5⟩ CPU 28.9 27.8 21.2 11.5
mem 8.4 7.9 8.2 7.9

⟨40, 40, 135, 0.65⟩ CPU 21.1 22.0 15.4 7.8
mem 8.5 8.0 8.2 8.1

⟨40, 80, 103, 0.8⟩ CPU 16.6 19.5 12.2 5.0
mem 10 9.5 9.8 9.6

⟨40, 180, 84, 0.9⟩ CPU 24.3 36.6 18.4 6.7
mem 15 14 14 14

Structured instances
blackHole-4-4 CPU 1.46 1.37 1.35 0.91

(10 instances) mem 8.6 7.9 8.7 7.9
driver CPU 3.89 2.99 3.14 2.75

(7 instances) mem 35 24 56 24
ehi-85 CPU 1.75 0.92 1.12 0.71

(100 instances) mem 30 19 38 19
ehi-90 CPU 1.73 0.91 1.11 0.72

(100 instances) mem 31 20 39 20
enddr1 CPU 1,616 1,694 1,218 453

(10 instances) mem 14 13 14 13
enddr2 CPU 1,734 2,818 1,491 568

(6 instances) mem 15 14 15 14
geom CPU 12.4 10.8 8.9 5.8

(100 instances) mem 11 10 11 10
hanoi CPU 1.00 1.16 1.11 0.50

(5 instances) mem 13 11 12 12
qwh-20 CPU 266 183 242 153

(10 instances) mem 33 21 44 21

Table 4.4. Mean results of MAC, embedding various AC algorithms, on series of binary
random and structured instances
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MAC embedding
Instance GAC3 GAC3r GAC3rm GAC2001 GAC3.2

Random instances (mean results for 10 instances)
⟨6, 20, 6, 32, 0.55⟩ CPU 0.75 0.50 0.46 0.58 0.49

#ccks 676 K 357 K 278 K 364 K 235 K
⟨6, 20, 6, 36, 0.55⟩ CPU 13.1 8.7 8.0 10.2 8.5

#ccks 12 M 6,481 K 4,997 K 6,825 K 4,324 K
⟨6, 20, 8, 22, 0.75⟩ CPU 2.5 1.5 1.3 1.6 1.3

#ccks 2,313 K 1,240 K 971 K 1,232 K 804 K
⟨6, 20, 8, 24, 0.75⟩ CPU 51.7 31.8 27.7 34.6 26.8

#ccks 48 M 26 M 20 M 26 M 17 M
⟨6, 20, 10, 13, 0.95⟩ CPU 35.2 20.7 15.8 20.8 13.9

#ccks 40 M 23 M 17 M 22 M 14 M
⟨6, 20, 10, 14, 0.95⟩ CPU 220 135 102 135 89

#ccks 249 M 151 M 108 M 149 M 91 M
⟨6, 20, 20, 10, 0.99⟩ CPU 659 392 267 254 177

#ccks 1,653 M 1,037 M 647 M 662 M 462 M
⟨6, 20, 20, 15, 0.99⟩ CPU 869 489 301 351 220

#ccks 2255 M 1,289 M 785 M 887 M 583 M

Structured instances
tsp-20-366 CPU 387 242 243 266 235

#ccks 607 M 370 364 M 387 M 333 M
gr-44-9-a3 CPU 73.1 37.2 38.4 56.3 43.6

#ccks 166 M 44 M 41 M 74 M 33 M
gr-44-10-a3 CPU 2,945 1,401 1,465 2,129 1,631

#ccks 6,819 M 1,513 M 1,527 M 2,914 M 1,224 M
series-14 CPU 233 218 217 312 285

#ccks 1,135 M 531 M 490 M 618 M 422 M
renault CPU 25.0 25.4 16.2 25.2 15.2

#ccks 68 M 66 M 42 M 66 M 42 M

Table 4.5. Results of MAC, embedding various GAC algorithms, on non-binary random and
structured instances
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3 times more efficient than MAC3rm. The behavior of MAC3bit on different series of
binary structured instances is also good: MAC3bit outperforms the other algorithms in
Table 4.4. This is particularly true for the job-shop series enddr1 and enddr2 in which
the average domain size is about 120 values, so only two main operations are required
when seeking a support on a 64-bit processor.

When applied to non-binary instances, the behavior of an algorithm that exploits
residues is of particular interest. In this section, c-value complexity means the total
worst-case time complexity of seeking a support for a given c-value. Note first that
seeking a support for a c-value from scratch requires iterating over O(dr−1) tuples
in the worst-case for a constraint of arity r. Thus the c-value complexity is O(r2dr)
for GAC3 and O(rdr−1) for GAC2001 [BES 05c], assuming that a constraint check
is O(r) and remembering that there are possibly O(rd) calls to the implemented
seekSupport function. We conclude that the difference is a factor rd, so the difference
between the two algorithms grows linearly with r (if d is invariant). On the other hand,
if C > 0 and S > 0 denote the number of conflicts and supports, respectively, for a
given c-value, then the c-value complexity can be shown to be O(CSr) for GAC3rm;
this complexity is also O(r2dr). If C = O(1) or S = O(1), the c-value complexity
becomes O(rdr−1) for GAC3rm because C + S = dr−1; this is the same complexity
as GAC2001. But in practice we are unlikely to have small (bounded) values of C or S
when dealing with non-binary constraints.

On series of non-binary random instances, we have performed experiments with
algorithms that maintain GAC during search. These instances belong to classes of
the form ⟨k, n, d, e, t⟩ where k denotes the arity of the constraints and all other
parameters are defined as usual. In these experiments the arity is six and the tightness
t ∈ {0.55, 0, 75, 0.95, 0.99}. For small values of t, we find (as in the binary case) that
the difference between all algorithms is slight. In Table 4.5, GAC3rm and GAC3.2
are the most efficient embedded algorithms. Of course, when the tightness is high,
GAC3 is penalized and GAC3r is less efficient than GAC3rm because exploitation
of multi-directionality pays off. GAC3r and GAC3rm showed good behavior on
non-binary structured instances within the 2005 constraint solver competition.

4.7. Discussion

The lessons I have learned over the years, partly from my experience with the
constraint solver Abscon, are the following. For binary constraints, generic AC
algorithms can be quite competitive, compared to specialized filtering procedures,
provided that the size of the domains is not too large and/or the cardinality of
conflict sets is exploited. An algorithm such as AC3bit+rm is appropriate up to a
few hundred values per domain. This is the fastest generic AC algorithm when
binary constraints are extensional. For binary intensional constraints (that cannot
be translated efficiently into extension), AC3rm seems the best option since this
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algorithm benefits from complexity results on the theoretical side, and backtrack-
stable data structures on the practical side. For non-binary constraints, the situation is
a little bit more complex. If the constraints are defined in extension, then specialized
table constraint algorithms are appropriate; such algorithms are introduced in the
next chapter. If the constraints are defined in intension, using an algorithm such as
GAC3rm may be the right solution if the semantic of the constraints is not known to be
exploitable or if the number of valid tuples (that will be iterated over) is not too large.
For global constraints, except where a decomposition can be handled efficiently using
a general-purpose filtering algorithm, a specialized filtering procedure is certainly a
good choice.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

Generalized Arc Consistency for Table
Constraints

This chapter is concerned with efficient filtering procedures for table constraints.
Here the word table means the same thing as extensional except that table constraints
are usually non-binary. A table constraint is defined by explicitly listing the tuples
that are either allowed or disallowed for the variables of its scope. In the former case,
the table constraint is said to be positive, while in the latter case, it is said negative.
Table constraints are also sometimes referred to as ad-hoc (non-binary) constraints
[CHE 06].

Table constraints arise naturally in configuration problems, where they represent
available combinations of options. For some applications, compatibilities (or
incompatibilities) between resources, e.g. people or machines, can be expressed
in tables. For example, for use in the selection of k people to form a working
group, a table may enumerate possible associations according to certain abilities
while taking into account a (subjective) agreement criterion. Another example is
that in some puzzles, e.g. crosswords, non-binary constraints can only be expressed
extensionally. Tabular data may also come from databases: the results of database
queries are sometimes expressed as tables that have large arity. It is well known
(e.g. see [GYS 94]) that there are strong theoretical connections between relational
database theory and constraint satisfaction.

Table constraints are important in constraint programming because they are easily
handled by end-users of constraint systems. For simplicity reasons, an inexperienced
user sometimes specifies extensional constraints although some of these should
preferably be intensional. It is crucial to handle such extensional constraints as
efficiently as possible, ideally as though their semantics were known (or, why not,
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even better). Furthermore, because any constraint can theoretically be expressed in
tabular form (although this may lead to a time and space explosion), tables provide a
universal way of representing constraints.

Some recent research articles have focused on theoretical and practical aspects of
table constraints. As a result, there are many new ways to enforce generalized arc
consistency (GAC) on table constraints and/or to compress their representation. It is
likely that several of these new techniques will soon be combined to achieve further
improvements in propagation speed. This chapter therefore attempts a substantial
overview of these approaches.

This chapter is predominantly concerned with positive table constraints.
Section 5.1 introduces two classical schemes, which iterate over valid tuples and
allowed tuples, respectively. Section 5.2 introduces auxiliary indexing structures for
tables. Next, section 5.3 compares approaches that use memory-efficient graph-like
structures to represent tables. Section 5.4 explains how the two basic classical schemes
can be combined, and section 5.5 introduces an original approach based on reduction
of tables. Finally, we deal with negative table constraints in section 5.6.

5.1. Classical schemes

The general-purpose algorithms presented in sections 4.3 and 4.5 can be used
to establish GAC on (positive) table constraints. There are two different ways in
which these algorithms can seek a support. The support-seeking scheme called
GAC-valid iterates over valid tuples until an allowed one is found; basic functions
to realize this scheme were presented in section 4.2. The other natural support-
seeking scheme, which is called GAC-allowed, iterates over allowed tuples until a
valid one is found. Roughly speaking, GAC-valid and GAC-allowed correspond to
GAC-scheme-predicate and GAC-scheme-allowed, respectively, in [BES 97].

After some further preparatory work on positive table constraints, the following
sections present these two classical schemes. For simplicity, we present these schemes
within GAC3, but they can directly and easily be adapted to other coarse-grained
generalized arc consistency algorithms such as e.g. GAC2001 and GAC3rm.

5.1.1. Positive table constraints

A positive table constraint is a constraint given in extension and defined by a set
of allowed tuples. As in Chapter 1, the set of allowed tuples associated with a positive
table constraint c is denoted by table[c]. This set is represented here by an array of
tuples indexed from 1 to table[c].length which denotes the size of the table (i.e. the
number of allowed tuples). To record this set, the worst-case space complexity is O(tr)
where t = table[c].length and r is the arity of c.
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We are often interested in the list of allowed tuples that include a v-value (x, a).
For every c-value (c, x, a), we can consider the sub-table table[c, x, a] of allowed
tuples involving (x, a), from table[c]. This is an array whose indices ranges from 1 to
table[c, x, a].length , such that any element table[c, x, a][i] gives the position (index)
in table[c] of the ith allowed tuple involving (x, a). Thus sub-tables are indexing
structures, as illustrated in Figure 5.1.

table[cxyz, z, a]table[cxyz, y, b] table[cxyz]

x y z

Figure 5.1. cxyz is a positive table constraint for which table[cxyz] contains 10 allowed
tuples. We have dom(x) = dom(y) = dom(z) = {a, b, c}. The sub-tables table[cxyz, y, b]

and table[cxyz, z, a] are shown

The total space complexity of sub-tables is O(tr) because each tuple in table[c]
is referenced exactly r times. Consequently, overall worst-case space complexity
remains O(tr). Assuming that each sub-table is in the lexicographic order of
referenced tuples, the worst-case time complexity of checking (using a binary
search) whether a tuple τ involving (x, a) is allowed by c is O(log(tc,x,a)r) where
tc,x,a = table[c, x, a].length .

Instead of providing indexes, an alternative is a hash map giving “direct” access
to allowed tuples. This has been proposed in [BES 97] for negative table constraints.
The worst-case space complexity remains O(tr). If the hash function is O(r) and if it
randomizes properly, the worst-case time complexity of performing a constraint check
is only O(r). This hashing approach will not be considered in this chapter.

5.1.2. GAC-valid scheme

As explained in section 4.2, GAC-valid iterates over valid tuples until an allowed
one is found. We now describe a GAC-valid implementation of a constraint
check in GAC3 for a positive table constraint. The test τ ∈ rel(c) at line 3 of
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Algorithm 18 corresponds to the test τ ∈ table[c, x, a], which is O(log(tc,x,a)r) with
tc,x,a = table[c, x, a].length since one can use a binary search (i.e. a dichotomic
divide and conquer search algorithm), as mentioned above. Assuming that the function
binarySearch handles the indirection (so as to compare a tuple τ with the element of
table[c] at index table[c, x, a][i], i being the position of the element of table[c, x, a]
to be checked) and returns τ when τ is present, the test τ ∈ rel(c) corresponds to:

binarySearch(table[c, x, a], τ) = τ

We use seekSupport-v as an alias for seekSupport-3 when the GAC-valid scheme
is employed; this function is called in Algorithm 8. The number of valid tuples built
from c and involving (x, a) is vc,x,a = | val(c)x=a|, so we have:

PROPOSITION 5.1.– For an r-ary positive table constraint c, the worst-case time
complexity of seekSupport-v, with input (c, x, a), is O(vc,x,a log(tc,x,a)r).

COROLLARY 5.2.– Using a hash map with a hash function in O(r) achieving
ideal randomization, the worst-case time complexity of function seekSupport-v is
O(vc,x,ar).

5.1.3. GAC-allowed scheme

GAC-allowed iterates over allowed tuples in the table until a valid one is found.
As already mentioned, for simplicity we now describe a GAC-allowed implementation
of GAC3; we do not handle last supports as in GAC2001, or residual supports as in
GAC3rm.

Algorithm 27: seekSupport-a((c, x, a): c-value): Boolean
// Implementation of GAC-allowed
i ← 11
while i ≤ table[c, x, a].length do2

index ← table[c, x, a][i]3
τ ← table[c][index ]4
if isValidTuple(c, τ) then5
return true6

i ← i + 17

return false8

The function seekSupport-a, Algorithm 27, to be called at line 3 of Algorithm 8,
checks the validity of each allowed tuple until a support is found. The function
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isValidTuple checks whether all values in the given tuple belong to corresponding
current domains. The time complexity of isValidTuple is O(r): see Algorithm 15.

PROPOSITION 5.3.– For an r-ary positive table constraint c, the worst-case time
complexity of seekSupport-a, with input (c, x, a), is O(tc,x,ar).

5.1.4. Illustration

Unfortunately, there are considerable penalties associated with visiting only lists of
valid or allowed tuples. This is why many alternatives have been developed, and these
are presented in the following sections. In the following example, which illustrates
potential drawbacks of both classical schemes, a constraint c involves r variables
x1, . . . , xr such that the domain of each variable is initially {0, 1, 2}. Suppose that
exactly 2r−1 tuples are allowed by c: these correspond to the binary representation of
all values between 0 and 2r−1 − 2 together with the tuple (2, 2, ..., 2, 2), as illustrated
in Figure 5.2(a) with r = 5. Suppose also that, due to propagation caused by other

(0, 0, 0, 0, 0)
(0, 0, 0, 0, 1)
(0, 0, 0, 1, 0)

rel(c) = table[c]

(0, 0, 0, 1, 1)
(0, 0, 1, 0, 0)
(0, 0, 1, 0, 1)
(0, 0, 1, 1, 0)
(0, 0, 1, 1, 1)
(0, 1, 0, 0, 0)
(0, 1, 0, 0, 1)
(0, 1, 0, 1, 0)
(0, 1, 0, 1, 1)
(0, 1, 1, 0, 0)
(0, 1, 1, 0, 1)
(0, 1, 1, 1, 0)
(2, 2, 2, 2, 2)

x1x2x3x4x5

table[c, x1, 0]

(a) The list of allowed tuples

(0, 1, 1, 1, 1)
(0, 1, 1, 1, 2)
(0, 1, 1, 2, 1)
(0, 1, 1, 2, 2)

val(c)

(0, 1, 2, 1, 1)
(0, 1, 2, 1, 2)
(0, 1, 2, 2, 1)
(0, 1, 2, 2, 2)
(0, 2, 1, 1, 1)
(0, 2, 1, 1, 2)
(0, 2, 1, 2, 1)
(0, 2, 1, 2, 2)
(0, 2, 2, 1, 1)
(0, 2, 2, 1, 2)
(0, 2, 2, 2, 1)
(0, 2, 2, 2, 2)

x1x2x3x4x5

(b) The list of valid tuples

Figure 5.2. Constraint c is such that scp(c) = {x1, x2, x3, x4, x5} and rel(c) = table[c]
contains 24 (allowed) tuples, as shown. Currently, dom(x1) = {0} and

∀i ∈ 2..5, dom(xi) = {1, 2}, so val(c) contains 24 (valid) tuples

constraints, the domains of all variables have been reduced to {1, 2} except for the
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variable x1 whose domain has been reduced to {0}. After this propagation, there are
exactly 2r−1 valid tuples that can be built for c, as illustrated in Figure 5.2(b) with
r = 5.

Now consider checking whether there is a support for (x1, 0) on c. Using GAC-
valid, the time complexity of determining that (x1, 0) has no support on c is Ω(2r−1)
because 2r−1 valid tuples are processed. GAC-allowed has also time complexity
Ω(2r−1) because it reviews 2r−1 − 1 allowed tuples to prove that (x1, 0) has no
support on c. The behavior of both schemes is unsatisfactory because it is immediate
that (x1, 0) is generalized arc-inconsistent.

5.2. Indexing-based approaches

This section presents two approaches that associate auxiliary functions/structures
with tables. The idea is to associate with each tuple of each table some pointers
to next tuples involving particular values. This is an index structure for use in
seeking supports. We shall elucidate the relationship between these two approaches
to indexing.

We do not classify the GAC-allowed as an indexing-based approach because
indexing from sub-tables does not worsen space complexity. Furthermore, sub-tables
introduced mainly for GAC-allowed are not strictly necessary (although this point is
not exhaustively covered in this book).

5.2.1. NextIn indexing

The first approach [LHO 05b] combines both the concept of “acceptability” (the
fact that a tuple is accepted by a constraint) and the concept of validity (the fact that
each value in a tuple is valid). A function, called nextIn, indicates for each c-value
(c, x, a) and each tuple τ in table[c], the smallest tuple in table[c] that is greater than
or equal to τ (according to the lexicographic order) and that contains (x, a). More
precisely, this function is defined as follows:

DEFINITION 5.4.– [nextIn] Let c be a positive table constraint. For every c-value
(c, x, a) and every tuple τ ∈ table[c], we have:

– nextIn((c, x, a), τ) = nil if ∀τ ′ ∈ table[c], τ ′ ≥lex τ ⇒ τ ′[x] ̸= a;
– nextIn((c, x, a), τ) = τ ′; otherwise where τ ′ ∈ table[c], τ ′[x] = a, τ ′ ≥lex τ

and ∀τ ′′ ∈ table[c], τ ′ >lex τ ′′ ≥lex τ ⇒ τ ′′[x] ̸= a.

We implement nextIn using a multi-dimensional array, also denoted by nextIn ,
such that for each c-value (c, x, a) and each tuple τ at index i in table[c], we have
nextIn((c, x, a), τ) = table[c][nextIn[c, x, a][i]]. Observe that nextIn[c, x, a][i]
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gives the index i′ in table[c] of tuple nextIn((c, x, a), τ). We have i′ ≥ i, and
i′ = table[c].length + 1 signifies nextIn((c, x, a), τ) = nil . The space complexity
required for each constraint c is O(trd). A different implementation uses a data
structure called a hologram [LHO 04] to save space.

EXAMPLE.– In Figure 5.3(a), which provides an illustration, the first row of the
two-dimensional array under the first tuple (a, a, a) of table[cxyz] corresponds to
nextIn[cxyz, x, a][1], nextIn[cxyz, y, a][1] and nextIn[cxyz, z, a][1]. The second row
correspond to nextIn[cxyz, x, b][1], nextIn[cxyz, y, b][1] and nextIn[cxyz, z, b][1], etc.
In these arrays the special value 11 is the position of “the tuple” nil , meaning that the
last tuple has been reached.

Note that for every c-value (c, x, a) nextIn is powerful enough to be used in
searching over the tuples (indexed) in table[c, x, a]. If nextIn is provided then there
is no need to associate sub-tables with the c-values.

EXAMPLE.– To iterate over the (indices of the) three first tuples of table[c] that involve
(x, a) (i.e. the three first tuples that would be indexed in table[c, x, a]), we can write:

i ← nextIn[c, x, a][1]
j ← nextIn[c, x, a][i + 1]
k ← nextIn[c, x, a][j + 1]

In Figure 5.3(a), we obtain i = 1, j = 2 and k = 3 for the c-value (cxyz, x, a), and
i = 1, j = 4 and k = 7 for the c-value (cxyz, z, a). Notice that nextIn[cxyz, x, a][1]
and nextIn[cxyz, z, a][1] are equal to 1, because the first tuple in table[cxyz] contains
both (x, a) and (z, a).

To enforce GAC using this approach, denoted by GAC-nextIn, the function
seekSupport-ni, Algorithm 28, is called at line 3 of Algorithm 8. This basically
corresponds to the code used in Algorithm 5 of [LHO 05b]. However, in the present
section, we do not manage lower bounds of supports, but instead focus on the main
aspects of the algorithm. To simplify the presentation, we assume that for every
c-value (c, x, a), nextIn[c, x, a][i] = table[c].length + 1 if i = table[c].length + 1;
this avoids the insertion of three additional tests in the algorithm. The index of the
first tuple involving (x, a) in table[c] is obtained at line 1. Then, so long as the current
tuple is not valid, we find the index of another one (lines 6 to 15), by using current
domains to accelerate traversal of the table. The new index obtained at line 15 gives
the position of a tuple involving (x, a) that is a lower bound of the smallest support
for (c, x, a). Initially, the index i′ of the next tuple of table[c] after i involving (x, a)
is considered (note that we have i + 1 at line 6). For each variable y involved in c, the
index min of the first tuple (after i′) involving a valid value for y is computed (see
lines 10 to 12). By taking the maximum value over all min indices, we safely skip
some tuples that cannot be supports for (x, a) on c. Finally, the index of the next tuple
of table[c] involving (x, a) is obtained at line 15.

www.it-ebooks.info

http://www.it-ebooks.info/


246 Constraint Networks

x y z

table[cxyz]

nil

. . .

nextIn

(a) Indexing structure nextIn

table[cxyz] table[cxyz, z, a]

x y z

nil

nil

. . .

x y z

nextDiff

(b) Indexing structure nextDiff

Figure 5.3. Illustration of structures nextIn and nextDiff with a ternary constraint cxyz

defined by a positive table composed of 10 tuples. We have
dom(x) = dom(y) = dom(z) = {a, b, c}
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Algorithm 28: seekSupport-ni((c, x, a): c-value): Boolean
// Implementation of GAC-nextIn
i ← nextIn[c, x, a][1]1
while i ≤ table[c].length do2

τ ← table[c][i]3
if isValidTuple(c, τ) then4
return true5

i′ ← nextIn[c, x, a][i + 1] // i′ = i + 1 if i = table[c].length6
max ← i′7
foreach variable y ∈ scp(c) | y ̸= x do8

min ← table[c].length + 19
foreach value b ∈ dom(y) do10
if nextIn[c, y, b][i′] < min then11

min ← nextIn[c, y, b][i′]12

if min > max then13
max ← min14

i ← nextIn[c, x, a][max ] // i = max if max = table[c].length + 115

return false16

A variant, introduced in this book and denoted by GAC-nextInb, is implemented
by function seekSupport-nib, Algorithm 29, and only considers the first variable (the
leftmost one in the scope) identified by function getFirstInvalidPosition, Algorithm 16,
whose value is not valid. The advantage is that we concentrate our effort on the most
significant variable, which may provide us with the biggest skip.

EXAMPLE.– Figure 5.4 provides an illustration of both algorithms. Another example
is that of Figure 5.2, where the behavior of GAC-nextIn and GAC-nextInb is similar
when searching for a support for (x1, 0) on c. More precisely, both algorithms have
the following successive values of the variable i.

– i = 1: we have τ = (0, 0, 0, 0, 0).
– i = 23 = 8: since the best safe skip comes from (x2, 1), we have τ =

(0, 1, 0, 0, 0);
– i = 23 + 22 = 12: since the best safe skip comes from (x3, 1), we have τ =

(0, 1, 1, 0, 0);
– i = 24 − 1: since the best safe skip comes from (x4, 1), we have τ =

(0, 1, 1, 1, 0);
– i = 17: since there is no further tuple involving (x1, 0), we have τ = nil .
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nil

x y z

table[cxyz]

(a) GAC-nextIn in action

x y z

nil

table[cxyz]

(b) GAC-nextInb in action

Figure 5.4. Effort required by GAC-nextIn and GAC-nextInb to find τ = (c, b, a) as smallest
support of (cxyz, z, a) after the removal of a and c from dom(y). We have

dom(x) = dom(z) = {a, b, c} and dom(y) = {b}.
Solid arcs correspond to successive values of i
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Algorithm 29: seekSupport-nib((c, x, a): c-value): Boolean
// Implementation of GAC-nextInb

i ← nextIn[c, x, a][1]1
while i ≤ table[c].length do2

τ ← table[c][i]3
j ← getFirstInvalidPosition(c, τ)4
if j = −1 then5
return true6

y ← scp(c)[j] // y is the jth variable of scp(c)7
min ← table[c].length + 18
foreach value b ∈ dom(y) do9
if nextIn[c, y, b][i] < min then10

min ← nextIn[c, y, b][i]11

i ← nextIn[c, x, a][min] // i = min if min = table[c].length + 112

return false13

For this example, when one uses GAC-nextIn or GAC-nextInb the time complexity
of determining that (x1, 0) has no support on c is O(r2) (but in practice, GAC-nextInb

will be faster here since it only deals with a unique variable when a next position has
to be computed). This has to be compared with Ω(2r−1) for GAC-valid and GAC-
allowed. By using knowledge about current domains, these algorithms skip over a
number of allowed tuples that is exponential in the arity of the constraints [LHO 05b].

5.2.2. NextDiff indexing

A data structure in a second indexing-based approach [GEN 07] allows us to find
for each positive table constraint c, for each tuple τ in table[c] and for each variable
y ∈ scp(c), the next tuple in table[c] with a value for y different from τ [y]. The sub-
tables in section 5.1.1 can be refined in order to find for each c-value (c, x, a), for each
tuple τ (indexed) in table[c, x, a] and for each variable y the next tuple in table[c, x, a]
involving a different value for y.

For homogeneity reasons, we introduce first two functions as follows:

DEFINITION 5.5.– [nextDiff on global tables] Let c be a positive table constraint. For
every tuple τ ∈ table[c] and every variable y ∈ scp(c), we have:

– nextDiff(c, τ, y) = nil if ∀τ ′ ∈ table[c], τ ′ >lex τ ⇒ τ ′[y] = τ [y];
– nextDiff(c, τ, y) = τ ′; otherwise where τ ′ ∈ table[c], τ ′ >lex τ , τ ′[y] ̸= τ [y]

and ∀τ ′′ ∈ table[c], τ ′ >lex τ ′′ >lex τ ⇒ τ ′′[y] = τ [y].
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DEFINITION 5.6.– [nextDiff on sub-tables] Let c be a positive table constraint. For
every c-value (c, x, a), every tuple τ ∈ table[c, x, a] and every variable y ∈ scp(c),
we have:

– nextDiff((c, x, a), τ, y) = nil if ∀τ ′ ∈ table[c, x, a], τ ′ >lex τ ⇒ τ ′[y] = τ [y];
– nextDiff((c, x, a), τ, y) = τ ′; otherwise where τ ′ ∈ table[c, x, a], τ ′ >lex τ ,

τ ′[y] ̸= τ [y] and ∀τ ′′ ∈ table[c, x, a], τ ′ >lex τ ′′ >lex τ ⇒ τ ′′[y] = τ [y].

Unlike the function nextIn, the function nextDiff always returns a tuple that is
strictly greater than the input one. The function nextDiff is naturally implemented
using a multi-dimensional array, also denoted nextDiff (ND in [GEN 07]), such that
for every constraint c, every tuple τ at position i in table[c] and every variable y at
position j in scp(c), we have nextDiff(c, τ, y) = table[c][nextDiff [c][i][j]]. Observe
that nextDiff [c][i][j] gives the index i′ in table[c] of nextDiff(c, τ, y) We have i′ > i,
and again i′ = table[c].length + 1 means nextDiff(c, τ, y) = nil . Figure 5.3(b)
provides an illustration in which the one-dimensional array placed under the first
tuple of table[cxyz] corresponds to nextDiff [cxyz][1][1], nextDiff [cxyz][1][2] and
nextDiff [cxyz][1][3], where 1, 2 and 3 successively represent positions of x, y and z
in scp(cxyz). The space complexity required for each constraint with this solution is
O(tr).

With the refined version, the function nextDiff is such that for every c-value
(c, x, a), for every tuple τ = table[c][k] with k = table[c, x, a][i] (k is the index of the
ith tuple of table[c] involving (x, a)) and for every variable y at position j in scp(c),
we have nextDiff((c, x, a), τ, y) = table[c][k′] with k′ = table[c, x, a][i′] where
i′ = nextDiff [c, x, a][i][j]]. We have i′ > i, and again nextDiff((c, x, a), τ, y) = nil
implies i′ = table[c, x, a].length + 1. In Figure 5.3(b) the one-dimensional
array placed under the first tuple of table[cxyz, z, a] respectively corresponds to
nextDiff [cxyz, z, a][1][1], nextDiff [cxyz, z, a][1][2] and nextDiff [cxyz, z, a][1][3].
The space complexity required for each constraint with this solution is O(tr2).

We denote the first version, which uniquely handles the global table, by
GAC-nextDiff and the second version by GAC-nextDiffb. These two versions
are respectively implemented by functions seekSupport-nd and seekSupport-ndb,
Algorithms 30 and 31, called at line 3 of Algorithm 8. The algorithms are quite
simple: as long as the (sub-)table is not fully traversed and the current tuple invalid,
we skip to the next tuple involving a value different for the first variable whose value
is invalid. For GAC-nextDiff, we have to manage the possibility of finding a tuple
that does not involve (x, a). As usual, this introduction is minimally complicated and
therefore, unlike [GEN 07], we do not handle residual supports and circular domains
[LIK 04].
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Algorithm 30: seekSupport-nd((c, x, a): c-value): Boolean
// Implementation of GAC-nextDiff
i ← 11
while i ≤ table[c].length do2

τ ← table[c][i]3
j ← getFirstInvalidPosition(c, τ)4
if j = −1 then5
if τ [x] = a then6
return true7

else8
j ← scp(c)[x] // x is the jth variable of scp(c)9

i ← nextDiff [c][i][j]10

return false11

Algorithm 31: seekSupport-ndb((c, x, a): c-value): Boolean
// Implementation of GAC-nextDiffb
i ← 11
while i ≤ table[c, x, a].length do2

index ← table[c, x, a][i]3
τ ← table[c][index ]4
j ← getFirstInvalidPosition(c, τ)5
if j = −1 then6
return true7

i ← nextDiff [c, x, a][i][j]8

return false9

EXAMPLE.– The behavior of both algorithms is illustrated in Figure 5.5. For the
example in Figure 5.2, GAC-nextDiff and GAC-nextDiffb have exactly the same
behavior (in terms of skips) as GAC-nextIn and GAC-nextInb. However, there
are situations where the nextIn approach is exponentially better than the nextDiff
approach [CHE 08a].

We can now see the similarity between nextIn and nextDiff indexing, and
especially between GAC-nextInb and GAC-nextDiffb. The former has the advantage
of only considering valid values, whereas the latter performs each skip in constant
time. For similar values of parameters, lines 7 to 12 of Algorithm 29 always allow
skipping at least the same number of tuples as line 7 of Algorithm 31. If y denotes the
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table[cxyz]

x y z

nil

(a) GAC-nextDiff in action

table[cxyz, z, a]

x y z

nil

(b) GAC-nextDiffb in action

Figure 5.5. Effort required by GAC-nextDiff and GAC-nextDiffb to find τ = (c, b, a) as
smallest support of (cxyz, z, a) after the removal of a and c from dom(y). We have

dom(x) = dom(z) = {a, b, c} and dom(y) = {b}. Solid arcs correspond to successive
values of i

first variable (from the left) whose value b is invalid in the current tuple, the former
skips to the next tuple involving a valid value of y different from b, whereas the latter
skips to the next tuple involving any value of y different from b. The two approaches
admit different worst-case space complexities: O(trd) for GAC3-nextInb against
O(tr2) for GAC-nextDiffb.

It remains for us to experimentally validate the new variant GAC-nextInb, and to
investigate its behavior when residues and/or holograms are used.
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5.3. Compression-based approaches
This section presents four different approaches to the reduction of space required

by tables. Roughly speaking, significant reduction of space turns out to reduce
running time for enforcing generalized arc consistency. The key success factor is
basically the compression ratio achieved when tables are represented by sophisticated
data structures such as tries, multi-valued decision diagrams, compressed tables or
deterministic finite automata.

5.3.1. Tries
In addition to the nextDiff indexing approach presented earlier in this chapter,

Gent et al. [GEN 07] have used tries to represent and propagate table constraints. A
trie [FRE 60] is a rooted tree used to store and retrieve strings over an alphabet. A trie
can represent a large dictionary because a trie has only one node for each common
prefix. The term trie comes from “retrieval”: a trie allows retrieval of a word of length
r in O(r). Within a trie, each directed edge (also called arc) is labeled with a symbol
of the alphabet. To access a word in a dictionary that is represented by a trie, we
start at the root and traverse a path leading to a leaf that provides access to the word
(and/or to associated information). The first letter in the word selects the first edge
along this path, then the second letter selects the second edge, and so on. Along this
path, successive nodes are said to be at successive levels or depths.

The table of an r-ary constraint c can be represented by a trie in which successive
levels are associated with successive variables in the scope of c. At each level, the
alphabet is the domain of the associated variable. At the leaf level we have a special
terminal node t . All root-to-leaf paths are of uniform length since all tuples are
composed of exactly r elements.

In [GEN 07], the authors propose to specifically exploit tries to look for supports.
To enable supports to be found quickly, r separate tries are associated with each r-ary
positive table constraint. In fact a separate trie is associated with each variable in the
scope of each constraint. For a constraint c involving a variable x, the trie associated
with x on c is searched when a support for a c-value (c, x, a) is sought. The first level
of this trie concerns x, and for each c-value (c, x, a), the root, denoted by trie(c, x),
of this trie has a child node1 denoted by trie(c, x, a). This child node trie(c, x, a) is
connected to trie(c, x) by an edge labeled with a.
EXAMPLE.– For example, Figure 5.7 shows the trie for the first variable x of the
ternary constraint cxyz that has served as an illustration in previous sections; the trie

1. For simplicity we assume here that each value is initially supported. If this is not the case,
one can easily manage such a situation at construction time.

www.it-ebooks.info

http://www.it-ebooks.info/
Berthe Choueiry



254 Constraint Networks

is directly built from the table depicted in Figure 5.6(a). In this trie, which is used for
finding supports for values in the domain of x, the first, second and third levels are
associated with the variables x, y and z. Figure 5.8 shows a second example of a trie,
this time for the third variable, z, in the scope of cxyz . In this trie, which is used for
finding supports for values in the domain of z, the first, second and third levels are
associated with the variables z, x and y. Note how the table has been reordered in
Figure 5.6(b) before building this second trie.

x y z

table[cxyz]

(a) Initial table.

table[cxyz]

z x y

(b) Reordered table.

Figure 5.6. Tables used to build tries

To represent and traverse tries, we need the following structures.

The Node structure or type is composed of the following fields:
– variable: identifies the associated variable;
– outs: an array of outgoing arcs, indexed from 1 to outs.length .

The Arc structure or type is composed of the following fields:
– value: identifies the associated value (label);
– destination: identifies the head of the arc. When it corresponds to a leaf node,

it is set to t .

Without any loss of generality, we assume that outgoing arcs are ordered in
sequence of increasing values (which are totally ordered) of the labels. The field
variable is introduced here for convenience and could be advantageously (in terms of
space) replaced by some global arrays, one per trie. These structures are illustrated in
Figure 5.9, which shows part of the trie rooted at trie(cxyz, x).
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z

x

trie(cxyz, x, a) trie(cxyz, x, c)

trie(cxyz, x)

y

Figure 5.7. Trie built for x from table in Figure 5.6(a)

x

y

z

trie(cxyz, z, a) trie(cxyz, z, c)

trie(cxyz, z)

Figure 5.8. Trie built for z from table in Figure 5.6(b)

y

z

x v2

v3 v4

z

y

z

v4

v2

v3

Figure 5.9. Illustration of the structures introduced to represent tries. v2 is the node
corresponding to trie(cxyz, x, a) from Figure 5.7
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Using tries, generalized arc consistency enforcement is denoted by GAC-trie.
In this case the function seekSupport-trie, Algorithm 32, is called at line 3 of
Algorithm 8. The recursive function extendSupport performs a depth-first search,

Algorithm 32: seekSupport-trie((c, x, a): c-value): Boolean
// Implementation of GAC-trie
// let τ be an array of size | scp(c)|
τ [x] ← a1
return extendSupport(trie(c, x, a), τ) ̸= nil2

Algorithm 33: extendSupport(node: Node, τ : tuple): tuple
Output: the smallest τ ′ ∈ val(c)x=a extending τ accessible from node , or nil

if node = t then1
return τ // since we have reached a leaf node2

x ← node.variable3
foreach arc ∈ node.outs do4
if arc.value ∈ dom(x) then5

τ [x] ← arc.value6
τ ′ ← extendSupport(arc.destination, τ)7
if τ ′ ̸= nil then8
return τ ′9

return nil10

collecting2 valid values in τ and backtracking whenever a dead-end occurs. If nil is
returned by the initial call to extendSupport at line 2 of Algorithm 32, no support
for (x, a) exists on c. Otherwise, the support that has been found for (x, a) on c is
returned from lines 2 and 9 of Algorithm 33. For simplicity, we omit consideration of
residual supports and circularity (used in [GEN 07]); we have therefore omitted fields
that enable bottom-up traversal of tries.
EXAMPLE.– Suppose that when dom(y) has been reduced to {b}, seekSupport-trie is
called for the c-value (cxyz, x, a). The initial call to extendSupport has parameters v2

for trie(cxyz, x, a), and τ such that τ [x] = a: see Figures 5.7 and 5.9. The variable y
is the current variable and the value of the first outgoing arc is a. The test at line 5 of

2. Collecting values in τ is not strictly necessary here, but this shows how found supports can
be recorded.
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Algorithm 33 returns false because a /∈ dom(y) in this example. In the next iteration
of the loop at lines 4 through 9, the test at line 5 is successful because b, the value of the
second outgoing arc, is valid. So extendSupport is called recursively with parameters
v4 and τ such that τ [x] = a and τ [y] = b. The first and only child of v4 completes τ
with τ [z] = b, thus finding a support.

Tries allow many validity operations to be shared, especially at the first levels.
In the extreme case, a single validity operation may prevent fruitless access to an
exponential number of allowed tuples. The effectiveness of this approach depends
strongly on the order of variables within tries. For the example in Figure 5.2, GAC-trie
only needs to visit r nodes (and 2r−3 arcs) before concluding that there is no support
for (x1, 0) on c. On the other hand, the worst-case space complexity of an individual
trie is O(tr) since in the worst-case, we need r nodes and r edges per allowed tuple.
The worst-case space complexity for a table constraint c is then O(tr2) since we need
one trie per variable. In practice, memory usage is normally better than this because
in many cases the first few nodes along a path from the root node are shared by many
tuples.

PROPOSITION 5.7.– For a positive table constraint c, the worst-case time complexity
of seekSupport-trie, with input (c, x, a), is O(etrie(c,x,a)) where etrie(c,x,a) is the
number of edges in the (sub)-trie rooted at trie(c, x, a).

5.3.2. Multi-valued decision diagrams

Starting with a trie, which is an arc-labeled rooted tree that eliminates prefix
redundancy, we can eliminate shared suffixes [CAR 06, CHE 08a] to obtain a multi-
valued decision diagram (MDD), which is an arc-labeled directed acyclic graph
(DAG). In the special case where all domains are binary we obtain a binary decision
diagram (BDD) instead of an MDD. An MDD has at least one root node, which
is known in this context as a source. Moreover an MDD has exactly two terminal
nodes, known as sink nodes. One of these is t , which means the same as in the
previous section. The other sink node is f which corresponds to the state reached
for disallowed tuples; for simplicity we omit f from diagrams. In the example in
Figure 5.10 there is only one source (which is a node with no incoming arcs) and we
denote this by mdd(cxyz).

Although there is a clear advantage of using MDDs in terms of space complexity,
enforcing generalized arc consistency requires new filtering procedures that must
be shown to be effective. Available algorithms [CAR 06, CHE 08a] that enforce
generalized arc consistency using MDDs are not revision-based. This means that
instead of seeking a support for each value in turn, GAC is enforced globally on each
constraint. A depth-first exploration of the MDD identifies all values that must be
removed from domains in order to enforce GAC. We say that a node v is supported
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mdd(cxyz)

y

z

x

Figure 5.10.MDD built from the trie in Figure 5.7

(resp. unsupported) iff there exists a (resp. no) path from v to a leaf such that all
values labeling the arcs along this path are valid. Leaf nodes are trivially supported
(considering the empty path).

Our implementation of MDDs retains the structures introduced for tries. Following
[CHE 08a], Σtrue will be the set of supported nodes, and Σfalse will be the set of
unsupported nodes encountered during the search (an alternative implementation
includes an additional field in the structure associated with each node [CAR 06]).
Also, corresponding to each variable x we provide a set gacValues[x] that will
contain all values in dom(x) which are proved to have a support during the search
that enforces GAC on a constraint c. It is sufficient to collect values for uninstantiated
variables. This is why variables in past(P ) are not considered in the algorithms
below.

Algorithm 9 calls a non-revision-based filtering procedure, Algorithm 34, to
enforce GAC on a (positive table) constraint c using an MDD: enforceGAC-type in
Algorithm 9 corresponds here to enforceGAC-mdd. Initially, sets Σtrue , Σfalse and
gacValues are emptied at lines 1 through 4. Then exploration of the diagram starts
from the root.

The function exploreMDD, Algorithm 35, explores the sub-DAG rooted at a given
node. If this node corresponds to a leaf or has already been explored, the algorithm
can decide directly whether or not it is supported. Otherwise, the algorithm explores
each child (i.e. node reached from an outgoing edge) such that the value labeling the
linking arc is still present in its domain. When a supported child node is found, both
the parent node and the value labeling the arc are supported. Finally, Algorithm 35
updates one of the sets Σtrue and Σfalse .
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After exploration of the MDD, unsupported values are removed at lines 7
through 12 of Algorithm 34: these are the values in dom(x) \ gacValues[x].
The test gacValues[x] ⊂ dom(x) at line 8 is (in our context) equivalent to
|gacValues[x]| ̸= |dom(x)|, which is performed in constant time provided that
the size of sets are managed. If the domain of a variable x becomes empty then {x}
is returned at line 11 and the inconsistency will be caught in Algorithm 9.

Algorithm 34: enforceGAC-mdd(P : P , c: constraint): set of variables
Output: the set of variables in scp(c) with reduced domain
Σtrue ← ∅1
Σfalse ← ∅2
foreach variable x ∈ scp(c) | x /∈ past(P ) do3

gacValues[x] ← ∅4

exploreMDD(mdd(c)) // gacValues is updated during exploration5
// domains are now updated and Xevt computed
Xevt ← ∅6
foreach variable x ∈ scp(c) | x /∈ past(P ) do7
if gacValues[x] ⊂ dom(x) then8

dom(x) ← gacValues[x]9
if dom(x) = ∅ then10
return {x}11

Xevt ← Xevt ∪ {x}12

return Xevt13

PROPOSITION 5.8.– For a positive table constraint c, the worst-case time complexity
of enforceGAC-mdd is O(emdd(c) + λ) where emdd(c) is the number of edges in the
MDD used to represent c and λ the number of values detected GAC-inconsistent.

This GAC algorithm has been formulated without any optimization. First, it is
possible to deal with intervals (of values) instead of values as for the case constraint
[CAR 06]. Next, the loop iterating over arcs (starting at line 9 of Algorithm 35) can
terminate as soon as all values have been collected in gacValues arrays because it
means that the constraint is generalized arc-consistent. Certainly the most important
optimization is the management of the incrementality/decrementality of Σfalse when
GAC is maintained during search. Basically, we can avoid resetting (i.e. emptying)
this set as long as no backtracking occurs. A node that is unsupported at time t is
always unsupported at time t′ if between t and t′ no value is restored (and potentially
new values are deleted). To manage decrementality, one has to keep track of Σfalse at
the different levels of search. Time-stamping is one solution but, unluckily this is not
compatible with early cutoff [CHE 08a]. Other decremental solutions are the use of bit
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vectors [CHE 06] and sparse sets. In particular, the sparse set data structure [BRI 93]
is shown [CHE 08a] to be a very competitive choice when solving both structured and
random instances.

Algorithm 35: exploreMDD(node: Node): Boolean
Output: true iff node is supported
if node = t then1
return true // since we are at a leaf2

if node ∈ Σtrue then3
return true // since already proved to be supported4

if node ∈ Σfalse then5
return false // since already proved to be unsupported6

x ← node.variable7
supported ← false8
foreach arc ∈ node.outs do9
if arc.value ∈ dom(x) then10
if exploreMDD(arc.destination) then11

supported ← true12
gacValues[x] ← gacValues[x] ∪ {arc.value}13

if supported = true then14
Σtrue ← Σtrue ∪ {node}15

else16
Σfalse ← Σfalse ∪ {node}17

return supported18

Whereas there were r tries per constraint in the previous section, the MDD
approach requires only one MDD per constraint, which immediately improves space
complexity by a factor r, not counting space saving from node sharing. An MDD
representing a constraint relation should be small or preferably minimal. In [CHE 08a]
a procedure to build an MDD from a trie is in O(tr), which is optimal; but nothing is
said about the variable ordering in the trie and in the MDD. An (ordered) BDD is a
type of (ordered) MDD, and it is known that the size of an (O)BDD is determined by
the Boolean function it represents as well as the chosen variable ordering. Depending
on the variable ordering, at one extreme the number of nodes in an OBDD is linear
(in the number of variables), and at the other extreme this number is exponential.
Actually, the problem of finding the best variable ordering is NP-hard and this is why
the variable ordering is usually determined heuristically.
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5.3.3. Compressed tables

The use of so-called compressed tuples [KAT 07] can reduce the amount of
memory required for tables. A compressed tuple can be defined as follows:

DEFINITION 5.9.– [Compressed Tuple] A compressed tuple Γ for an r-ary constraint
c is an r-tuple (D1, . . . , Dr) such that D1 × · · ·× Dr ⊆

∏
x∈scp(c) dominit(x).

If scp(c) = {x1, . . . , xr} and Γ = (D1, . . . , Dr) is a compressed tuple for c, then
Γ[xi] denotes Di. Any (uncompressed) tuple in D1 × · · · × Dr is said to be covered
by Γ. We are particularly interested in allowed compressed tuples:

DEFINITION 5.10.– [Allowed Compressed Tuple] A compressed tuple Γ =
(D1, . . . , Dr) for an r-ary constraint c is allowed by c iff D1 × · · ·× Dr ⊆ rel(c).

A compressed table can be defined in terms of allowed compressed tuples:

DEFINITION 5.11.– [Compressed Table] A (positive) compressed table for a
constraint c is a set of allowed compressed tuples for c such that every tuple in
rel(c) is covered by at least one of these compressed tuples. A compressed table is
disjoint iff no tuple of rel(c) is covered by two distinct compressed tuples of the table.

Informally, a compressed table is minimal iff it is not possible to merge two
compressed tuples from the table. Minimal disjoint compressed tables can be
generated by a method [KAT 07] based on constructing decision trees. Because the
problem of constructing a decision tree with minimum average branch length is
NP-hard, Katsirelos and Walsh have heuristically selected at each construction step a
decision used to expand the tree.

A compressed table, ctable for short, contains compressed tuples, ctuples for short,
that can be built from an MDD by collecting all values along each path from the root
to a leaf; the reverse is also true.

EXAMPLE.– Figure 5.11 provides a first illustration. As another example, the
compressed table for the (uncompressed) table in Figure 5.2 contains only five
compressed tuples:

({0}, {0}, {0, 1}, {0, 1}, {0, 1})
({0}, {1}, {0}, {0, 1}, {0, 1})
({0}, {1}, {1}, {0}, {0, 1})
({0}, {1}, {1}, {1}, {0})
({2}, {2}, {2}, {2}, {2})

For this example, in the general case where the constraint is r-ary, we can show that r
compressed tuples are sufficient to represent the uncompressed table.
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mdd(cxyz)

({c}, {a, b, c}, {a})

({a}, {a}, {a, b})
({a}, {b}, {b})

({b}, {b}, {c})
({b}, {a}, {a, b})

({b}, {c}, {a})

ctable[cxyz]

y

z

x

Figure 5.11. Compressed tables can be built from decision trees (not shown here) or MDDs

Consider that constraints are represented by compressed tables; the compressed
table for constraint c is denoted by ctable[c]. We provide indexes which, for each
c-value (c, x, a), give access to all all compressed tuples Γ of ctable[c] such that
a ∈ Γ[x]. The index structure for (c, x, a) is denoted by ctable[c, x, a] and is
similar to the concept of sub-table introduced in section 5.1.1. When GAC is
enforced within the coarse-grained GAC-allowed scheme described in section 5.1.3,
supports are sought by the function seekSupport-a, Algorithm 27. The new support-
seeking scheme, called GAC-allowed-compressed and adapted to compressed
tables, is implemented by function seekSupport-a-c, Algorithm 36. The function
seekInCompressedTuple, Algorithm 37, simply searches for a valid tuple covered by
a compressed tuple supporting (x, a). If there is not support for (x, a) in Γ, nil is
returned by function seekInCompressedTuple. Otherwise, an (uncompressed) tuple is
built up and returned: it may be recorded as a last support or as a residual support (not
shown here) in seekSupport-a-c.

Algorithm 36: seekSupport-a-c((c, x, a): c-value): Boolean
// Implementation of GAC-allowed-compressed
i ← 11
while i ≤ ctable[c, x, a].length do2

index ← ctable[c, x, a][i]3
Γ ← ctable[c][index ] // necessarily, a ∈ Γ[x]4
if seekInCompressedTuple((c, x, a),Γ) ̸= nil then5
return true6

i ← i + 17

return false8
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Algorithm 37: seekInCompressedTuple((c, x, a): c-value, Γ: ctuple): tuple
Output: a tuple τ ∈ val(c)x=a covered by Γ, or nil

// let τ be an array of size | scp(c)|
τ [x] ← a1
foreach variable y ∈ scp(c) | y ̸= x do2

found ← false3
foreach value b ∈ Γ[y] do4
if b ∈ dom(y) then5

τ [y] ← b6
found ← true7
break8

if ¬found then9
return nil10

return τ11

We have described here a coarse-grained implementation for use with compressed
tables. A fine-grained implementation is proposed in [KAT 07].

5.3.4. Deterministic finite automata

A deterministic finite automaton (DFA) is defined by a 5-tuple (Q,Σ, δ, q0, F )
where:

– Q is a finite set of states;
– Σ is a finite set of symbols called the alphabet;
– δ : Q × Σ → Q is a transition function;
– q0 ∈ Q is the initial state;
– F ⊆ Q is the set of final states.

Given an input string (a finite sequence of symbols taken from the alphabet Σ), the
automaton starts in the initial state q0, and for each symbol in sequence of the string,
applies the transition function to update the current state. If the last state reached is a
final state then the input string is accepted by the automaton. The set of strings that
the automaton accepts constitutes a language, which is technically a regular language.

In [PES 04], a global constraint, called regular, is introduced: the sequence of
values taken by the successive variables in the scope of this constraint must belong
to a given regular language. For such constraints, a deterministic finite automaton can
be used to determine whether or not a given tuple is accepted. This can be an attractive
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approach when constraint relations can be naturally represented by regular expressions
in a known regular language. For example, in rostering problems, regular expressions
can represent valid patterns of activities.

EXAMPLE.– For the example in Figure 5.2, the regular expression 01∗0(0 + 1)∗ + 2∗

represents a superset of table[c]. Within the language defined by this expression, the
set of strings of length five is exactly table[c]. This seems to be the ultimate way of
compressing tables as shown in Figure 5.12.

⇓

Figure 5.12. DFA built from the table depicted in Figure 5.2. The initial state is pointed by an
arrow and final states are double circled

Working with constraints defined by a DFA, Pesant’s filtering algorithm [PES 04]
enforces GAC by means of a two-stage forward–backward exploration, which is
not described here in detail. This two-stage process constructs a layered directed
multi-graph and collects the set of states that support each v-value (x, a). The worst-
case time and space complexities of this bounded incremental algorithm are both
O(nd|Q|).

There are (global) constraints that can be directly expressed using regular
languages. An example is the stretch constraint [PES 01] which puts restrictions on
maximal subsequences of identical values. On the other hand, when the allDifferent
constraint is represented by a regular expression, the DFA suffers exponential
growth. Finally, it is worth noting that there is a direct correspondence between
MDDs and DFAs. An acyclic and minimized deterministic finite automaton is
equivalent to a merged MDD [HAD 08]. This means that the structures employed in
[VEM 92, AMI 02] for compiling CSP instances are basically multi-valued decision
diagrams.

5.4. GAC-valid+allowed scheme

In section 5.1, the classical scheme GAC-valid iterates over valid tuples seeking
supports, whereas the scheme GAC-allowed iterates over allowed tuples. Subsequent
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sections have introduced various developments that rely on sophisticated data
structures. We now introduce a refinement that combines GAC-valid and GAC-
allowed without any additional data structure. Following [LEC 06d], visits to lists of
valid and allowed tuples are alternated. The idea is to jump over sequences of valid
tuples containing no allowed tuple and to jump over sequences of allowed tuples
containing no valid tuple.

For example, when seeking a support for (x1, 0) on the constraint c in Figure 5.2,
this refined scheme starts by finding, in O(r), the first valid tuple τ = (0, 1, ..., 1, 1).
Next, the first allowed tuple τ ′ greater than or equal to τ is sought. When dichotomic
search is used here, this involves log2(2

r−1) comparisons of tuples, which is
O(r2) because comparing two tuples is O(r). As no such tuple exists for (x1, 0),
(x1, 0) is proven to be generalized arc-inconsistent. Note that this refined scheme,
which is called GAC-valid+allowed, is able to skip a number of tuples that grows
exponentially with the arity of the constraints, but in a manner different to that of
approaches presented previously. GAC-valid+allowed can be implemented using
binary search or instead using tries.

5.4.1. Using binary search

Algorithm 38: seekSupport-v+a((c, x, a): c-value): Boolean
// Implementation of GAC-valid+allowed
τ ← getFirstValidTuple((c, x, a))1
while τ ̸= nil do2

τ ′ ← binarySearch(table[c, x, a], τ)3
if τ ′ = nil then4
return false5

j ← getFirstInvalidPosition(c, τ ′)6
if j = −1 then7
return true8

τ ← getNextValidTuple((c, x, a), τ ′, j)9

return false10

When binary search is used, line 3 of Algorithm 8 calls function seekSupport-
v+a, Algorithm 38. Each execution of the while loop body processes a valid tuple
(initially, the first one). At line 3 the function binarySearch performs a dichotomic
search which returns the smallest tuple τ ′ of table[c] = rel(c) such that τ ′ ≥lex τ and
τ ′[x] = a (or nil if it does not exist). If τ ′ = nil , no support has been found (lines 4
and 5). Otherwise, τ ′ corresponds to an allowed tuple whose validity must be checked
(line 6). If getFirstInvalidPosition(c, τ ′) returns −1 this means that τ ′ is valid too, so
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it is a support and true is returned at line 8. If τ ′ is not valid then getNextValidTuple
(line 9) finds the smallest valid tuple τ built from c such that τ >lex τ ′ and τ [x] = a
(or nil if it does not exist). Auxiliary functions used here are described in section 4.2.

EXAMPLE.– Figure 5.13 provides overall illustration of GAC-valid+allowed using a
ternary constraint. The first valid tuple is (a, b, a). Then, the first allowed tuple greater
than or equal to (a, b, a) is found: this is (b, a, a). Next, the first valid tuple greater
than or equal to (b, a, a) is computed: this is (b, b, a). And so on.

table[cxyz]

x y z
table[cxyz, z, a]

d
o
m

(
x)

d
o
m

(
y)

d
o
m

(
z)

Figure 5.13. Effort required by GAC-valid+allowed to find τ = (c, b, a) as smallest support of
(cxyz, z, a) after the removal of a and c from dom(y)

We call a sequence of valid tuples for a c-value (c, x, a) a pair (τmin, τmax) with
τmin ∈ val(c)x=a, τmax ∈ val(c)x=a and τmin ≤lex τmax. A sequence (τmin, τmax)
of valid tuples for a c-value (c, x, a) contains an allowed tuple τ ′ ∈ rel(c)x=a iff
τmin ≤lex τ ′ ≤lex τmax; τ ′ is not necessarily valid. A sequence (τmin, τmax) of
valid tuples containing no allowed tuple is maximal if it is not possible to enlarge
it (decreasing τmin or increasing τmax) without obtaining a sequence of valid tuples
that contains an allowed tuple.

PROPOSITION 5.12.– For an r-ary positive table constraint c, the worst-case time
complexity of seekSupport-v+a (using a binary search), with input (c, x, a), is
O(N(d + log(tc,x,a)r)) where N is the number of maximal sequences of valid tuples
for (c, x, a) containing no allowed tuple.
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Proof. The worst-case time complexity of binarySearch is O(log(tc,x,a)r). The
worst-case time complexity of getFirstInvalidPosition is O(r). The overall worst-case
time complexity of getNextValidTuple is O(r + d). The overall worst-case time
complexity for one execution of loop body is then O(d+log(tc,x,a)r). The number of
turns of the main loop is bounded by N because each computed intermediate allowed
tuple allows us to skip from a maximal sequence of valid tuples to the next one.

Returning again to the example from Figure 5.2, when seekSupport-v+a is called
with (c, x1, 0), we have N = 1.

5.4.2. Using tries

Following [GEN 07], a trie can be used instead of binary search to find the first
allowed tuple greater than or equal to a valid one. We exploit this idea to provide a
description of a variant of GAC-valid+allowed below.

As in section 5.3.1, there is a separate trie associated with each variable x in the
scope of a table constraint c: x corresponds to the first level of its associated trie.
We now need to be able to retrieve a tuple from a trie. This is why we include an
additional field in the structure Node (introduced in section 5.3.1). More precisely,
for each node, we have a new field which is an array access that provides for each
value a in the domain of the associated variable, the reference to the outgoing arc that
is labeled with the smallest value b ≥ a, or nil if there is none. We also include an
additional field next , in the structure Arc. The field next provides the reference to the
next arc outgoing from the parent node, or nil if the current arc is the the last one.
Remember that outgoing arcs are ordered according to increasing values of the labels.

To implement GAC-valid+allowed scheme with tries, we just replace line 3 of
Algorithm 38 with:.

τ ′ ← trieSearch(trie(c, x, a), τ)

where trieSearch is Algorithm 39, which makes a top-down traversal of the trie
dedicated to x from the node trie(c, x, a). Recursive calls at line 6 continue so long as
the trie contains successive values within the given tuple. If the given tuple is found in
the trie it is returned at lines 2 and 8. If the given tuple does not belong to the trie, this
means that at a certain level, we can’t satisfy arc.value = τ [y] where y is the variable
associated with the current parent node. In this case, from there, so long as there is
no node at successive backtracked levels with a value strictly greater than τ [y] (i.e. as
long as arc = nil ), we climb up the trie (see lines 10 and 12). If such a level can be
found, we build the smallest allowed tuple that is strictly greater than the given one
by following the leftmost branch of the trie from the current level (lines 13 to 20).
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Algorithm 39: trieSearch(node: Node, τ : tuple): tuple
Output: the smallest τ ′ ∈ rel(c)x=a accessible from node | τ ′ ≥lex τ , or nil

// First part: τ can still be found
if node = t then1
return τ // since we have reached a leaf node2

y ← node.variable3
arc ← node.access [τ [y]] // arc with the smallest value b ≥ τ [y]4
if arc ̸= nil ∧ arc.value = τ [y] then5

τ ′ ← trieSearch(arc.destination, τ)6
if τ ′ ̸= nil then7
return τ ′8

else9
arc ← arc.next10

// Second part: τ cannot be found yet
if arc = nil then11
return nil12

τ ′ ← τ13
τ ′[y] ← arc.value14
node ← arc.destination15
while node ̸= t do16

y ← node.variable17
arc ← node.outs[1] // the leftmost arc18
τ ′[y] ← arc.value19
node ← arc.destination20

return τ ′21

PROPOSITION 5.13.– For an r-ary positive table constraint c, the worst-case
time complexity of seekSupport-v+a (using a trie search), with input (c, x, a) is
O(N(d + r)), where N is the number of maximal sequences of valid tuples for
(c, x, a) containing no allowed tuple.

Unfortunately the worst-case space complexity is now O(trd) per trie. Note that it
is possible to trade off time for space by abandoning the field access and “simulating”
a random access by replacing line 4 of Algorithm 39 with:

arc ← node.outs[1]
while arc ̸= nil ∧ arc.value < τ [y] do

arc ← arc.next

A dichotomic search can also be employed.
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5.5. Simple tabular reduction

To enforce GAC on positive table constraints, simple tabular reduction (STR) is
another approach introduced by Ullmann [ULL 07] which significantly differs from
previous methods in that it dynamically maintains the tables of allowed tuples. More
precisely, whenever a value is removed from the domain of a variable, all tuples
that have become invalid are removed from tables. This facilitates identification and
removal of values that are no longer GAC-consistent. GAC is enforced while removing
invalid tuples; only supports are kept in tables. This work is related to the AC algorithm
[SAM 05] for the hidden variable encoding.

5.5.1. Original algorithm

Although STR can be applied stand-alone, we now present it in the more general
context of a backtrack search algorithm. Indeed, an important feature of STR is the
cheap restoration of its structures when backtracking occurs. The principle of STR is
to split each table into different sets such that each tuple is a member of exactly one
set. One of these sets contains all tuples that are currently valid (and are therefore
supports): tuples in this set constitute the content of the current table. Any tuple of the
current table of a constraint c is called a current tuple of c. Other sets contain tuples
removed at different levels of search.

The following arrays provide access to the disjoint sets within table[c].
– position[c] is an array of size t = table[c].length that provides indirect access

to the tuples of table[c]. At any given time the values in position[c] are a permutation
of {1, 2, . . . , t}. The ith tuple of c is table[c][position[c][i]].

– currentLimit [c] is the position of the last current tuple in table[c]. The current
table of c is composed of exactly currentLimit [c] tuples. The values in position[c] at
indices ranging from 1 to currentLimit [c] are positions of the current tuples of c.

– levelLimits[c] is an array of size n+1 such that levelLimits[c][p] is the position
of the first invalid tuple of table[c] removed when the search was at level p (the level
corresponds to the number of instantiated or past variables). levelLimits[c][p] = −1
if none was removed at level p. If p is the current search level and levelLimits[c][p] ̸=
−1, all tuples removed at level p can be accessed using indices at locations in array
position[c] ranging from currentLimit [c] + 1 to levelLimits[c][p].

Note that the array levelLimits[c] is indexed from 0 to n (although we usually
have array indexing from 1). If the search is preceded by preprocessing then we find
at level 0 the tuples removed after the initial call to STR during preprocessing (i.e.
before search). The structure levelLimits is not required if there is no search. The

www.it-ebooks.info

http://www.it-ebooks.info/


270 Constraint Networks

structures introduced here3, following [BRI 93], are simpler than those presented in
[ULL 07, LEC 08a] but the complexities remain the same.

. . .

currentLimit[cxyz]

levelLimits[cxyz]

position[cxyz] table[cxyz]

x y z

Figure 5.14. Initialization of STR data structures for a ternary positive table constraint cxyz

. . .

currentLimit[cxyz]

levelLimits[cxyz]

position[cxyz] table[cxyz]

x y z

Figure 5.15. STR applied after the removal of (y, b) at level 1. (z, c) no longer has support
and will therefore be deleted

EXAMPLE.– To illustrate their use, the following example has a positive table
constraint cxyz such that:

– scp(cxyz) = {x, y, z};

3. I would like to thank Hadrien Cambazard for suggesting such a simplification to me.
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. . .

currentLimit[cxyz]

levelLimits[cxyz]

position[cxyz] table[cxyz]

x y z

Figure 5.16. STR applied after the removal of (y, c) at level 2. No value will be deleted

. . .

levelLimits[cxyz]

position[cxyz] table[cxyz]

x y z

currentLimit[cxyz]

Figure 5.17. Structures obtained after the restoration performed at level 1

– rel(cxyz) = {(a, a, a), (a, a, b), (a, b, b), (b, a, a), (b, a, b),
(b, b, c), (b, c, a), (c, a, a), (c, b, a), (c, c, a)}.

Figure 5.14 shows the initialized STR data structures for cxyz . Now suppose that at
level 1 (that is to say, after a first variable assignment), (y, b) is deleted by propagation
(using other constraints) and STR is applied on cxyz . Tuples at position 3, 6 and 9
in table[cxyz] are no longer valid: their locations in array position are swapped with
locations of three valid tuples. Locations of tuples that are not valid are now at the
end of the array position . levelLimits[cxyz][1] is initialized with the old value of
currentLimits[c], namely 10, as shown in Figure 5.15. Moreover, (z, c) is deleted
because it is no longer supported by any current tuple of cxyz . After a second variable
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. . .

levelLimits[cxyz]

position[cxyz] table[cxyz]

x y z

currentLimit[cxyz]

Figure 5.18. Structures obtained after the restoration performed at level 0

assignment, the removal of (y, c) by propagation and the application of STR, the
situation is as shown in Figure 5.16. Suppose now that the search backtracks to level
1. By modifying two pointers (in constant time), we can restore the structures so
that tuples removed at level 2 are now included in the current table, as shown in
Figure 5.17. Finally, if the search algorithm backtracks to level 0, we obtain the
situation shown in Figure 5.18. Tuples in the current table in Figure 5.18 are not
ordered as initially in Figure 5.14, but for STR this is not a problem.

Corresponding to each variable x, we provide a set gacValues[x] [ULL 77]
that will contain all values in dom(x) which are proved to have a support when
GAC is enforced on a constraint c; this is the same structure as the one introduced
in section 5.3.2. To enforce GAC on a given constraint network P , Algorithm 9
can be used and, as for enforceGAC-mdd, a non-revision-based filtering procedure
establishes generalized arc consistency on positive table constraints. For STR, this
is Algorithm 40: enforceGAC-type in Algorithm 9 corresponds to enforceGAC-str.
The loops at lines 1, 8 and 15 only iterate over uninstantiated variables because it is
only possible (and it is sufficient) to remove values from domains of these variables.
The sets gacValues are emptied at lines 1 and 2 of Algorithm 40 because no value is
initially guaranteed to be GAC-consistent. Then the loop at lines 4 − 13 successively
processes all current tuples of the table of c. When a tuple τ is proved to be valid
(see Algorithm 15), we know that it is necessarily a support since it is (by definition)
allowed; values that have been proved to be GAC-consistent are collected at lines 8
to 10. In constant time at line 13 an invalid tuple τ is removed (see Algorithm 41),
from the current table: actually it is located at the end of the current table before
the value of currentLimit [c] is decremented. If this tuple is the first removed at the
current level p, then the current limit is recorded in levelLimits[c][p]. Note that τ is
effectively removed without actually being moved in memory. After all current tuples
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have been considered, unsupported values are removed (lines 14 to 21): these are the
values in dom(x) \ gacValues[x]. The test at line 16 can be performed in constant
time, as discussed in section 5.3.2. If the domain of a variable x becomes empty, then
{x} is returned at line 19, and the inconsistency will be caught in Algorithm 9.

Algorithm 40: enforceGAC-str(P : P , c: constraint): set of variables
Output: the set of variables in scp(c) with reduced domain
foreach variable x ∈ scp(c) | x /∈ past(P ) do1

gacValues[x] ← ∅2

i ← 13
while i ≤ currentLimit [c] do4

index ← position[c][i]5
τ ← table[c][index ]6
if isValidTuple(c, τ) then7
foreach variable x ∈ scp(c) | x /∈ past(P ) do8
if τ [x] /∈ gacValues[x] then9

gacValues[x] ← gacValues[x] ∪ {τ [x]}10

i ← i + 111
else12

removeTuple(c, i, |past(P )|) // currentLimit [c] is decremented13

// domains are now updated and Xevt computed
Xevt ← ∅14
foreach variable x ∈ scp(c) | x /∈ past(P ) do15
if gacValues[x] ⊂ dom(x) then16

dom(x) ← gacValues[x]17
if dom(x) = ∅ then18
return {x}19

Xevt ← Xevt ∪ {x}20

return Xevt21

The worst-case time complexity of enforceGAC-str, Algorithm 40, is O(r′d + rt′)
where, for a given constraint c, r′ = | scp(c) \ past(P )| denotes the number of
uninstantiated variables in c and t′ the size of the current table of c. The loops at
lines 1, 4 and 15 are O(r′), O(rt′) and O(r′d), respectively. The worst-case space
complexity of enforceGAC-str is O(n + rt) per constraint since levelLimits is O(n),
table is O(rt) and position is O(t).

It is well known that values must be restored to domains when backtracking occurs.
After this restoration, tuples that were invalid may now be valid. If a tuple τ was

www.it-ebooks.info

http://www.it-ebooks.info/


274 Constraint Networks

Algorithm 41: removeTuple(c: constraint, i, p: integers)
// i is the position of the tuple to be removed
// p is the current level (number of past variables)
if levelLimits[c][p] = −1 then1

levelLimits[c][p] ← currentLimit [c]2

tmp ← position[c][i]3
position[c][i] ← position[c][currentLimit [c]]4
position[c][currentLimit [c]] ← tmp5
currentLimits[c] ← currentLimit [c] − 16

removed from the current table of c at level p, then τ must be restored to the current
table of c when the search backtracks to level p− 1. In our implementation, tuples are
restored by calling Algorithm 42 which puts the set of invalid tuples removed at the
given level into the current table, at the tail end. Restoration is achieved in constant
time (for each constraint) without traversing either set and without moving any tuple
in memory [ULL 07].

Algorithm 42: restoreTuples(c: constraint, p: integer)
// p is the level at which tuples must be restored
if levelLimits[c][p] ̸= −1 then1

currentLimit [c] ← levelLimits[c][p]2
levelLimits[c][p] ← −13

5.5.2. Optimizing STR

It is possible to improve STR in two directions [LEC 08a]. First, as soon as all
values in the domain of a variable have been detected GAC-consistent, it is futile to
continue to seek supports for values of this variable. We therefore introduce a set,
Ssup, of uninstantiated variables in scp(c) whose domain contains at least one value
for which a support has not yet been found. In enforceGAC-str2, Algorithm 43, which
is an optimized version of enforceGAC-str, lines 1, 5 and 7 initialize Ssup to be the
same as scp(c) \ past(P ). If |gacValues[x]| = |dom(x)| at line 19 then all values
of dom(x) are supported, so line 20 removes x from Ssup. Efficiency is gained by
iterating only over variables in Ssup at lines 16 and 25.

The second direction of improvement avoids unnecessary validity operations. At
the end of an invocation of STR for constraint c, we know that for every variable
x ∈ scp(c), every tuple τ such that τ [x] ̸∈ dom(x) has been removed from the
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current table of c. If there is no backtrack and dom(x) does not change between this
invocation and the next invocation, then at the time of the next invocation it is certainly
true that τ [x] ∈ dom(x) for every tuple τ in the current table of c. In this case, there
is no need to check whether τ [x] ∈ dom(x); efficiency is gained by omitting this
check. We implement this optimization by means of a set Sval, which is the set of
uninstantiated variables whose domain has been reduced since the previous invocation
of enforceGAC-str2. Initially, this set also contains the last assigned variable, denoted
by lastPast(P ) here, if it belongs to the scope of the constraint c. After any variable
assignment x = a, some tuples may become invalid due to the removal of values
from dom(x). The last assigned variable is the only instantiated variable for which
validity operations must be performed. Algorithm 44 checks validity only for variables
in Sval. The set Sval is initialized at lines 2 through 4 of Algorithm 43. At line 8 of
this algorithm, dom(x).tailAbsent is the value that was most recently removed from
the (initial) domain of x while processing this or any other constraint, as presented in
section 1.5.1; dom(x).tailAbsent has the special value −1 when no value has been
removed from the domain of x. lastRemoved [c][x] is the value that was most recently
removed from the domain of x while processing the specific constraint c (see lines
10 and 30); initially we have lastRemoved [c][x] = −1 for every arc (c, x). If these
two values differ at line 8 then dom(x) has changed since the previous invocation of
Algorithm 43 for the specific constraint c. In this case, x is included in Sval at line 9.
This is how the membership of Sval is determined.

The worst-case time complexity of enforceGAC-str2 is O(r′(d + t′)). Performing
a validity check is now O(r′) instead of O(r), as can be seen in Algorithm 44.
Moreover, the loop starting at line 12 is O(r′t′). Like enforceGAC-str, the worst-case
space complexity of enforceGAC-str2 is O(n+ rt) per constraint since data structures
inherited from enforceGAC-str are O(n + rt), lastRemoved is O(r); Ssup and Sval

are also O(r) but may be shared by all constraints.

The worst case scenarios used to develop the worst-case time complexities of both
enforceGAC-str and enforceGAC-str2 do not entirely characterize the difference in
behavior that may occur, in practice, between the two algorithms. Let us consider
a positive table constraint c such that scp(c) = {x1, ..., xr} and the table initially
includes:

(0,0,...,0)
(1,1,...,1)
...
(d-2,d-2,...,d-2)
(d-2,d-1,...,d-1)
(d-1,0,...,0)
...
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Algorithm 43: enforceGAC-str2(P : P , c: constraint): set of variables
Output: the set of variables in scp(c) with reduced domain
Ssup ← ∅1
Sval ← ∅2
if lastPast(P ) ∈ scp(c) then3

Sval ← Sval ∪ {lastPast(P )}4

foreach variable x ∈ scp(c) | x /∈ past(P ) do5
gacValues[x] ← ∅6
Ssup ← Ssup ∪ {x}7
if dom(x).tailAbsent ̸= lastRemoved [c][x] then8

Sval ← Sval ∪ {x}9
lastRemoved [c][x] ← dom(x).tailAbsent10

i ← 111
while i ≤ currentLimit [c] do12

index ← position[c][i]13
τ ← table[c][index ]14
if isValidTuple(c, Sval, τ) then15
foreach variable x ∈ Ssup do16
if τ [x] /∈ gacValues[x] then17

gacValues[x] ← gacValues[x] ∪ {τ [x]}18
if |gacValues[x]| = |dom(x)| then19

Ssup ← Ssup \ {x}20

i ← i + 121
else22

removeTuple(c, i, |past(P )|) // currentLimit [c] is decremented23

// domains are now updated and Xevt computed
Xevt ← ∅24
foreach variable x ∈ Ssup do25

dom(x) ← gacValues[x]26
if dom(x) = ∅ then27
return {x}28

Xevt ← Xevt ∪ {x}29
lastRemoved [c][x] ← dom(x).tailAbsent30

return Xevt31
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Algorithm 44: isValidTuple(c: constraint, Sval: variables, τ : tuple): Boolean
foreach variable x ∈ Sval do1
if τ [x] /∈ dom(x) then2
return false3

return true4

In this example, the domain of each variable involved in c comprises all digits from
0 to d − 1. In the table, the each of the first d − 1 tuples is a sequence that repeats
the same digit (from 0 to d − 2). The dth tuple consists of the digit d − 2 followed
by a sequence of d − 1. The (d + 1)th tuple consists of the digit d − 1 followed
by a sequence of 0. Assume that past(P ) = ∅ (no variable has been assigned) and
that STR (either of the two algorithms) is applied to this constraint. No value is
removed because all values are present in domains, and there exists a support for
each value. Now, imagine that (x1, d − 1) is deleted while propagating some other
constraints, whereas all other values remain valid. If STR is applied again to this
constraint, no value will be removed (since the constraint is still GAC-consistent as
any remaining value has still a support), but some tuples (at least the (d + 1)th one)
will be eliminated. Interestingly, calling enforceGAC-str requires O(r) constant-time
operations to deal with gacValues structures (loops starting at lines 1 and 15), O(rt)
operations to perform validity checks, O(rt) operations to check GAC values, and
O(rd) operations to collect GAC values. On the other hand, calling enforceGAC-
str2 requires O(r) operations to deal with gacValues structures, O(t) operations to
perform validity checks (since Sval = {x1}), O(rd) operations to check GAC values
(since Ssup = ∅ after the treatment of the first d tuples) and O(rd) operations to
collect GAC values. This leads to:

OBSERVATION 5.14.– There exist situations where applying enforceGAC-str to an r-
ary constraint is O(rt + rd), whereas applying enforceGAC-str2 is O(t + rd).

Most of the time, d << t since t ∈ O(dr). In this case, Observation 5.14 shows
that enforceGAC-str2 is potentially r times faster than enforceGAC-str. The higher
the arity, the greater the possible benefit of using enforceGAC-str2. Finally, there are
two possible ways to cope with backtracking. One way is to to reinitialize all arrays
lastRemoved , filling them with the special value −1. The other way is to record the
content of such arrays at each depth of search, so that the original state of the arrays can
be restored upon backtracking. This approach, which requires an additional structure
that is O(nr) per constraint, is denoted by enforceGAC-str2+.
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5.5.3. Relationship with GAC4

Section 4.4.2 includes an outline of the algorithm GAC4 which is a filtering
algorithm for table constraints. The worst-case time complexity of GAC4 is O(rt) per
constraint, which is optimal. To show optimality, it is necessary to describe how tuples
are discarded when they become invalid (lines 17 to 21 of Algorithm 20). Mohr and
Masini show [MOH 88] that an r-tuple can be removed in O(r). As usual, an array
table[c] contains the set of tuples allowed by c. For each c-value (c, x, a), a double
linked list indicates the position in table[c] of each tuple involving (x, a). Double
linked list organization allows removal of an element in constant time. This list,
whose head is denoted by sup[c, x, a], replaces the sub-table table[c, x, a] introduced
for some algorithms. Finally, we need an array ptr [c] of the same size as table[c].
Whereas table[c][i] denotes the ith tuple τ allowed by c, ptr [c][i] denotes an array tab
of size r such that ∀j ∈ 1..r, if τ [j] = (x, a) then tab[j] is the reference (pointer) of
the node in sup[c, x, a] whose value is i. This is illustrated in Figure 5.19.

. . .

. . .

table[cxyz] ptr[cxyz]

. . .

. . .

. . .

. . .

sup[cxyz, x, a]

sup[cxyz, y, b]

sup[cxyz, z, c]

Figure 5.19. Data structures of GAC4

GAC4 and STR are related in that they both dynamically maintain the set of
supports of each constraint. A major difference is that GAC4 is guided by (deleted)
values, whereas STR globally enforces generalized arc consistency. The application of
GAC4 during search remains to be studied; a practical comparison of these algorithms
would be interesting.
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5.6. GAC for negative table constraints

For negative table constraints, we present three approaches. The first is simply
GAC-valid, the second is an adaptation of GAC-valid+allowed, and the third is based
on converting sets of forbidden tuples into positive compressed tables or MDDs.

5.6.1. Negative table constraints

A negative table constraint is a constraint given in extension and defined by a
set of forbidden tuples. The set of forbidden tuples associated with a negative table
constraint c is denoted by table[c] and represented here by an array indexed from
1 to table[c].length . The space complexity to record this set is O(tr) where t =
table[c].length is the size of the table (i.e. the number of forbidden tuples) and r
is the arity of c.

For negative constraints, we introduce index structures similar to those proposed
for positive table constraints in section 5.1.1. For each c-value (c, x, a) the sub-table
table[c, x, a] provides access to forbidden tuples involving (x, a) in table[c]. This sub-
table (index) is an array whose indices ranges from 1 to table[c, x, a].length such that
element table[c, x, a][i] gives the index in table[c] of the ith disallowed tuple involving
(x, a). With these sub-table index structures, the space complexity remains O(tr) per
constraint.

Assuming that each sub-table is ordered (according to the lexicographic order
of referenced tuples), the worst-case time complexity of checking (using a binary
search) that a tuple τ involving (x, a) is allowed is O(log(tc,x,a)r) where tc,x,a =
table[c, x, a].length .

5.6.2. GAC-valid scheme

GAC-valid is easily adapted to negative table constraints. Once again, considering
the general approach presented in first sections of Chapter 4, we just have to describe
the way a constraint check is performed (by GAC3). We simply replace the test
τ ∈ rel(c) at line 3 of Algorithm 18 by τ /∈ table[c, x, a]. As mentioned above, it
is O(log(tc,x,a)r) with tc,x,a = table[c, x, a].length .
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Remember that in the context of table constraints, we use seekSupport-v as alias
for seekSupport-3. Also, recall that the number of valid tuples built from c and
involving (x, a) is vc,x,a = | val(c)x=a|. Thus:

PROPOSITION 5.15.– For an r-ary negative table constraint c, the worst-case time
complexity of seekSupport-v, with input (c, x, a), is O(vc,x,a log(tc,x,a)r).

COROLLARY 5.16.– Using a hash map with a hash function in O(r) that
properly disperses disallowed tuples, the worst-case time complexity of the function
seekSupport-v is O(vc,x,ar).

When a constraint is specified by a list of disallowed tuples, this means that the
constraint tightness is greater than 0.5 (otherwise, to save space, we can just transform
the negative table constraint into a positive table constraint). Then, on average, we can
expect to find a support for a value quickly. More than a valid tuple on two valid tuples
built from the initial domains is allowed and GAC-valid iterates over valid tuples until
an allowed one is found.

5.6.3. GAC-valid+forbidden scheme

When a negative table constraint is highly structured (long sequences of forbidden
tuples), it may still be quite expensive to find a support for some values with GAC-
valid. This is why an adaptation of GAC-valid+allowed, called GAC-valid+forbidden,
is now proposed.

To skip in constant time sequences of valid tuples containing no allowed tuples, we
introduce an additional array of pointers for each c-value (c, x, a). Specifically, if τ is
a tuple of table[c, x, a], then lastSequ(τ) denotes the greatest tuple τ ′ in table[c, x, a]
such that τ ′ ≥lex τ and any tuple τ ′′ such that τ ′ >lex τ ′′ ≥lex τ also belongs to
table[c, x, a]. In other words, lastSequ(τ) denotes the last forbidden tuple of a convex
sequence containing τ and serves as an auxiliary index. Note, however, that the overall
worst-case space complexity remains O(tr).

The function seekSupport-v+f, Algorithm 45, is designed to be called at line 3 of
Algorithm 8. Each execution of the while loop in seekSupport-v+f processes a valid
tuple (initially, the first is computed). At line 3, binarySearch performs a dichotomic
search that returns the smallest disallowed tuple τ ′ of c such that τ ′ ≥lex τ and
τ ′[x] = a. If τ ′ ̸= τ (including the case τ ′ = nil ), this means that τ is allowed
and is therefore a support, so true is returned at line 5. Otherwise, lastSequ(τ)
skips a convex sequence of forbidden tuples before getFirstInvalidPosition(c, τ ′) is
called. If −1 is returned, we still have to find the next valid tuple strictly greater
than τ ′ (since τ ′ cannot be a support). Otherwise, we compute the next valid tuple
strictly greater than τ ′ (using the position of the first invalid position). The function
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getFirstInvalidPosition is described in Algorithm 16, the first overloaded function
getNextValidTuple is described in Algorithm 14 and the second one is described in
Algorithm 17.

Algorithm 45: seekSupport-v+f((c, x, a): c-value): Boolean
// Implementation of GAC-valid+forbidden
τ ← getFirstValidTuple((c, x, a))1
while τ ̸= nil do2

τ ′ ← binarySearch(table[c, x, a], τ)3
if τ ′ ̸= τ then4
return true5

τ ′ ← lastSequ(τ)6
j ← getFirstInvalidPosition(c, τ ′)7
if j = −1 then8

τ ← getNextValidTuple((c, x, a), τ ′)9
else10

τ ← getNextValidTuple((c, x, a), τ ′, j)11

return false12

PROPOSITION 5.17.– For an r-ary negative table constraint c, the worst-case time
complexity of seekSupport-v-f (using a binary search), with input (c, x, a), isO(N(d+
log(tc,x,a)r)) whereN is the number of maximal sequences of valid tuples for (c, x, a)
containing no allowed tuple.

5.6.4. Compressed tuples and MDDs

A set of disallowed tuples can be converted efficiently into a set of allowed
compressed tuples [KAT 07]. For a negative table constraint c, a compressed table
is built from ∏

x∈scp(c) dominit(x) \ table[c]. When the number of allowed tuples
is exponentially greater than the number of disallowed ones, this is not true of the
number of allowed compressed tuples. [KAT 07] uses decision trees and shows that
the number of compressed tuples obtained from a decision tree F is O(nd|F |) where
|F | denotes the number of nodes in the decision tree.

A set of tuples can be represented by a multi-valued decision diagram (MDD), as
in section 5.3.2. For disallowed tuples, the terminal node is denoted by f . In this case,
it is easy to generate a set of allowed compressed tuples. Let us consider a node v at
level i ∈ 1..r of the graph (where v ̸= f ). Let ∆(v) be the set of values present
in the domain of the variable associated with v but not present in any label (of the
arcs) outgoing from v. If ∆(v) = ∅, we say that v is covered in the diagram. If
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∆(v) ̸= ∅, we can add a path to the diagram composed of a first arc labeled with ∆(v)
and r − i intermediate successive arcs leading finally to t . Each intermediate arc is
labeled with the values present in the domain of the variable associated with its parent
node. We proceed analogously with every (old) node of the diagram and we merge
similar subgraphs. From the resulting completed MDD it is easy to extract allowed
compressed tuples.

x

y

z

Figure 5.20. Translating a “negative” MDD into a “positive” one

EXAMPLE.– Let us consider as in [KAT 07] a constraint cxyz with dom(x) =
dom(y) = dom(z) = {1, 2, 3} and table[cxyz] = {(1, 2, 3), (3, 2, 1)}. Here there are
two disallowed tuples and 33 − 2 = 25 allowed tuples. Figure 5.20 shows how the
initial MDD representing these two forbidden tuples can be completed to include the
entire set of allowed tuples. Discarding negative paths, i.e. paths leading to f , we
obtain a “positive” MDD. The set of allowed compressed tuples can then be easily
collected by following every path leading to node t . For our example, we obtain:

({1}, {1, 3}, {1, 2, 3})
({1}, {2}, {1, 2})
({2}, {1, 2, 3}, {1, 2, 3})
({3}, {1, 3}, {1, 2, 3})
({3}, {2}, {2, 3})
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If we use the order y, x, z to build the MDD, we obtain a different compressed table
containing only four elements as in [KAT 07]. More generally, the number of allowed
compressed tuples obtained from an MDD G representing the set of forbidden tuples
is exactly the number of nodes in G that are not covered.

Of course, once a (positive) compressed table has been built from a negative table
constraint, we can use the approach described in section 5.3.3. We can also use the
MDD approach in section 5.3.2 by translating negative MDDs into positive ones, or
by slightly modifying the filtering procedure [CHE 08b].

5.7. Experimental results

An experimental comparison of all approaches mentioned in this chapter would
be very difficult and is beyond the scope of this book. Published results, e.g.
[LHO 05b, LEC 06d, GEN 07, KAT 07, LEC 08a, CHE 08a], give some impression
of the relative efficiency of various approaches. This section provides a few tables
showing dramatic differences of behavior between some selected approaches, always
with table constraints.

Our experiments have used a cluster of Xeon 3.0 GHz with 1 GB of RAM under
Linux, employing MAC with dom/ddeg and lexico as variable4 and value ordering
heuristics, respectively; MAC and heuristics are described in Chapters 8 and 9.
We have compared STR with classical schemes that enforce GAC on (positive)
table constraints. More specifically, on the one hand we have implemented GAC-
valid (GAC-v for short), GAC-allowed (GAC-a for short) and GAC-valid+allowed
(GAC-v+a for short) schemes, while on the other hand we have implemented the
original STR algorithm (GAC-str), the optimized version of this algorithm (GAC-
str2) and this last one made incremental (GAC-str2+). As mentioned earlier, the
three classical schemes can be easily instantiated from different general-purpose
coarse-grained GAC algorithms; our experiments have used GAC3rm. Performance
has been measured in terms of the CPU time in seconds.

First, we have experimented on various series of (random and structured) CSP
instances. These series represent a large spectrum of instances, and importantly, allow
anyone to reproduce this experimentation “easily”. The first two series [CHE 06] bdd-
21-2713-15 and bdd-21-133-18 (bdd-15 and bdd-18 in Table 5.1) contain 35 instances
each, with 21 Boolean variables and large and small BDD constraints of arity 15 and
18, respectively. The series renault-mod contains 45 real-world instances (we were
unable to solve 5 of them with the selected heuristics within a reasonable amount of

4. In our implementation, using dom/wdeg does not guarantee exploring the same search tree
with classical and STR schemes. This is why we didn’t choose it.
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Classical GAC schemes Simple tabular reduction
Series #Inst GAC-v GAC-a GAC-v+a GAC-str GAC-str2 GAC-str2+
bdd-15 35 69.3 386 58.8 164 94.5 52.1
bdd-18 35 37.3 (23 out) 36.0 66.1 38.3 26.2

renault-mod 45 83.8 45.7 48.0 61.6 54.9 45.4
tsp-20 15 28.4 23.3 14.9 8.80 8.95 8.35
tsp-25 15 254 273 196 119 122 118
rand-8 20 107 (16 out) 119 108 81.2 65.6

rand-10 20 (20 out) 4.49 5.61 1.00 0.77 0.53

Table 5.1. Mean CPU time to solve instances of different series with MAC (a time-out of 1,200
seconds was set per instance). For classical algorithms, GAC3rm was embedded in MAC

time) involving domains containing up to 42 values and constraints of various arity
defined by large tables (the greatest one contains about 50,000 6-tuples). The two
series tsp-20 and tsp-25 contain 15 instances of the traveling salesperson problem with
domains containing up to 1,000 values and ternary constraints defined by large tables
(about 20,000 3-tuples). Finally, the two series rand-8-20-5-18 and rand-10-20-10-5
(rand-8 and rand-10 in Table 5.1) contain 20 random instances each with 20 variables.
Each instance of the series rand-8-20-5-18 (resp. rand-10-20-10-5) involves domains
containing 5 (resp. 10) values and 18 (resp. 5) constraints of arity 8 (resp. 10); tables
contain about 78,000 and 10,000 tuples, respectively.

Table 5.1 shows the mean CPU time required to solve the instances of these
different series with MAC. Overall, GAC-str2+ is always the most efficient approach;
it is three times faster than GAC-str on the bdd-21-2713-15 series and ten times faster
than GAC-v+a on the rand-10-20-10-5 series. Memory consumption (not shown here)
of all these algorithms differs at most by a factor of two. The additional structure in
GAC-str2+ is in O(nd) and has a very limited practical impact in all these series of
experiments.

We have also experimented with some series of crossword puzzles. For each white
square within each grid, there is one variable that can be assigned any of the 26 letters
of the Latin alphabet. For each sequence of white squares where a word should be
placed on the grid, the word is constrained to belong to a given dictionary. Each
such constraint is defined by a table that contains all words of the right length. The
series prefixed by cw-m1c (omitted in the table) are defined from blank grids and
only contain positive table constraints (unlike model m1 in [BEA 01] where no two
identical words can be put in the grid, which is a constraint expressed in intension).
The arity of the constraints is given by the size of the grids: for example, cw-m1c-lex-
vg5-6 involves table constraints of arity 5 and 6 (the grid being 5 by 6). Our results
(see Table 5.2) with respect to four dictionaries (lex, words, uk, ogd) of different length
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Classical GAC schemes Simple tabular reduction
GAC-v GAC-a GAC-v+a GAC-str GAC-str2 GAC-str2+

Crossword puzzles with dictionary lex (24,974 words)
lex-vg5-6 CPU > 1,200 38.8 54.2 14.3 12.4 10.7

#nodes=26,679 mem 2.821 2.859 2.863 2.866 2.898
lex-vg5-7 CPU > 1,200 357 875 134 114 96.3

#nodes=171 K mem 4.037 4.075 7.817 7.866 7.870
lex-vg6-6 CPU > 1,200 2.98 4.29 1.28 1.05 0.91

#nodes=1,602 mem 4.318 4.242 4.127 4.104 4.195
lex-vg6-7 CPU > 1,200 436 1,174 176 143 118

#nodes=152 K mem 5.749 5.559 9.236 9.216 9.331
Crossword puzzles with dictionary words (45,371 words)
words-vg5-5 CPU > 1,200 0.04 0.05 0.05 0.05 0.04

#nodes=38 mem 4.852 4.870 4.710 4.678 4.696
words-vg5-6 CPU > 1,200 1.19 1.46 0.48 0.37 0.33

#nodes=718 mem 6.355 6.373 6.199 6.126 6.199
words-vg5-7 CPU > 1,200 18.6 36.0 6.61 5.21 4.03

#nodes=6,957 mem 8.271 8.290 8.082 7.954 8.044
words-vg5-8 CPU > 1,200 866 > 1,200 273 229 187

#nodes=256 K mem 4.496 10 10 10
Crossword puzzles with dictionary uk (225,349 words)

uk-vg5-5 CPU > 1,200 0.05 0.05 0.1 0.07 0.07
#nodes=28 mem 12 12 12 12 12
uk-vg5-6 CPU > 1,200 0.55 0.5 0.21 0.17 0.17
#nodes=145 mem 17 17 16 16 16
uk-vg5-7 CPU > 1,200 2.97 5.18 0.51 0.37 0.34
#nodes=408 mem 22 22 22 22 22
uk-vg5-8 CPU > 1,200 82.5 71.9 7.08 5.71 4.78

#nodes=8,148 mem 12 12 11 11 11
Crossword puzzles with dictionary ogd (435,705 words)

ogd-vg6-6 CPU > 1,200 0.37 0.31 0.23 0.17 0.15
#nodes=98 mem 46 47 46 46 48

ogd-vg6-7 CPU > 1,200 95.3 56.1 12.0 8.01 6.81
#nodes=9,522 mem 11 11 11 11 11
ogd-vg6-8 CPU > 1,200 53.0 6.44 2.91 2.0 1.72
#nodes=2,806 mem 24 23 22 22 24
ogd-vg6-9 CPU > 1,200 727 214 35.1 25.1 19.1

#nodes=23,283 mem 42 41 39 37 40

Table 5.2. Representative results obtained on series of crossword puzzles using dictionaries of
different length. The number of nodes (#nodes) explored by MAC is given below the name of

each instance
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confirm our previous results. On the most difficult instances, GAC-str2+ is about twice
as fast as GAC-str and is one order of magnitude faster than GAC-v+a. We do not
report mean timings for these series because many instances cannot be solved within
1,200 seconds.

5.8. Conclusion

Table constraints have received much attention over the last few years, partially
because they play a central role in the development of robust generic constraint
solvers. This chapter has attempted to provide a substantial overview of general
approaches that deal with such constraints. Of course, we did not introduce all
subtleties of all of them. For example, we did not describe the hologram structure that
can be used with the nextIn approach, nor how for the MDD approach incrementality
can be managed by using a sparse set data structure.

We are convinced that several ideas, techniques and data structures involved in
these different proposals could advantageously be extended and combined to obtain
further improvements in the speed of propagation of table constraints. A related
development explores the possibility of reformulating table constraints of large arity
as conjunctions of lower arity constraints. In [CAM 08] such decomposition is based
on functional dependencies and is shown to be complementary to compression-based
approaches.
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Chapter 6

Singleton Arc Consistency

Maintaining arc consistency (MAC), which is the subject of Chapter 8, is
certainly the most popular systematic search algorithm for solving instances of the
constraint satisfaction problem. At each step of backtrack search, MAC enforces
generalized arc consistency (GAC) to reduce domains inferentially. Thus MAC
interleaves inference with search. This chapter reviews proposals for enforcing
stronger consistencies, instead of arc consistency, before and/or during the search.
Examples of stronger consistencies are max-restricted path consistency (Max-RPC),
path-inverse consistency (PIC) and singleton arc consistency (SAC).

Singleton consistencies, and more particularly singleton arc consistency, have
recently received much attention; see for example [DEB 97b, PRO 00, BAR 04,
BES 04b, BES 04a, LEC 05, BES 08a]. A constraint network is singleton arc-
consistent1 if no value is singleton arc-inconsistent, i.e. if after instantiating any
variable, enforcement of generalized arc consistency does not empty any domain.
Singleton arc consistency is quite easy to define and understand as it is based
straightforwardly on instantiation and on enforcement of generalized arc consistency.
This makes it all the more attractive since it is substantially stronger than generalized
arc consistency: it looks one step in advance in all “directions”. Strong inferences
during a preprocessing stage or during the early stages of a backtrack search can
dramatically reduce the search space. It is therefore possible that singleton arc
consistency may be important in the development of a new generation of robust
constraint solvers.

1. A formal definition can be found in section 3.3.
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A SAC algorithm is an algorithm that enforces singleton arc consistency:
given a constraint network P , a SAC algorithm computes the SAC-closure of P ,
denoted by SAC (P ). The efficiency of an algorithm that enforces singleton arc
consistency depends mainly on its ability to avoid useless singleton checks and
on its incrementality level, which is the extent to which the incrementality of the
underlying GAC algorithm is exploited. Compared to the basic algorithm SAC1,
SAC2 avoids many singleton checks. Going further, SAC-Opt is made incremental
(and consequently worst-case time optimal) by associating a constraint network
with each v-value. Unfortunately, SAC-Opt requires substantial memory for these
duplicated constraint networks and for data structures that permit incrementality.
SAC-SDS is derived from SAC-Opt by trading optimal time complexity for a better
space complexity. SAC3 exploits incrementality by performing greedy runs of an
algorithm that maintains generalized arc consistency. The variant SAC3+ stores the
result of each run, for subsequent advantageous reuse.

Experience suggests that maintaining singleton arc consistency during search may
not be cost-effective because of the high risk that many singleton checks are fruitless.
In particular, the complexity of systematically checking all values in all domains
obviously grows with the size of the domains. To mitigate complexity, bound SAC
and existential SAC [LEC 06a] are partial forms of SAC that restrict the inference
effort to one value per domain, ensuring that there exists at least one possibility of
instantiating each variable, while applying GAC. When SAC is only enforced during
a preprocessing stage before search, stronger forms of SAC may be appropriate. A
promising example is weak k-SAC [DON 06], which finds for each value at least one
“consistent” instantiation of k − 1 variables.

This chapter is organized as follows. Section 6.1 presents SAC1 and SAC2,
which are historically the first algorithms for enforcing singleton arc consistency.
Section 6.2 introduces SAC-Opt which enforces SAC with optimal worst-case time
complexity; this section also includes a brief discussion of SAC-SDS. Sections 6.3
and 6.4 introduce SAC3 and SAC3+ which perform greedy runs to achieve SAC. The
behavior of these different algorithms is compared in section 6.5. Finally, section 6.6
shows how algorithms for existential SAC and weak k-SAC are natural developments,
also using a greedy approach.

Important In accordance with well-established usage, this chapter uses the acronym
SAC instead of SGAC even in the general case, i.e. for singleton GAC on networks
involving constraints of arbitrary arity. However, complexities will only be given
for binary constraint networks. On the other hand, an instruction of the form
GAC (P,Xevt) must always be understood as a call to the function enforceGACvar,
Algorithm 9, which takes P and Xevt as parameters, and returns false when a domain
wipe-out is identified, denoted here by GAC (P,Xevt) = ⊥. Instead of returning a
Boolean value, GAC (P,Xevt) is assumed to return the constraint network obtained
after enforcing GAC on P from events in Xevt.
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6.1. SAC1 and SAC2

SAC1 [DEB 97b] is the first algorithm that establishes singleton arc consistency.
SAC1, Algorithm 46, starts by enforcing generalized arc consistency and then checks
each v-value (x, a) in turn. The test GAC (P |x=a, {x}) = ⊥ at line 7 corresponds
to a singleton check on (x, a). Because GAC is maintained on P (at lines 1 and
8), the instruction GAC (P |x=a, {x}) is guaranteed to return the constraint network
GAC (P |x=a). If a value is detected to be SAC-inconsistent, it is removed from its
domain and the effect is propagated by enforcing GAC at line 8. If P is proved to
be SAC-inconsistent (i.e. if SAC (P ) = ⊥), then false is returned at line 10 (or at
line 3). Otherwise, the repeat loop terminates at the end of the first iteration in which
no domain has been modified.

SAC1 has no additional data structure, so its space complexity is the same as that
of the underlying GAC algorithm. The lack of additional data structure means that
SAC1 must systematically recheck all (remaining) values whenever a value is deleted.
This brute-force algorithm can be regarded as an extension of the basic algorithm AC1
[MAC 77a].

Algorithm 46: SAC1(P : P): Boolean
Output: true iff SAC (P ) ̸= ⊥
P ← GAC (P, vars(P )) // GAC is initially enforced1
if P = ⊥ then2
return false3

repeat4
modified ← false5
foreach v-value (x, a) of P do6
if GAC (P |x=a, {x}) = ⊥ then7

P ← GAC (P |x̸=a, {x}) // a is removed from dom(x) and GAC8
enforced
if P = ⊥ then9
return false10

modified ← true11

until ¬modified12
return true13

PROPOSITION 6.1.– On binary constraint networks, SAC1 embedding an optimal
arc consistency algorithm such as AC2001, admits a worst-case space complexity in
O(ed) and a worst-case time complexity in O(en2d4).
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The SAC support for a v-value (x, a) on P is the complete set of v-values of
GAC (P |x=a), resulting from a singleton check on (x, a). The second algorithm,
SAC2 [BAR 04], avoids some useless singleton checks by recording, for each v-value,
the entire set of v-values that supported it. SAC2 uses the fact that if GAC (P |x=a) ̸=
⊥ then (x, a) remains SAC-consistent so long as its support remains unchanged, i.e. so
long as each v-value present in GAC (P |x=a) is not deleted elsewhere. Consequently,
a v-value (x, a) has to be singleton checked (again) after the removal of a v-value
(y, b) if and only if (y, b) belongs to the SAC support for (x, a) on P . As expected,
the practical performance of SAC2 is an improvement [BAR 04] on SAC1. But the
worst-case time complexity of SAC2 is the same as for SAC1 because consistency has
to be enforced on P |x=a from scratch every time (x, a) is singleton checked. In SAC2
the extra data structures that manage SAC supports are in O(n2d2).

6.2. SAC-Opt and SAC-SDS
To enforce singleton arc consistency, GAC may be enforced on P |x=a at worst

nd times for each v-value (x, a). SAC-Opt avoids enforcing GAC on P |x=a from
scratch each time (x, a) is singleton checked. For each v-value (x, a), SAC-Opt has a
separate dedicated constraint network Pxa

representing the subproblem P |x=a where
the domain of x only contains the value a. Every time (x, a) is singleton checked,
SAC-Opt uses the network Pxa

that has been dedicated to (x, a). This enables SAC-
Opt, unlike SAC1 and SAC2, to benefit from the incrementality of the underlying GAC
algorithm and thereby to enforce singleton arc consistency with optimal2 worst-case
time complexity [BES 04b, BES 08a].

For each of the separate subproblem networks Pxa
, the domains and the

data structures used specifically for (x, a) by the underlying GAC algorithm are
represented. A single representation of all constraints is shared by all of the
subproblem networks and is not duplicated. Each subproblem network has its
own dedicated propagation queue of variables: the propagation queue for Pxa

is Qxa
. SAC-Opt, Algorithm 47, also has a single set Qsac of v-values whose

singleton arc consistency must be checked. At line 14, the instruction of the form
GAC+(P,Xevt) returns a pair (P ′, deleted) where P ′ = GAC (P,Xevt) and
deleted = {(x, a) | x ∈ vars(P ) ∧ a ∈ domP (x) \ domP ′

(x)}. Algorithms
presented in Chapter 4 can easily be adapted to additionally return deleted , which is
the set of v-values removed after enforcing GAC.

At line 1 in Algorithm 47, SAC-Opt enforces generalized arc consistency on the
given network. Then all subproblem networks are initialized and all v-values are put
into Qsac. For each v-value (x, a) picked in Qsac, SAC-Opt enforces GAC on the

2. Optimality is proved for binary constraint networks and conjectured for non-binary networks.
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appropriate subproblem at line 10. If (x, a) is proven to be SAC-consistent, then
Qxa

is emptied since all events (deleted values) have been treated. Otherwise, (x, a)
has to be removed from the original network P , and GAC has to be enforced again
(the original algorithm does not include this slight modification). Qsac is updated
at line 9 to discard the v-value singleton checked, and at line 17 to discard the v-
values deleted while enforcing GAC. The function updateSubproblems, Algorithm 48,
updates every subproblem network that involves any deleted v-value, including (x, a).
Specifically, for each v-value (x, a) that has just been removed and that belongs to
a subproblem Pyb

, the function updateSubproblems updates Pyb
, Qyb

and also Qsac.
Iteration continues until a fixed point is reached, or false is returned at line 16 because
P is proved to be SAC-inconsistent.

Algorithm 47: SAC-Opt(P : P): Boolean
Output: true iff SAC (P ) ̸= ⊥
P ← GAC (P, vars(P )) // GAC is initially enforced1
if P = ⊥ then2
return false3

foreach v-value (x, a) of P do4
Pxa

← P |x=a // we have domPxa (x) = {a}5
Qxa

← {x}6

Qsac ← {(x, a) | x ∈ vars(P ) ∧ a ∈ dom(x)}7
while Qsac ̸= ∅ do8

pick and delete (x, a) from Qsac9
Pxa

← GAC (Pxa
, Qxa

)10
if Pxa

̸= ⊥ then11
Qxa

← ∅12
else13

(P, deleted) ← GAC+(P |x̸=a, {x}) // a is removed from dom(x) and14
GAC enforced - deleted values are returned
if P = ⊥ then15
return false16

Qsac ← Qsac \ deleted17
updateSubproblems(P, deleted ∪ {(x, a)})18

return true19

What is interesting about SAC-Opt is that the total worst-case time complexity
of successively enforcing GAC on each subproblem is the same as a single call to
the GAC enforcement procedure. Exploitation of incrementality of the underlying
(general-purpose) GAC algorithm allows SAC-Opt to enforce SAC on binary
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Algorithm 48: updateSubproblems(P : P , deleted : set of v-values)
foreach v-value (x, a) ∈ deleted do1
foreach v-value (y, b) of P do2
if a ∈ domPyb (x) then3

remove a from domPyb (x)4
Qyb

← Qyb
∪ {x}5

Qsac ← Qsac ∪ {(y, b)}6

constraint networks in O(end3), which is the lowest time complexity that can be
expected [BES 04b, BES 08a].

PROPOSITION 6.2.– On binary constraint networks, SAC-Opt embedding an optimal
arc consistency algorithm such as AC2001, admits a worst-case space complexity in
O(end2) and an optimal worst-case time complexity in O(end3).

Unfortunately, SAC-Opt cannot be used on large constraint networks because
its worst-case space complexity is in O(end2). This is why Bessiere and Debruyne
[BES 05b] have proposed another algorithm called SAC-SDS, which incorporates a
trade-off between time and space. Space requirements are reduced by sharing, instead
of duplicating, data structures required for establishing (generalized) arc consistency
on different subproblems. Worst-case space and time complexities of SAC-SDS are
respectively O(n2d2) and O(end4). SAC-SDS has performed well in experiments
with random instances.

6.3. SAC3

All the SAC algorithms mentioned previously perform a kind of breadth-first
search with depth equal to 1. Each “branch” of this search corresponds to a singleton
check on a value that is removed if an inconsistency is found. An alternative [LEC 05]
is to check a value in the continuity of previous checks. The idea is to build fewer
branches of greater length using greedy runs, maintaining GAC at each step. The
current branch is extended until a dead-end (or the impossibility of making further
variable assignments) is reached. In this context the current run is stopped when the
first assigned value is SAC-inconsistent, or when all assigned values, except the last
one, are SAC-consistent. This last statement relies on Proposition 6.3.

PROPOSITION 6.3.– Let P be a constraint network, I a valid instantiation on P and
P ′ = GAC (P |I). If P ′ ̸= ⊥, then every v-value (x, a) of P such that domP ′

(x) =
{a} is SAC-consistent on P .
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Proof. We know that every v-value (x, a) of P ′ such that domP ′

(x) = {a} is SAC-
consistent on P ′ because GAC (P ′|x=a) = P ′ (P ′ is GAC-consistent and a is the
unique value in domP ′

(x)). On the other hand, as SAC is stable (see Definition 3.13)
for (P,≼d) and P ′ ≼d P , every v-value SAC-consistent on P ′ is necessarily SAC-
consistent on P . We deduce that v-values (x, a) of P such that domP ′

(x) = {a} are
SAC-consistent on P .

This means that all v-values in I are SAC-consistent, but there may be also some v-
values (y, b) of P such that (y, b) /∈ I and domP ′

(y) = {b}. These values are detected
SAC-consistent while others (those in I) are checked. Proposition 6.3, which can be
seen as a generalization of Property 2 in [CHM 00], is also related to the exploitation
of singleton-valued variables in [SAB 97].

Algorithm 49: SAC3(P : P): Boolean
Output: true iff SAC (P ) ̸= ⊥
P ← GAC (P, vars(P )) // GAC is initially enforced1
if P = ⊥ then2
return false3

repeat4
modified ← false5
Qsac ← {(x, a) | x ∈ vars(P ) ∧ a ∈ dom(x)}6
while Qsac ̸= ∅ do7

(x, a) ← buildBranch(P )8
if (x, a) ̸= nil then9

(P, deleted) ← GAC+(P |x̸=a, {x}) // a is removed from dom(x)10
and GAC enforced - del. values are returned
if P = ⊥ then11
return false12

Qsac ← Qsac \ deleted13
modified ← true14

until ¬modified15
return true16

SAC3 is the first algorithm using a greedy search mechanism to establish
singleton arc consistency. As in SAC-Opt, Qsac is the set of v-values whose singleton
arc consistency must be checked, and deleted is the set of v-values removed during
enforcement of GAC. After initially enforcing generalized arc consistency on the
given network, SAC3, Algorithm 49, puts all v-values into Qsac, and then successive
branches are built in order to check these v-values. Branches are built by function
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Algorithm 50: buildBranch(in P : P): v-value
Output: a SAC-inconsistent v-value, or nil

length ← 01
repeat2

pick and delete (x, a) from Qsac | a ∈ domP (x)3
P ← GAC (P |x=a, {x})4
if P ̸= ⊥ then5

length ← length + 16
else if length > 0 then7

Qsac ← Qsac ∪ {(x, a)}8

until P = ⊥ ∨ ̸ ∃(x, a) ∈ Qsac | a ∈ domP (x)9
if length = 0 then10
return (x, a) // (x, a) is SAC-inconsistent11

else12
return nil13

buildBranch, Algorithm 50 where P is an input parameter3, which returns either the
first v-value that has been assigned if this has led directly to failure, or otherwise
returns nil . In the first case, the SAC-inconsistent value is removed, GAC is re-
established and, in order to guarantee SAC enforcement, the flag modified is set
to true. Qsac is updated at line 3 in Algorithm 50 to discard the v-values proved
to be SAC-consistent when building a branch (see also line 8), and at line 13 in
Algorithm 49 to discard the v-values deleted while enforcing GAC. When the set
Qsac is eventually empty, a new pass is started if the flag modified indicates that at
least one value was removed during the previous pass. This process continues until a
fixed point is reached, or false is returned at line 12.

When a value is detected SAC-inconsistent in the function buildBranch, this
inference is necessarily associated with the first variable assignment: we have
length = 0. The repeat loop in Algorithm 50 may terminate when no dead-end has
been encountered (i.e. even if P ̸= ⊥): a solution may have been found (this is not
shown here), or it may be impossible to extend the current branch using v-values
currently in Qsac. Note also that when buildBranch is called, we know that Qsac is not
empty and that every v-value in Qsac belongs to the current problem since after any
modification (value removal), Qsac is maintained at line 13 of Algorithm 49.

At line 3 of Algorithm 50, it is best to select first those v-values, if any, that are
guaranteed to be SAC-consistent because they already belong to singleton domains

3. Consequently, all modifications made to P are localized to buildBranch.
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(see Proposition 6.3). This direct identification of SAC-consistent values comes for
free, since no GAC propagation effort has to be done when a variable with a singleton
domain is instantiated on a network that is already GAC-consistent. At line 3 of
Algorithm 50, it is also important to use a heuristic that succeeds in making branches
as long as possible, in order to benefit maximally from the incrementality of the
underlying GAC algorithm.

A nice feature of SAC3 is that, like SAC1, its space complexity is that of the
underlying GAC algorithm. It is important to note that greedy runs that maintain GAC
benefit naturally from incrementality. Iteratively establishing GAC on a progressively
reduced search space is less penalizing than repeatedly establishing GAC on the
original search space. Besides, it becomes possible to learn relevant information from
conflicts (recording no-goods or weighting failure culprits as in subsequent chapters).
Furthermore, some (lucky) solutions may be found fortuitously while enforcing SAC.

PROPOSITION 6.4.– On binary constraint networks, SAC3 embedding an optimal
arc consistency algorithm such as AC2001, admits a worst-case space complexity in
O(ed) and a worst-case time complexity in O(bed2), where b denotes the number of
branches built by the algorithm.

Proof. If SAC3 embeds an optimal coarse-grained arc consistency algorithm such as
AC2001, then the overall space complexity is O(ed) since the space complexity of
AC2001 is O(ed) and the data structure Qsac is O(nd); recall that we reasonably
assume that n is O(e) for binary constraint networks. The overall time complexity is
O(bed2) since, due to incrementality, each branch built by the algorithm is O(ed2). To
guarantee this complexity, the structure last of AC2001 must be saved before building
a new branch and restored when the construction of the branch is finished.

Note that b includes the number of “empty” branches associated with SAC-
inconsistent values. In the worst case, we have b = n2d2+nd

2 because up to nd
branches may be built before the first value is removed, up to nd − 1 additional
branches may be built before the second value is removed, and so on. Hence we
obtain a worst-case time complexity (with AC2001 embedded) in O(en2d4), which
is the same as for SAC1. However, when a binary constraint network is already
singleton arc-consistent, we can make the following observation:

REMARK 6.5.– On a binary constraint network that is singleton arc-consistent, SAC3
builds between d and nd branches.

The best and worst cases correspond respectively to branches of maximum length n
and length 1 (one consistent variable assignment followed by an inconsistent one). We
have then respectively b = d (all branches delivering a solution) and b = nd branches.
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As a consequence of this observation, on a binary constraint network that is already
singleton arc-consistent, SAC3 embedding an optimal arc consistency algorithm, such
as AC2001, has a time complexity in O(end3) because it explores at most b =
nd branches. This suggests that SAC3 may be quite competitive on structured (not
necessarily singleton arc-consistent) instances which contain large under-constrained
parts, as can be expected in many real-world applications.

6.4. SAC3+

Algorithm 51: SAC3+(P : P): Boolean
Output: true iff SAC (P ) ̸= ⊥
P ← GAC (P, vars(P )) // GAC is initially enforced1
if P = ⊥ then2
return false3

brs ← ∅4
Qsac ← {(x, a) | x ∈ vars(P ) ∧ a ∈ dom(x)}5
repeat6
while Qsac ̸= ∅ do7

(x, a) ← buildBranch+(P )8
if (x, a) ̸= nil then9

(P, deleted) ← GAC+(P |x̸=a, {x}) // a is removed from dom(x)10
and GAC enforced - del. values are returned
if P = ⊥ then11
return false12

Qsac ← Qsac \ deleted13
updateBranches(deleted ∪ {(x, a)})14

checkBranches()15
until Qsac = ∅16
return true17

It is possible to improve the behavior of the algorithm SAC3 by recording the
domain, i.e. the full set of v-values, of the constraint network obtained after each
greedy run, that is to say, for each branch. We record the domain of (the constraint
network associated with) each branch built by the algorithm, discarding the last
variable assignment and its propagation if it leads to failure. When a value is
removed, it is then possible to determine which previously built branches must be
reconsidered. If a removed value does not support a branch br , i.e. does not belong
to the domain associated with the branch br , every value that has been assigned
to a variable along the branch remains SAC-consistent. On the other hand, if a
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Algorithm 52: buildBranch+(in P : P): v-value
Output: a SAC-inconsistent v-value, or nil

br ← ∅1
repeat2

pick and delete (x, a) from Qsac | a ∈ domP (x)3
P ′ ← GAC (P |x=a, {x})4
if P ′ ̸= ⊥ then5

br ← br ∪ {(x, a)}6
P ← P ′7

else if br ̸= ∅ then8
Qsac ← Qsac ∪ {(x, a)}9

until P ′ = ⊥ ∨ ̸ ∃(x, a) ∈ Qsac | a ∈ domP (x)10
if br = ∅ then11
return (x, a) // (x, a) is SAC-inconsistent12

else13
P [br ] ← P14
Q[br ] ← ∅15
brs ← brs ∪ {br}16
return nil17

Algorithm 53: updateBranches(deleted : set of v-values)
foreach v-value (x, a) ∈ deleted do1
foreach branch br ∈ brs do2
if a ∈ domP [br ](x) then3

remove a from domP [br ](x)4
Q[br ] ← Q[br ] ∪ {x}5

Algorithm 54: checkBranches()
foreach branch br ∈ brs | Q[br ] ̸= ∅ do1

P [br ] ← GAC (P [br ], Q[br ])2
Q[br ] ← ∅3
if P [br ] = ⊥ then4

Qsac ← Qsac ∪ br5
brs ← brs \ {br}6
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removed value does support a branch, we have to verify that the branch still remains
consistent by re-establishing GAC from the recorded domain. A branch that is no
longer consistent is deleted. In summary, SAC3+ (partially) exploits incrementality
as SAC3 does and also as SAC-Opt and SAC-SDS do.

All branches built by SAC3+ are recorded in a set called brs; a branch corresponds
to an instantiation. Arrays denoted P [] and Q[] are used to manage domain and
propagation in constraint networks that correspond to branches. For each branch
br , P [br ] corresponds to the constraint network associated with br , while Q[br ]
corresponds to the events that must be propagated on P [br ]. For the constraint
network associated with br , P [br ] records only the domain; P [br ] does not record
the constraints because these are shared naturally by the constraint networks for all
branches. Thus P [br ] and Q[br ] play the same role as Pxa

and Qxa
in SAC-Opt and

SAC-SDS. In this book, we consider that for binary constraint networks, AC2001 is
the underlying optimal AC algorithm for SAC3+. The data structures of AC2001 are
assumed to be shared between the main problem (i.e. P ) and the subproblems (i.e. the
branches).

After enforcing generalized arc consistency on the given network, Algorithm 51
builds successive branches by calling the function buildBranch+ (note that P is an
input parameter). The while loop starting at line 7 tests the singleton arc consistency
of all v-values of Qsac and may delete values after a branch has been built. As in
SAC3, when a value is detected SAC-inconsistent, it is removed and GAC is re-
established. The state of all recorded branches is updated to take account of deleted
values: function updateBranches, Algorithm 53, removes deleted values and updates
the propagation queues. The function checkBranches, Algorithm 54, checks later (i.e.
when Qsac is empty) the validity of the branches that have been built and recorded
in brs . For each branch br , the function checkBranches re-establishes generalized
arc consistency on P [br ] if necessary, and, if there is a domain wipe-out, deletes this
branch and updates Qsac.

Algorithm 52 differs from Algorithm 50 in two respects. First, all values (those
successively assigned with success) of the current branch are recorded at line 6.
Second, the (domain of the) constraint network corresponding to the new branch is
recorded at line 14 and this branch is added to brs . If the last variable assignment
entails a domain wipe-out, the local variable P is not updated (see lines 4 and 7). For
the implementation, P [br ] can be directly set (backtracking one step if necessary)
without any duplication of domain.

PROPOSITION 6.6.– On binary constraint networks SAC3+, embedding the optimal
arc consistency algorithm AC2001, admits a worst-case space complexity in O(ed +
bmaxnd) and a worst-case time complexity in O(b+ed2), where bmax denotes the
maximum number of branches recorded at the same time by the algorithm, and b+

denotes the total number of times a branch is built or checked by the algorithm.
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Proof. The data structures of AC2001, shared between the main problem and the
subproblems (i.e. branches), are in O(ed). For each branch, we need to include the
domain of the associated constraint network in O(nd) and the propagation queue
in O(n). Thus we obtain O(ed + bmaxnd). We consider that the structure last of
AC2001 is saved before building or checking a branch, and restored when such an
operation is finished. Saving and restoring last supports is O(ed). So the worst-case
time complexity is O(b+ed2).

The correctness of SAC3+ follows from Proposition 6.3 and from the fact that
after all v-values have been singleton checked and some branches have been recorded,
checkBranches verifies that the property still holds. Overall, one can be optimistic
about the practical behavior of this algorithm since it avoids building unnecessary new
branches. In practice, using GAC3rm as underlying (non-optimal) GAC algorithm for
SAC3+ has the advantage that the data structures of GAC3rm are naturally shared
between the main problem and the subproblems without any overhead. For binary
constraint networks, the worst-case time complexity becomes O(bed3) where b is the
number of branches built by the algorithm. If constraints are tightness-bounded, we
obtain O(bed2). Note that the number of branches built by SAC3+ is expected to be
less than the number of branches built by SAC3.

6.5. Illustration
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Figure 6.1. A binary constraint network P before enforcing singleton arc consistency
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Figure 6.1 shows the compatibility graph of a simple binary constraint network
that is used in the following illustration of behavior of different SAC algorithms.
This constraint network P has vars(P ) = {w, x, y, z}, three values per domain, and
cons(P ) = {cwx, cwy, cwz, cxy, cxz, cyz} such that:

– rel(cwx) = rel(cwy) = rel(cxy) = {(0, 0), (0, 1), (0, 2), (1, 1), (2, 2)};
– rel(cwz) = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 2)};
– rel(cxz) = {(0, 0), (1, 1), (1, 2), (2, 1), (2, 2)};
– rel(cyz) = {(0, 1), (1, 0), (2, 0), (2, 1), (2, 2)}.

Figures 6.2, 6.3, 6.4 and 6.5 show the result of checking the singleton arc
consistency of some v-values. For SAC1, these are exactly the first eight steps
performed by the algorithm during a first pass. When the v-values (w, 1), (x, 1) and
(y, 0) are detected SAC-inconsistent, they are removed and a second pass is necessary,
as in Figure 6.6, where nine additional singleton checks are performed. SAC2 differs
in that only v-values supported by deleted values must be reconsidered. Looking
at domains obtained after each singleton check, the reader can verify that (w, 0) is
the only one in that case. Consequently, only one singleton check is performed after
the “initial” pass, as shown in Figure 6.7. For SAC-Opt and SAC-SDS, instead of
checking from scratch the singleton arc consistency of (w, 0) for the second time,
Figure 6.8 shows the benefit from using the subproblem Pw0 obtained after the
first check. Figure 6.9 shows several branches built by SAC3. The first leads to a
solution and to the inference that (w, 0), (x, 0), (y, 1) and (z, 0) are SAC-consistent.
The second directly leads to failure showing that (w, 1) is SAC-inconsistent. These
represent the two extreme cases that may arise. After the first pass, some branches
must be built because none have been recorded; but this is not the case with SAC3+:
see Figure 6.10.

6.6. Weaker and stronger forms of SAC

Existential SAC and weak k-SAC are weaker and stronger forms of SAC,
respectively. The following section shows that the greedy approach used to establish
singleton arc consistency can be adapted naturally to forms such as these.

6.6.1. Existential SAC

The cost of maintaining SAC during search seems to be prohibitive. This is why
some partial forms such as bound and existential singleton arc consistency [LEC 06a]
have been studied. A constraint network is bound SAC iff every value corresponding to
the bound (minimum or maximum value) of a domain is SAC-consistent. In a related
field, namely operations research, this is a classical form of shaving. Existential SAC
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(a) AC (P |w=0)
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(b) AC (P |w=1) = ⊥

Figure 6.2. Constraint networks obtained when checking the singleton arc consistency of
(w, 0) and (w, 1)
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(a) AC (P |w=2)
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(b) AC (P |x=0)

Figure 6.3. Constraint networks obtained when checking the singleton arc consistency of
(w, 2) and (x, 0)
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(a) AC (P |x=1) = ⊥
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(b) AC (P |x=2)

Figure 6.4. Constraint networks obtained when checking the singleton arc consistency of
(x, 1) and (x, 2)
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(a) AC (P |y=0) = ⊥
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(b) AC (P |y=1)

Figure 6.5. Constraint networks obtained when checking the singleton arc consistency of
(y, 0) and (y, 1)
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Figure 6.6. Singleton checks performed by SAC1 for the constraint network P of Figure 6.1
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Figure 6.7. Singleton checks performed by SAC2 for the constraint network P of Figure 6.1.
Qsac is the queue used by SAC2
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Figure 6.8. Singleton checks performed by SAC-Opt and SAC-SDS for the constraint network
P of Figure 6.1
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Figure 6.9. Branches built by SAC3 for the constraint network P of Figure 6.1
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Figure 6.10. Branches built (and recorded) by SAC3+ for the constraint network P of
Figure 6.1

just stipulates that at least one value in each domain is SAC-consistent, and is therefore
weaker than Bound SAC:

DEFINITION 6.7.– [Existential SAC] Let P be a constraint network.
– A variable x of P is existentially SAC-consistent, iff x is GAC-consistent and

∃a ∈ dom(x) such that (x, a) is SAC-consistent.
– P is existentially SAC-consistent iff every variable of P is existentially SAC-

consistent.

Existential SAC is defined on variables (and by extension on constraint networks)
but not on values. This makes it quite different from consistencies introduced
in Chapter 3. Surprisingly, enforcing existential SAC on a constraint network is
meaningless. Either the network is (already) existentially SAC-consistent, or the
network is SAC-inconsistent, so it is better to talk about checking existential SAC.
An algorithm to check existential SAC seeks a SAC-consistent value in each domain.
As a side-effect, SAC-inconsistent values that are identified can be removed. The
non-deterministic nature of the inference process implies that we have absolutely
no guarantee about the network obtained after checking existential SAC. This is
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because existential SAC is not precisely a nogood-identifying consistency as defined
in Chapter 3.

Algorithm 55: ESAC3(P : P): Boolean
Output: true iff P is checked to be existentially SAC-consistent
P ← GAC (P, vars(P )) // GAC is initially enforced1
if P = ⊥ then2
return false3

Qesac ← vars(P )4
while Qesac ̸= ∅ do5

(x, a) ← buildBranchE(P )6
if (x, a) ̸= nil then7

P ← GAC (P |x̸=a, {x}) // a is removed and GAC enforced8
if P = ⊥ then9
return false10

Qesac ← vars(P )11

return true12

Algorithm 56: buildBranchE(in P : P): v-value
Output: a SAC-inconsistent v-value, or nil

length ← 01
repeat2

pick and delete x from Qesac3
select a value a ∈ domP (x)4
P ← GAC (P |x=a, {x})5
if P ̸= ⊥ then6

length ← length + 17
else8

Qesac ← Qesac ∪ {x}9

until P = ⊥ ∨ Qesac = ∅10
if length = 0 then11
return (x, a) // (x, a) is SAC-inconsistent12

else13
return nil14

The nice thing is that using a greedy approach to check existential SAC seems to be
quite appropriate. In particular, the algorithm SAC3 can be adapted straightforwardly
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to guarantee existential SAC. As mentioned above, such an algorithm can generate
different constraint networks depending on the order in which variables and values
are considered, i.e. there may be multiple fixed points.

In the following brief description of this new algorithm, ESAC3, Qesac is the
set of variables for which existential SAC must be checked. Algorithm 55 starts by
enforcing GAC on the given network. Next, all variables are put into Qesac and,
to check existential SAC, successive branches are built. If a value is found to be
SAC-inconsistent while building a new branch, this value is removed, GAC is re-
established and the process of checking existential SAC is re-started from scratch.
Iteration continues until existential SAC has been checked, or the constraint network
has been detected as SAC-inconsistent. Algorithm 56 allows a branch to be built by
performing successive variable assignments on P (it is important that P is an input
parameter) while maintaining GAC. When a dead-end is encountered or the set Qesac

becomes empty, the greedy run is stopped; if the branch is of length 0, the inconsistent
v-value is returned.

Figure 6.11 illustrates the non-deterministic nature of ESAC3. In Figure 6.11(a),
only one branch is built by ESAC3 (because this corresponds to a solution that
has been found, and so all variables are proved to be existentially SAC-consistent),
whereas in Figure 6.11(b), using a different search heuristic, (w, 1) is first selected
and found to be SAC-inconsistent before checking that P is existentially SAC-
consistent. Figure 6.11(c) illustrates the extreme case where existentially checking
SAC enforces SAC: the three SAC-inconsistent values have been selected first by the
search heuristic.

The space required specifically by ESAC3 is O(n) since the only extra structure
is Qesac which is O(n). The time complexity of ESAC3 is that of SAC3, that is to
say, O(bed2) where b denotes the number of branches built by the algorithm; using
an optimal AC algorithm such as AC2001, each branch built is O(ed2) due to the
incrementality of AC2001. In the best case, only one branch is built (leading directly
to a solution), and then we obtain O(ed2). In the worst-case, before detecting a
SAC-inconsistent value, n − 1 branches of length 1 are built (one consistent variable
assignment followed by an inconsistent one); the number of values that can be
removed is O(nd), so we obtain O(en2d3). Finally, when no inconsistent value is
detected, the worst-case time complexity of ESAC3 is O(end2).

Greedy runs have some practical advantages, including a chance to find solutions
by luck. Moreover, different search heuristics can be tried because usually several
branches have to be built: for each new branch, a search heuristic can be selected
from a portfolio. Existential SAC seems to be a good compromise between the
computational cost of enforcing SAC and the benefits that can be obtained. In the
second and third constraint solver competitions, the solver Abscon checked existential
SAC during preprocessing.

www.it-ebooks.info

http://www.it-ebooks.info/


310 Constraint Networks

P

w
=

0
x

=
0

y
=

1
z

=
0

(a) No deleted value

P

x
=

0
y

=
1

z
=

0
w

=
0

w ̸= 1

w
=

1

⊥

(b) One deleted value

P

x
=

0
y

=
1

z
=

0
w

=
0

x
=

1

w
=

1

y
=

0

w ̸= 1 y ̸= 0

x ̸= 1

⊥ ⊥ ⊥

(c) Three deleted values

Figure 6.11. Illustration of the non-deterministic nature of checking existential SAC with the
constraint network P of Figure 6.1
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6.6.2. Weak k-singleton arc consistency

Weak k-singleton arc consistency [DON 06] (variants are introduced in [BES 05a])
is equal to SAC when k = 1 and is stronger when k > 1. A v-value (x, a) is weakly
k-SAC iff after initially assigning the value a to x it is possible to reach a node at
level k within the MAC search tree.

DEFINITION 6.8.– [Weak k-SAC] Let P be a constraint network and 1 ≤ k ≤ n be
an integer.

– A v-value (x, a) of P is weakly k-SAC-consistent, or WSACk-consistent, iff
there exists a set Y of k − 1 variables of P , with x /∈ Y , and a valid instantiation I of
Y on P such that GAC (P |{(x,a)}∪I) ̸= ⊥.

– A variable x of P is weakly k-SAC-consistent iff every v-value (x, a), with a ∈
dom(x), is weakly k-SAC-consistent.

– P is weakly k-SAC-consistent iff every variable of P is weakly k-SAC-
consistent.

Weak k-SAC is a stable domain-filtering consistency, so its enforcement is
meaningful. Algorithm 57 enforces weak k-SAC on the given constraint network
P ; the constraint network obtained by enforcing weak k-SAC on P is denoted by
WSAC k(P ). For each v-value, this algorithm systematically explores a MAC search
tree until a node at level k is reached (in which case the run is greedy until a dead-end
occurs or a solution is found). Algorithm 57 starts by enforcing GAC on the given
network. Next, all v-values are put in the structure Qwsac, which is the set of v-values
for which weak k-SAC must be checked. For each v-value in Qwsac, the function
extendable performs a limited exploration of the MAC search tree. If a v-value (x, a)
is found to be WSACk-inconsistent, extendable(P |x=a, x) returns false, this value
is removed, GAC is re-established, and the process of checking weak k-SAC starts
again from scratch. Iteration continues until a fixed point is reached.

The function extendable, described in Algorithm 58, is called just after a (positive
or negative) decision is taken. For example, the value for which weak k-SAC must be
checked is assigned initially at line 7 of Algorithm 57: this is a positive decision. If
GAC enforcement at line 1 of Algorithm 58 results in failure, false is returned at line 3.
Next, the number of fixed variables is obtained at line 4. Although not shown here, this
number can be obtained cheaply by using an incremental/decremental mechanism.
When all variables are fixed, we know that a solution has been found since GAC has
just been enforced (lines 5 to 7). Because n ≥ k, we learn that the initial value for
which the exploration has been conducted is WSACk-consistent but also that all the
other values in the solution are WSACk-consistent. This is why Qwsac is updated at
line 6. Otherwise, we select a new v-value and try to extend the current branch. If this
extension is successful, true is returned at line 10. If a failure has been detected at the
next level, so false has been returned by extendable at line 9, we verify that we were
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not trying to extend a branch while we were at a level already greater than or equal to
k, and if this is the case we update Qwsac at line 12. To continue the exploration we
refute the last assigned value.

Algorithm 57: WSAC(P : P , k: integer): Boolean
Output: true iff WSAC k(P ) ̸= ∅
P ← GAC (P, vars(P )) // GAC is initially enforced1
if P = ⊥ then2
return false3

Qwsac ← {(x, a) | x ∈ vars(P ) ∧ a ∈ dom(x)}4
while Qwsac ̸= ∅ do5

pick and delete (x, a) from Qwsac6
if ¬extendable(P |x=a, x) then7

P ← GAC (P |x̸=a, {x}) // a is removed and GAC enforced8
if P = ⊥ then9
return false10

Qwsac ← {(x, a) | x ∈ vars(P ) ∧ a ∈ dom(x)}11

return true12

Algorithm 58: extendable(in P : P , y: variable): Boolean
Output: true iff at least k variables of P can be fixed by MAC
P ← GAC (P, {y}) // a decision has just been taken on y1
if P = ⊥ then2
return false3

nbF ixed ← |{x ∈ vars(P ) s.t. |dom(x)| = 1}|4
if nbF ixed = n then5

Qwsac ← Qwsac \ {(x, a) | x ∈ vars(P ) ∧ dom(x) = {a}}6
return true // a solution has been found7

select a v-value (x, a) of P such that |dom(x)| > 18
if extendable(P |x=a, x) then9
return true10

if nbF ixed ≥ k then11
Qwsac ← Qwsac \ {(x, a) | x ∈ vars(P ) ∧ dom(x) = {a}}12
return true // weak k-SAC is guaranteed for assigned values13

return extendable(P |x̸=a, x)14
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Note that the algorithm described here differs slightly from that given by van
Dongen [DON 06] in that a binary branching scheme is used. Moreover, “computing”
all fixed variables allows us to discard from Qwsac not only the values for variables
that have been instantiated explicitly during search but also those that have indirectly
become fixed. The benefit of these modifications remains to be proved empirically.

This approach can be related to the greedy approach for SAC and existential SAC
because the construction of a branch leading to a node at depth k does not stop
when the initial value is proved to be weakly k-SAC-consistent but instead continues
greedily to obtain the maximum number of WSACk-consistent values. And some
lucky solutions may be found opportunistically.

Experimental results in [DON 06] show that weak k-SAC is a promising
consistency. Enforcement of weak k-SAC in preprocessing improves the subsequent
performance of MAC for structured problems. Furthermore, for many published
problems the algorithm discovers lucky solutions. Surprisingly, for some instances,
inverse consistency, i.e. (1, n)-consistency, is proved because each (remaining) value
participates in at least one solution found during the inference process. Weak k-SAC
was enforced during preprocessing by the solver Buggy in the second constraint solver
competition.

6.7. Experimental results

This section briefly reports practical behavior of algorithms presented in this
chapter, including those in section 6.6.

For SAC algorithms, some results of experiments with random instances can be
found in [BES 04a, LEC 05]. In summary, SAC3 and SAC3+ behave well before the
beginning of the phase transition but are clearly outperformed by SAC-SDS at the
peak of difficulty. This is not really surprising since the generated instances have no
structure, and this corresponds to the worst-case for SAC3 and SAC3+ because the
average length of the branches (at the critical point) is very small. However, Table 6.1
shows that SAC3, and especially SAC3+, perform well on certain structured instances.
Performance has been measured by the number of singleton checks (#scks) and the
CPU time in seconds. The number (#×) of values removed by SAC algorithms is also
given: when #×=0, this means that the instance is initially singleton arc-consistent. As
expected, a significant improvement is obtained on instances (cc-20-2, cc-20-3, scen2)
that are already SAC-consistent. This is also true for the other instances that contain
large under-constrained parts. Note that SAC-SDS runs out of memory on the instance
graph10. It is also worth noting that on some instances, some solutions (the number
of found solutions is enclosed in brackets near CPU time) have been found during the
inference process. For example, 16 solutions have been found on scen02 by SAC3 and
SAC3+.
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SAC Algorithm
Instance SAC1 SAC-SDS SAC3 SAC3+
cc-20-2 CPU 14.4 14.4 3.46 3.48
(#× = 0) #scks 800 800 819 819
cc-20-3 CPU 22.6 22.7 7.01 7.02
(#× = 0) #scks 1,200 1,200 1,200 1,200

gr-34-8 CPU 66.0 17.4 38.2 18.6
(#× = 351) #scks 6,335 3,340 5,299 1,558
gr-34-9 CPU 111 31.2 91.5 32.0

(#× = 513) #scks 8,474 4,720 11,017 2,013

qa-5 CPU 2.47 2.50 0.93 0.96
(#× = 9) #scks 622 622 732 732

qa-6 CPU 27.5 14.3 8.23 4.38
(#× = 48) #scks 2,523 1,702 2,855 1,448

scen2 CPU 20.9 20.7 4.09 (16) 4.08 (16)
(#× = 0) #scks 8,004 8,004 8,005 8,005
scen5 CPU 11.7 20.0 1.55 (1) 1.87

(#× = 13,814) #scks 6,513 4,865 4,241 2,389

graph3 CPU 215 136 74.9 39.1
(#× = 1,274) #scks 20,075 17,069 22,279 8,406

graph10 CPU 1,389 – 675 349
(#× = 2,572) #scks 74,321 – 82,503 29,398

Table 6.1. Results obtained when enforcing SAC on some structured instances

Maintaining
Instance FC MAC SAC1 SAC3 ESAC3

100-queens 0.5 (194) 4.2 (118) – 17.4 (0) 18.9 (2)
110-queens – – – 37.9 (0) 22.7 (1)
120-queens – 1,636 (323 K) – 16.7 (0) 47.3 (2)
scen11-f12 69.1 (18 K) 3.6 (695) 1,072 (41) 418 (5) 48.3 (30)
scen11-f10 131 (34 K) 4.4 (862) 1,732 (52) 814 (8) 38.3 (25)
scen11-f8 260 (66 K) 67.8 (14 K) – – 290 (213)

Table 6.2. CPU time (and number of visited nodes) for instances of the queens and RLFAP
problems, given 30 minutes

www.it-ebooks.info

http://www.it-ebooks.info/


Singleton Arc Consistency 315

We have also explored the effect of maintaining existential SAC on satisfiable
instances using ESAC3: due to greedy runs, solutions may be found at any step of
the search. Table 6.2 illustrates this with some instances of the n-queens problem.
Table 6.2 also shows results for FC, MAC and SAC maintained during search with
SAC1 and SAC3. It is interesting to note that for all these satisfiable instances, SAC3
and ESAC3 explore not more than two nodes. However, one should expect to find less
impressive results with unsatisfiable instances. To check this, we have tested some
difficult (modified) unsatisfiable RLFAP instances. The results show that maintaining
SAC3 or ESAC3 really limits the number of nodes that have to be visited. This can be
explained by the fact that both algorithms learn from failures (of greedy runs) via use
of the dom/wdeg heuristic (presented in Chapter 9).

WSACk

SAC1 k = 2 k = 8 k = 16
del CPU del CPU del CPU del CPU

frb30-15-1 (30-450) 0 0.04 0 0.10 i 410 6.55 i 410 0.54
frb35-17-1 (35-595) 0 0.05 0 0.14 0 1.72 i 559 3.19
frb40-19-1 (40-760) 0 0.08 0 0.21 0 0.51 i 701 15.0

scen-11 (680-26,856) 0 15.1 0 4.89 0 4.78 76 4,803
scen11-f1 (680-26,524) 332 13.9 332 4.39 26,524 3,097 –
scen1-f8 (916-29,496) 6,704 6.29 6,704 2.55 6,704 2.55 6,704 2.58
scen1-f9 (916-28,596) 7,628 5.24 7,628 2.47 28,596 2.46 28,596 2.89

qa-5 (26-631) 9 0.16 9 0.10 12 0.45 i 386 24.0
qa-6 (37-1,302) 48 2.19 48 0.80 67 1.86 127 1,923

enddr1-10 (50-5,760) 0 16.0 0 5.83 – –
enddr2-2 (50-6,315) 0 25.9 0 10.7 – –

Table 6.3. Excerpt from results obtained by Marc van Dongen [DON 06] for WSACk

Finally, Table 6.3 is an excerpt from experimental results obtained by van Dongen
[DON 06] with an algorithm for weak k-SAC. Table 6.3 lists for each instance the
number of deleted values (del) and the CPU time for SAC1 and WSACk for k ∈
{2, 8, 16}. Also, between brackets, this table shows the number of variables and the
number of values over all domains. An “i” in the column del indicates that the instance
has been made and proved inverse consistent. RLFAP instances scen1-f9 and scen11-
f1 are proved unsatisfiable by WSAC, whereas SAC1 fails to prove this. Although
the instance scen11-f1 is very difficult in that MAC alone cannot solve it within days
of search, it has been proved unsatisfiable within one hour by enforcing WSAC8.
Interestingly, the instances from the classes frb-30-15, frb-35-17, and frb40-19 are
made and proved inverse consistent by making them WSAC16.
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6.8. Conclusion

Singleton arc consistency should play a more and more important role in the future:
the general trend is clearly to extend the level of local reasoning in constraint solvers.
In the mid-1990s there was a transition from FC (which enforces a partial form of
arc consistency) to MAC (which enforces full arc consistency). Analogously, the next
generation of solvers should less restrictively enforce consistencies which are stronger
than GAC. This is already the case for some solvers that enforce derived forms of SAC
such as existential SAC and weak k-SAC. Nevertheless, we have to admit that practical
progress has been mainly confined to preprocessing.

Singleton consistencies can be combined naturally with some (impact-based)
search heuristics. For example, SAC can be restricted to a subset of variables, those
that are more likely to be chosen by the variable ordering heuristic [COR 07]. Here
the consistency enforcing procedure is to some extent adaptive since it is guided
by the heuristic(s). This illustrates the idea [STE 08] of dynamically adapting the
level of local consistency applied during search. Information about domain wipe-
outs and value deletions during search can be used not only to select variables for
instantiation, but also to adapt automatically the level of constraint propagation.
Several procedures (heuristics) to switch dynamically between enforcing a weak, and
cheap local consistency, and a strong but more expensive one, have been proposed;
these procedures depend on the activity of individual constraints. Although not
investigated experimentally in [STE 08], SAC, or one of its derived forms, seems a
good candidate to play the role of the strong consistency.

Finally, for interval-based solvers that solve numeric (or continuous) constraint
problems, tentative attempts to find SAC-inconsistent values are limited to the
bounds of variable domains in order to tighten them. This leads to a consistency
called 3B-consistency [LHO 93] for which an optimal algorithm has been developed
[BOR 01]. Deleted values are sometimes said to be shaved: a shavable value is
a value which, when assigned and propagated, yields an inconsistency. Shaving
(which is a term introduced in the context of scheduling [CAR 94, MAR 96b]) means
attempting to identify and remove some shavable values. For discrete domains,
different mechanisms of guiding the shaving process have recently been studied. For
example, in [LHO 05a], values are selected for shaving according to the failures that
occur during search, whereas in [SZY 08], (global) constraints are invoked to suggest
values to be used in the shaving procedure.

Table 6.4 summarizes time and space complexities of SAC algorithms presented
in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/


Singleton Arc Consistency 317

Algorithm Time complexity Space complexity Reference
SAC1 O(en2d4) O(ed) [DEB 97b]
SAC2 O(en2d4) O(n2d2) [BAR 04]

SAC-Opt O(end3) O(end2) [BES 04b]
SAC-SDS O(end4) O(n2d2) [BES 05b]

SAC3 O(bed2) O(ed) [LEC 05]
SAC3+ O(b+ed2) O(ed + bmaxnd) [LEC 05]

Table 6.4. Worst-case complexities of SAC algorithms for binary constraint networks,
assuming that AC2001 is the underlying AC algorithm. b is the number of branches built by
SAC3, bmax the maximum number of branches recorded at the same time by SAC3+, and b+

the total number of times a branch is built or checked by SAC3+
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Chapter 7

Path and Dual Consistency

We have hitherto been interested primarily in domain-filtering consistencies that
identify individual values which are (globally) inconsistent: such values correspond to
nogoods of size one. This chapter is concerned with second-order consistencies that
locally identify globally inconsistent pairs of values, which correspond to nogoods of
size 2. The most studied second-order consistency is certainly path consistency (PC):
a constraint network P is path-consistent iff every locally consistent instantiation of
two variables on P can be extended consistently to each third variable of P .

Nowadays, path consistency, and more generally higher-order consistencies, are
rather neglected by designers and developers of general constraint solvers. This is
somewhat surprising because strong path consistency (which is equivalent to strong
3-consistency when no ternary constraint is present) is a sufficient condition for global
consistency for many tractable classes. Perhaps neglect of higher-order consistencies
is due partly to the limited scope of these classes since exciting progress in this
area has only been very recent (e.g. see [GRE 08]). Path consistency has, however,
continued to play an important role in temporal reasoning. Indeed, for some classes of
interval algebra, path consistency (adapted to temporal constraint networks [ALL 83])
is enough to decide satisfiability.

Another possible reason for low practical interest for path consistency, in the
discrete constraint satisfaction field, is that path consistency enforcement modifies
constraint relations, and more importantly, modifies the structure of the constraint
graph. When a pair of v-values {(x, a), (y, b)} is found to be path-inconsistent, this
information is recorded in the constraint network; if there is no constraint binding x
with y, a new one is inserted, thus changing the constraint graph. For example, the
instance scen-11 of the radio link frequency assignment problem (RLFAP) involves
680 variables and 4,103 constraints. Enforcing a second-order consistency on this
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network could at worst create (6802 )− 4,103 = 226,757 new constraints, which would
be really counter-productive both in time and in space.

The main apparent drawback of path consistency can be avoided by adopting a
relation-filtering or conservative approach, in which the search for inconsistent pairs
of values is restricted to existing constraints. As seen in section 3.4.1, this is called
conservative path consistency (CPC) [DEB 99] when restricted to 2-length graph-
paths, and partial path consistency (PPC) [BLI 99] when restricted to graph-paths of
arbitrary length. CPC and PPC are equivalent [BLI 99] when the constraint graph is
triangulated, but this is not generally true.

In section 7.1 we introduce a recent second-order consistency, called dual
consistency (DC), which uses the outcome of GAC enforcement, and we compare
this with various forms of path consistency. On binary constraint networks, DC
is equivalent to PC although this could have been predicted since McGregor
had already proposed an algorithm built on top of AC to establish (strong) path
consistency [MCG 79]. On the other hand, PC is strictly stronger than conservative
dual consistency (CDC) which itself is strictly stronger than PPC and CPC – CDC
can then filter out conservatively more inconsistent pairs of values than PPC or CPC.
Before proposing algorithms to enforce (conservative) dual consistency, we present
in section 7.2 some classical algorithms to enforce path consistency. We restrict our
attention to coarse-grained path consistency algorithms, and in particular to PC8 and
PC2001, and to conservative variants of those two algorithms. PC8 has been shown
to be quite efficient in practice, whereas PC2001 is time-optimal.

Section 7.3 introduces sCDC1 and sDC2, which enforce strong conservative dual
consistency and strong dual consistency, respectively. These algorithms require no
specific data structure, except for those of the underlying GAC algorithm and a time-
stamping structure in O(n) for sDC2. While sCDC1 can be seen as a conservative
adaptation of McGregor’s algorithm, sDC2 is more sophisticated in that it is partially
incremental. (Strong) path consistency can be enforced by these two algorithms (after
completing, if necessary, the constraint network with missing binary constraints),
and also by a third one, sDC3 (not described here), which totally exploits the
incrementality of the underlying GAC algorithm. A few experimental results in
section 7.4 illustrate the practical interest of (conservative) dual consistency.

Important In this chapter, space analysis only takes account of data structures
required specifically by second-order consistency algorithms. This analysis never
includes the space complexity of representation of a binary constraint network; this is
O(ed2) for a conservative consistency, and O(n2d2) for a non-conservative one since
the constraint graph has to be assumed to be complete.
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7.1. Qualitative study

This section qualitatively studies path consistency and its partial forms, together
with a related consistency called dual consistency (DC). Dual consistency, whose
idea has initially been used by McGregor [MCG 79], records inconsistent pairs of
values identified by successive singleton checks. Just like singleton arc consistency,
dual consistency is built on top of generalized arc consistency. When applied
to all constraints of a binary instance (including the implicit universal ones), DC is
equivalent to PC, but when it is applied conservatively (i.e. only on explicit constraints
of the binary network), conservative DC (CDC) is strictly stronger than conservative
PC (CPC) and partial PC (PPC).

Let us first introduce dual consistency. Informally, a network is dual-consistent iff
each pair of values that is locally consistent is not detected inconsistent after assigning
either of those two values and enforcing GAC. To simplify, we write (x, a) ∈ P
iff (x, a) ∈ v-vals(P ), i.e. iff x ∈ vars(P ) ∧ a ∈ domP (x); when P = ⊥, for
every v-value (x, a), we have (x, a) /∈ P . Below, we assume that locally consistent
instantiations {(x, a), (y, b)} are such that x ̸= y.

DEFINITION 7.1.– [Dual Consistency] Let P be a constraint network.
– A locally consistent instantiation {(x, a), (y, b)} on P is dual-consistent, or DC-

consistent, iff (y, b) ∈ GAC (P |x=a) and (x, a) ∈ GAC (P |y=b).
– P is dual-consistent iff every locally consistent instantiation {(x, a), (y, b)} on

P is dual-consistent.

Dual consistency is a second-order consistency, whence a relation-filtering
consistency can be derived as follows.

DEFINITION 7.2.– [Conservative Dual Consistency] Let P be a constraint network.
– A locally consistent instantiation {(x, a), (y, b)} on P is conservative dual-

consistent, or CDC-consistent, iff either !c ∈ cons(P ) | scp(c) = {x, y} or
{(x, a), (y, b)} is dual-consistent.

– P is conservative dual-consistent iff every locally consistent instantiation
{(x, a), (y, b)} on P is conservative dual-consistent.

To illustrate the difference between DC and CDC, let us consider a constraint
network P such that vars(P ) = {w, x, y, z} and cons(P ) = {cwx, cwz, cxyz}, where
subscripts indicate constraint scopes. DC reviews (locally consistent instantiations of)
all of the six possible distinct pairs of variables, whereas CDC reviews only the two
pairs (w, x) and (w, z).

We shall also be interested in strong variants of (second-order) consistencies that
additionally guarantee generalized arc consistency. For example, a binary constraint
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network is strong path-consistent, or sPC-consistent, iff it is both arc-consistent and
path-consistent. A constraint network is strong dual-consistent, or sDC-consistent iff
it is both GAC-consistent and DC-consistent. sPPC, sCPC and sCDC are defined
similarly. For binary (normalized) constraint networks, strong path consistency and
strong 3-consistency are equivalent.

DEFINITION 7.3.– [Strong Consistency] Let φ be a second-order consistency. A
constraint network P is strong φ-consistent, or sφ-consistent, iff P is GAC+φ-
consistent, i.e. both GAC-consistent and φ-consistent.

A strong second-order consistency φ identifies both φ-inconsistent values
(nogoods of size one) and φ-inconsistent pairs of values (nogoods of size two).
It is important that the closure of a constraint network can be computed for all
second-order consistencies mentioned so far. All such consistencies can be proved to
be stable and therefore well-behaved; see Theorem 3.14.

PROPOSITION 7.4.– PC and DC are second-order consistencies which are stable for
(P,≼). CDC, PPC and CPC are second-order relation-filtering consistencies which
are stable for (P,≼r).

Canonical nogood representations are required for strong consistencies because
nogoods of various sizes may be identified. These strong versions are stable on the
partial order built from ≼ on the quotient set of P by the nogood-equivalence relation;
see section 1.4.1.

When studying the relationships existing between all these consistencies, the first
surprise is that, on binary constraint networks, DC is equivalent to PC although this
could be predicted since McGregor had already proposed an AC-based algorithm to
establish sPC [MCG 79]. We first show that DC is strictly stronger than PC in the
general case.

PROPOSITION 7.5.– DC is strictly stronger than PC.

Proof. Let P be a constraint network and I = {(x, a), (y, b)} be a locally consistent
instantiation on P . If I is path-inconsistent then ∃z ∈ vars(P ) | ∀c ∈ dom(z),
{(x, a), (z, c)} or {(y, b), (z, c)} is not locally consistent (see Definition 3.43). In this
case, we know that (y, b) /∈ GAC (P|x=a) since after enforcing GAC on P|x=a, every
value c remaining in dom(z) is such that {(x, a), (z, c)} is consistent. Necessarily, by
hypothesis, all these remaining values are incompatible with (y, b), so b is removed
from dom(y) when enforcing GAC. Hence I is dual-inconsistent. Consequently
every locally consistent instantiation on P that is identified as path-inconsistent
and therefore in P̃ ′ with P ′ = PC (P ) is also identified as dual-inconsistent and
therefore in P̃ ′′ with P ′′ = DC(P ). We deduce that DC(P ) ≼ PC (P ) and also
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that DC is stronger than PC; see Theorem 3.25. To show strictness, we simply
consider a constraint network P involving a single non-binary constraint that is not
generalized arc-consistent. Whereas PC (P ) = P , DC(P ) necessarily involves some
new binary constraints. So we have a constraint network that is PC-consistent but not
DC-consistent.

PROPOSITION 7.6.– On binary constraint networks, DC is equivalent to PC.

Proof. We know from the previous proposition that DC is stronger than PC. We
now show that, on binary constraint networks, PC is stronger than DC, whence we
can conclude that DC and PC are equivalent. Let P be a binary constraint network
and I = {(x, a), (y, b)} be a locally consistent instantiation on P . If I is dual-
inconsistent then (y, b) /∈ AC (P|x=a), or symmetrically (x, a) /∈ AC (P|y=b). We
consider the first case. Let H(n) be the following induction hypothesis: if the number
of fruitful revisions performed in (a coarse-grained AC algorithm such as) AC3 to
remove a v-value (z, c) when enforcing AC on P|x=a is less than or equal to n then
{(x, a), (z, c)} ∈ P̃ ′ with P ′ = PC (P ), i.e. {(x, a), (z, c)} is either initially locally
inconsistent or identified as path-inconsistent. We show first that H(1) holds. If (z, c)
is a v-value removed during the first fruitful revision, this means that (z, c) has no
support on a binary constraint involving z and a second variable w. If {(x, a), (z, c)} is
locally inconsistent, then H(1) holds trivially. Otherwise, necessarily w ̸= x (because
this would mean that (z, c) is not compatible with (x, a) since a has been assigned to
x, so {(x, a), (z, c)} is initially locally inconsistent). Therefore {(x, a), (z, c)} clearly
has no support on the path ⟨x,w, z⟩ and is thus path-inconsistent. We now assume
that H(n) is true and show that H(n + 1) holds. If (z, c) is a v-value removed during
the (n + 1)th fruitful revision while enforcing AC on P|x=a, this means that this last
fruitful revision involves a constraint binding z with another variable w. The value
(z, c) has no support on this constraint, so every value in dom(w) initially supporting
(z, c), if any, has been removed after at most n fruitful revisions. By hypothesis this
means that for any such value b, {(x, a), (w, b)} ∈ P̃ ′ with P ′ = PC (P ). In any
case, we can now deduce that {(x, a), (z, c)} ∈ P̃ ′ and, as a special case, we can
identifiy I as path-inconsistent. Consequently, every locally consistent instantiation
on P that is identified as dual-inconsistent and is thus in P̃ ′′ with P ′′ = DC(P ) is
also identified as path-inconsistent and is thus in P̃ ′ with P ′ = PC (P ). We deduce
that PC (P ) ≼ DC(P ) and also that PC is stronger than DC on binary networks.

We can show that PC and CDC are incomparable in general, but on binary
constraint networks, PC is strictly stronger than CDC.

PROPOSITION 7.7.–On binary constraint networks, PC is strictly stronger than CDC.
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Proof. By definition, DC is stronger than CDC, so it follows from Proposition 7.6 that
PC is stronger than CDC. Moreover, Figure 7.1 shows a network (more precisely, its
compatibility graph) that is CDC-consistent but not PC-consistent.

x

y

w

z

Figure 7.1. A network (no constraint binds w with y and x with z) that is CDC-consistent and
sCDC-consistent but neither sPC-consistent nor PC-consistent. For example, {(x, a), (z, b)}

is not path-consistent

The remainder of the section is focused on the relationships between, on the one
hand, the conservative variant of DC, namely CDC, and, on the other hand DC, PPC
and CPC.

PROPOSITION 7.8.– DC is strictly stronger than CDC.

Proof. By definition, DC is stronger than CDC. Besides, we know that for some binary
constraint networks (see Figure 7.1), CDC holds, whereas DC = PC does not hold.

PROPOSITION 7.9.– CDC is strictly stronger than PPC.

Proof. Assume that a constraint network P is CDC-consistent and consider a
closed graph-path ⟨x1, . . . , xp⟩ of P . For every locally consistent instantiation
{(x1, a1), (xp, ap)} on P , (xp, ap) ∈ P ′ with P ′ = GAC (P |x1=a1) since P is
CDC-consistent. It also implies P ′ ̸= ⊥. Therefore, in the context of P ′, there
exists at least one value in each domain and since P ′ is generalized arc-consistent,
there is clearly a v-value (xp−1, ap−1) of P ′ compatible with (xp, ap), a v-value
(xp−2, ap−2) of P ′ compatible with (xp−1, ap−1), . . . , and a v-value (x1, a′

1) of
P ′ compatible with (x2, a2). Because domP ′

(x1) = {a1}, we have a′
1 = a1, so

the locally consistent instantiation {(x1, a1), (xp, ap)} is consistent on the closed
graph-path ⟨x1, . . . , xp⟩ of P . Hence P is PPC-consistent, so CDC is stronger than
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PPC. The fact that CDC is strictly stronger than PPC is illustrated in Figures 7.2, 7.3
and 7.4, which represent the same constraint network P . In Figure 7.3, P is shown to
be not CDC-consistent because the locally consistent instantiation {(x, a), (y, b)} is
dual-inconsistent. Indeed, (y, b) /∈ AC (P |x=a). In Figure 7.4, P is shown to be CPC-
consistent because, for example, the locally consistent instantiation {(x, a), (y, b)} is
consistent on all 2-length graph-paths linking x to y, namely, ⟨x, z, y⟩ and ⟨x,w, y⟩.
Here, the constraint graph is triangulated, which means that CPC is equivalent to
PPC. Hence we can deduce our result.

z

vw

x

y

Figure 7.2. A binary constraint network P (no constraint binds x with v)

PROPOSITION 7.10.– PPC is strictly stronger than CPC.

Proof. PPC is stronger than CPC by definition. Moreover, the binary constraint
network in Figure 7.5 is CPC-consistent but not PPC-consistent. Because there is no
3-clique in its constraint graph, this network is trivially CPC-consistent.

Before studying the relationships existing between strong variants of second-order
consistencies, we observe that, in the binary case, enforcing AC (only once) on a
path-consistent network is sufficient to obtain a strong path-consistent network. This
well-known fact is also true in the general case for DC and CDC. We define φ ◦ψ(P )
as being φ(ψ(P )) and (φ ◦ ψ)n+1(P ) as being φ ◦ ψ ◦ (φ ◦ ψ)n(P ).
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z

vw

x

y

Figure 7.3. The constraint network P from Figure 7.2 is not CDC-consistent. We can see that
(y, b) /∈ AC (P |x=a). So the locally consistent instantiation {(x, a), (y, b)} is

dual-inconsistent

z

vw

x

y

Figure 7.4. The constraint network P from Figure 7.2 is CPC-consistent and sCPC-consistent
(and hence, PPC-consistent and sPPC-consistent since P is triangulated). Any (closed)

2-length graph-path of P linking x to y is consistent. This is shown here for {(x, a), (y, b)}
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x

y

w

z

Figure 7.5. A network (no constraint binds x with z and y with w) that is CPC-consistent and
sCPC-consistent but is neither sPPC-consistent nor PPC-consistent. For example,

{(x, a), (w, a)} is not PPC-consistent

PROPOSITION 7.11.– For any binary constraint network P , we have AC ◦PC (P ) =
sPC (P ).

Proof. If a v-value (x, a) is arc-inconsistent while enforcing PC, every tuple involving
this value is detected as path-inconsistent (and then removed). When (x, a) is
subsequently removed while enforcing AC, this cannot possibly have any impact on
path consistency because this v-value is completely isolated. In other words, we have:
PC ◦ AC ◦ PC (P ) = AC ◦ PC (P ).

PROPOSITION 7.12.– For any constraint network P , we have:
– GAC ◦ DC (P ) = sDC (P );
– GAC ◦ CDC (P ) = sCDC (P ).

Proof. If a value is GAC-inconsistent on P , then this value is removed whenever a
singleton check is performed. Discarding it before performing a singleton check has
clearly no impact. We deduce our result.

It is interesting that the schema of previous propositions does not hold for CPC
and PPC.

PROPOSITION 7.13.– For some binary constraint networks P , we have:
– AC ◦ CPC (P ) ̸= sCPC (P );
– AC ◦ PPC (P ) ̸= sPPC (P ).
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Proof. Consider the example in Figures 7.6, 7.7 and 7.8. Initially, enforcing AC
implies the removal of (w, b). Enforcing CPC removes all tuples corresponding to
dotted edges1. Next, if AC is enforced again, (z, b) and (w′, b) are removed. We
can imagine the same pattern (w, x, y, z) occurring an arbitrary number of times
(here, it occurs twice). So for any integer n we can build a network P such that
(AC ◦CPC )n+1(P ) = sCPC (P ) while (AC ◦CPC )n(P ) ̸= sCPC (P ) (and such
that the size of P grows polynomially with n). The constraint graph is triangulated in
our example. Hence, the result also holds for PPC.

PROPOSITION 7.14.– Let φ and ψ two second-order consistencies. If φ is stronger
than ψ then sφ is stronger than sψ.

Proof. If a network is both GAC-consistent and φ-consistent, it is necessarily both
GAC-consistent and ψ-consistent since φ is stronger than ψ. Consequently, sφ is
stronger than sψ.

PROPOSITION 7.15.– On binary constraint networks, sPC is strictly stronger than
sCDC.

Proof. From Propositions 7.7 and 7.14 we know that sPC is stronger than sCDC.
Figure 7.1 proves strictness by showing a network that is sCDC-consistent but not
sPC-consistent.

PROPOSITION 7.16.– sDC is strictly stronger than sCDC.

Proof. From Propositions 7.8 and 7.14 we know that sDC is stronger than sCDC.
Figure 7.1 proves strictness by showing a network that is sCDC-consistent but not
sDC-consistent (because PC = DC on binary constraint networks).

PROPOSITION 7.17.– sCDC is strictly stronger than sPPC.

Proof. From Propositions 7.9 and 7.14 we know that sCDC is stronger than sPPC.
Figures 7.2, 7.3 and 7.4 prove strictness by showing a network that is sPPC-consistent
but not sCDC-consistent.

1. Strictly speaking, the tuples (a, b) ∈ rel(cxw) and (a, b) ∈ rel(cyw) are not deleted because
they correspond to invalid instantiations (and consequently to instantiations that are not locally
consistent).
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vz w
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Figure 7.6. A binary constraint network P made arc-consistent

vz w

x
′

y
′

w
′z

′

x

y

Figure 7.7. The constraint network P ′ obtained after enforcing CPC on the constraint network
P from Figure 7.6

vz

x
′

y
′

w
′z

′

x

y

w

Figure 7.8. The constraint network P ′′ obtained after enforcing AC on the constraint network
P ′ from Figure 7.7
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PROPOSITION 7.18.– sPPC is strictly stronger than sCPC.

Proof. From Propositions 7.10 and 7.14 we know that sPPC is stronger than sCPC.
Figure 7.5 shows a network that is sPPC-consistent but not sCPC-consistent.

Figure 7.9 shows the relationships between (strong) second-order consistencies
introduced so far. We conclude this section by establishing some connections with
SAC.

φ ψ

φ ψ

Figure 7.9. Summary of the relationships between consistencies that have been studied. On
binary constraint networks, PC = DC

PROPOSITION 7.19.– On binary constraint networks, sCDC is strictly stronger than
SAC.

Proof. Let P be a sCDC-consistent binary constraint network. Assume that a v-
value (x, a) of P is SAC-inconsistent. This means that AC (P |x=a) = ⊥. As
P is AC-consistent (since P is sCDC-consistent), necessarily x is involved in
(at least) a binary constraint c (otherwise no propagation is possible to deduce
AC (P |x=a) = ⊥). Consequently, there is no tuple allowed by c involving (x, a)
since P is CDC-consistent (because when P = ⊥, for every v-value (y, b), we
consider (y, b) /∈ P ). We deduce that (x, a) is AC-inconsistent. This contradiction
shows that sCDC is stronger than SAC. To prove strictness, it suffices to observe that
sCDC reasons both with inconsistent values and inconsistent pairs of values.

PROPOSITION 7.20.– On binary constraint networks, sCDC is equivalent to
SAC+CDC.
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Proof. Clearly, SAC+CDC is stronger than sCDC since SAC is stronger than AC
(and sCDC is AC+CDC on binary constraint networks). On the other hand, sCDC is
trivially stronger than CDC and we know from Proposition 7.19 that sCDC is stronger
than SAC. We deduce that sCDC is stronger than SAC+CDC, and that SAC+CDC is
equivalent to sCDC.

PROPOSITION 7.21.– SAC+CDC is strictly stronger than sCDC.

Proof. Clearly, SAC+CDC is stronger than sCDC since SAC is stronger than GAC
(and sCDC is GAC+CDC). To show strictness, it suffices to build a constraint network
P which is GAC-consistent, trivially CDC-consistent because involving no binary
constraint, and not SAC-consistent.

7.2. Enforcing (conservative) path consistency
There are many published algorithms that enforce path consistency; a PC

algorithm computes the PC-closure PC (P ) of every constraint network P . PC1,
which is called algorithm C in [MON 74], is a brute-force path consistency algorithm.
PC2 [MAC 77a] is the first algorithm to use a queue to manage 2-length paths that
have to be revised. PCMG [MCG 79], which is a path consistency algorithm built
on top of arc consistency, was ignored for a long time, but has been “resurrected”
via its derivatives in this chapter. PC3 [MOH 86] is based on the use of counters
and lists of supports, as in AC4. Some errors in PC3 required a correction called
PC4 [HAN 88]. PC3/4 is the first path consistency algorithm proved to be optimal:
its worst-case time complexity is O(n3d3), but its space complexity is O(n3d3)
which is rather prohibitive. PC5 [SIN 96] and PC6 [CHM 96] are based on the
idea of recording smallest supports (analogous to AC6). These two algorithms are
equivalent but were developed independently. PC5/6 is time optimal and reduces the
space complexity to O(n3d2). PC8 [CHM 98], which is inspired by PC5/6, searches
for the smallest supports without recording them. PC8 is suboptimal because its
worst-case time complexity is O(n3d4), but it is applicable to many problems because
its space complexity is O(n2d). Furthermore, PC8 has been shown experimentally
to outperform algorithms devised previously. Finally, PC2001 uses the same idea as
AC2001 and is time-optimal while being rather simple to implement.

We henceforth restrict our attention to coarse-grained path consistency algorithms.
Specifically, we describe PC8 and PC2001 and their conservative variants.

7.2.1. Algorithms PC8 and PC2001
We consider enforcement of path consistency on a binary constraint network P

that must belong to P2∗ , which means that there must be a binary constraint between
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Algorithm 59: enforcePC(P : P2∗ ): Boolean
Output: true iff PC (P ) ̸= ⊥
// Initialization phase
Qpc ← ∅1
foreach variable x ∈ vars(P ) do2
foreach variable y ∈ vars(P ) | y ̸= x do3
foreach variable z ∈ vars(P ) | z ̸= x ∧ z ̸= y do4
foreach tuple (a, b) ∈ rel(cxy) do5
if ¬isPathConsistent((x, a), (y, b), z) then6

remove (a, b) from rel(cxy)7
if rel(cxy) = ∅ then8
return false9

Qpc ← Qpc ∪ {(cxy, x, a), (cxy, y, b)}10

// Propagation phase
while Qpc ̸= ∅ do11

pick and delete (cxy, x, a) from Qpc // (x, a) lost a support on cxy12
foreach variable z ∈ vars(P ) | z ̸= x ∧ z ̸= y do13
foreach value c ∈ dom(z) | (a, c) ∈ rel(cxz) do14
if ¬isPathConsistent((x, a), (z, c), y) then15

remove (a, c) from rel(cxz)16
if rel(cxz) = ∅ then17
return false18

Qpc ← Qpc ∪ {(cxz, x, a), (cxz, z, c)}19

return true20

each pair of variables (there might also be some non-binary constraints which would
be simply ignored). Without any loss of generality, we consider that each constraint c
of P is tailored, i.e. each tuple allowed by c is a support on c; we have rel(c) = sup(c).
The idea of the coarse-grained path consistency scheme is to record in a propagation
queue, denoted by Qpc all c-values of P that have recently lost a support. If (cxy, x, a)
is in Qpc then (at least) one tuple τ such that τ [x] = a has been removed from
rel(cxy). This tuple was a support for (x, a) on cxy and has been discarded in one of
the two phases of Algorithm 59. The function enforcePC returns the Boolean value
false iff the constraint network P given as parameter is path-inconsistent, i.e. iff
PC (P ) = ⊥. In the first phase (lines 1 to 10), the global structure Qpc is initially
empty. For every locally consistent instantiation {(x, a), (y, b)} on P and for every
third variable z, the algorithm checks whether there is a consistent 2-length path that
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includes z. The function isPathConsistent determines whether or not there is a support
for {(x, a), (y, b)} on the path ⟨x, z, y⟩; different implementations of this function are
described below. If there is no support for {(x, a), (y, b)}, the tuple (a, b) is removed
from rel(cxy) and the set Qpc is updated. A relation wipe-out shows that the constraint
network is path-inconsistent, so false is returned at line 9. At lines 11 to 19 each c-
value (cxy, x, a) in Qpc is “propagated” by checking that for every variable z and for
every value c in dom(z) such that (a, c) ∈ rel(cxz), there is still a consistent 2-length
path that includes y.

To enforce strong path consistency on a binary constraint network P , it is sufficient
to insert:

P ← AC (P, vars(P ))

at the end of Algorithm 59 (before line 20). From Proposition 7.11 we know
that enforcing arc consistency on a path-consistent network results in a strong
path-consistent network. Moreover, efficiency may also be enhanced by enforcing
(generalized) arc consistency at the beginning of Algorithm 59.

Different implementations of the function isPathConsistent yield different
instantiations of Algorithm 59. PC8 is an instantiation in which Algorithm 59
calls the function isPathConsistent-8, Algorithm 60. A support for {(x, a), (y, b)} on
⟨x, z, y⟩ is sought simply by iterating over all values of z.

Algorithm 60: isPathConsistent-8((x, a), (y, b): v-values, z: variable): Boolean
Output: true iff there is a support for {(x, a), (y, b)} on ⟨x, z, y⟩
foreach value c ∈ dom(z) do1
if (a, c) ∈ rel(cxz) ∧ (b, c) ∈ rel(cyz) then2
return true3

return false4

PROPOSITION 7.22.– [CHM 98] PC8 admits a worst-case time complexity in
O(n3d4) and a worst-case space complexity in O(n2d).

PC2001 is an instantiation of Algorithm 59 that calls the function isPathConsistent-
2001, Algorithm 61, using a structure last to store the last supports found. More
precisely, last[cxy, (a, b), z] indicates the last support found2 for {(x, a), (y, b)} on
⟨x, z, y⟩. Initially, the first value in dom(z) is assigned to last[cxy, (a, b), z]. Like

2. Of course, instead of recording a triplet of values (a, c, b), we can only record the value c.
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GAC2001, the function isPathConsistent-2001 avoids starting from scratch each time
it seeks a support for {(x, a), (y, b)}, perhaps finding a new one.

Algorithm 61: isPathConsistent-2001((x, a), (y, b): v-values, z: variable): Bool
Output: true iff there is a support for {(x, a), (y, b)} on ⟨x, z, y⟩
foreach value c ∈ dom(z) | c ≥ last[cxy, (a, b), z] do1
if (a, c) ∈ rel(cxz) ∧ (b, c) ∈ rel(cyz) then2

last[cxy, (a, b), z] ← c3
return true4

return false5

PROPOSITION 7.23.– [BES 05c] PC2001 admits a worst-case time complexity in
O(n3d3) and a worst-case space complexity in O(n3d2).

7.2.2. Algorithms CPC8 and CPC2001

Algorithm 62 enforces conservative path consistency on a binary constraint
network P by processing 3-cliques, without processing other sets of three variables.
Here, a 3-clique is a set of three variables with a binary constraint between every pair
of these. For each 3-clique, three closed graph-paths are initially processed at line 2
because there are three constraints between the three variables. The condition x ▹ y
precludes useless symmetric treatments. Whenever a constraint cxy is picked (via a
c-value) at line 10, line 11 finds every variable z that is connected to both x and y.
The rest of the algorithm is similar to Algorithm 59. Note that the constraint network
P that must be enforced conservative path-consistent belongs to P2 (the constraint
graph of P is not necessarily complete), whereas P ∈ P2∗ for PC.

In the following analysis, K denotes the number of 3-cliques of P ; K is equal
to the number of closed 2-length graph-paths of P divided by six. CPC8 denotes
Algorithm 62 calling the function isPathConsistent-8, Algorithm 60.

PROPOSITION 7.24.– CPC8 admits a worst-case time complexity in O(Kd4) and a
worst-case space complexity in O(ed + K).

Proof. In P , there are initially 3 K closed graph-paths ⟨x, z, y⟩ of P such that x ▹ y,
so the time complexity of the initialization phase is O(Kd3). For the propagation
phase, for any connected pair (x, y) of variables, i.e. any two variables involved in
the same binary constraint, we iterate over the closed graph-paths ⟨x, y, z⟩ of P . Thus
the total number of iterated closed graph-paths is 6 K when each connected pair of
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Algorithm 62: enforceCPC(P : P2): Boolean
Output: true iff CPC (P ) ̸= ⊥
// Initialization phase
Qpc ← ∅1
foreach closed graph-path ⟨x, z, y⟩ of P such that x ▹ y do2
foreach tuple (a, b) ∈ rel(cxy) do3
if ¬isPathConsistent((x, a), (y, b), z) then4

remove (a, b) from rel(cxy)5
if rel(cxy) = ∅ then6
return false7

Qpc ← Qpc ∪ {(cxy, x, a), (cxy, y, b)}8

// Propagation phase
while Qpc ̸= ∅ do9

pick and delete (cxy, x, a) from Qpc // (x, a) lost a support on cxy10
foreach closed graph-path ⟨x, y, z⟩ of P do11
foreach value c ∈ dom(z) | (a, c) ∈ rel(cxz) do12
if ¬isPathConsistent((x, a), (z, c), y) then13

remove (a, c) from rel(cxz)14
if rel(cxz) = ∅ then15
return false16

Qpc ← Qpc ∪ {(cxz, x, a), (cxz, z, c)}17

return true18

variables is processed only once. Each connected pair (x, y) can be processed up to d2

times (because a c-value involving the arc (cxy, x) can be picked d2 times). The cost of
lines 12 to 17 is O(d2), so the time complexity of the propagation phase is O(Kd4),
which is the overall worst-case time complexity of CPC8. The space complexity of
Qpc is O(ed); efficient implementation of lines 2 and 11 requires data structures in
O(K). So, the overall space-complexity is O(ed + K).

CPC2001 denotes Algorithm 62 calling the function isPathConsistent-2001,
Algorithm 61.
PROPOSITION 7.25.– CPC2001 admits a worst-case time complexity in O(Kd3) and
a worst-case space complexity in O(ed + Kd2).

Proof. Following [BES 05c] we can prove that the cost of lines 12 to 17 is O(2d)
instead of O(d2). Hence CPC2001 has a worst-case time complexity in O(Kd3). The
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space complexity of Qpc is O(ed) and the space complexity of the last structure is
3Kd2 = O(Kd2); so the overall space-complexity is O(ed + Kd2).

Unfortunately, as indicated in Proposition 7.13, enforcing arc consistency on
a conservative path-consistent binary network does not necessarily yield a sCPC-
consistent network, although apparently this is often the case in practice. Several
passes may be needed, enforcing CPC then AC then CPC then AC, and so on.

7.3. Enforcing strong (conservative) dual consistency
We now introduce sCDC1 [LEC 07a], which establishes strong conservative dual

consistency on binary constraint networks (and SAC+CDC on non-binary constraint
networks), and sDC2 [LEC 07b], which enforces strong dual (path) consistency3 on
binary networks. For binary networks, when the constraint graph is (made) complete,
both algorithms enforce strong path consistency, and here sDC2 has the advantage of
being partially incremental. Recall that any instruction of the form GAC (P,X) must
be seen as a call to the function enforceGACvar depicted in Algorithm 9, which takes
P and X as parameters, and returns false when GAC (P,X) = ⊥.

7.3.1. Algorithm sCDC1
sCDC1, Algorithm 63, which establishes strong conservative dual consistency on

binary constraint networks, performs successive singleton checks until a fixed point
is reached. This algorithm returns false iff P given as a parameter (and assumed first
to be binary) is sCDC-inconsistent, i.e. iff sCDC (P ) = ⊥. (G)AC is enforced at
line 1, and then a variable is considered at each turn of the main loop to establish the
consistency. For any set X of variables (totally ordered by ▹), first(X) is the smallest
variable of X and nextCircular(x,X) is the smallest variable of X strictly greater than
x if any, or first(X) otherwise. These two functions allow circular (and potentially
infinite) iteration over the variables of P . For example, if vars(P ) = {w, x, y, z},
then the iteration has the form w, x, y, z, w, x, y, z, w, . . . .

The function reviseStrongCDC, Algorithm 64, revises the given variable x by
means of strong conservative dual consistency, i.e. it explores all possible inferences
with respect to x by performing singleton checks on values of x. The sCDC revision
of a variable x means removing from dom(x) all values that are SAC-inconsistent and
from every relation rel(cxy), associated with a binary constraint involving x, all tuples
that are CDC-inconsistent. To achieve this, GAC is enforced on P |x=a for each value

3. Enforcing the strong form of (conservative) dual consistency comes for free. For this reason
we do not present any algorithm that enforces DC or CDC alone.
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Algorithm 63: sCDC1(P : P): Boolean
Output: true iff sCDC (P ) ̸= ⊥
P ← GAC (P, vars(P )) // GAC is initially enforced1
if P = ⊥ then2
return false3

x ← first(vars(P ))4
marker ← x5
repeat6
if |dom(x)| > 1 then7
if reviseStrongCDC(P, x) then8

P ← GAC (P, {x}) // GAC is maintained9
if P = ⊥ then10
return false11

marker ← x12

x ← nextCircular(x, vars(P ))13
until x = marker14
return true15

Algorithm 64: reviseStrongCDC(P : P , x: variable): Boolean
Output: true iff the sCDC revision of x is effective
modified ← false1
foreach value a ∈ domP (x) do2

P ′ ← GAC (P |x=a, {x}) // singleton check on (x, a)3
if P ′ = ⊥ then4

remove a from domP (x) // SAC-inconsistent value5
modified ← true6

else7
foreach binary constraint cxy ∈ cons(P ) do8
foreach value b ∈ domP (y) | (a, b) ∈ relP (cxy) do9
if b /∈ domP ′

(y) then10
remove (a, b) from relP (cxy) // CDC-inconsistent pair of11
values
modified ← true12

returnmodified13
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a in the domain of x. If a is SAC-inconsistent, then a is removed from the domain of
x (line 5). Otherwise (lines 8 to 12), for every variable y such that there is a binary
constraint between x and y and for every v-value (y, b) present in P but not in P ′,
the tuple (a, b) is removed from rel(cxy), because this tuple is CDC-inconsistent. The
sCDC revision is effective for x if a value or a tuple is deleted.

At line 8 of Algorithm 63, reviseStrongCDC may make changes relating to the
variable x. When the sCDC revision of x is effective, i.e. when there is at least
one inference (removal of a value or a tuple), reviseStrongCDC returns true and
(generalized) arc consistency is re-established (line 9). Any domain or relation
wipe-out is detected at line 10 (in constant time if we use an additional flag in
reviseStrongCDC). A marker, initialized with the first variable of vars(P ) (line 4)
and updated whenever there are inferences (line 12), manages termination. There can
be no inferential deletion of values or tuples when the currently selected variable is
fixed, because the network is always maintained (generalized) arc-consistent. This is
the reason of the test at line 7.

There is a strong connection between the algorithm sCDC1 and the algorithm
proposed in [MCG 79] to establish strong path consistency. sCDC1 enforces (strong)
conservative dual consistency and can therefore be regarded as a refinement of
McGregor’s algorithm. sCDC1 incorporates two improvements. First, GAC is
maintained during execution so as to start singleton checks with a propagation
queue limited to a single variable (thus avoiding many useless revisions, particularly
on sparse constraint graphs). Second, a simple but enhanced mechanism handles
termination. Coarse grain reasoning about termination is appropriate because for
every variable x and for every pair of values a and b in dom(x), any inference
concerning (x, a) (the removal of (x, a) or the removal of a tuple linking (x, a) to
another value) has no effect on P |x=b, and vice-versa.

PROPOSITION 7.26.– The algorithm sCDC1 enforces strong conservative dual
consistency on binary constraint networks.

Proof. First, it is immediately clear that any inference performed by sCDC1 is
correct. Completeness, i.e. the fact that all possible inferences are performed, is
guaranteed by the following invariant: when P ′ ← GAC (P |x=a, {x}) is performed
at line 3 of Algorithm 64, we obtain a network P ′ that is exactly GAC (P |x=a), or
equivalently from an operational point of view, P ′ is the constraint network returned
by GAC (P |x=a, vars(P )). The reasons are a) that the network is maintained GAC-
consistent whenever a modification is performed (line 9 of Algorithm 63) and b)
that any inference performed with respect to a v-value (x, a) has no effect on P |x=b,
where b is any other value in the domain of the variable x.
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One pass of sCDC1 means calling reviseStrongCDC exactly once per variable. We
first analyze one pass.

PROPOSITION 7.27.– On binary constraint networks, one pass of sCDC1 admits a
worst-case time complexity inO(end3), and a worst-case space complexity inO(ed).

Proof. Consider first the total worst-case time complexity of reviseStrongCDC when
sCDC1 is executed. For one pass of sCDC1, the total complexity of executing
line 3 of Algorithm 64 is clearly O(nded2) = O(end3) when using an optimal
O(ed2) arc consistency algorithm such as AC2001. The “if” part (lines 5 and 6) is
negligible, whereas the total worst-case time complexity of executing the “else” part
(lines 8 to 12) is O(d2ed) = O(ed2). Thus the total worst-case time complexity of
reviseStrongCDC is in O(end3). The total worst-case time complexity of line 9 of
Algorithm 63 is O(ned2) since there are exactly n turns of the main loop. Since other
instructions are negligible, the overall complexity is O(end3). In terms of space,
the only data structures used by sCDC1 are those employed by the underlying AC
algorithm. For AC2001 or AC3rm, this is O(ed), which is therefore the worst-case
space complexity of sCDC1.

If λ =
∑

c∈cons(P ) | sup(c)| is the number of supports over all relations of the
network, then the number of passes of sCDC1 is bounded by nd + λ since between
two successive calls, at least one value is removed from a domain or a support is
removed from a relation. Because λ is in O(ed2), sCDC1 is in O(e2nd5). This seems
to be rather high, but our opinion is that sCDC1 quickly reaches a fixed point (i.e.
the number of passes is very small in practice) because inferences about inconsistent
values and inconsistent pairs of values are immediately taken into account. The
following corollary also indicates that the time wasted by applying sCDC1 to a
binary network which is already strongly conservative dual-consistent is quite limited
provided that domain cardinalities are not too high.

COROLLARY 7.28.– Applied to a binary network that is sCDC-consistent, the worst-
case time complexity of sCDC1 is O(end3).

The proof is immediate since there is only one pass before a fixed point is reached.

On non-binary constraint networks, Algorithm 63 enforces SAC+CDC; in this
context, a better name for this algorithm is certainly SAC/CDC1.

7.3.2. Algorithm sDC2

The algorithm sCDC1 can enforce strong path (dual) consistency on binary
constraint networks that have a constraint between every two variables, i.e. networks
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in P2∗ . Algorithm sDC2 [LEC 07b] is a refinement of sCDC1 for networks in P2∗

that limits the cost of enforcing AC at each singleton check. For binary networks,
sCDC1 systematically applies AC (P |x=a, {x}) at line 3 of Algorithm 64 even when
there has been a previous singleton check on (x, a). In the case where P ∈ P2∗ , the
entire domain of P ′ = AC (P |x=a, {x}) is “recorded” in the network P itself since
there is a constraint between x and every other variable of P . When P is modified
by removing all DC-inconsistent tuples involving (x, a) from constraint relations (as
identified in P ′), we can easily and cheaply recover the domain of P ′. Specifically,
we have P ′ = FC (P |x=a, x) where FC is limited to making arc-consistent every
constraint involving x. An instruction of the form FC (P, x) must be understood as
a call to the function applyFC depicted in Algorithm 11, which takes P and x as
parameters. However, instead of returning a Boolean value, FC (P, x) is assumed
now to return the constraint network obtained after applying FC on P from the event
variable x.

When a coarse-grained AC algorithm with a variable-oriented propagation scheme
is used, we know that AC (P |x=a, {x}) is equivalent to AC (FC (P |x=a, x), Xevt),
where Xevt denotes the set of variables of P whose domain has been reduced
by FC (P |x=a, x). Indeed, execution of AC (P |x=a, {x}) starts by revising each
arc (cxy, y) of P , such that x ∈ scp(cxy), and putting y in the propagation
queue if dom(y) has been reduced. Here the first pass of AC enforcement is
equivalent to forward checking. Except for the first singleton check on each v-
value (x, a), in sDC2, we apply AC (FC (P |x=a, x), Yevt) where Yevt is a set of
variables built up during propagation. The point is that necessarily Yevt ⊆ Xevt and
AC (FC (P |x=a, x), Yevt) = AC (FC (P |x=a, x), Xevt). So, sDC2 is less expensive
than sCDC1 (since some useless revisions may be avoided, and, as we will show, the
cost of managing the additional information is negligible). Roughly speaking, sDC2
partially exploits the incrementality of the underlying arc consistency algorithm.

Algorithm 65, which enforces strong path (dual) consistency on a given binary
network P , differs from sCDC1 in that it uses time-stamping. A global counter time
counts the number of turns of the main loop (see lines 6 and 8), and a time-stamp
is associated with each variable: stamp[x] indicates the time (turn number) of the
most recent occurrence of an inference concerning the variable x. In this context,
inference means removal of a value from dom(x) or removal of a tuple from the
relation associated with a constraint involving x. When the function reviseStrongDC
returns true, this means that at least one inference concerning x has been performed,
so stamp[x] is updated (line 11). Then AC is maintained, and deleted values are
collected; see a description of (G)AC+ on page 290. For every variable y whose
domain has been reduced, i.e. y ∈ vars(deleted), stamp[y] is updated at line 16.

All inferences, if any, concerning a given variable x, are implemented by the
function reviseStrongDC, Algorithm 66; this function revises x by means of strong
dual consistency, as previously explained with sCDC. If time ≤ n, this is the first time
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Algorithm 65: sDC2(P : P2∗ ): Boolean
Output: true iff sPC (P ) ̸= ⊥
P ← AC (P, vars(P )) // AC is initially enforced1
if P = ⊥ then2
return false3

x ← first(vars(P ))4
marker ← x5
time ← 06
repeat7

time ← time + 18
if |dom(x)| > 1 then9
if reviseStrongDC(P, x) then10

stamp[x] ← time11
(P, deleted) ← AC+(P, {x}) // AC is maintained – values deleted12
by AC are returned
if P = ⊥ then13
return false14

foreach variable y ∈ vars(deleted) do15
stamp[y] ← time16

marker ← x17

x ← nextCircular(x, vars(P ))18
until x = marker19
return true20

reviseStrongDC has been called with the variable x as a parameter; in this case, each
value a in dom(x) is processed as usual. Otherwise, an “event” set X ′

evt comprising
all variables that were subject to at least one inference during the last n − 1 calls
to reviseStrongDC is first computed at line 3. Note that events in X ′

evt have already
been propagated in the main problem since AC is maintained at each step at line 12 of
Algorithm 65. Then, if time > n, for each value a in dom(x) FC+(P |x=a, x) returns
at line 8 a pair (P ′, Xevt) where P ′ = FC (P |x=a, x) and Xevt = {y ∈ vars(P ) |
domP ′

(y) ⊂ domP |x=a(y)}. The algorithm presented in section 4.1.3 can easily be
adapted to additionally return Xevt, which is the set of variables whose domain has
been reduced by FC. Importantly, FC initially removes (at least) all the values that
were removed by the last AC enforcement on (x, a). AC is then applied at line 9
from Xevt ∩ X ′

evt because no new event concerns variables in Xevt \ X ′
evt, and so

it is useless to revise against these variables; this is where incrementality is partially
exploited. Note also that new inferences performed when checking a v-value (x, a)
has no impact on the singleton check on any other v-value (x, b) for the same variable
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Algorithm 66: reviseStrongDC(P : P2∗ , x: variable): Boolean
Output: true iff the sDC revision of x is effective
modified ← false1
if time > n then2

X ′
evt ← {y ∈ vars(P ) | time − stamp[y] < n} // new events for x3

foreach value a ∈ domP (x) do4
if time ≤ n then5

P ′ ← AC (P |x=a, {x}) // first singleton check on (x, a)6
else7

(P ′, Xevt) ← FC+(P |x=a, x) // FC is applied and variables with8
reduced domains returned
P ′ ← AC (P ′, Xevt ∩ X ′

evt)9

if P ′ = ⊥ then10
remove a from domP (x) // SAC-inconsistent value11
modified ← true12

else13
foreach binary constraint cxy ∈ cons(P ) do14
foreach value b ∈ domP (y) | (a, b) ∈ relP (cxy) do15
if b /∈ domP ′

(y) then16
remove (a, b) from relP (cxy) // DC-inconsistent pair of17
values
stamp[y] ← time18
modified ← true19

return modified20

x; this is why X ′
evt can be initially computed and is never updated. The remainder

of the function is identical to reviseStrongCDC, except for the update of some time-
stamps (line 18) whenever a tuple is removed. Note that stamp[x] is not immediately
updated because this is done at line 11 in Algorithm 65.

PROPOSITION 7.29.– The algorithm sDC2 enforces strong path consistency.

Proof. (sketch) First, it is immediate that any inference performed by sDC2 is
correct. Completeness is guaranteed by the following invariant: when P ′ is computed
at line 9 of Algorithm 66, P ′ is exactly the constraint network AC (P |x=a), or
equivalently from an operational point of view P ′ is the constraint network returned
by AC (P |x=a, vars(P )). The invariant holds because every occurrence of an
inference is recorded via time-stamps.
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One pass of sDC2 means calling reviseStrongDC exactly once per variable.

PROPOSITION 7.30.– One pass of sDC2 admits a worst-case time complexity in
O(n3d3), and a worst-case space complexity in O(n2d).

7.3.3. Illustration

Figure 7.10 shows the compatibility graph of a simple binary constraint network
that is used in the following illustration of sCDC1. This constraint network
P has vars(P ) = {v, w, x, y, z}, three values per domain, and cons(P ) =
{cvx, cvy, cwx, cwz, cxy, cxz, cyz} such that:

– rel(cvx) = {(0, 0), (1, 0), (1, 2), (2, 0), (2, 1), (2, 2)};
– rel(cvy) = {(0, 0), (0, 1), (1, 0), (1, 2), (2, 0), (2, 2)};
– rel(cwx) = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 2), (2, 2)};
– rel(cwz) = {(0, 1), (0, 2), (1, 1), (1, 2), (2, 0), (2, 2)};
– rel(cxy) = {(0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 2)};
– rel(cxz) = {(0, 2), (1, 0), (1, 2), (2, 0), (2, 1), (2, 2)};
– rel(cyz) = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0)}.

For this binary constraint network P , Figures 7.11, 7.12, 7.13, 7.14, 7.15 and
7.16 show the first general steps performed by sCDC1. Figure 7.17 shows the sCDC-
closure of P . In each figure, dotted vertices indicate invalid values and dotted edges
indicate invalid tuples, when performing singleton checks. Dashed vertices and edges
indicate values and tuples found to be globally inconsistent by sCDC.

7.3.4. Discussion

7.3.4.1. Comparison with CPC
It is interesting to compare sCDC1 with algorithms that enforce sCPC. Recall

that CPC8 admits a worst-case time complexity in O(Kd4) and a worst-case space
complexity in O(ed + K), whereas CPC2001 admits a worst-case time complexity
in O(Kd3) and a worst-case space complexity in O(ed + Kd2). The number, K,
of 3-cliques is important here. Typically, the less dense the network, the smaller the
number of 3-cliques, which means that CPC algorithms require less the space and
time. Intuitively, for sparse networks, sCDC1 is expected to be slower than sCPC8 and
sCPC2001, but for dense (or highly structured) networks, sCDC1, due to its ability
to make and use inferences quickly, is expected to be faster. This is confirmed in
[LEC 07a].
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Figure 7.10. A binary constraint network P before enforcing sCDC
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Figure 7.11. First singleton check performed by sCDC1. We have AC (P |v=0) = ⊥ since we
have a domain wipe-out for z
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Figure 7.12. The new state of P : the v-value (v, 0) is removed since it has been detected
SAC-inconsistent; see Figure 7.11
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Figure 7.13. Second singleton check performed by sCDC1. We have AC (P |v=1) ̸= ⊥, but
note that {(v, 1), (x, 0)} and {(v, 1), (y, 0)} are DC-inconsistent
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Figure 7.14. The tuple (1, 0) is removed from both rel(cvx) and rel(cvy) since these two
occurrences correspond to DC-inconsistent instantiations; see Figure 7.13
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Figure 7.15. Third singleton check performed by sCDC1. No inference is possible
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Figure 7.16. The new state of P obtained after enforcing arc consistency since checking
values of v is finished (and the sDC revision of v was effective). The v-value (y, 1) is detected
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Figure 7.17. The sCDC-closure sCDC (P ) of the network P from Figure 7.10
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7.3.4.2. Path consistency by dual consistency
A nice thing is that algorithms sCDC1 and sDC2 presented earlier can enforce

strong path consistency on any binary constraint network. It is only necessary to
make the constraint graph complete before applying these algorithms. It is also
possible to use a third algorithm, denoted by sDC3 [LEC 07b], which fully exploits
the incrementality of the underlying arc consistency algorithm, and therefore admits
a worst-case time complexity in O(n3d4) and a worst-case space complexity in
O(n2d2). However, its practical efficiency is rather disappointing [LEC 07b].

Some extreme cases provide clues about the possible benefit of using an AC-based
approach to enforce (strong) path consistency. Indeed, we have the following result.

PROPOSITION 7.31.– Applied to a binary constraint network involving a universal
constraint between every two variables, the time complexity of PC8 and PC2001 is
Θ(n3d2), whereas the time complexity of sCDC1 and sDC2 is Θ(n2d2).

Proof. Consider the initialization phase of Algorithm 59, used for both PC8 and
PC2001. The cost of a call to the function isPathConsistent is O(1), because all
constraints are universal, and so the time complexity of the initialization phase is
Θ(n3d2). Because Qpc remains empty, the overall time complexity is Θ(n3d2). When
all constraints are universal, FC can enforce AC after a variable assignment, since we
just need to check that each value of every variable is compatible with the current
assignment. In this case a singleton check is Θ(nd), and the overall complexity is
Θ(n2d2).

Another interesting case is that after the first pass of AC (actually, FC), many
revisions can be avoided by exploiting Corollary 4.12. If a network is strong path-
consistent and if all revisions can be avoided by using this revision condition, the
worst-case time complexity becomes O(nd.(nd+n2)) = O(n2d. max(n, d)) because
for each singleton check the number of revisions after FC is O(n2), each being O(1)
since the revision effort is avoided. This has to be compared with the cost of the
initialization phase of PC8 and PC2001 which is O(n3d2) in the same context, so
there may be an improvement by a factor O(min(n, d)).

7.4. Experimental results

This section reports experiments on binary constraint networks using an i686
2.4 GHz processor equipped with 1024 MB RAM. For the algorithms sCDC and sDC
the underlying arc consistency algorithm was AC3bit+rm, with revisions performed
by function reviseCS (see Algorithm 23).
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7.4.1. With CDC algorithms

Our first series of experiments compares the CPU time (expressed in seconds)
and filtering strength of algorithms AC3bit+rm, SAC-SDS, sCPC8, sCPC2001 and
sCDC1. We use the λ value to assess the filtering level achieved by enforcing first-
and/or second-order consistencies. Recall that λ denotes the total number of supports
over all constraints of a constraint network P , i.e. λ =

∑
c∈cons(P ) | sup(c)|. These

experiments used AC◦CPC as an approximation to establish strong conservative path
consistency because we found that that one pass was usually sufficient to enforce
sCPC.

We have tested the selected algorithms against problems enumerated in Table 7.1;
intensional constraints were converted to be extensional. As theory predicts, sCDC1
filters more than the other algorithms: the smaller λ the greater the reduction of the
search space. Although sCDC1 is almost one order of magnitude faster than sCPC8
and sCPC2001 on some series, it is almost one order of magnitude slower on series
⟨40, 180, 84, 0.9⟩. The binary random instances of class ⟨40, 180, 84, 0.9⟩ contain on
average only twelve 3-cliques, so for these it is cheap to enforce strong conservative
path consistency.

We have also compared the performance of the complete search algorithm MAC
(presented in Chapter 8) with and without CDC enforcement during preprocessing.
This assessment has addressed some difficult real-world instances of the radio link
frequency assignment problem (RLFAP). To observe the real impact (on search)
of enforcing sCDC (using sCDC1) during preprocessing, these experiments do not
employ efficiency enhancing techniques such as restarts, nogood recording, symmetry
breaking, etc. Table 7.2 shows that for the hardest instances, sCDC at preprocessing
pays off: without sCDC, MAC is about 40% slower than sCDC-MAC and visits
almost twice as many nodes.

7.4.2. With DC algorithms

Our second series of experiments has compared the CPU time required to enforce
strong path consistency with algorithms sPC8, sCDC1 and sDC24. We have first
tested these algorithms against random instances. We have obtained results for classes
of the form ⟨50, 90, 1225, t⟩ and ⟨50, 90, 612, t⟩ with t ranging from 0.01 to 0.99.
For the second of these classes, 50% of constraints are universal and 50% are of
tightness t. Constraint graphs being (considered) complete, sCDC1 do enforce strong
path consistency. Figure 7.18 shows the average CPU time required to enforce strong

4. The implementation of sDC2 used for the experiments is not optimized as proposed in this
book.

www.it-ebooks.info

http://www.it-ebooks.info/


350 Constraint Networks

AC3bit+rm SAC-SDS sCPC8 sCPC2001 sCDC1
langford (4 instances)
CPU 0.22 0.46 4.0 4.9 0.52

λ 105,854 105,769 75,727 75,727 75,727
blackhole-4-13 (7 instances) (K = 92,769)
CPU 1.2 19.3 140 − 46.9

λ 8,206,320 8,206,320 8,206,320 7,702,906
⟨40, 180, 84, 0.9⟩ (20 instances) (K = 12)
CPU 0.71 10.5 2.2 2.0 17.4

λ 272,253 244,887 244,272 244,272 210,874
⟨40, 8, 753, 0.1⟩ (20 instances) (K = 8,860)
CPU 0.16 0.21 0.62 0.69 0.20

λ 43,320 43,320 43,318 43,318 43,318
job-shop enddr1 (10 instances) (K = 600)
CPU 1.5 4.0 7.9 10.5 4.6

λ 2,937,697 2,937,697 2,937,697 2,937,697 2,930,391
RLFAP scens (11 instances)
CPU 0.86 − 25.9 − 3.4

λ 1,674,286 1,471,132 1,469,286

Table 7.1. Mean results obtained with various filtering algorithms, including sCDC1, on some
series of binary instances. The symbol − indicates that the algorithm runs out of memory

Instance MAC sCDC1-MAC
scen11-f8 CPU 8.0 14.3

#nodes 14,068 4,946

scen11-f6 CPU 68.4 58.2
#nodes 302 K 145 K

scen11-f4 CPU 582 559
#nodes 2,826 K 1,834 K

scen11-f3 CPU 2,338 1,725
#nodes 12 M 5,863 K

scen11-f2 CPU 7,521 5,872
#nodes 37 M 21 M

scen11-f1 CPU 17,409 13,136
#nodes 93 M 55 M

Table 7.2. Impact of enforcing sCDC at preprocessing on MAC
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Figure 7.18.Mean results obtained with PC algorithms on classes of 100 random binary
instances
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path consistency on these classes. The shaded area on each figure indicates tightnesses
for which more than 50% of the generated instances were proved to be inconsistent.
The main experimental result here is that sDC2, although slightly more efficient than
sCDC1, is far more efficient than sPC8. For small tightnesses, there is a significant gap
(up to two orders of magnitude) between sDC2 and sPC8, which is partly due to the
fact that many revisions can be avoided, as discussed in section 7.3.4. For tightnesses
around the threshold, the gap is still very important (about one order of magnitude).
We can also see that the gap increases when the density (number of non-universal
constraints) decreases, which is not surprising since the number of allowed tuples
increases with the number of universal constraints; classical PC algorithms mainly
handle allowed tuples.

Instance sPC8 sPC2001 sCDC1 sDC2
queens-20 CPU 1.86 1.89 1.65 1.62

mem 17 25 17 17

queens-30 CPU 5.0 5.3 2.2 2.2
mem 17 76 17 17

queens-50 CPU 50 – 4.6 4.5
mem 30 22 22

queens-80 CPU 557 – 26 24
mem 97 44 44

queens-100 CPU 1,549 – 62 58
mem 197 73 73

langford-3-15 CPU 34 46 4.29 4.25
mem 25 456 21 21

langford-3-16 CPU 45 66 4.9 4.4
mem 27 612 21 21

langford-3-17 CPU 63 – 6.0 6.0
mem 34 22 22

langford-3-20 CPU 140 – 11 9.7
mem 43 26 26

langford-3-30 CPU 1,247 – 60 50
mem 138 56 56

Table 7.3. Results obtained with algorithms enforcing strong path consistency on academic
queens and Langford instances. The symbol − indicates that the algorithm runs out of memory

Table 7.3, which shows results on two series of academic instances, confirms
the results obtained for random instances. On these structured instances (whose
constraint graph is complete), sDC2 is about 20 times more efficient than sPC8
for large instances, regardless of the number of inferences performed. The queens
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instances are already strongly path-consistent, which is not the case for the Langford
instances.

7.5. Conclusion

For binary constraint networks, it is known that strong path consistency is
equivalent to strong 3-consistency. There are several theoretical results that relate
global consistency to strong 3-consistency, e.g. Corollaries 3.56 and 3.70. In the
next generation of robust constraint solvers, tractable classes of CSP instances will
certainly have to be identified and exploited during search. This will increase the
importance of strong path consistency in constraint solvers.

Obviously, algorithms that enforce strong (conservative) dual consistency via
singleton checks are closely related to algorithms that enforce singleton arc
consistency. Compared to the time-optimal SAC-Opt and sub-optimal SAC-SDS
algorithms, sCDC1 and sDC2 have the advantage of pruning the search space more
efficiently, since on binary networks sCDC is strictly stronger than SAC (while
limiting space complexity for sCDC1 to the existing extensional representation of the
constraint network). We should also mention bidirectional singleton arc consistency
(BiSAC) [BES 08a], called SPAC in [BES 04b], which is strictly stronger than
singleton arc consistency and strictly weaker than strong path consistency, while
being incomparable with strong conservative dual consistency. This domain-filtering
consistency exploits the nogoods of size 2 that are identified when performing
singleton checks but does not record them in the network.

Algorithm Time complexity Space complexity Reference
PC1 O(n5d5) O(n3d2) [MON 74]
PC2 O(n3d5) O(n3) [MAC 77a]

PC3/4 O(n3d3) O(n3d3) [MOH 86, HAN 88]
PC5/6 O(n3d3) O(n3d2) [SIN 96, CHM 95]
PC8 O(n3d4) O(n2d) [CHM 98]

PC2001 O(n3d3) O(n3d2) [BES 05c]
sCDC1 O(pn3d3) O(n2d) [MCG 79, LEC 07a]
sDC2 O(pn3d3) O(n2d) [LEC 07b]
sDC3 O(n3d4) O(n2d2) [LEC 07b]

Table 7.4. Worst-case time and space complexities for (strong) path consistency algorithms on
binary constraint networks. p is the number of passes of algorithms sCDC1 and sDC2

Finally, note that the idea of restricting inferences to a specific variable ordering
can be applied to path consistency. Under certain conditions, directional path
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consistency is equivalent to path consistency, but is cheaper to enforce; several
algorithms have been proposed [TSA 93, DEC 03].

Table 7.4 summarizes the time and space complexity of the (strong) path
consistency algorithms presented in this chapter. p is the number of passes (the
last one potentially incomplete) of algorithms sCDC1 and sDC2. In the worst-case, p
is O(n2d2) but informal arguments and experimental results suggest that p is a small
integer in practice.
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Global inconsistency may be identified by reasoning locally. There are also
special cases where some form of local consistency implies global consistency.
However, in the general case, neither the search problem (i.e. finding a solution,
if any) nor the decision problem (i.e. deciding global consistency) can be solved
by (consistency-based) inference methods without search. These methods can be
regarded as incomplete methods for detecting satisfiability or unsatisfiability. Their
main value lies in their ability to simplify constraint networks, making subsequent
solution easier.

An attempt to solve a constraint satisfaction problem instance generally requires
search. A search for solutions, within the space of possibilities, may or may not be
exhaustive. Exaustive search takes account, perhaps implicitly, of every complete
instantiation of the variables of the instance to be solved; an exhaustive search
algorithm is said to be complete or systematic. Incomplete search algorithms cannot
always find a solution, even if one exists, and generally cannot prove unsatisfiability.
Typically, incomplete search algorithms proceed by checking complete instantiations
in sequence, the first instantiation being randomly or heuristically generated,
successors being derived from predecessors by simple minor modification. Within the
category of incomplete search algorithms, local search methods (see e.g. [HOO 06]),
which are not described in this book, have been found valuable for solving large
(satisfiable) problem instances, in particular when an optimization criterion has to be
satisfied.

Within the category of complete search algorithms there are several paradigms:
depth-first search, best-first search, breadth-first search, iterative deepening depth-
first search [KOR 85], limited discrepancy search [HAR 95b], etc. Backtrack search
explores the search space depth-first and backtracks when a dead-end is encountered.
To solve CSP instances, backtrack search has become the standard approach, mainly
because it requires only a polynomial amount of space. Backtrack search only needs
to store the current search path being explored, because it seeks one solution at a
time. Backtrack search systems have four major components: branching, propagation,
backtracking and learning.

All the efforts made by researchers to devise sophisticated search strategies are
related to thrashing. Within the tree that represents the progress of depth-first search,
thrashing means repeated exploration of similar subtrees that contain no solution,
i.e. repeated exploration of subproblems whose unsatisfiability has a similar origin.
Thrashing is sometimes the result of bad choices earlier during search. Thrashing
can be mitigated by the use of an appropriate search heuristic and/or by substantially
filtering variable domains and/or by learning useful information before and especially
during the search. In the following chapters, various forms of learning will be
illustrated by non-intrusive techniques such as constraint weighting and last-conflict
reasoning, controllable nogood recording and state-based search.
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Chapter 8

Backtrack Search

Practical solution of constraint satisfaction problem instances usually involves
backtrack search. This is a complete approach in which systematic exploration of the
search space of a CSP instance finds the full set of solutions or proves that no solution
exists. By contrast, incomplete approaches, such as those based on local search, are
not guaranteed to find a solution (when solutions exist) or to prove unsatisfiability.
Unfortunately, backtrack search is not guaranteed to terminate within polynomial
time. We are unaware of any general polynomial algorithm for CSP; unless P = NP,
none exists. This is why there have been considerable efforts during the past three
decades to maximize the practical efficiency of backtrack search.

Within backtrack search [GOL 65], depth-first exploration instantiates variables
and a backtracking mechanism deals with dead-ends. The depth-first search considers
a different variable at each level and tries to extend (in turn) different complementary
branching decisions concerning this variable. In its simplest form, each branching
decision is an assignment of a value to a variable: this is followed by checking that
every constraint covered by the current instantiation is satisfied. A more sophisticated
strategy applies a filtering procedure after each assignment of a value to a variable: this
procedure is intended to simplify the subsequent search or to show that a dead-end has
been reached, which means that the current set of decisions cannot be extended to a
solution. When a dead-end is encountered, one or more decisions must be retracted
before continuing the quest for a solution. The process of undoing decisions in order
to escape from a dead-end is called backtracking.

Backtrack search systems have four main components: branching (how and which
decisions to take to go forward to a solution), propagation (how and which level
of filtering to apply to reduce the search space at each step), backtracking (how
to go backward when a dead-end is encountered) and learning (what information
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to collect during search so as to facilitate subsequent parts of the search). Each of
these components has many possible implementations: there has been much effort
to identify the right combinations of implementations. In particular, the interplay
between propagation and backtracking techniques has been debated for a long time.

After each branching decision, enforcement of some kind of local consistency
prunes some parts of the search space that contain no solution. For example,
maintaining arc consistency (MAC) is the backtrack search algorithm that enforces
generalized arc consistency (GAC) after each decision taken; when the domain of a
variable becomes empty (so-called domain wipe-out), a dead-end has been reached.
And when a dead-end is reached, conflicting decisions can be reviewed via eliminating
explanations, which are recorded during the search. Instead of backtracking to the
most recent previous decision, so-called chronological backtracking, it may be helpful
to jump back to the most recent decision among those that could possibly have caused
the failure. This backward jump is a form of intelligent backtracking and can be
managed so as to guarantee that no solution will be missed.

The relationship between look-back (efficient escape from dead ends) and
look-ahead (simplification of subsequent search), has been the subject of much
investigation. MAC was used in the 1970s [GAS 74, ULL 76, ULL 77] with non-
binary branching, without backjumping and without dynamic variable ordering.
Non-chronological backtracking was initiated with dependency-directed backtracking
[STA 77, DOY 79, KLE 86] and Prolog intelligent backtracking [BRU 81, BRU 84].
Early in the 1990s, the forward checking (FC) algorithm (introduced ten years
before [MCG 79, HAR 80]) associated with the variable ordering heuristic dom
[HAR 80] and the conflict-directed backjumping (CBJ) technique [PRO 93] was
considered to be the most efficient generic approach to solve CSP instances. In 1994,
Sabin and Freuder [SAB 94] reintroduced MAC using binary branching and simple
chronological backtracking. This algorithm was shown to be more efficient than FC
and FC-CBJ; CBJ was considered to be useless to MAC, especially when MAC had a
good variable ordering heuristic [BES 96].

The situation subsequently became more confused. First, [BAY 97] showed that
many large propositional satisfiability instances derived from real-world problems
are easy when CSP look-back techniques are combined with the “Davis–Putnam”
procedure. Second, although theoretical results [CHE 01] showed that the backward
phase is less useful when the forward phase is more advanced, some experiments on
hard structured problems showed that combining CBJ with MAC can still produce
significant improvements. Third, look-back techniques appeared to be improved by
associating an eliminating explanation (or conflict set) with any value rather than
with any variable. Indeed, refined eliminating explanations allows a stronger form
of backjumping [BAC 00] and the possibility of saving much search effort with the
principle of dynamic backtracking (DBT) [GIN 93]. Experimental results [BAC 00,
JUS 00b] showed that MAC can be outperformed by algorithms embedding such
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advanced look-back techniques. Later chapters will show that some form of learning,
perhaps limited to a statistical form, is essential to the efficient guidance of search.

This chapter presents backtrack search together with very classical anti-thrashing
schemes, which are basically those mentioned above. Section 8.1 introduces various
concepts related to backtrack search and presents a general model called BPBL.
Section 8.2 provides a detailed description of MAC, and section 8.3 introduces
a parameterized algorithm that gives a uniform view of FC, MAC, CBJ, DBT
and combinations thereof. Examples in section 8.4 illustrate different techniques
introduced in this chapter, which concludes in section 8.5 with a brief discussion of
the role of explanations.

8.1. General description

Backtrack search algorithms develop search trees. A search tree is basically
a rooted tree (see Appendix A.1) that allows us to visualize successive decisions
performed by a backtrack search algorithm. In the context of search trees, we prefer
to use the term node to mean the same thing as a vertex. Starting at the root node
with the initial constraint network that must be solved, each step in the search derives
a new constraint network. Each node in the search tree is associated with one such
constraint network and each (directed) edge is associated with a search decision. The
search tree grows during the search. More specifically, if the search has currently
reached node v, then after taking a new (branching) decision δ, we insert into the
search tree a new node v′, representing the new step of the search, and a new edge
{v, v′} labeled with δ. The new edge {v, v′} is directed from v to v′: v is called the
parent of v′ and v′ a child of v. dn(v) is the set of decisions that label successive
edges in the path from the root to node v. The constraint network associated with
node v is cn(v) = φ(P init|dn(v)), where P init is the initial constraint network and φ
is the consistency enforced during search. Hence the constraint network associated
with the root of the search tree is simply φ(P init).

Figure 8.1 provides an example of a search tree. Every node in a search tree is
either a leaf node or an internal node. A leaf node differs from an internal node in
that a leaf node has no children. When an inconsistency is detected at node v during
search, this means that cn(v) = ⊥ and also that node v is a leaf node which is called
a dead-end (node). The search backtracks when a dead-end is reached.

Any node v in the search tree is the root of a subtree obtained by retaining only
v and its descendants (with all related edges). A node v is fully explored when the
search space of the constraint network cn(v) has been fully explored. If v is a fully
explored internal node such that cn(v) is unsatisfiable, v is called an internal dead-
end, and the subtree rooted at v is called a refutation tree of cn(v). If v′ is an internal
dead-end, and is a child of node v such that cn(v) is satisfiable, then v′ is a mistake
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Figure 8.1. A search tree built by a backtrack search algorithm. Note that decisions are taken
depth-first. P init is the instance to be solved initially and φ is the consistency enforced during

search

node. A (sub)tree containing no solution is said to be fruitless. Finally, during search
(i.e. when the tree is being built), we distinguish between an opened node, for which
at least one case (branch) has not been considered, and a closed node, for which all
cases (branches) have been considered (i.e. explored).

Branching decisions, also called branching constraints, split a constraint network
P = cn(v) associated with an internal node v of the search tree into two or more
constraint networks, the union of which is equivalent to P in term of solutions.
Classical branching schemes impose positive and negative decisions during search
under a strategy of enumeration or labeling (see e.g. [APT 03]). The idea of
enumeration is to select a v-value (x, a), and to branch on x = a and then on x ̸= a.
The idea of labeling is to select a variable x, and to successively branch on x = a
for each value a present in dom(x). Enumeration and labeling correspond to binary
branching (or 2-way branching) and non-binary branching (or d-way branching),
respectively. More specifically, with non-binary branching, at each search step, an
unfixed variable x (i.e. a variable whose domain is not singleton) is selected, and
then for each value a in dom(x), the assignment x = a is considered, so there are d
branches altogether, where d is the size of dom(x). With binary branching, at each
search step, a pair (x, a) is selected, where x is an unfixed variable, and a is a value
in dom(x), and two cases are considered: the assignment x = a and the refutation
x ̸= a. So there are exactly two branches. Both of these two schemes guarantee
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complete exploration of the search space. For binary branching, we know for example
that any solution S satisfies either S[x] = a or S[x] ̸= a.

When mentioning a backtrack search algorithm, it is important to indicate whether
binary branching or non-binary branching is employed. These two schemes are not
equivalent: it has been shown that binary branching is more powerful (to refute
unsatisfiable instances) than non-binary branching [HWA 05]. Using the resolution
proof system, Hwang and Mitchell show that there exist instances which require
exponential search trees for backtracking with d-way branching, but have polynomial
search trees for backtracking with 2-way branching. Although various other kinds
of decision (e.g. membership decisions when splitting domains or non-binary
branching constraints) are possible, these are not commonly used in the solution
of discrete CSP instances. Recent exceptions are effective use of partitioning and
bundling. Partitioning is a technique that partitions the domain of a variable and
branches on the resulting sub-domains. Roughly speaking, partitioning corresponds
to a non-binary branching scheme with membership decisions instead of positive
decisions. For example, in [HOE 04], values regarded as equivalent by the heuristic
employed during search are grouped together to advantageously postpone positive
branching decisions. On the other hand, full interchangeability defines a form of
equivalence between values that is stronger than heuristic equivalence. Bundling
[HAS 93] partitions domains according to interchangeability and allows us to derive
a compact representation of the solution space. Bundling may be static, dynamic
[BEC 01, CHO 02] and adapted to non-binary constraints [LAL 05]. In this book, we
restrict our study to positive and negative decisions during search; in other words, we
concentrate on variable assignments and value refutations, see section 1.4.2.

Algorithm 67: nonBinary-φ-search(in P : P): Boolean
Output: true iff P is satisfiable
P ← φ(P )1
if P = ⊥ then2
return false3

if ∀x ∈ vars(P ), |dom(x)| = 1 then4
// display the solution
return true5

select a variable x of P such that |dom(x)| > 16
foreach value a ∈ dom(x) do7
if nonBinary-φ-search(P |x=a) then8
return true9

return false10
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A (backtrack) φ-search algorithm is a backtrack search algorithm that enforces
a consistency φ after each decision taken. Algorithm 67 is a general formulation
of any backtrack φ-search algorithm that employs non-binary branching. This quite
reasonably assumes that φ is a consistency which (at least) allows detection of
any unsatisfied constraint whose variables are all fixed. Algorithm 67 determines
satisfiability and does not enumerate all solutions (if any). This algorithm starts
by enforcing φ on the given constraint network P (which is an input parameter),
returning false if an inconsistency is detected. If all domains are single valued at
line 4 then because of our assumption about φ, all constraints are necessarily satisfied,
so a solution has been found, and true is returned. At line 7, non-binary branching
means recursively calling the function nonBinary-φ-search for each value in the
domain of the variable x that was selected at line 6.

Because a consistency φ is enforced at each step, domain sizes d, d′, d′′, etc., are
generally not the same at every node in the example in Figure 8.2. Once a variable has
been selected, all values in its domain are explored. At each node, successive values
may be selected in a particular order, perhaps determined heuristically. It is important
that the order of selection of variables may vary during search. In the example in
Figure 8.2, y and z are different variables selected after having taken decisions x =
ax,1 and x = ax,d respectively at the first level.

y
=

a
y,d ′

. . .
x = ax,1

x
=

a x,
2

z = az,1

z
=

a z,
2

. . .

x = ax,d

z =
a
z,d ′′

z = az,1

z
=

a z,
2

. . .
y = ay,1

y
=

a y,
2

. . .

z
=

a
z,d ′′′

Figure 8.2. A non-binary search tree built by a backtracking algorithm. The ith value in the
current domain of a variable x is denoted by ax,i

Algorithm 68 is a general formulation of any backtrack φ-search algorithm
that employs binary branching, assuming that φ at least detects trivially unsatisfied
constraints. Each step of the binary branching algorithm selects a v-value (x, a) of P
and recursively calls the function binary-φ-search with decisions x = a and x ̸= a.
Depending on implementation of the logical operator ∨ at line 7, the algorithm finds
a single solution (if ∨ is managed in short-circuit) or finds all solutions (if any).
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Algorithm 68: binary-φ-search(in P : P): Boolean
Output: true iff P is satisfiable
P ← φ(P )1
if P = ⊥ then2
return false3

if ∀x ∈ vars(P ), |dom(x)| = 1 then4
// display the solution
return true5

select a v-value (x, a) of P such that |dom(x)| > 16
return binary-φ-search(P |x=a) ∨ binary-φ-search(P |x̸=a)7

Figure 8.3 illustrates the binary branching process and shows the systematic
exploration of two branches for each selected v-value (x, a). Classically, binary
branching algorithms select left branches, which assign values, before right branches,
which refute values, as in Figure 8.3. The main advantage of binary branching over
non-binary branching is the possibility of selecting, after each negative decision, a
variable different from the one involved in the last decision. For this reason, heuristics
that control the search may be more reactive.

z
=

a z,
1

z ̸=
a

z,1

y
=

a y,
1

y ̸=
a

y,1
x
=

a x,
1

y
=

a y,
2

y ̸=
a

y,2

z
=

a z,
1

z ̸=
a

z,1
z
=

a z,
2

z ̸=
a

z,2

. . .

. . .

. . .

. . .

Figure 8.3. A binary search tree built by a backtracking algorithm. The ith value in the current
domain of a variable x is denoted by ax,i
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The example in Figure 8.3 assumes that an unsatisfiable subtree is explored after
positive decisions x = ax,1, y = ay,1 and z = az,1. After the negative decision
z ̸= az,1, the next selected variable is again z, making this portion of the search tree
rather similar to one that could be built with non-binary branching. However, along
the path labeled with x = ax,1 and y ̸= ay,1, the next branching decisions involve the
variable z which is different from y. Here the search heuristic, perhaps learning from
previous explorations of subtrees, has decided to branch on a different variable rather
than insisting on y.

Having introduced some of the main ideas about backtrack search, we now
emphasize that all backtrack search algorithms can be derived from a general model,
denoted by BPBL. BPBL comprises four main components and is related to the
model introduced in [JUS 02] to characterize both complete and incomplete search
algorithms. Components of the model BPBL are:

– Branching: this component is concerned with the branching scheme (how and
which kinds of decisions are taken) and the heuristic(s) used to select decisions. As
explained above, the branching scheme can be binary, non-binary, split-based, etc.
Classically (at least for binary and non-binary branching schemes), each decision
involves a variable and a value. Selection of variables and values, induced by a variable
ordering and a value ordering, is usually determined heuristically. The role of these
heuristics, which are presented in the next chapter, is certainly important.

– Propagation: this component is concerned with the level of control and/or
filtering after each decision that is taken. The level of control and/or filtering
may possibly, but unusually, be different for different (kinds of) decisions. As in
Algorithms 67 and 68 filtering usually means enforcing a given local consistency φ
which is typically generalized arc consistency. Of course, any consistency presented
in the first part of this book can be employed instead.

– Backtracking: this component is concerned with the way the algorithm
backtracks after reaching a dead-end. Backtracking may be chronological or instead
may be made more sophisticated by identifying, for each dead-end, a culprit decision
preceding the previous decision.

– Learning: this component is concerned with the information recorded during
search, especially when a value is deleted (e.g. when propagating constraints) and
when a dead-end is encountered. We shall explain how this component may have
connections with all three of the other components.

Figure 8.4 shows model BPBL diagrammatically, and shows learning as an
auxiliary mechanism serving to improve the performance of the other components.
Information collected during search can be used:

– by heuristics (e.g. statistical information can be used by some search heuristics);
– to filter the search space (e.g. nogoods can be propagated as new constraints by

means of watched “literals”);
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– in non-chronological backtracking (e.g. eliminating explanations for conflict-
directed backjumping).

Of course, in some configurations, learning may be used very little or not at all.

Figure 8.4.Model BPBL for backtrack search

Finally, note that constraint networks are usually processed during a so-called
preprocessing stage initiated before search. Preprocessing may be limited to enforcing
a consistency φ, but it may also refer to more sophisticated methods such as those
based on structural decomposition. During the preprocessing stage, some data
structures may also have to be initialized so as to be used later during search by some
algorithms. Sometimes, preprocessing alone is sufficient to solve a CSP instance.

8.2. Maintaining (generalized) arc consistency

MAC [SAB 94], which is the backtrack search algorithm that maintains
generalized arc consistency during search, is currently considered to be the most
efficient complete approach to solving CSP instances. A high-level picture of MAC
can be obtained by setting φ = GAC in Algorithm 68. MAC, as clearly described in
[SAB 97], employs binary branching, and (classically) starts by assigning variables
before refuting values. The really full look-ahead algorithm in [GAS 74, NAD 88]
is a non-binary branching variant of MAC. Note also that MAC working with non-
binary constraints is sometimes called MGAC since it maintains GAC. However, for
simplicity, we shall always refer to this algorithm as MAC, whatever the arity of the
constraints.
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In terms of the general model BPBL introduced in the previous section, MAC is
defined as follows:

– Branching: binary branching is used (so, branching decisions are positive and
negative decisions); any variable and value ordering heuristics can be chosen.

– Propagation: generalized arc consistency is enforced after each positive and
negative decision.

– Backtracking: chronological backtracking is used.
– Learning: no learning technique is used by MAC itself (but some form of

learning may be required by some search heuristics).

Because of the importance of MAC, we now provide an implementation that
is more detailed than the simple recursive function in Algorithm 68. This iterative
implementation attempts to build a complete instantiation that is a solution. Each
variable explicitly assigned by the algorithm is put (with its assigned value) into
a last-in/first-out structure denoted here by I . This structure represents the current
instantiation and, as expected, has the following features:

– I.push(x, a) adds the v-value (x, a) at the top of I;
– I.pop() returns and deletes the v-value which is present at the top of I;
– I.top() returns the v-value which is present at the top of I .

|I| and vars(I) denote the size (number of v-values) of I and the set of variables in
I , respectively. At any moment, every variable in vars(I) is an instantiated variable,
sometimes called a past variable; in Chapters 4 and 5, past(P ) is exactly vars(I).
Recall that an uninstantiated variable may be incidentally fixed (i.e. have a singleton
domain) if for example, its domain has been reduced by constraint propagation.

The iterative version of MAC, Algorithm 69, uses the representation of domains
introduced in section 1.5.1, with a trailing mechanism to deal with backtracking.
Unlike the algorithms given in the previous section, Algorithm 69 finds (and displays)
all solutions of the constraint network P given as parameter. At each step, a v-value
(x, a) of the current problem is selected with the important restriction that x must
be an uninstantiated variable. Note that a is necessarily in the current domain of x
since (x, a) must be a v-value of the current problem P . The current instantiation is
extended and the domain of x reduced to a. GAC is enforced at line 10 by calling
the function enforceGAC – which can be either Algorithm 7 or Algorithm 9. This call
may modify P which is a parameter passed in input/output mode1. If the network is not
detected GAC-inconsistent and if all variables have been instantiated, this means that
a solution has been found. In order to keep on seeking solutions, the Boolean variable
consistent is reset to false at line 13. So long as the current network is not consistent,

1. Recall that unless in is used, all parameters are assumed to be passed in input/output mode.
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Algorithm 69: MAC(P : P)
consistent ← enforceGAC(P, vars(P )) // GAC initially enforced1
if ¬consistent then2
return3

I ← ∅ // I represents the current instantiation4
finished ← false5
while ¬finished do6

select a v-value (x, a) of P such that x /∈ vars(I)7
I.push(x, a)8
dom(x).reduceTo(a, |I|) // x is assigned the value a9
consistent ← enforceGAC(P, {x})10
if consistent ∧ |I| = n then11

print(I) // a solution has been found and is printed12
consistent ← false // inserted to keep searching for solutions13

while ¬consistent ∧ I ̸= ∅ do14
(x, a) ← I.pop()15
foreach variable y ∈ vars(P ) \ vars(I) do16

dom(y).restoreUpto(|I| + 1) // domains are restored17

dom(x).removeValue(a, |I|) // a is removed from dom(x)18
consistent ← dom(x) ̸= ∅ ∧ enforceGAC(P, {x})19

if ¬consistent then20
finished ← true21

the algorithm discards the most recent positive decision, restores the domains, refutes
the last discarded positive decision and enforces GAC (provided that dom(x) ̸= ∅).
Finally, when backtracking reaches the root of the search tree, this means that the
exploration of the search tree is finished. To obtain forward checking (FC), it is only
necessary to remove the preprocessing step (the first 3 lines), replace the second call
(line 10) to enforceGAC by applyFC (see Algorithm 12), and remove the third call
(line 19) to enforceGAC.

Unlike the general binary search algorithm presented in the previous section,
Algorithm 69 distinguishes between instantiated variables (i.e. explicitly assigned
variables) and uninstantiated variables (i.e. unfixed variables and incidentally fixed
variables). For example, a solution can be found only when all variables have been
explicitly assigned values. This simplifies presentation of the algorithm. Of course,
when a v-value (x, a) such that dom(x) = {a} is selected, i.e. when an incidentally
fixed variable is selected, there is no need to call enforceGAC. In practice, useless
calls can be avoided by identifying such situations or by detecting at each step all
incidentally fixed variables and putting them directly into I .
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8.3. Classical look-ahead and look-back schemes

As explained previously, backtrack search combines depth-first exploration, which
instantiates variables, with a backtracking mechanism, which deals with dead-ends.
There has been much work on improving forward and backward phases by developing
look-ahead and look-back schemes [DEC 02, DEC 03]. This section provides a brief
overview of some well-known schemes.

Within the propagation component of the general model BPBL, different look-
ahead schemes apply different levels of filtering after each decision. We obtain
different schemes according to which consistency is enforced. Three usual schemes
are backward checking (BC), forward checking (FC) and maintaining arc consistency
(MAC). BC is the simplest look-ahead algorithm, excluding the generate and test
approach which checks every possible complete instantiation in turn. After each
variable assignment, BC simply checks that no constraint covered by the current
instantiation is violated (this is a kind of trivial consistency). After each decision, both
FC and MAC achieve some amount of domain filtering, which detects and removes
some locally inconsistent values. More precisely, in the binary case, FC guarantees
the arc consistency of every constraint involving the current variable, i.e. the last
assigned variable, and exactly one uninstantiated variable, whereas MAC, as described
earlier, guarantees the arc consistency of all constraints of the current network. If a
domain wipe-out occurs, i.e. if a domain becomes empty, then a dead-end has been
encountered.

Published look-back schemes differently identify the level of backtracking
to which it is safe to jump back. Look-back schemes belong primarily to the
backtracking component of the general model BPBL, but they also require learning.
Three representative look-back algorithms are standard backtracking (SBT), conflict-
directed backjumping (CBJ) and dynamic backtracking (DBT). The essential
characteristic of these schemes is that they jump back to a decision suspected of
being a cause of the current failure (dead-end). SBT, which is the same thing as
chronological backtracking, is the simplest look-back algorithm because it jumps
back to the most recently instantiated variable. Decisions concerning this variable
may not have caused the dead-end, so SBT may cause thrashing. CBJ and DBT
introduce eliminating explanations (a form of learning) which provide reasons for the
removal of any value. When a domain wipe-out occurs, CBJ and DBT use eliminating
explanations to identify an earlier decision, perhaps earlier than the most recent
decision, that may be a cause of the dead-end. Unlike CBJ, DBT simply discards
the identified culprit decision while preserving subsequent decisions. In other words,
DBT jumps back to the (expected) source of conflict without undoing the intermediate
decisions. DBT is particularly useful for problems that are highly structured such as
those that contain several more-or-less independent components.
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There are nine different combinations of these look-ahead and look-back
techniques:

– BC-SBT (usually called BT);
– BC-CBJ (usually called CBJ);
– BC-DBT (usually called DBT);
– FC-SBT (usually called FC);
– FC-CBJ;
– FC-DBT;
– MAC-SBT (usually called MAC);
– MAC-CBJ;
– MAC-DBT.

BT, CBJ [PRO 93], DBT [GIN 93], FC [HAR 80] and MAC [SAB 94] are
well-known algorithms. Non-trivial combinations are FC-CBJ [PRO 93], MAC-CBJ
[PRO 95], FC-DBT [VER 94] and MAC-DBT [JUS 00b].

8.3.1. A general backtracking algorithm

We now present an algorithm that provides a uniform view of different algorithms
mentioned in the previous section. This general unifying algorithm may be helpful
because it facilitates understanding of relationships between techniques (look-back
and look-ahead) that are involved. To simplify the presentation we introduce, instead
of CBJ, a related look-back algorithm, denoted here by IBT. IBT is a direct variant
of DBT and corresponds to the “Conflict Based” technique introduced in [BAC 00],
where it was observed that IBT, when combined with FC or MAC, can be seen
as a refinement of CBJ because it has a more powerful backjumping capability.
Thus, although BC-IBT corresponds to CBJ, FC-IBT and MAC-IBT can be seen
as refinements of FC-CBJ and MAC-CBJ, respectively. These refinements roughly
correspond to the CFFC and CFMAC algorithms of [BAC 00]. Note also that when
constraints are non-binary, FC as presented here2 corresponds to nFC2 [BES 02].

As in section 8.2, we use a last-in/first-out structure denoted by I to represent
the current instantiation. For dynamic backtracking, we additionally require a non-
standard function I.delete(x, a) which removes the v-value (x, a) from I even when
this v-value is not at the top of I . After (x, a) has been removed, I.delete(x, a)
reorganizes I as if (x, a) had never been pushed.

2. It is important to note that different non-binary generalizations of FC exist.
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Eliminating explanations [GIN 93] are used in the management of domains. When
a v-value (x, a) is deleted, i.e. when we have a ∈ dominit(x) \ dom(x), this can be
given an eliminating explanation, denoted by expl(x ̸= a), which is a subset, I ′,
of the current instantiation I , such that I ′ ∪ {(x, a)} is globally inconsistent, i.e. is
a (standard) nogood. If we have the instantiation I ′ = expl(x ̸= a) then certainly
x ̸= a: ∧

(y,b)∈expl(x ̸=a)

y = b ⇒ x ̸= a

Thus an eliminating explanation can be regarded as the left-hand side of an implication
which rules out a value. This is just another way to represent a nogood.
EXAMPLE.– If I = {(v, a), (w, b), (x, b), (y, c)} is the current instantiation, if
consistency enforcement deletes (z, b) and if {(v, a), (x, b), (z, b)} is an instantiation
proved to be a nogood (techniques to realize this are presented below) then a possible
eliminating explanation for (z, b) is I ′ = expl(z ̸= b) = {(v, a), (x, b)}. In logical
directed form, we obtain:

v = a ∧ x = b ⇒ z ̸= b

Of course, the current instantiation I is also an eliminating explanation for (z, b) but
this is trivial, and is subsumed by I ′ and is less useful.

Note that expl(x ̸= a) = ∅ means that the value (x, a) has been proved to be
globally inconsistent. This may arise, for example, when a value is removed by an
inference process (such as enforcing a domain-filtering consistency) at preprocessing
time.

In this context, nil requires special definition. The proposition expl(x ̸= a) =
nil means that a is still present in the current domain of x: we have a ∈ dom(x).
Similarly, if a function returns nil when a nogood is expected (see Algorithms 7, 9
and 12), this means that no inconsistency has been detected, so no nogood has been
identified.

Eliminating explanations can be used for two complementary purposes. Basically,
they are introduced to compute nogoods serving to jump back to relevant culprit
decisions. But they can also be used to represent domains (as briefly shown above)
and especially to manage restoration of domains upon backtracking; this is a “form” of
trailing (combined with limited recomputation) that is based on explanations. Indeed,
by means of eliminating explanations, it is always possible to identify values that
must be restored when a backtrack occurs. In the following algorithms, we shall use
this facility instead of employing the trailing mechanism described in section 1.5.1.
Consequently, the functions reduceTo, restoreUpto and removeValue will not be used
in this section.

For recording eliminating explanations, the space complexity is O(n2d) since it
is O(n) per eliminating explanation and the number of eliminating explanations is
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O(nd). Note, however, that eliminating explanations can be generalized to take into
account any kind of constraints (not only decision constraints) and to justify different
kinds of action by the constraint solver (value removal, bound update, contradiction,
etc.). Note also that in the context of assumption-based CSP instances, an explanation
is defined as being globally consistent [AMI 02]. This is not the case here.

8.3.2. The kernel of the algorithm

The parameters of generalSearch, Algorithm 70, are the constraint network
to be solved and the user’s choice of look-back and look-ahead techniques. After
data structures have been initialized, the outermost while loop seeks a solution by
successively instantiating variables. After an assignment x = a, all values, except a, in
the current domain of x are logically removed by setting {(x, a)} as their eliminating
explanation (see e.g. [PRO 95]). The function checkConsistencyAfterAssignment
(described later) checks/enforces the selected consistency and returns a (standard)
nogood if a dead-end is identified. Otherwise this function returns nil . If nogood ̸=
nil , so a contradiction has to be handled, then the most recent culprit variable
assignment in nogood is selected and will be undone (together with all subsequent
assignments in the case of IBT). SBT always takes the most recently assigned
variable to be the most recent culprit variable. The value that was assigned can
now be removed, i.e. given an eliminating explanation, because the corresponding
portion of the search space has just been explored. The eliminating explanation is
built directly from the nogood. Finally, checkConsistencyAfterRefutation (described
later) checks/enforces the chosen consistency. The search terminates when an empty
nogood is found.

When a variable assignment is undone, Algorithm 71, it is necessary to remove
this from all eliminating explanations that contain the corresponding v-value.
For values occurring in the domain of instantiated variables, this immediately
yields a new (self) eliminating explanation. For values occurring in the domain of
uninstantiated variables, it is necessary to determine whether some other eliminating
explanations exist; this search for new explanations is postponed until the function
checkConsistencyAfterRefutation is called.

Note that if MAC is chosen, then the constraint network is initially made GAC-
consistent by a preprocessing step. Line 4 of Algorithm 70 is replaced by:

finished ← enforceGAC(P, vars(P )) ̸= nil

8.3.3. Dealing with constraint propagation

After each variable assignment, Algorithm 72 checks whether the resulting
instantiation is consistent. BC simply checks the satisfaction of all constraints covered
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Algorithm 70: generalSearch(P : P)
Input: lookBack is a value among SBT, IBT and DBT
Input: lookAhead is a value among BC, FC and MAC
foreach v-value (x, a) of P do1

expl(x ̸= a) ← nil // each value (x, a) is initially present2

I ← ∅ // I represents the current instantiation3
finished ← false4
while ¬finished do5

select a v-value (x, a) of P such that x /∈ vars(I)6
I.push(x, a)7
foreach value b ∈ dom(x) such that b ̸= a do8

expl(x ̸= b) ← {(x, a)}9

nogood ← checkConsistencyAfterAssignment(P, x)10
if nogood = nil ∧ |I| = n then11

print(I) // a solution has been found and is printed12
nogood ← I // inserted to keep searching for solutions13

while nogood ̸= nil ∧ nogood ̸= ∅ do14
(x, a) ← last v-value pushed in I and present in nogood15
if lookBack = IBT then16
while I.top() ̸= (x, a) do17

undoAssignment(I.top())18

undoAssignment(x, a)19
expl(x ̸= a) ← nogood \ {(x, a)} // a is removed from dom(x)20
nogood ← checkConsistencyAfterRefutation(P, x)21

if nogood = ∅ then22
finished ← true23

Algorithm 71: undoAssignment ((x, a): v-value)
I.delete(x, a) // corresponds to I.pop() except for DBT1
// domains are restored using explanations
foreach v-value (y, b) of P init such that (x, a) ∈ expl(y ̸= b) do2
if y ∈ vars(I) then3

expl(y ̸= b) ← {(y, c)} where (y, c) ∈ I4
else5

expl(y ̸= b) ← nil6
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Algorithm 72: checkConsistencyAfterAssignment(P : P , x: variable): nogood
Require: x has just been instantiated; x ∈ vars(I)
Output: a nogood if an inconsistency is detected, or nil

switch lookAhead do1
case BC:2
foreach constraint c ∈ cons(P ) | x ∈ scp(c) ∧ scp(c) ⊆ vars(I) do3
if I does not satisfy c then4
if lookBack = SBT then5
return I6

else7
return {(y, b) ∈ I | y ∈ scp(c)}8

return nil9

case FC:10
return applyFC(P, x)11

case MAC:12
return enforceGAC(P, {x})13

Algorithm 73: checkConsistencyAfterRefutation(P : P , x: variable): nogood
Require: x has just been refuted a value; x /∈ vars(I)
Output: a nogood if an inconsistency is detected, or nil

if dom(x) = ∅ then1
return handleEmptyDomain(x)2

switch lookAhead do3
case BC:4
return nil5

case FC:6
if lookBack = DBT then7
return applyFC(P, vars(I))8

else9
return nil10

case MAC:11
if lookBack = SBT then12
return enforceGAC(P, {x})13

else14
return enforceGAC(P, vars(P ))15
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by the current instantiation: BC determines if the current instantiation is locally
consistent. If there is an unsatisfied constraint c (preferably the earliest unsatisfied
constraint [DEC 03]), the set of culprit variables is exactly scp(c). For SBT the current
instantiation is regarded as the conflict set; the algorithm backtracks chronologically.
Look-ahead techniques such as FC and MAC require some constraint propagation,
which is accomplished by applyFC and enforceGAC, Algorithms 12 and 7,9, with
alternative instructions between square brackets.

When, a value a of a variable x is refuted at line 20 of Algorithm 70, Algorithm 73
checks whether the instance is still consistent. The function handleEmptyDomain,
which is described later, handles the situation where dom(x) becomes empty after
removing the value a. Otherwise, the removal of a must be taken into account,
although for BC nothing needs to be done. For FC combined with SBT or IBT, there
is also nothing to do, since a value has just been removed from the domain of an
uninstantiated variable. However, when FC is combined with DBT, the algorithm
verifies that all values (put back into domains) do not have eliminating explanations
(since dynamic backtracking performs jumps without erasing intermediate decisions).
Calling applyFC with the set of all instantiated variables ensures that the network
is “forward checked”. An optimization is possible here (by considering only the
variables that have been assigned after x and/or by keeping track of restored
values) to save some constraint checks. When MAC-SBT is used, arc consistency
is maintained from x, as usual, whereas when MAC-IBT or MAC-DBT is used,
it is necessary to verify that all restored values have no eliminating explanations.
This is necessary for MAC-IBT because successive backjumps may occur and arc
consistency is not necessarily fully established when a domain wipe-out occurs.
Again, several optimizations can be introduced to save some constraint checks: for
MAC-IBT, call enforceGAC(P, {x}) if only one backjump has occurred and in
the general case, only consider the variables that have been assigned after x. These
optimizations do have no effect on the backjumping capability of the algorithms.

Algorithm 74: handleEmptyDomain(x: variable): nogood
Require: dom(x) = ∅
Output: a nogood
if lookBack = SBT then1
return I2

nogood ← ∅3
foreach value a ∈ dominit(x) do4

nogood ← nogood ∪ expl(x ̸= a)5

return nogood6

www.it-ebooks.info

http://www.it-ebooks.info/


Backtrack Search 377

Algorithm 75: getExplanation((c, x, a): c-value): explanation
Require: (x, a) has been removed because of the absence of support on c
Output: an explanation expl(x ̸= a)

if lookBack = SBT then1
return I2

explanation ← ∅3
foreach variable y ∈ scp(c) | y ̸= x do4
foreach value b ∈ dominit(y) | expl(y ̸= b) ̸= nil ∧ expl(y ̸= b) ̸= ∅ do5
if ∃τ ∈ rel(c) | τ [x] = a ∧ τ [y] = b then6

explanation ← explanation ∪ expl(y ̸= b)7

return explanation8

The function handleEmptyDomain is called when a domain wipe-out occurs, either
during propagation (see Algorithms 12, 7 and 9) or after refuting the last value of a
domain (see line 2 of Algorithm 73). The function handleEmptyDomain gathers the
eliminating explanations of all (removed) values, except in the case of SBT, for which
the current instantiation I represents the conflict set. During propagation, revision
is performed by the function revise (Algorithm 8). The function getExplanation,
Algorithm 75, provides an eliminating explanation for each value that is removed.
For SBT, as usual, the current instantiation is the conflict set. For IBT and DBT,
eliminating explanations for values supporting (x, a) on c are collected; note that
b ∈ dominit(y) | expl(y ̸= b) ̸= nil is equivalent to b ∈ dominit(y) \ dom(y).

8.3.4. Closely related algorithms

For instances involving constraints of arbitrary arity, the parameterized function
generalSearch, Algorithm 70, encompasses several important look-ahead and look-
back techniques and is affiliated with some works.

First, [JUS 00b] describes MAC-DBT and reports that this outperforms MAC on
some randomly generated structured instances (when using classical variable ordering
heuristics). This differs from our presentation mainly in that a fine-grained arc
consistency algorithm (AC4) is used in [JUS 00b]. In fact coarse-grained algorithms
are simpler to implement and have been found to be quite competitive. However,
obtaining a precise eliminating explanation with a coarse-grained algorithm requires
effort that is visible between lines 4 and 7 of Algorithm 75. This effort can be reduced
as shown below, but perhaps at the expense of reduced quality of the explanations
obtained in practice.
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Bacchus proposes [BAC 00] a general template for extending forward checking.
The main algorithm (FC+Prune) is based on non-binary branching, whereas the
parameterized Algorithm 70 uses binary branching (as in [JUS 00b]). The algorithm
CFFC proposed by Bacchus is in some respects similar to FC-IBT. A variant, denoted
by CFFC−, allows many constraint checks to be avoided (especially, when non-binary
constraints are involved). This is similar to computing less expensive but also less
precise eliminating explanations by replacing lines 4 to 7 of Algorithm 75 with:
foreach variable y ∈ scp(c) | y ̸= x do
if y ∈ vars(I) then

explanation ← explanation ∪ {(y, b)} with (y, b) ∈ I
else
foreach value b ∈ dominit(y) | expl(y ̸= b) ̸= nil do

explanation ← explanation ∪ expl(y ̸= b)

8.4. Illustrations

The 4-queens instance from the queens problem (see the second model in
section 1.3.1) provides a first illustration of backtrack search. Figures 8.5, 8.6 and
8.7 show the search steps performed by BT, FC and MAC, respectively, to solve
this instance using standard backtracking (i.e. SBT). Queens (variables) are put
(instantiated) in columns from left to right and values are assigned in a bottom-up
manner. For FC and MAC, hatched squares represent values removed from variable
domains due to constraint propagation. For example, the square at column b and row
1 and the square at column b and row 2 are hatched in Figure 8.6(a) because xa has
just been assigned the value 1 and there is a constraint between the variables xa and
xb associated with the first two columns defined as: xa ̸= xb ∧ |xa − xb| ̸= 1. For
FC and MAC, both positive and negative decisions are shown. For example, after
FC puts the second queen onto the square of the chessboard at column b and row
3, a dead-end is reached, so this square must then be discarded. These two actions
correspond to the positive and negative decisions that can be seen in Figures 8.6(b)
and 8.6(c), respectively. Similarly, after MAC puts the first queen onto the square
of the chessboard at column a and row 1, Figure 8.7(a), a dead-end is reached and
this square is then discarded as shown in Figure 8.7(b). Whereas BT requires a large
number of steps to find a solution (the six final steps are not shown), FC and especially
MAC are far more efficient because they prune some useless portions of the search
space.

As a first illustration of look-back schemes, let us consider a constraint network
involving the variables {x1, x2, x3, x4, x5, x6} with dom(xi) = {1, 2},∀i ∈ 1..6,
and constraints {x1 = x2, x2 = x3, x2 = x4, x3 = x4, x1 ̸= x5, x1 ̸= x6, x5 ̸=
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 8.5. The 20 first steps performed by BT to solve the 4-queens instance
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8.6. The 12 steps performed by FC to solve the 4-queens instance

x6}. This network is clearly unsatisfiable since it is impossible to instantiate x1, x5

and x6 without violating a constraint. Figure 8.8 shows the first search steps of CBJ
(i.e. BC-IBT) on this instance, to prove that (x1, 1) is globally inconsistent. Variables
and values are selected in lexicographic order; the first four variables are instantiated
without any problem. When 1 is assigned to x5, the constraint x1 ̸= x5 covered by
the current instantiation {(x1, 1), (x2, 2), (x3, 1), (x4, 1), (x5, 1)} is violated, so we
obtain expl(x5 ̸= 1) = {(x1, 1)}; see Figure 8.8(f) and 8.8(g). Here eliminating
explanations are depicted by small labeled arrows and only refer to variables (here,
x1). With BC this is no problem because these variables are always assigned (so, e.g.
from x1, we retrieve (x1, 1)). Figure 8.9 shows the next steps: there are new conflicts.
As x1 = 1 and x6 = 1 are incompatible, we have expl(x6 ̸= 1) = {(x1, 1)}; see
Figures 8.9(a) and 8.9(b). Then, as x5 = 2 and x6 = 2 are incompatible, we have
expl(x6 ̸= 2) = {(x5, 2)}, Figures 8.9(c) and 8.9(d), and a domain wipe-out for
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(a) (b) (c) (d)

(e) (f)

Figure 8.7. The 6 steps performed by MAC to solve the 4-queens instance

x6. The nogood identified by handleEmptyDomain is expl(x6 ̸= 1) ∪ expl(x6 ̸=
2) = {(x1, 1), (x5, 2)}. This is used as explanation for (x5, 2): expl(x5 ̸= 2) =
{(x1, 1), (x5, 2)} \ {(x5, 2)} = {(x1, 1)}, Figure 8.9(e). This time there is a domain
wipe-out for x5. The nogood identified by handleEmptyDomain is expl(x5 ̸= 1) ∪
expl(x5 ̸= 2) = {(x1, 1)}. This allows us to backtrack up to x1 = 1 and refute it
globally: we have expl(x1 ̸= 1) = ∅, Figure 8.9(f). This simple example illustrates
the value of managing explanations to perform intelligent backtracking. With standard
backtracking, we would have wasted time by performing additional useless decisions.
More generally, there are some situations where CBJ can be exponentially better (in
terms of taken decisions) than backtracking.

Figure 8.10 serves to illustrate non-chronological backtracking combined with
constraint propagation. Here, the search algorithm has reached a dead-end after a few
decisions have been taken. This example assumes that the domain of each variable
initially contains three values {a, b, c}, that a consistency φ is enforced at each step of
search, and that y = c has previously been refuted (and explained). For this example,
we prefer to use sets of positive decisions instead of sets of v-values. At the dead-end
associated with the domain wipe-out of z the nogood is expl(z ̸= a) ∪ expl(z ̸=
b) ∪ expl(z ̸= c) = {v = a,w = b, y = b}. Thus the eliminating explanation for
y ̸= b is expl(y ̸= b) = {v = a,w = b, y = b} \ {y = b} = {v = a,w = b}
as shown in Figure 8.11. After assigning a to y, a new dead-end is associated with a
domain wipe-out for variable u, Figure 8.12. The eliminating explanation for y ̸= a is
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Figure 8.8. The first steps performed by CBJ to prove that (x1, 1) is globally inconsistent
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Figure 8.9. The next steps performed by CBJ to prove that (x1, 1) is globally inconsistent

then computed, and Figure 8.13 shows that we have to backtrack since a was the last
value in dom(y). The nogood computed is expl(y ̸= a) ∪ expl(y ̸= b) ∪ expl(y ̸=
c) = {v = a,w = b}. This allows backtrack up to decision w = b, refuting this
with an explanation, Figure 8.14. Dynamic backtracking would have not discarded
intermediate decisions: this is shown in Figure 8.15.

8.5. The role of explanations

Managing explanations, or more generally nogoods, is an elegant approach that
can be very useful in many fields of constraint programming. Based on a formal
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expl(y ̸= c) = {v = a, w = b}

dom(z) = ∅
expl(z ̸= a) = {v = a, y = b}
expl(z ̸= b) = {v = a}
expl(z ̸= c) = {w = b, y = b}

v
=

a

w
=

b

x
=

c

y
=

b

y ̸=
c

⊥

Figure 8.10. Dead-end encountered after assigning b to y and enforcing a given consistency φ.
We have a domain wipe-out for z and explanations given for each value removed from the

initial domain of z

expl(y ̸= c) = {v = a, w = b}

expl(y ̸= b) = {v = a, w = b}

v
=

a

w
=

b

x
=

c

y ̸=
c

y ̸=
b

Figure 8.11. Eliminating explanation computed for y ̸= b from situation of Figure 8.10
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expl(y ̸= c) = {v = a, w = b}

expl(y ̸= b) = {v = a, w = b}

expl(u ̸= a) = {y = a}

expl(u ̸= c) = {w = b, y = a}

dom(u) = ∅

expl(u ̸= b) = {w = b}

v
=

a

w
=

b

x
=

c
y
=

a

y ̸=
c

y ̸=
b

⊥

Figure 8.12. Dead-end after assigning a to y: there is a domain wipe-out for u

expl(y ̸= c) = {v = a, w = b}

expl(y ̸= b) = {v = a, w = b}

expl(y ̸= a) = {w = b}

v
=

a

w
=

b

x
=

c

y ̸=
c

y ̸=
b

y ̸=
a

⊥

dom(y) = ∅

Figure 8.13. Eliminating explanation computed for y ̸= a from situation of Figure 8.12. As
both branches y = a and y ̸= a (a was the last value in dom(y)) have been explored, we have

to backtrack
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w
̸=

b

expl(w ̸= b) = {v = a}

v
=

a

y ̸=
c

x
=

c

y ̸=
b

y ̸=
a

nogood = {v = a,w = b}

w
=

b

⊥

Figure 8.14. Backtrack guided by the nogood extracted from situation of Figure 8.13

v
=

a

x
=

c

y ̸=
c

y ̸=
b

y ̸=
a

⊥

v
=

a

w
̸=

b

nogood = {v = a,w = b}

x
=

c

y ̸=
c

y ̸=
b

y ̸=
a

expl(w ̸= b) = {v = a}

w
=

b

Figure 8.15. Dynamic backtracking in action from situation of Figure 8.13
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foundation, nogoods can be used to provide an uniform view of many existing
approaches and also to support proofs of correctness. Explanations can be used to
explain inconsistencies of constraint networks and can be exploited advantageously in
a dynamic context. Furthermore, explanations can reduce thrashing by showing how
to jump back to the origin of failures. Here we have given a number of reasons for the
success of explanations.

Classically, and as explained in section 8.3, an eliminating explanation indicates
why a value has been removed from the domain of a variable. There may be several
eliminating explanations for the removal of a value, but it is usual to record only
the first explanation that is encountered, because taking all of them into account
would lead to exponential space complexity [STA 77, JUS 00b]. Unfortunately, the
recorded eliminating explanations are not always the most appropriate for guiding
non-chronological backtracking. We illustrate this below.

Let us consider again the well-known n-queens problem which is to put n queens
on a chessboard of size n×n so that no two queens can attack each other. Classically,
each queen is represented by a variable (here, called queen variable) whose domain
contains exactly n values; see section 1.3.1. The number of solutions of this easy
problem increases with n. A second academic problem, called the knights problem,
is to put k knights on a chessboard of size n × n such that all knights form a cycle
(when considering knight moves). This problem does not admit any solution when the
value of k is odd. In a CSP model of this problem, each knight is represented by a
variable (here, called knight variable) whose domain contains exactly n × n values
corresponding to all squares of the chessboard; a constraint between each knight
variable and the variable that comes next (modulo k) ensures that one can pass from a
knight to the next with a single knight move. Besides, for every pair of variables, there
is a constraint ensuring that two knights cannot be placed on the same square.

By simply merging the two (sub)problems without any interaction (that is to
say, there is no constraint involving both a queen variable and a knight variable),
we obtain a new problem. We denote each instance of this new problem by qk-n-
k-add where n represents the number of queens and k the number of knights (the
chessboard is of size n × n). For this problem there is thrashing if the number of
knights is odd and if MAC (i.e. MAC-SBT) is used with a classical variable ordering
heuristic such as dom that selects at each search step the variable with the smallest
domain; this heuristic is presented in the next chapter. The k-knights subproblem is
unsatisfiable but, because dom first selects queen variables (due to their small domain
sizes), the unsatisfiable k-knights subproblem is rediscovered for each new solution
of the n-queens subproblem. There is no thrashing if explanations (i.e. MAC-IBT
or MAC-DBT) are used to perform non-chronological backtracking, as can be seen
in Figure 8.16(a). For MAC-SBT, MAC-IBT and MAC-DBT, Figure 8.16(a) shows
the CPU time required to solve qk-n-5-add instances for n ranging from 5 to 38;
when an instance has not been solved within 600 seconds, the corresponding point is
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missing. In fact, MAC (whatever the look-back technique) first finds a solution to the
n-queens subproblem and then proves that the k-knights subproblem is unsatisfiable.
Chronological backtracking backtracks to the last assigned queen variable (suspected
of being the culprit of the failure) but if non-chronological backtracking is used
instead, the problem is directly proved to be unsatisfiable. More specifically, with
MAC using dom, after traversing the n-queens subproblem, we focus on a knight
variable xk and, with IBT or DBT, we successively prove that every value i in
dom(xk) is globally inconsistent, i.e. is such that expl(xk ̸= i) = ∅. The function
handleEmptyDomain is then called for xk at line 2 of Algorithm 73, itself called
at line 21 of Algorithm 70. As ∅ is returned by the functions handleEmptyDomain
and checkConsistencyAfterRefutation, the loop starting at line 14 of Algorithm 70
terminates, and the overall search is finished (see lines 22 and 23).

Let us now combine the two (sub)problems differently, such that queens and
knights cannot share the same square: for each pair composed of a queen variable and
a knight variable, there is a kind of inequation constraint3. We denote each instance of
this new problem by qk-n-k-mul where n is the number of queens and k is the number
of knights (the chessboard is of size n × n). This time, MAC-SBT, MAC-IBT and
MAC-DBT all thrash, as can be seen in Figure 8.16(b). The reason why MAC-IBT and
MAC-DBT cannot now prevent thrashing is as follows. Whenever a queen variable
xc is assigned a value r, this means that the associated queen is put on the square at
the intersection of column c and row r. Assuming that this square is the ith square of
the chessboard (i is computed from both c and r), then this value i is removed from
the domain of each knight variable xk, by propagation, so expl(xk ̸= i) = {(xc, r)}.
In this case, when handleEmptyDomain is called for a knight variable xk, a conflict
set representing the current instantiation is returned. There is therefore no more
difference in the behavior of these look-back techniques.

To summarize, in some cases, no pertinent culprit variable(s) can be identified by
a backjumping technique although predictable thrashing occurs. The problem is that
if there are several different eliminating explanations for a removed value, only the
first of these is recorded. It may be possible to improve existing non-chronological
backtracking techniques by updating eliminating explanations, computing new
ones [JUN 04] or managing several k-relevant explanations [OUI 02]; this certainly
deserves further study. On the other hand, it has been shown [LEC 04] that for many
structured problems there are adaptive heuristics (presented in the next chapter) which
make non-chronological techniques useless. This may appear disconcerting since
look-back techniques are currently very popular in the SAT community. There are two
main reasons for this success. Firstly, recording explanations in SAT is a very natural
and light mechanism (basically, recording new clauses). Secondly, the explanations

3. This is not exactly an inequation constraint since the nature of the domains on which queen
variables and knight variables are defined are different.
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Figure 8.16. Solving qk-n-5-add and qk-n-5-mul instances using MAC-dom and various
backtracking techniques. A missing point indicates that the corresponding instance has not

been solved within 600 seconds
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that arise during search in SAT are kept and used for a longer time than is necessary
purely for purposes of non-chronological backtracking. Retention of new clauses can
be perceived as a form of learning (nogood recording) oriented toward propagation;
in Chapter 10, we shall investigate nogood recording for CSP in another context.

Finally, let us return again to dynamic backtracking, which is an appealing
approach because it allows much search effort to be avoided when a dead-end is
encountered. After identifying a culprit decision δ, the algorithm discards only δ
while preserving all decisions made at later times than δ. This approach is valuable
mainly for problems that can be decomposed into independent parts (perhaps during
search), as in many real-world applications. Unfortunately, dynamic backtracking
suffers from two main drawbacks. The first is the complexity of managing non-
backtrack-stable structures (i.e. structures that need some form of restoration when
backtracking occurs). It is usually rather difficult to update data structures, such
as those of incremental propagators, at the time of a DBT backjump. The second
drawback is that dynamic backtracking may conflict with principles that underly
search heuristics. The problem is that a variable whose assignment has been erased
at a certain level may need to be assigned later at a far deeper level. If this variable
is “sensitive”, the efficiency of the search algorithm may be reduced. As shown in
[BAK 94], if there is no logical reason to discard subsequent decisions, there may be
good heuristic reasons for doing so. However, extensions of DBT have been devised
in order to overcome partially this last drawback. Partial order dynamic backtracking
(PDB) [GIN 94] provides greater flexibility than DBT in terms of exploration of the
search space. General partial order dynamic backtracking [BLI 98] generalizes both
DBT and PDB.

For SAT, a lightweight alternative to DBT, which mitigates inefficiency arising
from far-backjumping, has been proposed in [PIP 07]. This alternative can be
viewed as a partial component caching scheme that helps SAT solvers to avoid
re-solving subproblems multiple times. This technique, which is called progress
saving, simply requires management of an additional array. Every time the solver
backtracks and erases some assignments, each erased assignment is saved in the array.
If the solver subsequently has to branch on a variable, it first tries the saved value,
if one exists. Otherwise, the solver resorts to the default value ordering heuristic.
Substantial improvements in practical performance [PIP 07] indicate that progress
saving deserves to be tested (and compared with DBT) in constraint solvers.
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Chapter 9

Guiding Search toward Conflicts

As explained in the previous chapter, there are some (structured) problems for
which non-chronological backtracking techniques may appear not to prevent thrashing
effectively. This chapter enquires whether looking-ahead techniques may compensate
such a deficiency on some of these problems. For such structured problems, can we
find generic search-guiding heuristics and combine these with classical consistency
enforcement (maintaining generalized arc consistency) to achieve more efficient
exploration of the search space?

The answer is affirmative if we use recently introduced adaptive heuristics based
on variable impacts and constraint weighting. These (variable-ordering) heuristics
learn and use information from every node explored in the search tree, whereas
traditional static and dynamic heuristics only use information about the initial and
current nodes. By taking account of the impact of each value (i.e. each variable
assignment) on the search space, the search can be made to explore the most
conflicting variables first. It is important that this information can be regularly and
easily updated after each positive branching decision, i.e. each variable assignment.
A further technique associates a weight with each constraint and systematically
increments weights of constraints violated during search. A simple conflict-directed
heuristic (and some variants) selects and assigns first the variables involved in
constraints that have the greatest weight. As search progresses, the weight of
constraints located in the hard parts of the network become higher and higher, so the
heuristic focuses search effort on variables involved in these constraints.

This chapter also shows how a very basic learning approach enables guidance
of backtrack search toward sources of conflicts obtaining, as a side effect, behavior
similar to backjumping. The idea is that after each conflict, the last instantiated
variable is selected in priority, so long as the constraint network cannot be made
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consistent. This allows us to find, by traversing the current partial instantiation
from the leaf toward the root of the search tree, the most recent culprit decision that
prevents the last variable from being instantiated. In other words, the variable ordering
heuristic is violated until the culprit decision is reached by backtrack and a compatible
value is found for the priority variable. This tactic can easily be grafted onto many
variants of backtracking algorithms and represents an original way to avoid thrashing.

Guiding search toward conflicts by reasoning from past (permanently adjusting
impacts or weights, or simply recording the variable involved in the last failure) is
found to outperform classical heuristics significantly. This chapter is organized as
follows. After a review of static and dynamic search-guiding heuristics, recently
introduced adaptive variable ordering heuristics are presented. We emphasize the
value of constraint weighting for boosting systematic search and extracting small
unsatisfiable cores. Finally, before concluding, this chapter explains the principle of
reasoning from last conflicts.

9.1. Search-guiding heuristics

Two choices are made at each step within backtrack search. First, before branching,
the search algorithm selects the variable that is most constrained. Second, the most
promising value for this variable is chosen. Thus the search algorithm imposes an
ordering on variables and on their values. However, finding an optimal ordering is
at least as difficult as solving a constraint satisfaction problem instance. This is why,
in practice, ordering is determined by heuristics. A heuristic is a general guideline
rule that is expected to lead to good results, such as good selections of variables and
values. Heuristics are derived from experience, intuition and common sense, but are
not claimed to give optimal outcomes in every situation.

For backtrack search, a first general principle is that it is better to start by
assigning variables that belong to the most difficult part(s) of the problem instance.
This principle is derived from recognition that there is no point in traversing the easy
part(s) of an instance and then backtracking repeatedly when it turns out that the first
choices are incompatible with the remaining difficult part(s). Here the underlying
fail-first principle is [HAR 80]:“To succeed, try first where you are most likely to
fail”. Roughly speaking, a variable ordering heuristic conforming to the fail-first
principle tries initially to focus the search effort on a small strong backdoor (see
section 2.2.1).

Value selection can be based on the succeed-first or promise principle, which
comes from the simple observation that to find a solution quickly, it is better to move
at each step to the most promising subtree, primarily by selecting a value that is most
likely to participate in a solution. It is preferable to avoid branching on a value that is
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globally inconsistent, because this implies exploration of a fruitless subtree, which is
clearly a waste of time if there is a solution elsewhere.

Although these two principles may seem to be somewhat contradictory, variable
ordering can to some extent comply with both of them [BEC 04, WAL 06a, HUL 06a].
Various different measures of promise of variable ordering heuristics try to assess
the ability of the heuristics to avoid making mistakes, i.e. to keep the search on
the path to a solution regardless of the value ordering. There appears to be quite a
complex relationship between promise and fail-firstness. For value ordering, the extent
of adherence to both heuristics can also be assessed; first elements related to this can
be found in [SZY 06, LEC 06c].

When starting to build the search tree, the initial variable/value choices are
particularly important. Bad choices near the root of the search tree may turn out to
be disastrous because they lead to exploration of very large fruitless subtrees. To
make good initial choices, one strategy is to select the first branching decisions with
special care, perhaps calling sophisticated and expensive procedures for this purpose.
Another strategy is to restart search several times, ideally learning some information
each time in order to refine search guidance.

This section introduces some well-known classical variable and value ordering
heuristics, without claiming to be exhaustive. More information about heuristics can
be found e.g. in [BEE 06]. Adaptive (variable) ordering heuristics, which have been
introduced more recently, are presented in the next section.

9.1.1. Classical variable ordering heuristics

The order in which variables are assigned by a backtrack search algorithm has
been recognized as a key issue for a long time. Using different variable ordering
heuristics can drastically effect the efficiency of algorithms solving CSP instances.
Introducing some form of randomization into a given variable ordering heuristic can
cause great variability in performance. An ideal variable ordering selects first a small
strong backdoor, i.e. a set of variables which, once assigned, make the remaining
problem easy to solve.

Static, or fixed, variable ordering heuristics (SVOs) keep the same ordering
throughout the search, using only (structural) information about the initial state of
search. The simplest such heuristic is lexico which orders variables lexicographically.
When variables are indexed by integers, lexico is usually implemented so as to order
the variables according to the value of their index. If vars(P ) = {x1, x2, . . . , xn},
then lexico will select first x1, then x2, . . . and finally xn (except that some variables
may never be reached if the instance is unsatisfiable). The heuristic deg, which is also
known as max-deg, orders variables in sequence of decreasing degree, so variables
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with the highest degree are selected first [ULL 76, DEC 89a]. The dynamic variant of
deg, which is called ddeg, orders variables in sequence of decreasing dynamic degree
– see Definition 1.25. Note that ddeg is classified as a static heuristic because its
ordering is fixed throughout search (and besides, it can be computed cheaply). Further
static heuristics are width and bandwidth where variables are increasingly ordered
in order to minimize the width [FRE 82] and bandwidth [ZAB 90] of the constraint
graph, respectively.

Dynamic variable ordering heuristics (DVOs) take account of the current state
of the instance being solved. These heuristics are dynamic because their ordering
generally varies during the search. The well-known dynamic heuristic dom, or
min-dom, [BIT 75, HAR 80] orders variables in sequence of increasing size of
domain, so a variable that has the smallest domain size is selected at each step. The
heuristics dom/deg and dom/ddeg take account of degrees of variables, as well as
sizes of domains. At each step, these heuristics select a variable with the smallest
ratio “current domain size” to “(dynamic) degree”. Here division combines the
minimization of dom with the maximization of deg. Various theory-based dynamic
heuristics proposed in [GEN 96a, HOR 00] are conceptually elegant, but they require
additional computation and they have not been tested on structured problems.

A variable ordering heuristic (usually) computes a score for each variable. A tie is a
set of variables that have the same score. Ties occur quite frequently at the beginning
of search; for example deg cannot distinguish between variables that have the same
degree, and dom cannot distinguish between variables that have the same domain size.
For example, when the only remaining uninstantiated variables are w, x, y and z such
that |dom(x)| = |dom(z)| = 2 and |dom(w)| = |dom(y)| = 4, then for the
dom heuristic, {x, z} is a tie that needs to be broken. Breaking a tie means finally
selecting one of the tied variables. Where a tie-breaker is not specified explicitly, lexico
is usually understood to be specified implicitly as the tie breaker. For example, dom
implicitly means dom+lexico which selects the first variable lexicographically in the
tie of variables that have the smallest current domain size. In this notation, the criterion
or heuristic specified after the “+” breaks ties for the heuristic specified before the “+”.
Some other composite heuristics are dom+deg [FRO 95] and bz which corresponds to
dom+ddeg [BRE 79, SMI 99]. The heuristic bz can be seen as a refinement of dom
since the main criterion is the current domain size of variables; bz uses dynamic
degree only to break ties. Another possibility is to break ties by selecting one tied
variable at random. Randomly breaking ties of variable ordering heuristics is one way
to randomize a backtrack search algorithm.

The 3-queens instance from the n-queens problem provides a very simple
illustration of the merit of the fail-first principle. The 3-queens instance is
unsatisfiable, but the ordering of variables used to explore the search space effects the
size of the refutation tree. Figure 9.1 shows the search steps that solve this instance
with FC as search algorithm and dom as variable ordering heuristic. Ties are broken
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9.1. Proving the unsatisfiability of instance 3-queens with FC-dom, i.e. forward
checking and (variable ordering) heuristic dom

by selecting the variable associated with the leftmost column, and the first value in the
domain of the selected variable is always chosen. For the same instance, Figure 9.2
shows the search steps when using the anti-heuristic max-dom, which selects the
variable that has the largest domain. Figure 9.2 illustrates the penalizing cost of
diversifying exploration instead of focusing on the difficult part of the problem. The
behavior of these two heuristics differs for the first time in Figures 9.1(e) and 9.2(e).
We can see that in Figure 9.1(d) dom, unlike max-dom, selects the first variable which
is clearly the most constrained because only two values remain in its domain.

Any heuristic can be generalized by taking into account the neighborhood of the
variables [BES 01a]. For instance, if an heuristic h employs a function αh to give a
score to each variable, then it is possible to use an operator ⊙ to define a generalization
h⊙

1 of the heuristic h at a neighborhood distance equal to 1. The generalized heuristic
employs a function α⊙

h,1 that gives a score to each variable x as follows:

α⊙
h,1(x) =

∑
y∈Γ(x) αh(x) ⊙ αh(y)

| Γ(x) |2

Γ(x) denotes the neighbors of variable x, i.e. the set of variables involved with x in
at least one constraint, and for example, we could have ⊙ ∈ {+,×}. Such kinds of
generalization enable us to compute various constrainedness measures of variables by
means of simple syntactical properties.

When comparing algorithms or heuristics, it may be interesting to use an heuristic
that randomly selects variables. The heuristic random can be defined statically (the
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 9.2. Proving the unsatisfiability of instance 3-queens with FC-dom, i.e. forward
checking and anti-heuristic max-dom

same ordering along all branches) or dynamically (a new choice at each branching
point). Randomly selecting variables may serve as a baseline.

It is rather difficult to rank classical general-purpose variable ordering heuristics
according to their relative efficiency. Dynamic heuristics such as dom, bz and
dom/ddeg are usually considered to be the most effective (although neighborhood
generalizations may turn out to be a little bit more robust). However, the variable
ordering heuristics introduced in this section are clearly outperformed by adaptive
heuristics presented in section 9.2.
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9.1.2. Value ordering heuristics

Value ordering, which is classically a second selection step at a branching point,
has for a long time been thought to have marginal effect on search efficiency. The
main reason why value ordering was acknowledged not very useful is that, when
facing unsatisfiable instances or when searching for all solutions, all values must
be considered. Smith and Sturdy [SMI 05] have shown that this reason holds when
search is based on d-way branching but not for 2-way branching. And even for d-
way branching, when an adaptive variable ordering heuristic is used, value ordering
heuristics may have an impact [MEH 09].

Following the promise principle, much work supports the idea that a value
should be chosen after estimating the number of solutions (or conflicts) involving
each value. Some proposed heuristics select the value that maximizes the estimated
number of solutions in the constraint network obtained after assigning this value
[DEC 88, GEE 92, HOR 00, PRC 02, KAS 04]. Here, we will only describe the well-
knownmin-conflicts heuristic [MIN 92, FRO 95], which selects a value that minimizes
the number of conflicts with variables in the neighborhood [FRO 95, MEH 05b].

Recall that con(c)x=a is the set of conflicts for (x, a) on c, i.e. val(c)x=a \
sup(c)x=a, or {τ ∈

∏
y∈scp(c) dom(y) | τ [x] = a ∧ τ /∈ rel(c)}. For a binary

constraint cxy, when considering strict supports con(cxy)x=a is equivalent to
{b ∈ dom(y) | (a, b) /∈ rel(cxy)}, that is to say, the set of values in dom(y)
that are incompatible with (x, a). For each v-value (x, a) the min-conflicts heuristic
evaluates the conflict count:

cc(x, a) =
∑

c∈cons(P )|x∈scp(c)

| con(c)x=a|

This heuristic selects a v-value (x, a) for which the conflict count cc(x, a) is a
minimum.

EXAMPLE.– Figure 9.3 shows an example in which the variable w is only involved in
three binary constraints cwx, cwy and cwz; lines indicate supports, i.e. compatibilities
between w and its neighbors. By counting the number of values in the neighborhood
of w that are incompatible with each value of dom(w), we obtain the order given by
min-conflicts, namely b, c and a. If w is the variable selected by the variable ordering
heuristic, then the v-value used for branching is (w, b).

The foregoing definition of the conflict count cc(x, a) has been formulated for the
general case, i.e. for constraints of any arity. Of course, other formulations can be
imagined for the non-binary case (e.g. taking into account the arity of the constraints).
Importantly, our formulation is correct as it simplifies into the one given classically
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w

y
zx

Figure 9.3. A variable w involved in three binary constraints. We have
cc(w, a) = 1 + 2 + 1 = 4, cc(w, b) = 0 + 1 + 1 = 2 and cc(w, c) = 1 + 2 + 0 = 3. The

order given by min-conflicts for w is then b, c and a

for binary constraints. Conflict counts can be computed dynamically for each variable
each time a value must be assigned, or instead can be obtained during preprocessing
initialization and then be used statically [MEH 05b]. Whereas min-conflicts selects a
value with the smallest conflict count (perhaps after breaking ties), the anti-heuristic
max-conflicts contrarily selects a value with the highest conflict count, thus complying
with the fail-first principle.

The heuristics lexico and random can select variables, just as they can select values.
In practice lexico, which selects the first value in the current domain of the selected
variable, is often employed (e.g. in the version of Mistral in the 2008 constraint solver
competition).

Finally, we may wonder whether it would be worthwhile to select v-values (x, a)
globally during search because this would be appropriate for the basic mechanism of
2-way branching. Global selection would replace the separate selection of a variable
and its value. Finding heuristics and efficient implementations of global selection
remains an open challenge.

9.2. Adaptive heuristics

A search-guiding heuristic is said to be adaptivewhen it makes choices that depend
on the current state of the problem instance as well as previous states. Thus an adaptive
heuristic learns, in the sense that it takes account of information concerning the subtree
already been explored. Figure 9.4 illustrates the fact that an adaptive heuristic may
behave differently when two similar nodes (i.e. two nodes such that their associated
constraint networks are identical) are reached after exploring different subtrees.

Static and non-adaptive dynamic (variable) ordering heuristics are relatively
poor general-purpose heuristics. This section presents two adaptive heuristics that
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P
init

P
init

v1

v2

cn(v1) = cn(v2)

Figure 9.4. Two partial search trees built from the same instance P init. We have v1 and v2

representing similar nodes, i.e. nodes such that their associated constraint networks are
identical. Unlike a static or dynamic variable ordering heuristic, an adaptive variable

ordering heuristic can make a different selection at nodes v1 and v2

can reasonably be considered to be state-of-the-art. The first is based on constraint
weighting and the second uses the concept of impacts.

9.2.1. Using constraint weighting

This section starts by outlining some work related to constraint weighting, mainly
in the context of local search and/or SAT solving. Then we show the importance of
using information about constraint violations to demarcate inconsistent or hard parts of
CSP instances. Finally, we introduce adaptive conflict-directed heuristics for complete
backtrack search algorithms.

Dynamic weighting is an efficient adaptive mechanism for identifying hard parts
of combinatorial problems. It was first introduced to improve the performance of local
search methods. The breakout method [MOR 93] simply increases the weights of all
current nogoods (tuples corresponding to unsatisfied constraints) whenever a local
minimum is encountered, and then uses these weights to escape from local minima.
Another method, devised independently [SEL 93], increments the weight of all clauses
(of a propositional formula in conjunctive normal form) not satisfied by the current
assignment. This weighting strategy (combined with two other strategies: random
walk and averaging-in) has been shown to enhance dramatically the applicability of
a randomized greedy local search procedure (GSAT) for propositional satisfiability
testing. Thornton [THO 00] has studied constraint weighting in the context of applying
local search to solve CSP instances, and has shown this weighting to be effective
on structured problems, particularly when connections between constraints that are
simultaneously violated are weighted.
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A hybrid search technique in [MAZ 98] combines a GSAT-like procedure with
the well known DP procedure. The branching strategy of the logically complete DP
procedure is based on the dynamic constraint weighting managed by GSAT in order to
direct search toward an inconsistent kernel. Similarly, a hybrid algorithm in [EID 03]
solves CSP instances by combining the breakout method with a systematic backtrack
search. When the local search is stopped (without finding any solution), all variables
are sorted according to the constraint weights. We can then expect to prove efficiently
the unsatisfiability of an instance (and to identify a minimal unsatisfiable subproblem).
Clause weighting is also used in [BRU 00] to detect minimally unsatisfiable sub-
formulae in SAT instances.

We now give an example that provides some insight into the main motivation of
the approach presented in what follows. This example is based on the queens-knights
problem that was introduced in section 8.5. To attempt identifying the inconsistent
part of the qk-8-5-add instance, a counter is first associated with each constraint.
Then the search algorithm MAC is run with dom/ddeg as variable ordering heuristic
(and lexico as value ordering heuristic), and whenever the constraint propagation
process finds that a constraint is not satisfied, the counter attached to this constraint
is incremented by 1. We observe the maximum value of counters attached to queen
constraints (i.e. constraints involving queens) and the maximum value of counters
attached to knight constraints (i.e. constraints involving knights). Figure 9.5 shows
the growth of these two values with respect to the number of assignments performed
by MAC when proving the unsatisfiability of the instance involving eight queens
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Figure 9.5. Evolution of constraint violations when running MAC on the instance qk-8-5-add
with dom/ddeg as variable ordering heuristic
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and five knights.1 It is clear that some knight constraints are violated far more often
than any queen constraint. In other words, these counters emphasize the inconsistent
knights subproblem. This example illustrates and confirms that the number of times
a constraint is violated during search is important information that can help to locate
hard, or even inconsistent, part(s) of CSP instances.

Another illustration is provided by the instance composed-25-1-2-0 which
comprises a main under-constrained sub-network and a small auxiliary unsatisfiable
one. The auxiliary sub-network has eight variables, whose indices range from 25 to 32,
and is connected to the main fragment by only one variable, as shown in Figure 9.6.
Of course, intelligent backtracking and decomposition techniques would exploit such
a structure efficiently, but in this section we are interested in a much simpler approach.
Specifically, we show that weighting constraints provides a lazy way of discovering
the small unsatisfiable core. As will be explained below, weighted degrees of variables
are defined in terms of weights that are associated with constraints. After 100 variable
assignments performed by MAC-dom/ddeg in our example, the weighted degrees of
variables are as follows:

Variable Weighted Degree
V31 40
V30 37
V29 36
V32 29
V6 19

V25 19
V20 17
. . .

The four best ranked variables belong to the unsatisfiable auxiliary fragment.

As stated earlier, classical dynamic variable ordering heuristics use information
about the current state of the instance being solved such as current domain sizes
and dynamic degrees of variables. One limitation of these heuristics is that they do
not use information about previous states of the search. Such information can be
easily captured by associating a counter, denoted by weight [c], with each constraint
c. Whenever a dead-end (domain wipe-out) occurs, these counters are updated as
follows.

1. A similar behavior can be observed when using dom or bz as variable ordering heuristic.
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Figure 9.6. The constraint graph of the instance composed-25-1-2-0

For BC, lines 4 to 8 of Algorithm 72 are replaced with:

if I does not satisfy c then
weight [c] ← weight [c] + 1
if lookback = SBT then
return I

else
return {(y, b) ∈ I | y ∈ scp(c)}
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For FC and MAC, lines 4-5 of Algorithm 12 and lines 10-11 of Algorithm 9 are
replaced with:
if dom(y) = ∅ then

weight [c] ← weight [c] + 1
return false

Using these counters, we define a new variable ordering heuristic, denoted by
wdeg, which selects variables in sequence of decreasing αwdeg(x). αwdeg(x), which
is called the weighted degree of an uninstantiated variable x (of a constraint network
P ) is defined as follows:

αwdeg(x) =
∑

c∈cons(P )|x∈scp(c)
∧ scp(c)\past(P )̸={x}

weight [c]

Thus the weighted degree of a variable x is the sum of weights of constraints that
involve x and at least another uninstantiated variable; recall that past(P ) denotes the
set of instantiated (or past) variables of P , and is given by vars(I) in Algorithm 70.
The practical effect of selecting first the variables with greatest weighted degrees is to
examine first the locally inconsistent or hard parts of networks, in conformity with the
fail-first principle.

The wdeg heuristic is somewhat related to ddeg in that it only takes account of
constraints that involve two uninstantiated variables. The reason of this limitation is
that a constraint with only one uninstantiated variable is very likely to be entailed: at
least, this will be the case for search algorithms FC and MAC. Entailed constraints
are discarded because they no longer have any role to play (until a backtrack breaks
entailment). Setting all weight counters to 1 makes wdeg the same as ddeg. Thus at the
beginning of the search, to take account of degrees of variables, it is best to initialize
all weight counters to 1. This initialization makes wdeg be initially the same as ddeg.

The next development combines weighted degrees and domain sizes to obtain the
dom/wdeg heuristic, which selects first the variable having the smallest ratio of current
domain size to current weighted degree. Both of the heuristics wdeg and dom/wdeg can
be classified as conflict-directed (variable ordering) heuristics.

Amongst published heuristics that are related to the conflict-directed heuristics,
those proposed in [SAD 96] are adapted to job-shop scheduling and are intended
to focus the search toward critical variables, i.e. variables that are most likely to be
involved in a conflict. For such problems the use of conflicting sets of operations
[SAD 95] or measures of resource contention [SAD 96] is found experimentally to
yield significant improvements.
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9.2.2. Using impacts

Another family of adaptive heuristics is based on the concept of impacts. An
impact is a measure of the effect of an assignment. More specifically, an impact is
a measure of the relative amount of search space reduction that an assignment is
expected to achieve. The impact of a variable is the “sum” of impacts of possible
assignments to this variable. Impacts can be used in the heuristic selection of
variables and values. The variable with highest impact is typically selected first. For
this variable, the value with lowest impact is selected. It is important that impacts
can be refined during search, allowing learning from experience. The use of impacts
was studied initially in [GEE 92] and has been revisited in [REF 04] inspired by
pseudo-costs that are widely used in integer programming.

Let σ denote a function that provides for any constraint network P a measure
of the search space of P . The most precise measure is given by σmul(P ) =∏

x∈vars(P ) |dom(x)|, which is the size of the Cartesian product of the domains of
variables of the constraint network P . Another measure, which is less expensive to
compute and does not involve big integers, is simply the total number of values in the
constraint network: σadd(P ) =

∑
x∈vars(P ) |dom(x)|.

The impact of an assignment x = a on P with respect to a consistency φ is defined
by:

Imp(x = a) =
σ(P ) − σ(φ(P |x=a))

σ(P )

This simply compares the size of the search space of P before and after assigning x
to a and enforcing φ. Higher impact generally means greater reduction of the search
space. At one extreme, if dom(x) = {a} and P is already φ-consistent, then Imp(x =
a) = 0. At the other extreme, if φ(P |x=a) = ⊥, then Imp(x = a) = 1 assuming that
σ(⊥) = 0 whatever the implementation of σ.

The impact of a variable x can be directly derived by summing, for example,
impacts of assignments as follows:

Imp(x) =
∑

a∈dom(x)

Imp(x = a)

If impact-based heuristics are used, the impact of an assignment x = a may be
assessed many times before reaching the current state of the search. Let Hx=a be the
multi-set of impacts successively measured for the assignment x = a before reaching
the current node in the search tree. An algorithm can compute for (almost) free an
average impact [REF 04] of an assignment as follows:

Impavg(x = a) =

∑
Imp∈Hx=a

Imp

|Hx=a|
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Complying with the classical precept that the variable that most constrains the
search space should be selected first, we can decide to select the variable with the
highest average impact:

Impavg(x) =
∑

a∈dom(x)

Impavg(x = a)

After a variable x has been selected, we can decide to select the value of dom(x)
that minimally constrains the search space. This is the value a in dom(x) such that
Impavg(x = a) is a minimum. This process of selecting a v-value (x, a) for branching
is not global since we have first the selection of the variable x and then the selection
of the value a. These two consecutive tasks can be regarded as employing a variable
ordering heuristic var-impact followed by a value ordering heuristic val-impact.

Impact-based search heuristics have many variants; heuristics can use different
operators (e.g. sum, product, max, etc.) at different levels when computing impacts of
variables. Although enumeration of all of these alternatives is beyond the scope of this
book, some recent proposals deserve mention. Impacts defined in terms of recorded
explanations [CAM 06] can measure the real effects of every decision taken during
search. Moreover, the natural resonance between singleton consistencies and impact-
based variable and value ordering heuristics has been investigated in [COR 07].

9.3. Strength of constraint weighting

Although adaptive heuristics seem to be quite attractive at first sight, their practical
value remains to be proved. This section focuses on constraint weighting and shows
that this can be quite useful to boost systematic search and to identify unsatisfiable
CSP cores. We also explore kinds of policy that value ordering heuristics should
follow. Finally, we introduce some recent new extensions and analysis.

9.3.1. Boosting systematic search

Again using the queens-knights problem, we now illustrate the use of constraint
weighting to reduce thrashing and thereby boost the efficiency of (systematic) search.
Figure 9.7 shows the CPU time required to solve some instances of this problem using
dom/wdeg. Although IBT or DBT are more efficient than dom/wdeg on qk-n-5-add
instances, the introduction of dom/wdeg makes thrashing far less prominent on the
more realistic qk-n-5-mul instances: compare Figures 8.16(b) and 9.7(b).

Going further, Table 9.1 shows results obtained for two different chessboard sizes
(n = 8 and n = 12) and for three different unsatisfiable problems. For each instance
and each heuristic, the CPU time (in seconds), the number of constraint checks (ccks)
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Figure 9.7. Solving qk-n-5-add and qk-n-5-mul instances using MAC-dom/wdeg and various
backtracking techniques. A missing point indicates that the corresponding instance has not

been solved within 600 seconds
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Heuristics
Instance dom bz ddeg/dom wdeg/dom

knights-8-5
CPU 0.08 0.08 0.09 0.09
#ccks 70,432 70,432 70,432 75,828

#nodes 63 63 63 93

qk-8-5-add
CPU 1.55 1.56 1.56 0.18
#ccks 5,342 K 5,342 K 5,342 K 310 K

#nodes 6,465 6,465 6,373 381

qk-8-5-mul
CPU 1.43 1.44 1.43 0.32
#ccks 4,039 K 4,039 K 4,039 K 629 K

#nodes 5,721 5,721 5,721 789

knights-12-5
CPU 0.17 0.16 0.16 0.19
#ccks 352 K 352 K 352 K 382 K

#nodes 143 143 143 213

qk-12-5-add
CPU 1,026 1,021 1,045 1.64
#ccks 3,907 M 3,907 M 3,907 M 5,637 K

#nodes 2,188 K 2,188 K 2,174 K 3,263

qk-12-5-mul
CPU 988 1,026 987 3.30
#ccks 3,296 M 3,296 M 3,296 M 9,846 K

#nodes 2,017 K 2,017 K 2,017 K 5,557

Table 9.1. Comparison of heuristics using MAC on queens-knights instances

and the number of assignments (nodes) are given. Here, knights-n-5 is an instance of
the knights problem involving five knights to be put on a chessboard of size n × n.
It is clear that dom/wdeg drastically improves the performances of MAC compared to
other heuristics. These results clearly show the occurrence of thrashing when using
dom, bz or dom/ddeg: the number of assignments (and constraint checks) to solve a
qk-n-5-add or a qk-n-5-mul instance is roughly equal to the product of the number of
assignments (and constraint checks) to solve knights-n-5 and the number of solutions
of the n-queens instance (92 for n = 8, and 14,200 for n = 12). This behavior is
not observed when the conflict-directed heuristic dom/wdeg is used. In this case, after
finding a limited number of solutions to the queens subproblem, the knight variables
are selected first since the weight of the knight constraints become large enough,
thereby preventing thrashing.

Binary branching allows search to adapt to evolving contexts more rapidly than
non-binary branching, particularly when a conflict-directed heuristic is employed.
This means that binary branching allows the search algorithm to push up hard parts
of constraint networks faster than non-binary branching: decisions concerning these
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Figure 9.8. Solving qk-n-5-mul instances using MAC-dom/wdeg while considering binary and
non-binary branching

parts are located faster near the root of the search tree. Figure 9.8 illustrates this for
the queens-knights problem.

The robustness of heuristic dom/wdeg is best demonstrated by comparing it
with classical heuristics on a wide range of problems. Figure 9.9 shows the results
obtained on a large set of instances, including various series of random and structured
instances, when using MAC with the adaptive heuristic dom/wdeg and with the
classical heuristics bz and dom/ddeg. In these scatter plots, each dot represents an
instance and each axis represents the CPU time required to solve the instances with
MAC using the heuristic labeling the axis. Many dots are located on the right side of
the plots, which means that dom/wdeg solves far more instances than bz and dom/ddeg
within the allotted time.

9.3.2. Identifying small unsatisfiable cores

When a search algorithm (such as FC or MAC) that interleaves branching and
propagation proves that a CSP instance is unsatisfiable, an unsatisfiable core (see
section 2.2.2) can be extracted automatically. This can be done by keeping track of all
constraints which, during propagation, have served to remove at least one value from

www.it-ebooks.info

http://www.it-ebooks.info/


Guiding Search toward Conflicts 409

 1

 10

 100

 1000

 1  10  100  1000

dom
/wd

eg

bz
(a) Comparison of heuristics dom/wdeg and bz

 1

 10

 100

 1000

 1  10  100  1000

dom
/wd

eg

dom/ddeg
(b) Comparison of heuristics dom/wdeg and dom/ddeg

Figure 9.9. Pairwise comparison (CPU time) of heuristics when used by MAC to solve the
instances used as benchmarks (first round) of the 2006 constraint solver competition (time out

set to 1000 seconds per instance)
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the domain of a variable. This idea was mentioned in [BAK 93] and can be related to
the implication graph in SAT (e.g. see [MAR 96a, ZHA 03a]).

We now explain how to keep track of constraints involved in the removal of at least
one value when, for instance, a general-purpose coarse-grained GAC algorithm is used
within MAC. In this case, Algorithm 8 removes unsupported values from domains.
We now introduce an additional data structure, denoted active , which associates a
Boolean variable with each constraint. Before commencement of the search, all of
these Booleans are initialized to false. During the search, whenever a constraint is
involved in an effective revision, the Boolean associated with that constraint is set to
true. This is achieved by replacing lines 2 to 4 of Algorithm 8 with:
foreach value a ∈ dom(x) do
if ¬seekSupport(c, x, a) then

remove a from dom(x)
active[c] ← true // c is involved in an effective revision

After the initial constraint network P init has been proved unsatisfiable by MAC, it is
only necessary to return the sub-network P sub obtained by removing from P init every
constraint c such that active[c] is false. Although the core P sub is guaranteed to be
unsatisfiable, it is not necessarily minimal; see Definition 2.13.

We have seen that using dom/wdeg leads to efficient proof of unsatisfiability of
many instances. However, in order to obtain a proof of unsatisfiability of moderate
size, we need to restart search several times to perform successive complete runs.

EXAMPLE.– Consider the queens-knights problem. The unsatisfiable instance qk-6-
3-mul with six queens and three knights involves nine variables and 36 constraints.
Actually we know that the 3-knights subproblem, involving three variables and
three constraints, is unsatisfiable. In a first phase, solving this instance with MAC-
dom/wdeg (i.e. MAC using dom/wdeg as variable ordering heuristic) yields a proof
of unsatisfiability integrating all constraints of the instance (that is to say, all
Boolean active have been set to true). However, solving the same instance again
after reinitializing all Boolean active to false, and this time starting with current
weighting of the constraints obtained after the first complete run, yields a new proof
of unsatisfiability referring to only nine constraints. A further run yields the same
result.
Figure 9.10 illustrates the developments of such proofs of unsatisfiability. Constraint
networks are represented by constraint graphs; vertices correspond to variables and
edges to binary constraints. Constraints irrelevant to unsatisfiability after a run are
represented by gray-colored edges. This example shows that it is possible to refine
the extraction of an unsatisfiable core by removing all the constraints that are not
involved in it. The second phase starts with the unsatisfiable core identified during
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the first phase, and yields a new unsatisfiable core that corresponds to the 3-knights
subproblem. The third phase cannot make any further reduction.

Figure 9.10. Evolution of the proof of unsatisfiability

As illustrated above, several runs of a MAC solver may be required to demarcate
an unsatisfiable core provided that a conflict-directed heuristic such as dom/wdeg is
used. In Algorithm 76, the outer loop performs several extraction phases as mentioned
in the illustration. When a phase starts, all weights are first initialized to be 1. During
each iteration of the inner loop, MAC-dom/wdeg is run at line 10 and line 11 obtains
the number of constraints found in the unsatisfiable core detected by the current run.
The weight counters are preserved from one iteration (i.e. run) to the next, which
potentially concentrates the search into a smaller and smaller unsatisfiable core. Two
iterations of the inner loop are guaranteed by initializing naft to +∞; MAC is given
the opportunity to benefit from a good initialization of constraint weights. The inner
loop stops when the size of the current unsatisfiable core is greater than or equal
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to the size of the previous one. At line 13, an unsatisfiable core is identified, but if
naft > nbef , we will certainly prefer to obtain the last but one identified core; although
not shown here, it suffices to store the identity of the constraints active at the previous
iteration. Algorithm 76 stops when a fixed point is reached, i.e. when no reduction is
achieved during the last phase.

Algorithm 76: wcore(in P : P): P

Output: an unsatisfiable core of P

repeat1
ncur ← | vars(P )|2
foreach constraint c ∈ cons(P ) do3

weight [c] ← 14

naft ← +∞5
repeat6
foreach constraint c ∈ cons(P ) do7

active[c] ← false8

nbef ← naft9
MAC-dom/wdeg(P ) // active constraints are identified10
naft ← |{c ∈ cons(P ) | active[c]}|11

until naft ≥ nbef12
P ← (vars(P ), {c ∈ cons(P ) | active[c]})13

until naft = ncur14
return P15

Performing successive runs of a complete backtrack search, with constraint
weighting, to demarcate an inconsistent part of a constraint network turns out to
be quite efficient in practice [HEM 06]. This has also been found for propositional
satisfiability (SAT), where Bruni and Sassano [BRU 00] have proposed an “adaptive
core search” to recover a small unsatisfiable sub-formula.

9.3.3. Questioning heuristic policies

Much work supports selection of values in accordance with the promise policy,
which selects first the value that has the highest probability (estimated in various
ways) of being part of a solution. In this section we challenge the practical value of
this policy, which has previously been supported mainly by experimental results with
non-binary branching and/or non-adaptive variable heuristics (such as dom, bz and
dom/ddeg). We now report experimental results using MAC, testing both branching
schemes and also testing dynamic and adaptive variable ordering heuristics. These
were experiments on seven classes of random binary instances located at the phase

www.it-ebooks.info

http://www.it-ebooks.info/


Guiding Search toward Conflicts 413

transition, which is where about half of the instances are satisfiable. Section 2.1.4.1
provides a description of these classes.

Tables 9.2 and 9.3 show results obtained with the classical value ordering heuristic
min-conflicts and the anti-heuristic max-conflicts. These experiments have used
static value ordering heuristics [MEH 05b], which means that the order of values
is computed in a preprocessing step. Tables 9.2 and 9.3 show average CPU time
(in seconds), average number of constraint checks (ccks) and the average number
of nodes explored in the search tree. What is interesting to note is that while the
performance ratio of max-conflicts to min-conflicts usually lies between 1.1 and
1.3 with non-binary branching or with dom/ddeg, it falls to around 1 when binary
branching and dom/wdeg are used. The class ⟨40,80,103,0.8⟩ is a notable exception.
Note also that the proportion of constraint checks per visited node is smaller when
max-conflicts is used. This is natural because when conflicting values are selected
first, the size of the search space is reduced faster.

These results show that, on these random instances, the anti-promise heuristic
max-conflicts is often as efficient as the standard promise min-conflicts heuristic when
binary branching and dom/wdeg are used. Our understanding of this phenomenon
is that, since dom/wdeg efficiently refutes unsatisfiable subtrees, the overhead of
refuting more unsatisfiable subtrees (since, more often than not, we guide search
toward unsatisfiable subtrees) is compensated by the benefit of rapidly reducing the
search space. Althoughmax-conflictsmay be helpful to dom/wdeg for quickly refuting
unsatisfiable subtrees, it is certainly unhelpful when solution(s) can still be reached.
Should we try to develop hybrid procedures able to switch between min-conflicts and
max-conflicts during search?

9.3.4. Statistical analysis and extensions

Hulubei and O’Sullivan [HUL 06b] study the effect of variable and value ordering
heuristics on the heavy-tailedness of runtime distributions of backtrack search
algorithms; see section 10.1.1 for more information about heavy-tailedness. This
work shows that heavy-tailed behavior can be eliminated from particular classes of
problems by carefully selecting the search heuristics. Statistical arguments conclude
that the combination of dom/wdeg with min-conflicts is the best (tested) combination
for some random and quasi-group problems. The heuristic dom/wdeg is also found
to be the best among those tested in [HUL 06a], “not because it makes the smallest
number of mistakes or because it refutes them with less effort but because it strikes a
good balance between these two properties”.

Whereas dom/wdeg collects information in the course of search, another idea
[GRI 07] is to learn similar information during an initial phase in which variables
are chosen at random and the search is repeatedly run to a fixed cutoff. This random
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dom/ddeg dom/wdeg
Class min- max- ratio min- max- ratioconflicts conflicts conflicts conflicts

⟨40-8-753-0.1⟩
CPU 42.0 51.4 1.22 34.5 41.6 1.20

ccks 22 M 27 M 1.22 20 M 24 M 1.20

nodes 43,269 55,558 1.28 38,104 48,158 1.59

⟨40-11-414-0.2⟩
CPU 30.9 35.0 1.13 29.4 32.7 1.11

ccks 26 M 29 M 1.11 26 M 29 M 1.11

nodes 58,955 70,007 1.18 58,055 67,905 1.17

⟨40-16-250-0.35⟩
CPU 22.1 28.9 1.30 21.0 26.6 1.26

ccks 30 M 40 M 1.33 30 M 37 M 1.23

nodes 59,669 83,445 1.39 56,036 75,025 1.33

⟨40-25-180-0.5⟩
CPU 33.1 37.1 1.12 28.6 30.0 1.04

ccks 62 M 67 M 1.08 55 M 57 M 1.03

nodes 85,122 98,519 1.15 69,805 78,005 1.11

⟨40-40-135-0.65⟩
CPU 25.9 34.6 1.33 20.0 25.1 1.25

ccks 68 M 89 M 1.30 53 M 66 M 1.24

nodes 52,622 74,592 1.41 36,571 49,211 1.34

⟨40-80-103-0.8⟩
CPU 25.8 52.8 2.04 15.3 36.3 2.37

ccks 98 M 193 M 1.96 59 M 133 M 2.25

nodes 29,989 72,841 2.42 16,163 45,177 2.79

⟨40-180-84-0.9⟩
CPU 113.1 121.3 1.07 40.6 44.6 1.09

ccks 554 M 587 M 1.05 217 M 231 M 1.06

nodes 76,788 85,482 1.11 20,077 22,557 1.12

Table 9.2. MAC with non-binary branching, dom/ddeg and dom/wdeg

dom/ddeg dom/wdeg
Class min- max- ratio min- max- ratioconflicts conflicts conflicts conflicts

⟨40-8-753-0.1⟩
CPU 29.3 35.8 1.22 28.9 28.4 0.98

ccks 22 M 27 M 1.22 24 M 23 M 0.95

nodes 43,268 55,557 1.28 45,650 46,645 1.02

⟨40-11-414-0.2⟩
CPU 23.0 25.9 1.12 26.1 27.3 1.04

ccks 26 M 29 M 1.11 32 M 33 M 1.03

nodes 59,002 70,026 1.18 69,111 76,941 1.11

⟨40-16-250-0.35⟩
CPU 18.5 24.5 1.32 23.0 24.4 1.06

ccks 30 M 40 M 1.33 39 M 41 M 1.05

nodes 59,773 83,531 1.18 72,555 82,459 1.13

⟨40-25-180-0.5⟩
CPU 28.8 31.9 1.33 28.5 30.7 1.07

ccks 62 M 67 M 1.08 65 M 68 M 1.04

nodes 85,187 98,548 1.15 80,017 91,464 1.14

⟨40-40-135-0.65⟩
CPU 21.4 28.6 1.33 19.8 19.6 0.98

ccks 68 M 89 M 1.30 65 M 64 M 0.98

nodes 52,569 74,544 1.41 44,120 46,573 1.05

⟨40-80-103-0.8⟩
CPU 20.4 42.3 2.07 12.6 18.6 1.47

ccks 98 M 193 M 1.96 64 M 89 M 1.39

nodes 29,931 72,747 1.41 16,168 28,087 1.73

⟨40-180-84-0.9⟩
CPU 85.0 92.0 1.08 26.4 27.1 1.02

ccks 553 M 587 M 1.06 192 M 193 M 1.00

nodes 76,489 85,255 1.11 15,835 16, 566 1.04

Table 9.3. MAC with binary branching, dom/ddeg and dom/wdeg
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probing method is intended to start the “real” search better informed after gathering
information from different parts of the search space. Besides, this method allows
more efficient identification of sources of global contention, i.e. contention that holds
across the entire search space, as opposed to contention localized in some parts of
the search space. To characterize weighted degree heuristics the contention principle
[WAL 08] states: “If a constraint is identified as a source of contention, then a variable
associated with that constraint is more likely to cause failure after instantiation than
variables not associated with such a constraint”. By instantiating at the beginning of
search the variables associated with global contention, we are most likely to reduce
the overall search effort.

Some variants are also studied in [BAL 08b]. By noting the constraint responsible
of each value deletion (a kind of explanation), it is possible to implement different
weighting strategies. For example, whenever there is a domain wipe-out on a variable
x while propagating constraint c, the weight of every constraint responsible for the
removal of a value of x is incremented. Another variant uses an aging mechanism, as
in some SAT solvers, which periodically divides the value of all weights by a constant,
thereby giving greater importance to conflicts discovered recently. Surprisingly, the
“basic” dom/wdeg heuristic is still competitive with such attractive variants. The same
authors show that constraint weighting can also be used to select the order of the
different revisions performed when enforcing/maintaining arc consistency using a
generic coarse-grained GAC algorithm. New revision ordering heuristics based on
weighted degrees can improve the resolution of some hard instances [BAL 08a]. Note
that any new revision ordering, combined with constraint weighting, may have a
different search tree.

Finally, to show the importance of adaptive heuristics, simply note that all of
the best ranked CSP solvers in the 2008 constraint solver competition have as their
variable ordering heuristic either dom/wdeg, or a variant of it, or a combination of it
with impact.

9.4. Guiding search to culprit decisions

As shown in the previous section, the conflict-directed heuristic dom/wdeg is
effective for reducing thrashing. This heuristic complies with the fail-first precept:
“To succeed, try first where you are most likely to fail”. But finding the ideal ordering
of variables is generally intractable. Even when efficient heuristics are used, we may
sometimes be able to do better by seeking the reason for a dead-end. A dead-end
is due to (at least) a conflict between a subset of previous decisions. To prevent
thrashing, it is helpful to identify such a conflict set and to consider the most recent
decision participating in it, called here culprit decision. Once the culprit has been
identified, the search can safely jump back to it, as in look-back techniques such as
CBJ and DBT.
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This section presents a general scheme [LEC 06b] for identifying a culprit
decision in any sequence of decisions leading to a dead-end. This is made possible by
introducing a specific set of variables, called a testing-set. The idea is to determine
the largest prefix of the sequence of decisions such that there exists an instantiation
of all variables in the testing-set that does not yield domain wipe-out when a given
consistency is enforced. In a simple embodiment of this general scheme the testing-set
consists of the single variable involved in the last decision taken at a dead-end; this is
what is called last-conflict based reasoning, or LC for short.

LC is an original approach that allows the search to backtrack (indirectly) to a
culprit decision that caused the most recent dead-end. To achieve this, the last assigned
variable before reaching a dead-end is always the next variable to be selected, so
long as its successive assignments make the network inconsistent. More precisely, LC
checks the singleton φ-consistency of this variable from the dead-end toward the root
of the search tree until a value is found to be singleton φ-consistent, where φ denotes
the consistency maintained during search. Here the usual variable ordering heuristic
is over-ridden until the search has backtracked to the culprit decision and has found
a singleton φ-consistent value for the variable involved in the culprit decision. In fact
LC can be generalized by successively adding to the current testing-set the variable
involved in the last detected culprit decision. The intention is to build a testing-set
that may improve backtracking higher, i.e. nearer the root of the search tree. This
mechanism hopefully identifies a (small) set of incompatible variables involved in
decisions of the current branch, despite many interleaved decisions that are irrelevant.
The practical effect is to avoid useless exploration of many subtrees.

The section is organized as follows. After introducing the principle of nogood
identification through testing-sets, we present last-conflict based reasoning and its
generalization. Finally, we provide some experimental results to show the value of
the approach.

9.4.1. Nogood identification through testing-sets

We first present a general approach that uses a testing-set, which is a pre-
established set of variables, to identify a nogood from a so-called dead-end sequence
of decisions. By carefully selecting the testing-set, we aim to identify a nogood that is
smaller than the dead-end sequence itself.

DEFINITION 9.1.– [Dead-end Sequence] Let P be a constraint network, and let Σ =
⟨δ1, . . . , δi⟩ be a sequence of decisions on P . Σ is said to be a dead-end sequence of
P iff {δ1, . . . , δi} is a nogood of P .

We can now introduce the notions of culprit decision and culprit subsequence. The
culprit decision of a dead-end sequence Σ = ⟨δ1, . . . , δi⟩ with respect to a testing-set
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X of variables and a consistency φ is the rightmost decision δj in Σ such that there is
no instantiation of X with which decisions of ⟨δ1, . . . , δj⟩ can be extended without φ
detecting an inconsistency. More formally:

DEFINITION 9.2.– [Pivot, Culprit Decision, Testing-set] Let P be a constraint
network, with Σ = ⟨δ1, . . . , δi⟩ a sequence of decisions on P . Let φ be a consistency,
and let X = {x1, . . . , xk} be a non-empty set of variables of P .

– A pivot of Σ wrt φ and X is a decision δj ∈ Σ such that ∃a1 ∈ dom(x1),
. . . ,∃ak ∈ dom(xk) | φ(P |{δ1,...,δj−1}∪{¬δj}∪{x1=a1,...,xk=ak}) ̸= ⊥.

– The rightmost pivot subsequence of Σ wrt φ and X is either the empty sequence
⟨⟩ if there is no pivot of Σ wrt φ and X , or the sequence ⟨δ1, . . . , δj⟩, where δj is the
rightmost pivot of Σ wrt φ and X .
If Σ is a dead-end sequence then the rightmost pivot (if it exists) of Σ wrt φ and X is
called the culprit decision ofΣ wrt φ andX , and the rightmost pivot subsequence ofΣ
wrt φ and X is called the culprit subsequence of Σ wrt φ and X . The set of variables
X is called a testing-set.

In the definition of pivots there are three subsets of decisions: the first j − 1
decisions of Σ are taken as they are, the jth decision of Σ is taken negated, and the
third subset is an instantiation of the testing-set.

EXAMPLE.– Suppose that Σ = ⟨x = a, y ̸= b, z = c, y ̸= c, y = a⟩, φ = AC and
X = {v, w}. Suppose also that x = a and z = c are the only pivots of Σ wrt AC and
X . This means that for the pivot x = a there is at least one instantiation I of X such
that AC (P |{x ̸=a}∪I) ̸= ⊥. For the pivot z = c there is another instantiation I ′ of X
such that AC (P |{x=a,y ̸=b}∪{z ̸=c}∪I′) ̸= ⊥. In this case z = c is the culprit decision
of Σ wrt AC and X , and ⟨x = a, y ̸= b, z = c⟩ is the culprit subsequence of Σ wrt
AC and X .

As expected intuitively, a culprit subsequence of a dead-end sequence is a nogood.

PROPOSITION 9.3.– Let P be a constraint network, with Σ = ⟨δ1, . . . , δi⟩ a dead-end
sequence of P . Let φ be a consistency, and let X ⊆ vars(P ) be a testing-set. The set
of decisions contained in the culprit subsequence of Σ wrt φ andX is a nogood of P .

It is important that the newly identified nogood may be the same as the original
one. This is the case when the culprit decision of a sequence Σ = ⟨δ1, . . . , δi⟩ is δi.
Note also that P is unsatisfiable if the culprit subsequence of Σ is empty.

To see how Proposition 9.3 can be useful in practice, recall that the complete set of
decisions leading to a dead-end in a search tree is a nogood. Proposition 9.3 enables
detection of smaller nogoods for use in backjumping. In fact there are as many ways
to achieve this task as there are different testing-sets. Backjumping capability will
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depend upon the policy adopted for defining the testing-sets. Different policies can be
introduced to identify the source of conflicts and so to reduce thrashing, as discussed
in next section.

9.4.2. Reasoning from the last conflict
The rest of this chapter works with a binary branching backtrack search algorithm

(e.g. MAC) enforcing a consistency φ at each node of the search tree. A simple
embodiment of the general scheme presented in the previous section has a testing-
set that consists of the single variable involved in the last decision taken at a dead-end.
This embodiment is called last-conflict based reasoning (LC).

An LC-subsequence is a culprit subsequence identified by last-conflict based
reasoning. For any decision δ, var(δ) denotes the variable involved in δ.
DEFINITION 9.4.– [LC-testing-set, LC-subsequence] Let P be a constraint network,
let Σ = ⟨δ1, . . . , δi⟩ be a dead-end sequence of P with xi = var(δi), and let φ be a
consistency.

– The LC-testing-set of Σ is the set {xi}.
– The LC-subsequence of Σ wrt φ is the culprit subsequence of Σ wrt φ and {xi}.

Thus the LC-subsequence of a dead-end sequence Σ ends with the most recent
decision such that, when this is negated, there exists a singleton φ-consistent value
in the domain of the variable involved in the last decision in Σ. The culprit decision
δj of Σ may possibly be a negative decision and/or may be the last decision
in Σ. In the second case, j = i, and we can find a value for xi (the variable
involved in the last decision of Σ) that is compatible with all other decisions
of Σ. Specifically, if j = i and δi is a culprit negative decision xi ̸= ai, then
φ(P |{δ1,...,δi−1,xi=ai}) ̸= ⊥. On the other hand, if j = i and δi is a culprit
positive decision xi = ai, then there exists a value a′

i ̸= ai in dom(xi) such that
φ(P |{δ1,...,δi−1,xi ̸=ai,xi=a′

i}
) = φ(P |{δ1,...,δi−1,xi=a′

i}
) ̸= ⊥.

LC allows identification of nogoods as shown by the following proposition. Note
that the set of decisions contained in an LC-subsequence is not necessarily a minimal
nogood.
PROPOSITION 9.5.– Let P be a constraint network, with Σ a dead-end sequence of
P , and let φ be a consistency. The set of decisions contained in the LC-subsequence
of Σ wrt φ is a nogood of P .

Proof. Let δi be the last decision of Σ and xi = var(δi). From Definition 9.4, the LC-
subsequence of Σ wrt φ is the culprit subsequence of Σ wrt φ and {xi}. We deduce
our result from Proposition 9.3 with X = {xi}.
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It is important that after each conflict encountered during search it is possible
to identify an LC-subsequence and “backjump”2 safely to the last decision therein.
The identification and exploitation of such a sequence (which basically represents a
nogood) can be easily incorporated into the backtrack search algorithm by making
a simple modification to the variable ordering heuristic. In practice, we propose to
use last-conflict based reasoning only when an opened node, that is to say, a positive
decision, lies at a dead-end. In other words, LC will be used only if δi (the last decision
of the sequence mentioned in Definition 9.4) is a positive decision. To implement LC
in this case, it is sufficient (i) to register the variable whose assignment to a given value
directly leads to an inconsistency, and (ii) always select this variable first in subsequent
decisions (so long as it cannot be instantiated), over-riding the selection made by the
underlying heuristic – whichever heuristic is used. Note that LC does not require any
additional data structures.

With this implementation, note that only positive decisions are “checked” as pivots
by the search algorithm. When a negative decision is refuted (i.e. when the right
subtree of a node has been entirely explored), backtracking occurs immediately. This
means that LC within a backtrack search algorithm may indirectly identify a shorter
dead-end subsequence. More precisely, the longest prefix of the LC-subsequence
ending with a positive decision will be “computed”.

Figure 9.11 illustrates last-conflict based reasoning. The leftmost branch on the
figure has positive decisions x1 = a1, . . . , xi = ai, such that xi = ai leads to
a conflict. With φ denoting the consistency maintained during search, we have:
φ(P |{x1=a1,...,xi=ai}) = ⊥. At this point, xi is registered by LC for future use,
i.e. the LC-testing-set is {xi}. As a consequence, ai is removed from dom(xi), i.e.
xi ̸= ai. Then, instead of consulting the usual variable ordering heuristic to select a
new variable, a new value is directly assigned to xi. In Figure 9.11 this leads once
again to a conflict, the value is removed from dom(xi), and the process loops until
all values are removed from dom(xi), leading to a domain wipe-out (symbolized by
a triangle labeled with xi whose base is drawn using a solid line). The algorithm then
backtracks to the assignment xi−1 = ai−1, going to the right branch xi−1 ̸= ai−1.
Because xi is still recorded by LC, it is now selected first, and all values of dom(xi)
are excluded due to the same process as above. The algorithm finally backtracks to the
decision xj = aj , going to the right branch xj ̸= aj . Then, as {xi} is still an active
LC-testing-set, xi is preferred again and the values of dom(xi) are tested. This time
one value does not lead to a conflict (symbolized by a triangle labeled with xi whose
base is drawn using a dotted line), so the search can continue with a new assignment
for xi. The variable xi is then unregistered (the testing-set becomes empty), and
the choice of subsequent decisions is left to the underlying heuristic, until the next
conflict occurs.

2. We propose a lazy form of backjumping, obtained after a controlled search effort.
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Figure 9.11. Last-conflict based reasoning illustrated with a partial search tree. A consistency
φ is maintained at each node. A triangle labeled with a variable xi and drawn using a solid
base line (resp. a dotted base line) represents the fact that no (resp. a) singleton φ-consistent

value exists for xi

EXAMPLE.– In a more concrete example, a constraint network has six variables
{x1, . . . , x6}, an entailed binary constraint on variables {x2, x3}, the domain of
each of these being {1, 2}, and a clique of inequation constraints on variables
{x1, x4, x5, x6}, the domain of each of these being {0, 1, 2}. Figure 9.12 shows the
compatibility graph of this constraint network. Although the introduction of entailed
constraints seems weird, it can really happen during search after some decisions
have been taken. This phenomenon, as well as the presence of several connected
components, frequently occurs when solving structured instances (e.g. RLFAP
instances). Figure 9.13 shows the MAC search tree where variables and values are
selected in lexicographic order, which is used here to facilitate understanding of the
example; other heuristics yield similar examples. In Figure 9.13, each branch that has
no child shown represents direct failure when arc consistency is enforced. Here, MAC
explores 33 nodes to prove that this problem instance is unsatisfiable. Figure 9.14
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x4

x5x6

x1x2

x3

Figure 9.12. The compatibility graph of a constraint network involving an entailed constraint
and a clique of inequation constraints

depicts the MAC-LC search tree using the same lexicographic order, where MAC-LC
denotes MAC equipped with last-conflict based reasoning. This time, MAC-LC only
explores nine nodes because reasoning from the last conflict allows search to focus
on the difficult part of the network (i.e. the clique of inequation constraints). For
example, the first failure occurs (leftmost branch), just after assigning the variable x4.
The reason of this failure is x1 since it is impossible to assign both variables without
detecting inconsistency when enforcing arc consistency. Reasoning from explanations
would justify a direct backjump to x1. To some extent, LC behaves similarly since it
backtracks up to x1 after a controlled search effort.

Reasoning from last conflict can be implemented by a slight modification of a
classical tree search algorithm; see Algorithm 77. The recursive function binary-φ-
search-LC must be called with a φ-consistent constraint network. Thus the initial call
must be binary-φ-search-LC(φ(P init)) where P init is the initial constraint network that
needs to be solved. Remember that even if P = ⊥, P is considered to be φ-consistent.
To implement LC, we only need to introduce a variable priority . When its value is
nil , this means that the LC-testing-set is empty. Otherwise this identifies the single
variable in the LC-testing-set.

By using an operator that enforces φ to identify LC-subsequences as described
above, we obtain the following complexity result:

PROPOSITION 9.6.– Let P be a constraint network, let φ be a consistency, and let
Σ = ⟨δ1, . . . , δi⟩ be a dead-end sequence of P . The worst-case time complexity of
computing the LC-subsequence of Σ wrt φ is O(idγ) where γ is the worst-case time
complexity of enforcing φ.
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Figure 9.13. Search tree built by MAC (33 explored nodes)
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Algorithm 77: binary-φ-search-LC(P : P): Boolean
Require: P is φ-consistent
Output: true iff P is satisfiable
if P = ⊥ then1
return false2

if ∀x ∈ vars(P ), |dom(x)| = 1 then3
// display the solution
return true4

if priority ̸= nil then5
x ← priority6

else7
x ← variableOrderingHeuristic.selectVariable()8

a ← valueOrderingHeuristic.selectValueFor(x)9
if φ(P |x=a) = ⊥ then10

priority ← x11
else12

priority ← nil13

return binary-φ-search-LC(φ(P |x=a)) ∨ binary-φ-search-LC(φ(P |x̸=a))14

Proof. The worst case is when the computed LC-subsequence of Σ is empty. In
this case for each decision we check the singleton φ-consistency of xi, which is the
variable involved in δi. Because checking the singleton φ-consistency of a variable
corresponds to at most d calls to a φ-enforcing algorithm, the worst-case time
complexity is id times the complexity of the φ algorithm, denoted by γ here. Hence
the overall time complexity O(idγ).

When LC is embedded in MAC, we obtain:

COROLLARY 9.7.– Let P be a binary constraint network and Σ = ⟨δ1, . . . , δi⟩ be
a dead-end sequence of decisions that corresponds to a branch built by MAC-LC.
Assuming that the current LC-testing-set is {var(δi)}, the worst-case time complexity,
for MAC-LC, to backtrack up to the last decision of the LC-subsequence of Σ wrt AC
is O(end3).

Proof. Because MAC makes positive decisions first, the number of opened nodes in a
branch of the search tree is at most n. Moreover, for each closed node, we do not check
the singleton arc consistency of xi = var(δi) since instead we backtrack directly. So,
using an optimal AC algorithm in O(ed2), the overall complexity is O(end3).
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To summarize, reasoning from the last conflict is a way of reducing thrashing
by considering culprit decisions taken in the past, while still being a look-ahead
technique (combined with a very limited form of learning, namely recording variables
in testing-sets). Guiding search to the last decision of a culprit subsequence is like
using a form of backjumping to that decision. For example, when a backjump to a
culprit decision occurs with Gaschnig’s technique [GAS 79], then LC, in the same
context, also reaches this decision in polynomial time. Table 9.4 shows the behavior
of LC on two instances of the queens-knights problem. With bz as variable ordering
heuristic, MAC, MAC-IBT and MAC-DBT cannot prevent thrashing for the qk-25-5-
mul instance which remains unsolved after 2 hours. This is also the case when other
classical variable ordering heuristics are used, but not for the adaptive dom/wdeg.
However, MAC-LC can in about one minute prove the unsatisfiability of this instance.
The reason is that all values of all knight variables are SAC-inconsistent. When any
such variable is reached, LC guides search up to the root of the search tree.

Instance MAC MAC-IBT MAC-DBT MAC-LC
qk-25-5-add CPU > 2 hours 11.7 12.5 58.9

#nodes − 703 691 10,053

qk-25-5-mul CPU > 2 hours > 2 hours > 2h hours 66.6
#nodes − − − 9,922

Table 9.4. Cost of running variants of MAC with bz as variable ordering heuristic (time-out
set to 2 hours)

We have explained that in the last-conflict based approach, the variable ordering
heuristic is over-ridden until a backtrack to the culprit variable has been completed
and a singleton consistent value has been found. There is an alternative approach that
does not select the singleton consistent value, which has been found, to be the next
value assigned. This approach is a pure inference technique that (partially) maintains
a singleton consistency (SAC, for example) on the variable involved in the last conflict.
This is related to the “quick shaving” technique [LHO 05a].

9.4.3. Generalized reasoning from the last conflict

To define testing-sets, the policy previously introduced can be generalized as
follows. At each dead-end the testing-set initially consists, as before, of the variable
xi involved in the most recent decision δi. When the culprit decision δj is identified,
the variable xj involved in δj is included in the testing-set. The new testing-set
{xi, xj} may help backtracking nearer the root of the search tree. Of course, this form
of reasoning can be extended recursively. This mechanism is intended to identify
a (small) set of incompatible variables involved in decisions of the current branch,
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although these may be interleaved with many irrelevant decisions. We now formalize
this approach before illustrating it.

DEFINITION 9.8.– [LCk-testing-set, LCk-subsequence] Let P be a constraint
network, Σ be a dead-end sequence of P and φ be a consistency. We recursively define
the kth LC-testing-set and kth LC-subsequence of Σ wrt φ, which are respectively
called the LCk-testing-set (Xk) and the LCk-subsequence (Σk), as follows.

– For k = 1, X1 and Σ1 correspond to the LC-testing-set of Σ and the LC-
subsequence of Σ wrt φ, respectively.

– For k > 1, if Σk−1 = ⟨⟩, then Xk = Xk−1 and Σk = Σk−1. Otherwise,
Xk = Xk−1 ∪ {xk−1} where xk−1 is the variable involved in the last decision of
Σk−1, and Σk is the rightmost pivot subsequence of Σk−1 wrt φ and Xk.

The following proposition, which is a generalization of Proposition 9.5, can be
proved by induction on k.

PROPOSITION 9.9.– Let P be a constraint network, Σ be a dead-end sequence of P
and φ be a consistency. For any k ≥ 1, the set of decisions contained in Σk, which is
the LCk-subsequence of Σ wrt φ, is a nogood of P .

For any k > 1 and any given dead-end sequence Σ, LCk will denote the process
that consists of computing the LCk-subsequence Σk of Σ. When computing Σk, we
may have Σk ̸= Σk−1 meaning that the original nogood has been reduced k times
(and Xk is composed of k distinct variables). However, a fixed point may be reached
at a level 1 ≤ j < k, meaning that Σj = Σj+1 and either j = 1 or Σj ̸= Σj−1. The
fixed point is reached when the current testing set is composed of j + 1 variables: no
new variable can be added to the testing set because the identified culprit decision is
the last decision of the current dead-end sequence.

In practice, the generalized version of LC can be applied in the context of a binary
branching backtrack search. If a fixed point is reached at a level j < k, the process
of last-conflict based reasoning is stopped and the choice of subsequent decisions is
left to the underlying heuristic until the next conflict occurs. On the other hand, we
will restrict pivots to be positive decisions, only. Indeed, it is not relevant to consider a
negative decision x ̸= a as a pivot because it would consist of building a third branch
within the MAC search tree identical to the first one. The subtree under the opposite
decision x = a has already been refuted, since positive decisions are taken first.

EXAMPLE.– We consider an illustration with LC3, i.e. the size of the testing-sets
is limited to three variables. In Figure 9.15, which shows a partial view of a search
tree, the leftmost branch is a dead-end sequence of decisions Σ. By definition, the
LC1-testing-set of Σ consists of the single variable xi (which is involved in the last
decision of Σ). So the algorithm first assigns values to xi in order to identify the culprit
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Figure 9.15. Generalized last-conflict based reasoning illustrated with a partial search tree. A
consistency φ is maintained at each node. A triangle labeled with a variable x and drawn

using a solid base line (resp. a dotted base line) represents the fact that no (resp. a) singleton
φ-consistent value exists for x

decision of Σ (and the LC1-subsequence). In this example, no value in dom(xi) is
found to be singleton φ-consistent until the algorithm backtracks up to the positive
decision xj = aj . This is identified as the culprit decision of Σ, so the LC2-testing-
set is {xi, xj}, which means that values will be assigned first to xi and xj . With this
the LC2-subsequence is identified when backtracking to the decision xk = ak. In fact
when xk ̸= ak it is possible to instantiate both variables in the LC2-testing-set. The
variable xk is now included in the testing-set, but because all of the variables in this
new testing-set can now be instantiated together, last-conflict reasoning stops because
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a fixed point is reached (at level 2) and the search continues as usual. Note that with
LC2 instead of LC3, xk would not have been included in the current testing-set, as
last-conflict based reasoning would have been stopped after a successful instantiation
of the two variables in the LC2-testing-set. A variable other than xk might have been
chosen after xi and xj had been instantiated.

9.4.4. Experimental results

To demonstrate the practical value of last-conflict based reasoning, we now
present some experimental results obtained on a PC Pentium IV 2.4 GHz 512 MB
under Linux, with MAC (using chronological backtracking). The effect of LC has
been investigated using the representative classical heuristic dom/ddeg (very similar
results are obtained with dom and bz) and also the adaptive heuristic dom/wdeg.

On the suite of instances selected for the second constraint solver competition,
Figure 9.16 shows overall results with a scatter plot for each heuristic. Each dot
represents an instance and its coordinates are, on the horizontal axis, the CPU time
required to solve the instance with MAC, and on the vertical axis, the CPU time
required to solve the instance with MAC-LC (LC without any subscript means LC1).
LC greatly improves the efficiency of MAC when dom/ddeg is used, but with the
conflict-directed heuristic dom/wdeg LC sometimes makes the search more efficient,
sometimes less efficient. The interaction between these two adaptive mechanisms
certainly deserves an in-depth study. Notice that, on pure random instances, last-
conflict based reasoning is usually unhelpful (although not shown here) because there
is no structure to exploit.

Finally, on very hard structured instances of series scens11, it is interesting that
with dom/ddeg, Figure 9.17(a), the best results are obtained with a high level, i.e.
high value of k, of the generalized reasoning. This is less obvious with dom/wdeg,
Figure 9.17(b), but note that the y-axis scale is logarithmic. Here the time-out has
been set to 48 hours per instance. MAC-LC0 is MAC alone (i.e. without using last-
conflict based reasoning).

9.5. Conclusion

It is well known that non-chronological backtracking techniques such as conflict-
directed backjumping and dynamic backtracking can in some cases mitigate thrashing
that may otherwise occur during backtrack search. These techniques are conceptually
elegant, admit a O(n2d) space complexity and have been proved effective on many
problems, but they require substantial development effort.

This chapter has focused on simple and adaptive approaches that guide search
toward conflicts so as to reduce thrashing. Adaptive variable ordering heuristics based
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Figure 9.16. Pairwise comparison (CPU time) on the 3,293 instances used as benchmarks of
the 2006 CSP Solver Competition. The time-out to solve an instance is set to 20 minutes
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Figure 9.17. Results obtained with MAC-LCk for k ∈ 0..8 on instances scen11-fX with, from
top to bottom, X ∈ 1..7
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on impacts and weights are, at the time of writing this book, state-of-the-art: they
outperform classical static and dynamic variable ordering heuristics. In particular, the
conflict-directed heuristics wdeg and dom/wdeg are conceptually very simple, have a
space complexity3 in O(e) and are quite easy to implement. Moreover, they appear
to outperform (in terms of solving time) current intelligent backtracking methods
[LEC 04].

Last conflict (LC) techniques allow lazy detection of culprit decisions that have
lead to dead-ends. The idea is to assign first to the variable involved in the most recent
conflict (i.e. the last assignment that failed) until the network is made consistent.
LC has achieved quite interesting results in two related domains, namely constraint
satisfaction and automated Artificial Intelligence planning [LEC 09b]. Furthermore,
LC has been implemented in a state-of-the-art WCSP (Weighted CSP) solver and has
proved effective on some bio-informatics problems [SAN 08].

To summarize, the adaptive approaches presented in this chapter are all
characterized by a limited form of learning that improves guidance of the search.
Other nice features are conceptual simplicity and ease of implementation. These
approaches help to make constraint solvers more robust.

3. In fact, by associating a weight with every variable rather than with every constraint, it can
only be O(n).
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Chapter 10

Restarts and Nogood Recording

This chapter investigates the interrelated techniques of recording nogoods and
regularly restarting search. Restarts are important in modern SAT and CSP solvers
because they can take account of the erratic behavior of (backtrack) search algorithms
on many combinatorial problems. Introduction of restarts requires diversification of
exploration of the search space, which means being sure to take different paths each
time a new run is started. One way to achieve this is by randomization and another
way is by learning. A search algorithm can usually be diversified by randomizing
the variable and/or value ordering heuristics (for example breaking ties at random).
Learning effects search ordering when nogoods are identified and recorded to make
further inferences.

Nogood recording is a kind of learning that has been initially introduced for
constraint-based problem-solving systems [STA 77, STE 80] and assumption-based
truth maintenance systems (ATMS) [KLE 86, KLE 89]. Nogood recording was
proposed to enhance CSP solving in [DEC 90]. The idea is to record a nogood
whenever a conflict occurs during backtrack search. Such nogoods subsequently
serve to prevent exploration of useless parts of the search tree. The first experiments
with nogood recording for constraint satisfaction were reported in the early 1990s
[DEC 90, FRO 94, SCH 94a, SCH 94b].

The recent impressive progress in SAT, unlike CSP, has been achieved using
nogood recording (clause learning) under a randomization and restart policy enhanced
by a very efficient lazy data structure [MOS 01]. The value of clause learning has
risen with the availability of large instances (encoding practical applications) that
include some structure and show heavy-tailed phenomena. Learning in SAT is an
example of a successful technique derived from cross-fertilization between CSP
and SAT: nogood recording [DEC 90] and conflict-directed backjumping [PRO 93]
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were originally introduced for CSP and were later imported into SAT solvers
[BAY 97, MAR 96a]. At the time of writing, progress within the SAT framework has
certainly stimulated renewed interest of the CSP community in nogood recording
[KAT 05, BOU 06, RIC 06, LEC 07e].

Because the number of recorded nogoods may be exponential, restrictions have
to be considered. For example, when the size of the recorded nogoods is limited (to
i decisions), one obtains ith-order learning. In SAT, the size of learned nogoods can
be limited by using the idea of a first unique implication point (first UIP). Different
variants (e.g. relevance bounded learning [BAY 97]) attempt to find the best trade-off
between the overhead of learning and the improvement of performances. Because of
this trade-off, the recording of nogoods cannot completely eliminate redundancy in
developed search trees. An original alternative to combining search scattering with
redundancy avoidance performs random jumps [ZHA 02a] in the search space. This is
particularly relevant when a limited amount of time has been allotted.

One simple learning approach [BAP 01, FUK 03, LEC 07f] identifies and records
nogoods from the last branch of the search tree before each restart, ensuring that
subsequent runs do not explore parts of the the search tree that have been explored
previously. Nogoods can be used for propagation by posting them as new constraints
and introducing an efficient filtering algorithm using watched literals [MOS 01].
This algorithm enforces generalized arc consistency on nogood constraints and can
easily be integrated to any constraint propagation engine. The good worst-case time
complexity, namely O(n|B|) where |B| denotes the number of recorded nogoods,
renders this approach attractive. As the number of nogoods recorded before each new
restart run is bounded by the length of the last branch of the search tree, the total
number of recorded nogoods is polynomial in n, d and the number of restarts.

This chapter is organized as follows. Section 10.1 introduces restarts; sections 10.2
and 10.3 describe nogood recording from restarts. Section 10.4 addresses minimization
of identified nogoods. Finally, a few experimental results are presented.

10.1. Restarting search

On random instances, a plot of mean or median behavior of (backtrack) search
algorithms against constraint tightness shows a characteristic “easy-hard-easy”
pattern. For many structured problems (e.g. quasi-group completion problems) the
pattern is similar. The hard instances are located in the phase transition region around
the crossover point where 50% of the instances are satisfiable; further away from
the crossover point, under-constrained and over-constrained instances are usually
easy to solve, as explained in section 2.1. Nevertheless, exceptionally hard instances
sometimes occur in the easily soluble region (see e.g. [HOG 94, GEN 94, SMI 95]).
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This is usually attributed to a few bad choices near the root of the search tree, leading
to unsatisfiable subproblems that take a long time to explore.

These exceptionally hard instances are not inherently difficult to solve; if several
different search processes are applied, some will certainly solve these instances
quickly. Ideally these would be parallel processes, but in practice they usually run in
turn, each being given a short time to solve the instance. There are several ways to
ensure that these trial processes differ sufficiently from each other. One way is to use
the same algorithm for each trial, but with randomized search ordering, leading to
different search space explorations. Harvey reports [HAR 95a] that “restarting depth-
first search periodically with random value orders yields a dramatic improvement in
overall performance with only a small change to the original algorithm... periodically
restarting depth-first search with different variable orders virtually eliminated its
problem with early mistakes.”

10.1.1. Heavy-tailed behavior
Gomes et al. [GOM 97, GOM 98, GOM 00] have contributed an in-depth study of

runtime variability of search methods. Experience shows that for many combinatorial
problems, including structured ones, two distinct search methods can behave quite
differently on the very same instance: the first may conclude in a few seconds, whereas
the second may require days of computing. For a single given instance, analysis of the
distribution of run times, or runtime distribution, of different search methods can be
quite informative. When the variance of this distribution is very large, this instance
(and probably also other instances of the same problem) may best be solved using the
restart strategy mentioned earlier: each of a set of different search methods is run for
a limited amount of time.

The survival function S(x) = P [X > x] is the probability that the random variable
X is larger than a given value x. For backtrack search, it is instructive to plot P [X >
x] against x when x is the number of backtracks1 required to solve the instance. We
have P [X > x] = 1 − F (x) where F (x) = P [X ≤ x] is the cumulative distribution
function (CDF) of X . A runtime distribution is heavy-tailed if

P [X > x] ∼ cx−α (x > 0),

where α > 0 and c > 0 are constants. In this case, a log–log plot of S(x) =
P [X > x] versus x is linear, with slope determined by the tail index α, as illustrated
in Figure 10.1. Hence, a near-straight line in a log-log plot for P [X > x] is a clear
sign of a heavy-tailed behavior. This means that the tail of the distribution decays

1. Of course, we can consider other criteria such as the CPU time or the number of wrong
decisions.
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Figure 10.1. Comparison between a normal and a heavy-tailed runtime distribution

polynomially. Such a distribution has infinite variance and finite mean when 1 < α <
2; its mean and variance are both infinite when 0 < α ≤ 1.

Analysis of the runtime distribution of a randomized search algorithm may
elucidate the difficulty of a given instance. An instance for which this distribution is
heavy-tailed can be solved efficiently and is therefore not difficult. An instance for
which this distribution is normal is such that the different search methods behave
similarly, which may suggest that this instance is inherently difficult [GOM 04].
To confirm this experimentally we have obtained the runtime distribution for a
randomized search algorithm on distinct random instances generated near crossover
by Model RB (see section 2.1.2). These instances include forced satisfiable instances
wherein a solution is imposed as described in [XU 07]. Figure 10.2 shows the survival
function of a randomized MAC algorithm for 5,000 independent runs on each of four
representative instances generated at pcr ≈ 0.41 for k = 2, α = 0.8, r = 1.5 and
n ∈ {40, 45}. With a log-log scale, Figure 10.2 shows that the distribution is not
heavy-tailed, and this suggests that these instances are inherently hard.

10.1.2. Restart strategies

A restart strategy is defined by an infinite sequence ⟨(A1, t1), (A2, t2), . . .
(Ai, ti), . . .⟩ or by a finite sequence ⟨(A1, t1), (A2, t2), . . . (Ai−1, ti−1), (Ai,∞)⟩ of
runs, also called restart runs. For each run, the Ai term identifies the algorithm and
the ti term is the number of steps that algorithm Ai is allowed to execute. Thus to

www.it-ebooks.info

http://www.it-ebooks.info/


Restarts and Nogood Recording 435

 1e-04

 0.001

 0.01

 0.1

 1

 10  100  1000  10000  100000  1e+06

Su
rvi

val
 fu

nct
ion

 (1
 - C

DF
)

Number of backtracks

n=40
n=45

unforced instances
forced instances

Figure 10.2. Non heavy-tailed regime for instances in RB(2,{40, 45},0.8,1.5,pcr ≈ 0.41)

solve a given instance, algorithm A1 is run for t1 steps, algorithm A2 for t2 steps, and
so on. When the sequence of runs is finite, the last algorithm Ai is allowed to execute
an unlimited number of steps (symbolized by ∞). The cutoff, which is the number of
allowed steps, may be the number of backtracks, the number of wrong decisions, the
number of seconds or any other relevant measure.

A first solution to perform different search space explorations with a unique
algorithm (the usual case) is to use randomization. If the search space is to be
explored with different randomizations of a single algorithm, there are several ways
to randomize. Random variable ordering and/or value ordering heuristics can be used,
as mentioned previously. This may seem appropriate for tackling random instances,
but for structured instances there may be appreciable loss of efficiency if non-random
ordering heuristics are not used. With structured instances it may be better to use
non-random heuristics except that ties are broken randomly. Another idea is to make
the first few decisions (near the root of the search tree) purely randomly, and use
non-random ordering heuristics thereafter. Clearly, randomization must be balanced
against heuristic guidance.
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We now assume the use of a randomized search algorithm. In a fixed cutoff
restart strategy the ti are all equal. When the runtime distribution is fully known, a
fixed cutoff restart strategy is optimal [LUB 93]. However, the runtime distribution
is usually unknown in practice. In this case, Luby et al. have shown that there is a
universal strategy which has the best performance, up to a constant factor, achievable
by any universal strategy. In practice, a fixed cutoff restart strategy eliminates heavy-
tailed behavior [GOM 98], but a good cutoff value has to be found by trial and error.
By increasing the cutoff geometrically [WAL 99] we can get close to the optimal
value in a few runs (with the hope of being then successful). Besides, this guarantees
completeness.

Learning provides another way of managing successive restarts of a single
algorithm. Nogoods that are recorded, and kept until the instance is solved, can
serve to influence the search in subsequent restart runs. However, to guarantee both
completeness and systematicity (which ensures that no node in the search tree is
visited more than once [FUK 03]), a nogood must systematically be extracted and
recorded for each dead-end that is reached. The number of recorded nogoods may
grow exponentially, but there is a simple approach that permits control of the number
of nogoods required to guarantee completeness and systematicity. Learning can
be limited to nogoods “present” in the last branch of the search tree before each
restart; subsequent runs omit parts of the search tree that have already been explored.
This idea is called search signature in [BAP 01], path recording in [FUK 03] and
restart nogoods in [LEC 07e, LEC 07f]. Further information about restarts (and
randomization) can be found in [BEE 06, GOM 06].

10.2. Nogood recording from restarts
This chapter henceforth considers a backtrack search algorithm (e.g. MAC) using

binary branching, taking positive decisions first, maintaining a consistency at each
step, and using a restart strategy. For any branch of the search tree (built during a run of
the backtrack search algorithm), a set of relevant standard nogoods (instantiations that
cannot lead to a solution) can be identified directly. Nogood recording from restarts
means recording these nogoods but only for the last (rightmost) branch of the search
tree just before the restart.

10.2.1. Reduced nld-nogoods
Each branch of the search tree is a sequence of positive and negative decisions. For

each branch starting from the root, a generalized nogood can be extracted from each
negative decision [PUG 05b, LEC 07f], as follows:
DEFINITION 10.1.– [nld-subsequence] Let Σ = ⟨δ1, . . . , δm⟩ be a sequence of
decisions. If δi is a negative decision, with 1 ≤ i ≤ m, then the subsequence
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⟨δ1, . . . , δi⟩ of Σ comprising the i first decisions of Σ is called a nld-subsequence
(negative last decision subsequence) of Σ. The sets of positive and negative decisions
of Σ are denoted by pos(Σ) and neg(Σ), respectively.

PROPOSITION 10.2.– [nld-nogood] Let P be a a constraint network and Σ be the
sequence of decisions taken along a branch (starting from the root) of the search tree
built for P . For any nld-subsequence ⟨δ1, . . . , δi⟩ of Σ, the set ∆ = {δj ∈ Σ | 1 ≤
j < i} ∪ {¬δi} is a generalized nogood of P , called nld-nogood.

Proof. As positive decisions are taken first, when the negative decision δi is
encountered, the subtree corresponding to the opposite decision ¬δi has been
refuted.

x = a

z =
a

⊥ ⊥

⊥

⊥

⊥ ⊥

v = a

w = b

x ̸= a

w ̸= b

z =
b

y ̸=
c

y = b y ̸= b

z ̸=
b
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x
=
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⊥ ⊥ ⊥

w ̸= a

y =
c

y ̸=
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z =
b z ̸=

b

w = a

Figure 10.3. A partial search tree built by a backtrack search algorithm

EXAMPLE.– The sequence of decisions taken along the rightmost branch in
Figure 10.3 is ⟨v = a,w ̸= b, y ̸= b, x = c, w ̸= a, z ̸= b⟩. The nld-subsequences and
nld-nogoods that can be extracted from this branch are as follows:

nld-subsequences nld-nogoods
⟨v = a, w ̸= b⟩ {v = a, w = b}

⟨v = a, w ̸= b, y ̸= b⟩ {v = a, w ̸= b, y = b}
⟨v = a, w ̸= b, y ̸= b, x = c, w ̸= a⟩ {v = a, w ̸= b, y ̸= b, x = c, w = a}

⟨v = a, w ̸= b, y ̸= b, x = c, w ̸= a, z ̸= b⟩ {v = a, w ̸= b, y ̸= b, x = c, w ̸= a, z = b}

Although Σ is a sequence, we use set notation (δj ∈ Σ) because there is no
ambiguity; no decision occurs more than once in Σ. Nogoods identified by proposition
10.2 are generalized nogoods because they can contain both positive and negative
decisions. However, in our particular context, nld-nogoods can be systematically
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reduced in size by omitting negative decisions, thus reducing space requirements and
improving pruning capability. Besides, as shown later, (standard) nogoods can easily
be handled to make inferences, in a not too intrusive way.

PROPOSITION 10.3.– [Reduced nld-nogood] Let P be a constraint network and Σ be
the sequence of decisions taken along a branch of the search tree (starting from the
root). For any nld-subsequence Σ′ = ⟨δ1, . . . , δi⟩ of Σ, the set ∆ = pos(Σ′) ∪ {¬δi}
is a (standard) nogood of P , called a reduced nld-nogood.
EXAMPLE.– For the rightmost branch in Figure 10.3 the nld-nogoods and reduced
nld-nogoods are:

nld-nogoods reduced nld-nogoods
{v = a, w = b} {v = a, w = b}

{v = a, w ̸= b, y = b} {v = a, y = b}
{v = a, w ̸= b, y ̸= b, x = c, w = a} {v = a, x = c, w = a}

{v = a, w ̸= b, y ̸= b, x = c, w ̸= a, z = b} {v = a, x = c, z = b}

The proof of Proposition 10.3, which can be found in [LEC 07f], is based on a
certain form of resolution. When decisions are regarded as literals (see e.g. constraint
resolution [MIT 03]), propositional resolution can be applied directly.

DEFINITION 10.4.– [Resolvent] Let P be a constraint network, (x, a) be a v-value of
P , Γ and Λ be two sets of decisions on P that do not involve (x, a). If∆1 = Γ∪ {x =
a} and ∆2 = Λ ∪ {x ̸= a} then the resolvent of ∆1 and ∆2 on (x, a) is Γ ∪ Λ.

If ∆1 and ∆2 are generalized nogoods then clearly the resolvent of ∆1 and ∆2 on
(x, a) is also a generalized nogood of P . For example, the resolvent of {x = b, z ̸= a}
and {w = c, y ̸= b, z = a} on (z, a) is {x = b, w = c, y ̸= b}. Imagine that {x =
b, w = c, y ̸= b} is not a nogood, whereas {x = b, z ̸= a} and {w = c, y ̸= b, z = a}
are nogoods. This would mean that {x = b, w = c, y ̸= b} could be extended to
a solution S with either S[z] = a or S[z] ̸= a; but each of these extensions would
violate a nogood, thus contradicting our assumption. For our example, the reduced
nld-nogoods can be obtained by resolution as shown in Figure 10.4.

The space required to store the standard nogoods that can be extracted from any
branch of the search tree is polynomial with respect to the number of variables and the
greatest domain size:

PROPOSITION 10.5.– Let P be a constraint network and Σ be the sequence of
decisions taken along a branch of the search tree. The worst-case space complexity to
record all reduced nld-nogoods of Σ is O(n2d).
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{v = a, w = b}

{v = a, w ̸= b, y ̸= b, x = c, w = a}

{v = a, w ̸= b, y = b}

{v = a, w ̸= b, x = c, w = a}{v = a, w = b}

{v = a, w ̸= b, y ̸= b, x = c, z = b}

{v = a, y ̸= b, x = c, z = b} {v = a, y = b}

{v = a, x = c, z = b}

{v = a, y = b}

{v = a, x = c, w = a}

{v = a, w = b}

{v = a, w ̸= b, y ̸= b, x = c, w ̸= a, z = b}

Figure 10.4. Derivation of reduced nld-nogoods using resolution

Proof. First, the number of negative decisions in any branch is O(nd). For each
negative decision, we can extract a reduced nld-nogood. A reduced nld-nogood
contains only positive decisions, so its size is O(n). Hence the overall space
complexity is O(n2d).

Each nld-nogood is subsumed by its reduced nld-nogood, which has greater
pruning capability. Besides, reduced nld-nogoods are easier to manage because they
are standard nogoods.

10.2.2. Extracting nogoods

As mentioned earlier, the runtime distribution of a randomized search algorithm
is sometimes characterized by an extremely long tail with some infinite moment. For
some instances, it has been found worthwhile to employ restarts with a randomized
search heuristic. However, if restarts are employed without learning (as it is currently
the case for most of the academic and commercial constraint solvers), the average
performance of the solver can be damaged on some instances because the same
parts of the search space may be explored several times. On the other hand, nogood
recording without restarts has not yet been shown to be entirely convincing for
constraint satisfaction; when uncontrolled, nogood recording can lead to exponential
space complexity. Although restarts without nogood recording, and also nogood
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recording without restarts, may be of limited use, a combination of both of these
techniques can be more useful. Reduced nld-nogoods can be extracted (to be recorded
in a nogood base) from the current (rightmost) branch of the search tree at the end
of each run. These nogoods can be used to prevent parts of the search space from
being explored more than once. Thus we can then benefit from restarts and learning
capabilities without sacrificing solver performance or space complexity.

When the current run is stopped, the function extractNogoods, Algorithm 78,
derives reduced nld-nogoods from the current branch of the search tree. This function
admits as parameter the sequence of decisions along the current rightmost branch and
returns a set of standard nogoods. Each negative decision in this sequence yields a
standard nogood, as explained in section 10.2.1. From the root to the last decision
of the current branch, we record successive positive decisions (in a set denoted by
positiveDecisions). For each negative decision encountered, Algorithm 78 constructs
a nogood ∆ from the negation of this decision and all previous positive decisions
recorded (line 7).

Algorithm 78: extractNogoods(Σ: sequence of decisions): set of nogoods
Input: Σ = ⟨δ1, . . . , δm⟩
Output: the set of reduced nld-nogoods extracted from Σ

nogoods ← ∅1
positiveDecisions ← ∅2
for i ranging from 1 to m do3
if δi is a positive decision then4

positiveDecisions ← positiveDecisions ∪ {δi}5
else6

∆ ← positiveDecisions ∪ {¬δi}7
nogoods ← nogoods ∪ {∆}8

return nogoods9

Recorded nogoods are used to prevent repeated exploration of the same parts of
the search space during subsequent runs. This is accomplished by ensuring that the
set of decisions along the current branch is not subsumed by any recorded nogood.
Moreover, nogoods can be used to make inferences, as described in the next section.
For example, when the decision v = a becomes true during search, w ̸= b can be
inferred from the nogood {v = a,w = b}.

Finally, note that reduced nld-nogoods extracted from the last branch subsume
all reduced nld-nogoods that could be extracted from any branch previously explored
during the current run. This is true because each subtree that is completely explored
(and, thus, all nld-nogoods that could be derived from all branches of this subtree) is
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prefixed by at least one nld-nogood of the last branch. However, this is not true when
nogoods are minimized; see section 10.4.

10.3. Managing standard nogoods

This section explains how to make efficient use of standard nogoods (and therefore
also reduced nld-nogoods recorded during restart runs) in the domain of constraint
satisfaction. Standard nogoods, which are sets (conjunctions) of positive decisions,
are now recorded in an equivalent form as sets (disjunctions) of negative decisions.
Using this representation, an efficient propagation algorithm can enforce generalized
arc consistency on nogood constraints by means of the SAT technique of watched
literals [MOS 01, ZHA 02b, EÉN 03].

10.3.1. Nogood constraints

A problem that entails a nogood has no solution. Standard nogoods can be used to
prune the search tree by ensuring that no nogood is entailed by the current problem.
Entailment of decisions was the subject of Definition 1.60, which we now develop as
follows:

DEFINITION 10.6.– [Almost Entailment] Let P be a constraint network and ∆ be a
set of positive decisions on P .

– P entails ∆ iff P |∆ = P , i.e. ∀x = a ∈ ∆,domP (x) = {a}.
– P almost entails ∆ iff there exists a positive decision x = a in ∆ such that

domP (x) ̸= {a}, a ∈ domP (x) and P entails ∆ \ {x = a}.

Every time a backtrack search algorithm generates a new node v, we can check
whether cn(v), the constraint network associated with v, entails a nogood recorded
earlier. Actually, there are two main flavors of pruning: either v is directly rejected
because it entails a nogood, or some domains of variables in cn(v) are filtered to
ensure that almost entailed nogoods will not be entailed later.

Each standard nogood can be represented by a nogood constraint. More precisely,
if ∆ is a standard nogood, then the scope of the nogood constraint c∆ is vars(∆) and
the relation of this constraint forbids only the singe tuple found in ∆. For example, if
∆ = {x = a, y = b, z = c} is a nogood, then we have a ternary nogood constraint c∆

such that scp(c∆) = {x, y, z} and rel(c∆) = dominit(x)×dominit(y)×dominit(z)\
{(a, b, c)}. A nogood constraint can be represented in intensional form simply by
applying De Morgan’s law to nogoods viewed as logical conjunctions of positive
decisions. The intensional representation is a disjunction of negative decisions. For
example, from the nogood ∆ = {x = a, y = b, z = c}, we can derive the nogood
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constraint c∆ : x ̸= a ∨ y ̸= b ∨ z ̸= c. For each decision x = a in ∆, the
complementary decision x ̸= a is included in the intensional predicate expression
of the nogood constraint c∆. We shall refer to these negative decisions as decisions of
the constraint c∆.

We now present a direct translation in CSP of the mechanism of SAT unit
propagation based on watched literals. A negative decision may be in three different
states with respect to the current problem. A negative decision x ̸= a is said to
be satisfied (i.e. inevitably true) iff a /∈ dom(x). A negative decision x ̸= a is
said to be falsified (i.e. inevitably false) iff dom(x) = {a}. A negative decision
which is neither satisfied nor falsified is said to be free (undetermined); in this case
a ∈ dom(x) ∧ |dom(x)| > 1. For example, if dom(x) = {b, c}, dom(y) = {b} and
dom(z) = {a, b, c}, then x ̸= a ∨ y ̸= b ∨ z ̸= c is (the predicate expression of) a
nogood constraint such that the first decision is satisfied, the second one is falsified
and the third one is free.

A nogood ∆, viewed as a constraint c∆, simply states that at least one decision
(occurring in the predicate expression) of c∆ must be evaluated to true. Four cases are
possible when dealing with a nogood constraint c∆:

1) c∆ is entailed because one decision of c∆ is satisfied: the current problem does
not entail the nogood ∆.

2) c∆ is disentailed because all decisions of c∆ are falsified: the current problem
entails the nogood ∆ (so backtrack is necessary).

3) c∆ contains no satisfied decisions and exactly one free decision: the current
problem almost entails the nogood ∆ (this free decision can be forced to be satisfied).

4) c∆ contains no satisfied decisions and (at least) two free decisions: the nogood
∆ is neither entailed nor almost entailed by the current problem.

It is easy to see that as long as there are (at least) two free decisions in c∆,
the constraint c∆ is GAC-consistent. Conversely, c∆ is not GAC-consistent when
the current problem entails or almost entails the nogood ∆. If the current problem
entails the nogood ∆, then the constraint c∆ is violated, so the search must backtrack
(if possible). If the current problem almost entails the nogood ∆, then forcing the
unique free decision (to be satisfied) means enforcing generalized arc consistency by
removing a GAC-inconsistent value from the domain of the variable involved in this
decision. For example, if dom(x) = {a}, dom(y) = {b} and dom(z) = {a, b, c},
then c∆ : x ̸= a ∨ y ̸= b ∨ z ̸= c is a nogood constraint that almost entails
∆ = {x = a, y = b, z = c}. Forcing z ̸= c to true means removing c from dom(z);
this is safe because there is no support for (z, c) on c∆.

A search algorithm can simply insist that no nogood is entailed, or can go further
by forcing some decisions when necessary. This is exactly the difference between
backward checking and enforcing generalized arc consistency. Enforcing generalized
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arc consistency seems a better solution because it can be implemented cheaply (lazily)
by using watched literals, and also because it can prune the search space by looking
ahead.

10.3.2. Watched decisions
Standard nogoods that are identified (e.g. extracted from the rightmost branch after

each new restart run) can be recorded in the form of nogood constraints in a base
denoted here by B. Each time a positive decision is (explicitly or implicitly) taken
during search, the search algorithm checks whether the current set of decisions is
compatible with all the nogood constraints in B.

The watched literals [MOS 01, ZHA 02b, EÉN 03] lazy data structure provides
efficient access to nogood constraints in B. In the present context, a nogood constraint
is a disjunction of decisions instead of literals, so we shall refer to watched decisions
instead of watched literals. The idea is to mark two decisions in each nogood
constraint. These allow identification of the moment when a nogood is entailed or
almost entailed by the current problem. Suppose, for example, that two standard
nogoods ∆1 = {x = a, y = b, z = c} and ∆2 = {x = a,w = b}, have been recorded
as constraints c∆1 : x ̸= a ∨ y ̸= b ∨ z ̸= c and c∆2 : x ̸= a ∨ w ̸= b. Figure 10.5
shows the nogood constraint base, with decisions x ̸= a and z ̸= c watched in the
first nogood constraint and decisions x ̸= a and w ̸= b watched in the second one.
Watched decisions are designated by markers w1 and w2. We also have an array of nd
entries such that each entry corresponds to a v-value (x, a) of the (initial) problem and
represents the head of a linked list allowing the access to the nogood constraints of
B that contain the watched decision x ̸= a. We can access to such a list, denoted by
B(x,a), in constant time. For example, in Figure 10.5, B(x,a) is a linked list providing
access to c∆1 and c∆2 because in both constraints, x ̸= a is watched, whereas B(z,c)

is a linked list providing access only to c∆1 because z ̸= c is only watched decision
in c∆1 .

So long as both watched decisions in a nogood constraint are free or satisfied,
inference is not possible because the constraint is generalized arc-consistent.
Propagation is guided by fix(x) events [SCH 06]: the nogood constraint base is
woken up when a variable becomes fixed, or in other words, when a positive decision
is (explicitly or implicitly) taken. Whenever a positive decision x = a is taken, the
list B(x,a) is visited. For each nogood constraint c∆ of this list, x ̸= a is a watched
decision and we have first to check if the other watched decision of c∆ is satisfied. If
this is the case, c∆ is entailed (so, we can abandon c∆). Otherwise, another watchable
decision, i.e. a decision that is free or satisfied, must be sought. Either this search
is successful2 and this decision becomes the new watched one (replacing x ̸= a),

2. If the second watched decision is falsified, it will be necessarily woken up later.
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x ̸= a w ̸= b

Figure 10.5. A nogood constraint base B including two nogoods constraints
c∆1 : x ̸= a ∨ y ̸= b ∨ z ̸= c and c∆2 : x ̸= a ∨ w ̸= b
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x ̸= a w ̸= b

w1

Figure 10.6. The nogood constraint base B of Figure 10.5 after taking the decision z = c. A
new decision is watched in the nogood constraint c∆1 since z ̸= c is now falsified
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Figure 10.7. The nogood constraint base B of Figure 10.6 after taking the decision x = a.
The decisions y ̸= b and w ̸= b are inferred since z ̸= c and now x ̸= a are falsified

or instead we have to force the second watched decision of c∆ in order to make c∆

generalized arc-consistent (potentially generating a domain wipe-out).
For example, the nogood constraint base in Figure 10.6 is obtained from

Figure 10.5 after the decision z = c has been taken, assuming that x ̸= a is not
satisfied and y ̸= b watchable. Consequently, the decision y ̸= b is now watched
instead of z ̸= c in the nogood constraint c∆1 . When the decision x = a is made, the
two nogood constraints are visited. But for each of these two constraints, since there
is no other watchable decision, the second watched decision is forced by inference, as
shown in Figure 10.7.

The following watched decision invariant is important. At each node v of the
search tree such that cn(v) ̸= ⊥ (recall that cn(v) is obtained after enforcing φ),
the state obtained after having propagated all fix(x) events on the base B is consistent:
every nogood constraint is guaranteed to be either entailed (and thus generalized arc-
consistent) because at least one of its watched decisions is satisfied, or generalized
arc-consistent (and possibly entailed3) because its two watched decisions are free.

Another nice feature of watched decisions (or literals) is that they are backtrack-
stable, i.e. they remain valid upon backtracking. This means that when the search
algorithm backtracks, even if the watched decisions have been changed in the subtree
that has just been explored, the watched decision invariant still holds. Consequently,

3. A non-watched decision may be satisfied.
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w ̸= c x ̸= b y ̸= b z ̸= a

dom(w)

{a, b, c}
dom(x) dom(y) dom(z)

{a, b, c} {a, b, c} {a, b, c}
= = = =

(a) Initially (level 0), the first and last decision of the nogood constraint are watched

w ̸= c x ̸= b y ̸= b z ̸= a

dom(w)

{a, b, c}
dom(x) dom(y) dom(z)

{a, b, c} {a, b, c}
= = ==

{a, b, c}

(b) After setting y = b (level 1). As y ̸= b is not watched, the nogood constraint is not handled

w ̸= c x ̸= b y ̸= b z ̸= a

dom(w)

{a, b, c}
dom(x) dom(y) dom(z)

{a, b, c} {a, b, c}
= = ==

{a, b, c}

(c) After setting z = a (level 2). As z ̸= a is watched and is now falsified, a watchable decision is sought:
x ̸= b is found

w ̸= c x ̸= b y ̸= b z ̸= a

dom(w)

{a, b, c}
dom(x) dom(y) dom(z)

{a, b, c} {a, b, c}
= = ==

{a, b, c}

(d) After setting w = c (level 3). As w ̸= c is watched and is now falsified, a watchable decision (different
from x ̸= b) is sought: none can be found and consequently, x ̸= b is inferred. The watched decisions remain
the same (one is falsified and the other satisfied)

w ̸= c x ̸= b y ̸= b z ̸= a

dom(w)

{a, b, c}
dom(x) dom(y) dom(z)

{a, b, c} {a, b, c} {a, b, c}
= = = =

(e) After backtracking to level 0. There is no need to modify watched decisions as found at (d) before
backtracking

Figure 10.8. Evolution of watched decisions during search
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no data-structures need to be restored when backtracking. When an inference is
made, the constraint nogood becomes entailed with a watched decision satisfied
and a watched decision falsified. However, the falsified watched decision will again
be watchable after a backtrack. This is why the structures remain unchanged in
Figure 10.7 even when the watched decision x ̸= a is falsified. Figure 10.8 provides
another detailed illustration.

Finally, we provide some details of the initial recording of nogoods (as constraints)
in B and of the initialization of watched decisions. First, any nogood of size one (i.e.
involving only one decision) returned by function extractNogoods can be discarded
after definitively removing the corresponding value (i.e. for all subsequent runs). For
example, if ∆ = {x = a} is a nogood, then a can be permanently removed from
dom(x). Consequently, all nogood constraints in B have arity not less than two.
Second, two decisions must be watched each time a nogood is recorded, but any
decision in the nogood can be watched since the search algorithm is about to restart.
For each decision x ̸= a that is selected to be watched, a new link (for the new
nogood constraint) is inserted into the list B(x,a). Third, at the beginning of each new
restart run, entailed nogood constraints may be removed from the base B and falsified
decisions may be removed from nogood constraints.

10.3.3. Making inferences

An algorithm can use standard nogoods to make inferences while establishing
(maintaining) generalized arc consistency on the full set of constraints. We now show
this with the coarse-grained GAC algorithm presented in section 4.1. More precisely,
to take account of constraint nogoods in the base B, we simply include the following
instructions between lines 5 and 6 of enforceGACvar, Algorithm 9:

// These instructions must be put between lines 5 and 6 of function
enforceGACvar described in Algorithm 9

if |dom(x)| = 1 then
let a be the unique value in dom(x)
foreach decision y ̸= b ∈ makeInferences(x = a) do

// By construction, we know that b ∈ dom(y)
remove b from dom(y)
if dom(y) = ∅ then
return false

insert(Q, y)

Remember that variables are picked iteratively from the queue Q during
propagation. If a variable x has just been picked and if dom(x) is a singleton {a},
we may benefit from some nogood constraints recorded in the base B. In this case
the function makeInferences (described below) iterates over all nogood constraints
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containing x ̸= a as watched decision and returns a set of inferences (negative
decisions) made from these constraints. Each of these inferred negative decisions
allows a value to be removed from a domain, possibly causing an inconsistency or an
update of Q.

Algorithm 79: makeInferences(x = a: decision): set of decisions
Output: a set of negative decisions inferred from x = a

Γ ← ∅1
foreach nogood constraint c∆ ∈ B(x,a) do2

// x ̸= a is a decision watched in c∆ that is now falsified
Let (y ̸= b) be the second decision watched in c∆3
// c∆ is entailed if b /∈ dom(y)
if b ∈ dom(y) then4

δ ← findWatchableDecision(c∆)5
if δ = nil then6

Γ ← Γ ∪ {y ̸= b}7
else8

watch δ instead of x ̸= a in c∆9
remove c∆ from B(x,a)10
add c∆ to B(z,c) where δ is z ̸= c11

return Γ12

Algorithm 80: findWatchableDecision(c∆: nogood constraint): decision
Output: a watchable decision in c∆, or nil

foreach decision (z ̸= c) ∈ c∆ do1
if z ̸= c is not watched in c∆ then2

// we are searching for a satisfied or free decision
if c /∈ dom(z) or |dom(z)| > 1 then3
return z ̸= c4

return nil5

Algorithm 79 iterates over the list of nogood constraints that have a watched
decision which is the negation of the decision given as parameter. Each turn of the
main loop processes a nogood constraint c∆. If the second watched decision in c∆

is not satisfied because b is in dom(y) (line 4), the function findWatchableDecision,
Algorithm 80, examines all decisions (not currently watched) in c∆, seeking the next
decision to watch. A watchable decision is either satisfied or free. If no new watchable
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decision is found (symbolized by nil ), then the second decision currently watched
(y ̸= b) is collected (and will be forced a little bit later in the propagation process).
Otherwise, a new decision is watched instead of x ̸= a. We omit details about updating
lists Bx̸=a and Bδ.

10.3.4. Complexity analysis

In the following analysis of complexity of algorithms that extract and use
nogoods, B denotes the nogood constraint base and |B| denotes the number of
nogood constraints in B.

PROPOSITION 10.7.– The worst-case time complexity of extracting reduced nld-
nogoods from restarts, i.e. the worst-case time complexity of extractNogoods, is
O(n2d).

Proof. First, each nogood ∆ extracted (line 8 of Algorithm 78) is composed of at
most |pos(Σ)| decisions, and at most |neg(Σ)| nogoods can be extracted from Σ. Thus
the worst-case time complexity of extractNogoods is O(|pos(Σ)|.|neg(Σ)|). Because
|pos(Σ)| is O(n) and |neg(Σ)| is O(nd), we obtain O(n2d).

PROPOSITION 10.8.– The worst-case time complexity of exploiting reduced nld-
nogoods at each node of the search tree, i.e. the total worst-case time complexity of
makeInferences for a single call to propagateGACvar is O(n|B|).

The proof requires a small modification of the algorithm to guarantee that each
decision is checked to be watchable only once. Basically, Proposition 10.8 says that
enforcing GAC on a nogood constraint c∆ is O(n), and even more precisely O(r)
where r is the arity of c∆. Note that for each branch of the search tree the total
worst-case time complexity of using reduced nld-nogoods is also O(n|B|) since each
variable x can be fixed only once per branch.

COROLLARY 10.9.– Combined with nogood recording from restarts, the worst-case
time complexity of propagateGACvar is O(er2dr + n|B|) where r is the greatest
constraint arity.

Proof. The cost of establishing GAC is O(er2dr) when a generic algorithm such
as GAC2001 is used (GAC4 is O(erdr) but requires an extensional representation).
Moreover, the cost of exploiting nogoods has just been shown to be O(n|B|).

PROPOSITION 10.10.– The worst-case space complexity of storing reduced nld-
nogoods is O(nd + n|B|).
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Proof. We know that |B| nogoods of size at most n are recorded. Further, the number
of cells introduced to access nogoods is O(|B|) and the size of the introduced array
(with one pointer per negative decision) is O(nd). Thus we obtain O(nd+n|B|).

10.4. Minimizing nogoods

In section 10.2.1, nld-nogoods were reduced in size by considering positive
decisions only. To obtain more powerful nogoods, we now introduce reduced nld-
nogoods minimized with respect to a consistency φ.

10.4.1. Minimal φ-nogoods

In the context of a backtrack φ-search algorithm, φ is a consistency that is enforced
at each step of search. Whenever a dead-end is reached, a φ-nogood is identified
(see Definition 3.26). φ-nogoods can easily be minimized by a polynomial algorithm
such as QuickXplain or one of its variants [JUN 01]. At the end of each restart run,
reduced nld-nogoods extracted from the current branch can then be attempted to be
minimized. One interesting thing is that nld-nogoods which are not φ-nogoods can
be directly discarded: attempting to minimize them is useless. This is the case when
the last decision δm of the nld-subsequence from which a nld-nogood ∆ has been
extracted, does not directly lead to a failure when applying φ. This means that the
decision δm has led to exploration of a non-trivial subtree. On the other hand, when
δm leads directly to a dead-end, then δm inevitably belongs to a minimal φ-nogood
included in ∆. Consequently δm can be selected directly as the first transition decision
of the minimization algorithm defined in the next section.

Figure 10.9 shows part of the search tree for a run stopped after the decision z ̸= b;
a consistency φ is maintained at each node. Among the four nld-nogoods that can be
extracted, only two yield a direct dead-end: ∆1 = {v = a,w ̸= b, y = b} and
∆2 = {v = a,w ̸= b, y ̸= b, x = c, w ̸= a, z = b}. ∆1 and ∆2 are clearly φ-nogoods,
since the application of φ after the decisions y = b and z = b (shown by an arrow)
directly leads to an inconsistency. So the reduced nld-nogoods that will be considered
for minimization are ∆′

1 = {v = a, y = b} and ∆′
2 = {v = a, x = c, z = b}.

Note, however, that a reduced nld-nogood obtained from a nld-nogood which is a φ-
nogood is not itself inevitably a φ-nogood. Indeed, some negative decisions removed
when reducing a nld-nogood may actively participate in the conflict. An alternative is
to minimize nld-nogoods, and not minimizing reduced nld-nogoods, but generalized
nogoods may have to be handled subsequently (this is the topic of the next chapter).

When reduced nld-nogoods are highly minimized, the effect on subsequent
runs may be important. In the best case, minimization yields some φ-nogoods of
size 1: these are singleton φ-inconsistent values. For example, for φ = AC and
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Figure 10.9. Identification of (reduced) nld-nogoods susceptible to be minimized

for instances of the queens-knights problem involving five knights, we know that
each knight variable is singleton arc-inconsistent. If a knight variable is involved in
the last decision of a reduced nld-nogood, the minimization algorithm necessarily
detects a singleton arc-inconsistent value. Some experimental results in Table 10.2 of
section 10.5 confirm this observation.

10.4.2. Minimization techniques

There are several techniques for identification of minimal φ-nogoods (also called
conflict-sets) [JUN 01, PET 03b]. Because extracting a minimal φ-nogood is an
activity limited to a single branch in a search tree, the proposed algorithms involve (at
least, partially) a constructive scheme in order to retain some of the incrementality of
the propagation process. Although the most recent version of QuickXplain [JUN 04]
applies divide and conquer (as in [MAU 02]), it is defined in a more general context.
For example, it can extract minimal unsatisfiable cores from constraint networks.

To summarize, in order to find a minimal φ-nogood, its constituent decisions must
be identified iteratively. Given a φ-nogood ∆ = {δ1, δ2, . . . , δm} of a constraint
network P and a total ordering on the decisions (assuming for simplicity that the
order is given by the indices of decisions), there exists a decision δi such that
φ(P |{δ1,...,δi−1}) ̸= ⊥ and φ(P |{δ1,...,δi}) = ⊥. This decision δi necessarily belongs
to a minimal φ-nogood and is called the transition decision of ∆ (according to the
given ordering). Note also that each decision δj with j > i can be safely removed. A
transition decision is analogous to a transition constraint in [HEM 06].
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A transition decision is identified by using a minimization scheme which can
be constructive, destructive or dichotomic. The constructive minimization scheme
successively includes the decisions of ∆ (according to the given ordering) in
the constraint network until an inconsistency is detected when applying φ. The
destructive minimization scheme initially includes all decisions of ∆ in the network
and successively removes them one by one until no further inconsistency is detected
when φ is applied. The dichotomic minimization scheme identifies the transition
decision by means of a binary search.

Any one of these three approaches can extract a minimal φ-nogood. After finding
a first transition decision δi in ∆, a second can be sought after removing from ∆
all decisions δj with j > i (since unsatisfiability is preserved) and re-ordering the
decisions such that found transition decisions are the smallest ones in the order (the
background of [JUN 04]). This process can be repeated until all decisions of the
current nogood correspond to transition decisions that have been successively found.
The idea of this iterative process has been described in [SIQ 88, JUN 01, PET 03b,
HEM 06].
EXAMPLE.– Figure 10.10 illustrates the constructive approach, assuming that
∆ = {δ1, δ2, . . . , δm} is a φ-nogood. The first transition decision that is found
by successively including the decisions of ∆ is δi. When a new φ-nogood
∆′ = {δi, δ1, . . . , δi−1} is identified, δi becomes the first decision in the underlying
order. The second transition decision that is found is δj ; ∆′′ = {δi, δj , δ1, . . . , δj−1}
is a new φ-nogood. Finally, if we assume that φ(P |{δi,δj}) = ⊥, then ∆m = {δi, δj}
is a minimal φ-nogood. Recall here that the last decision of a nld-subsequence plays
the role of the first transition decision, and is then initially the first decision in the
underlying order.

In the context of identifying a minimal nogood, the constructive, destructive
and dichotomic approaches outlined above can be related to the algorithms called
RobustXplain, ReplayXplain and QuickXplain [JUN 01]. In the present context, the
inference operator that enforces φ is assumed to be incremental. This simply means
that the worst-case time complexities of applying φ on a given constraint network
from two respective sets of decisions ∆ and ∆′ such that ∆ ⊂ ∆′ are the same. For
example, all (known) generic algorithms that enforce φ = (G)AC are incremental.
Consequently, constructive identification of a transition decision is appropriate for
our purpose and has been used in our experiments. Its complexity is the subject of the
next section.

10.4.3. Complexity analysis
PROPOSITION 10.11.– The worst-case time complexity of extracting a minimal GAC-
nogood from a GAC-nogood is O(enr2dr).

Proof. A generic algorithm such as GAC2001 that enforces GAC on a constraint
network is incremental. Consequently, using a constructive approach to identify
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Figure 10.10. Identifying a minimal φ-nogood∆m from a φ-nogood∆ using a constructive
approach

a transition decision is O(er2dr), which is the worst-case time complexity of
establishing GAC only once. If the extracted nogood is composed of k decisions,
then we obtain an overall complexity in O(ker2dr). Since k is O(n), we obtain
O(enr2dr).

COROLLARY 10.12.– In the binary case (i.e. for r = 2), the worst-case time
complexity of extracting a minimal AC-nogood from an AC-nogood is O(end2).

PROPOSITION 10.13.– The worst-case time complexity of extracting minimal reduced
GAC-nld-nogoods (at the end of each run) is O(en2r2dr+1).

Proof. Extracting reduced nld-nogoods from restarts is O(n2d). Here, we obtain
reduced GAC-nld-nogoods. Extracting a minimal GAC-nogood from a GAC-nogood
is O(enr2dr) and we know that there are at most O(nd) reduced nld-nogoods that
are GAC-nogoods to be minimized.

COROLLARY 10.14.– In the binary case (i.e. for r = 2), the worst-case time
complexity of extracting minimal reduced AC-nld-nogoods (at the end of each run) is
O(en2d3).
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10.5. Experimental results

Results of experiments on a Xeon processor clocked at 3 GHz and with 1 GB
RAM demonstrate the practical value of nogood recording from restarts. We have run
MAC embedding GAC3rm and have studied the impact of exploiting restarts (denoted
by MAC+RST), nogood recording from restarts (denoted by MAC+RST+NG) and
the same technique with minimization (denoted by MAC+RST+NGm). We have
employed a restart policy in which the number of backtracks allowed for the first
run is ten, and at each new run the number of allowed backtracks is increased
by a factor equal to 1.5. This is a geometric restart policy as in [WAL 99]. For
search, we have used three different variable ordering heuristics: the classical bz
and dom/ddeg as well as the adaptive dom/wdeg. It is important to note that when
restarts have been performed, ties have been broken randomly in bz and dom/ddeg
because these heuristics do not learn. For dom/wdeg, the weights of constraints are
preserved from each run to the next, which makes randomization useless (weights
discriminate sufficiently). We have tested the different combinations on the full set of
3,621 instances used as benchmarks for the first round of the 2006 constraint solver
competition. The time limit to solve an instance was 20 minutes.

For MAC, MAC+RST, MAC+RST+NG and MAC+RST+NGm, Table 10.1
summarizes the number of instances unsolved within the time limit (#timeouts)
and the average CPU time in seconds. On random instances, for all the heuristics,
restarting search appears to be unhelpful, which is not surprising since there is no
structure to exploit from one run to the next. However, on random instances, recording
(minimized) nogoods from restarts yields approximately the same results as MAC
without restarts. On structured instances, as expected, recording nogoods from restarts
is beneficial. Also, minimizing nogoods has a significant effect, particularly when
classical heuristics are used. In an overall analysis, while restarting without learning
somewhat improves results, nogood recording from restarts significantly improves the
robustness of the solver. Nogood recording reduces the number of unsolved instances
and also the average CPU time. This is because with restarts the solver never explores
the same portion of the search space more than once. Figures 10.11, 10.12 and
10.13 are scatter plots displaying pairwise comparisons for MAC, MAC+RST and
MAC+RST+NGm when the heuristic dom/ddeg is used. Note the presence of many
dots on the right-hand side of these figures, which represent instances unsolved
(within 20 minutes) by the methods whose name labels the x-axis.

Table 10.2 shows results obtained for some instances of the queens-knights
problem. As indicated in section 10.4, minimizing nogoods is quite relevant on such
instances since singleton arc-inconsistent values can be detected. Note that results are
less impressive with the heuristic dom/wdeg, which helps to reducing thrashing here.
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MAC
+RST +RST+NG +RST+NGm

Random instances (1,390 instances)
dom/ddeg #time-outs 270 301 276 273

CPU 40.4 57.6 41.9 42.0

bz #time-outs 305 330 311 311
CPU 73.2 103.2 70.5 71.1

dom/wdeg #time-outs 266 278 274 268
CPU 36.4 45.8 38.1 41.2

Structured instances (2,231 instances)
dom/ddeg #time-outs 873 863 825 772

CPU 87.5 97.8 79.7 72.4

bz #time-outs 789 788 757 738
CPU 79.0 92.4 74.8 71.5

dom/wdeg #time-outs 623 554 551 551
CPU 50.5 51.3 51.4 50.8

Random and structured instances (3,621 instances)
dom/ddeg #time-outs 1,143 1,164 1,101 1,045

CPU 66.1 79.6 62.6 58.6

bz #time-outs 1,094 1,118 1,068 1,049
CPU 76.4 97.3 72.8 71.3

dom/wdeg #time-outs 889 832 825 819
CPU 44.1 48.8 45.4 46.5

Table 10.1. Number of unsolved instances and average CPU time on the benchmarks of the
2006 constraint solver competition (first round), given 20 minutes

MAC
+RST +RST+NG +RST+NGm

qk-12-5-mul
dom/ddeg 265.1 408.9 256.2 2.1

bz 255.7 377.9 250.8 2.1
dom/wdeg 3.1 1.8 2.6 1.6

qk-25-5-mul
dom/ddeg time-out time-out time-out 4.9

bz time-out time-out time-out 5.1
dom/wdeg time-out 4.2 4.8 4.3

qk-50-5-mul
dom/ddeg time-out time-out time-out 67.3

bz time-out time-out time-out 65.3
dom/wdeg time-out 59.5 44.6 43.9

Table 10.2. CPU time to solve some instances of the queens-knights problem, given 20 minutes
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Figure 10.11. Pairwise comparison (CPU time) between MAC and MAC-RST on the 3,621
instances used as benchmarks of the 2006 constraint solver competition (first round). The

variable ordering heuristic is dom/ddeg
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Figure 10.12. Pairwise comparison (CPU time) between MAC-RST and MAC-RST-NGm on
the 3,621 instances used as benchmarks of the 2006 constraint solver competition (first

round). The variable ordering heuristic is dom/ddeg
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Figure 10.13. Pairwise comparison (CPU time) between MAC and MAC-RST-NGm on the
3,621 instances used as benchmarks of the 2006 constraint solver competition (first round).

The variable ordering heuristic is dom/ddeg

10.6. Conclusion

This chapter has explored the recording of nogoods in conjunction with a restart
strategy. Restarting search can help to avoid the heavy-tailed phenomenon that has
been observed on some structured instances. The drawback of restarting without
recording nogoods is that parts of the search tree may be explored more than once.
Recording nogoods prevents re-exploration and renders randomization unnecessary,
especially when an adaptive heuristic is used.

Nogoods are recorded in the form of new constraints which can be propagated
efficiently by means of the 2-literal watching technique introduced for SAT. For
propagation, the only event we need to intercept is when a variable becomes fixed so
that its domain becomes a singleton. This technique does not require maintenance of
data structures upon backtracking, so nogood constraints can be easily integrated in
constraint solvers.

It is important to note that nogood constraints may share similar scopes and that
this directly affects filtering. For example, assume that we have two variables x and y
such that dom(x) = dom(y) = {a, b} and two nogood constraints c1 : x ̸= a∨y ̸= a
and c2 : x ̸= a∨ y ̸= b. There is no possible inference from c1 and c2 because the two
constraints each involve two free decisions. Normalization of the constraint network
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would yield a single constraint c3 : x ̸= a∨(y ̸= a∧y ̸= b). For dom(x) = dom(y) =
{a, b}, it is easy to see that (x, a) has no support on c3. Merging nogood constraints
that have similar scopes strengthens propagation but may produce constraints that have
arbitrary constraint relations. This may not be helpful because dynamically integrating
and merging arbitrary constraints is complex, and the complexity of enforcing GAC
is no longer linear in the arity of the constraints. Nevertheless, this certainly deserves
to be studied.

Other uses of watched literals in constraint satisfaction [GEN 06b] include an
efficient implementation for the global sum constraint (on Boolean variables), for the
global element constraint and also for table constraints. For table constraints the extent
to which a watched literal approach can compete with recent techniques (introduced
in Chapter 5) is not yet clear.
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Chapter 11

State-based Reasoning

In classical heuristic search algorithms (e.g. A* [HAR 68, HAR 72]) or game
search algorithms (e.g. Minimax [NEU 28]), nodes in the search tree represent world
states, and transitions represent moves. Many states may be encountered several times
at possibly different depths because different sequences of moves from the initial state
of the problem instance can yield identical situations in the world. Moreover, a state
s for a node at depth i of the search tree cannot lead to a better solution than a node
containing the same state s previously encountered at a depth j < i. As a consequence,
some portions of the search space may be unnecessarily evaluated and explored several
times, which may be costly.

The phenomenon of revisiting identical states reached from different sequences
of transitions, better known as transpositions, was identified very early in the context
of chess software [GRE 67, SLA 77, MAR 92]. One solution to this problem is to
store the encountered nodes, plus some related information (e.g. depth, heuristic
evaluation), in a so-called transposition table. A direct use of transposition tables
in backtrack search algorithms is clearly useless because the state of a constraint
network (the current domains of variables) associated with a node of the search tree
cannot be encountered twice. Indeed, with a binary branching scheme for example,
once it has been proven that a positive decision x = a cannot lead to a solution, the
opposite decision x ̸= a is taken in the second branch. In other words, in the first
branch the domain of x is reduced to the singleton {a}, while in the second branch a
is removed from the domain of x. Obviously, no state where x = a has been asserted
can be identical to a state where x ̸= a is true.

Fortunately, partial states can be extracted from constraint networks when
analyzing the role played by variables and constraints. More precisely, at each (leaf
or internal) dead-end of the search tree developed by the backtrack search algorithm,
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a partial snapshot of the current state (roughly speaking, a set of meaningful variables
and their domains) can be recorded. In order to avoid explorations of similar subtrees
occurring later during search, these inconsistent partial states are exploited to prune
the search tree. They may be used to detect equivalence [LEC 07g] by means of a
transposition table, or to detect dominance [LEC 07d] by posting new constraints.
Equivalence and dominance detection by means of partial states is what we call
state-based reasoning.

A partial state is formally defined as a set of membership decisions, which
is equivalent to a generalized nogood. Consequently, the approach proposed in
[KAT 03, KAT 05] that learns generalized nogoods by means of explanations can be
cast in this general state-based paradigm. Approaches that learn from inconsistent
values [FRE 93, RAZ 07] can also be related to state-based reasoning, since they
implicitly exploit hidden partial states. Finally, reasoning from states is known to
be at the heart of symmetry-breaking methods via dominance detection, see e.g.
[FAH 01, FOC 01, PUG 05b, SEL 05]. These methods, presented in the next chapter,
remove symmetric states and can be perceived as an additional and complementary
mechanism to reinforce state-based pruning.

Section 11.1 introduces (inconsistent) partial states as well as dominance
detection. In section 11.2, we present two approaches to identify inconsistent partial
states during search by means of eliminating explanations and inconsistent values.
Section 11.3 describes several combinable extraction operators that directly process
the current states. Equivalence detection using transposition tables is described in
section 11.4. Finally, a few experimental results are presented in section 11.5.

11.1. Inconsistent partial states

This section introduces the concept of an (inconsistent) partial state, and shows
how it can be used to prune the search tree.

11.1.1. Definitions

A partial state corresponds to a set of variables that have non-empty domains.
Equivalently, a partial state corresponds to a (well-formed) set of membership
decisions; see Definition 1.58.

DEFINITION 11.1.– [Partial State] A partial state ∆ is a well-formed set of
membership decisions; ∆ is strict iff each membership decision of ∆ is strict. A
partial state ∆ on a constraint network P is a well-formed set of valid membership
decisions on P ; ∆ is strict on P iff each membership decision of ∆ is strict on P .

www.it-ebooks.info

http://www.it-ebooks.info/


State-based Reasoning 461

In a strict partial state, every membership decision constitutes a real restriction.
Recall that a set ∆ of membership decisions is well-formed when each variable occurs
at most once in ∆; we denote by vars(∆) the set of variables occurring in membership
decisions of ∆. If ∆ is a partial state and if x ∈ Dx is a membership decision that
belongs to ∆, we denote Dx by dom∆(x). It is important that if P is a constraint
network involving x and is such that dom∆(x) ̸⊆ domP (x), then ∆ cannot be a partial
state on P ; each membership decision of a partial state on P must be valid on P .

There is an immediate partial state on any constraint network P . This partial state
is built by taking into account of all variables of P .

DEFINITION 11.2.– [Current State] The current state of a constraint network P is the
partial state {(x ∈ domP (x)) | x ∈ vars(P )} on P .

EXAMPLE.– Figure 11.1 shows the current state of a constraint network P , together
with three partial states ∆1, ∆2 and ∆3 on P . ∆1 and ∆2 are strict on P , but ∆3

is not strict on P because domP (v) = dom∆3(v). We have vars(∆1) = {w, z},
dom∆1(w) = {b, c} and dom∆1(z) = {a, b, d}.

P ∆1

w ∈ {b, c}
z ∈ {a, b, d}

∆2

v ∈ {b, d}
x ∈ {c}
z ∈ {a, b}

∆3

z ∈ {a, b, d}
w ∈ {b, c}
v ∈ {a, b, c, d}v ∈ {a, b, c, d}

w ∈ {a, b, c, d}
x ∈ {a, b, c, d}
y ∈ {a, b, c, d}
z ∈ {a, b, c, d}

Figure 11.1. The current state of a constraint network P and three partial states on P . Unlike
∆3,∆1 and∆2 are strict on P

A constraint network can be restricted over one of its partial states as defined in
section 1.4.2 (a partial state is a set of decisions). We now provide a definition in the
context of this chapter.

DEFINITION 11.3.– [P |∆] Let P be a constraint network and ∆ be a partial state
on P . The restriction P |∆ of P over ∆ is the constraint network obtained from P
by restricting the domain of each variable x ∈ vars(∆) to dom∆(x); for each x ∈
vars(∆), we have domP |∆(x) = dom∆(x) and for each x /∈ vars(∆), we have
domP |∆(x) = domP (x).

The restricted network P |∆ is smaller (≼d) than P . More precisely, if ∆ = ∅, we
have P |∆ = P and if ∆ is not empty and strict on P , we have P |∆ ≺d P . Figure 11.2
illustrates restriction over a partial state.
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P

∆

P |∆
v ∈ {a, b, c, d}
w ∈ {b, c}
x ∈ {a, b, c, d}
y ∈ {a, b, c, d}
z ∈ {a, b, d}

v ∈ {a, b, c, d}
w ∈ {a, b, c, d}
x ∈ {a, b, c, d}
y ∈ {a, b, c, d}
z ∈ {a, b, c, d}w ∈ {b, c}

z ∈ {a, b, d}

Figure 11.2. The restriction P |∆ of a constraint network P over a (strict) partial state∆ on
P . Current states are given for P and P |∆

When a variable x does not belong to a partial state ∆ (more precisely, when
x /∈ vars(∆)), this implicitly means that the domain of x remains unchanged by ∆.
Thus, in practice, it is sufficient to handle strict partial states, which have the advantage
of being shorter. A strict partial state can be derived readily from any partial state.

DEFINITION 11.4.– [∆s(P )] Let P be a constraint network and ∆ be a partial state
on P . ∆s(P ) denotes the set of membership decisions of ∆ that are strict on P .

For example in Figure 11.1, ∆1 is ∆s(P )
3 . It is important to note that ∆ and ∆s(P ) are

effectively equivalent because P |∆ = P |∆s(P ) .

A partial state ∆ on a constraint network P is said to be inconsistent if the network
defined as the restriction of P over ∆ is unsatisfiable.

DEFINITION 11.5.– [Inconsistent Partial State] Let P be a constraint network and ∆
be a partial state on P . ∆ is an inconsistent partial state on P , IPS for short, iff P |∆
is unsatisfiable.

We obtain a strict inconsistent partial state by discarding membership decisions
that are not strict.

PROPOSITION 11.6.– Let P be a constraint network and ∆ be an inconsistent partial
state on P . ∆s(P ) is an inconsistent partial state on P .
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A partial state ∆ is said to dominate a constraint network if each variable involved
in ∆ occurs in this network with a smaller domain.
DEFINITION 11.7.– [Dominance] Let P be a constraint network and ∆ be a partial
state such that vars(∆) ⊆ vars(P ). ∆ dominates P iff ∀x ∈ vars(∆), domP (x) ⊆
dom∆(x).

When a partial state ∆ dominates a constraint network P , P entails1 ∆, i.e.
P |∆ = P ; see Definition 1.60. By definition, a strict (non-empty) partial state ∆ on
a constraint network P cannot dominate P . So this notion of dominance (by a partial
state on P ) is useful only for constraint networks strictly smaller than P as shown in
Figure 11.3.

∆

w ∈ {b, c}
z ∈ {a, b, d}

P
′

P
′′

P

v ∈ {a, b, c, d}
w ∈ {b, c}
x ∈ {a, b, c, d}
y ∈ {a, d}
z ∈ {b}

w ∈ {b, c}
x ∈ {a, b, c, d}
y ∈ {a, d}
z ∈ {a, b, c, d}

≺d

v ∈ {a, b, c, d}

≺d

v ∈ {a, b, c, d}
w ∈ {a, b, c, d}
x ∈ {a, b, c, d}
y ∈ {a, b, c, d}
z ∈ {a, b, c, d}

Figure 11.3. Two constraint networks P ′ and P ′′ (strictly) smaller than P and a partial state
∆ on P . P ′ is dominated by∆

The following proposition is at the heart of state-based reasoning by dominance
detection.
PROPOSITION 11.8.– Let P and P ′ be two constraint networks such that P ′ ≺d P ,
and ∆ be an inconsistent partial state on P . If ∆ dominates P ′ then P ′ is
unsatisfiable.

Proof. If P ′ ≺d P , we have by monotony P ′|∆ ≼d P |∆. Since P ′ is dominated
by ∆, P ′|∆ = P ′. Hence P ′ ≼d P |∆. ∆ is an IPS on P , which means that P |∆ is
unsatisfiable. We conclude that P ′ is unsatisfiable.

1. We prefer the term of dominance in the context of this chapter.
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It is important to relate the notion of (inconsistent) partial state with notions of
global cut seed (GCS) [FOC 01] and pattern [FAH 01]. The main difference is that a
partial state can be defined on a subset of variables of a constraint network, whereas
GCSs and patterns, introduced to break global symmetries, systematically contain
all variables. However, since the absence of a variable x from a partial state ∆ on
a constraint network P implicitly means that x ∈ domP (x), all these notions are
fundamentally equivalent. Compared to inconsistent partial states, global cut seeds
and patterns are slightly more general in their use: each complete instantiation covered
by a global cut seed or a pattern may correspond to a solution that has already been
found. Although such a generalization is also possible for partial states, we shall focus
on inconsistent partial states because, to simplify, we restrict our presentation to the
search of a unique solution.

Partial states are said to be global when they are defined on the initial problem
P init; otherwise, they are said to be local. Global inconsistent partial states are valid
for the entire search space, whereas local inconsistent partial states only apply to some
search subtrees. Unless otherwise stated, inconsistent partial states will be assumed to
be global. Note that a global IPS can always be extracted from an internal dead-end of
the search tree built by a backtrack search algorithm: if v is an internal dead-end and
P = cn(v) is the constraint network associated with v, the current state of P is an IPS
itself. However, this IPS cannot be exploited later during search, unless restarts are
performed or symmetries are exploited. In sections 11.2 and 11.3, we present several
approaches to building relevant inconsistent partial states.

11.1.2. Pruning the search tree

In the context of backtrack search, Proposition 11.8 can be used to prune nodes
dominated by previously identified IPSs. More precisely, every time the search
algorithm generates a new node v, one can check whether cn(v), the constraint
network associated with v, is dominated by an IPS recorded earlier. Actually, there
are two main flavors of pruning: either v is directly rejected because it is dominated,
or instead some domains of variables in cn(v) are filtered to ensure that dominance
cannot happen later. To clarify this, we introduce the following weak version of
dominance:

DEFINITION 11.9.– [Almost Dominance] Let P be a constraint network and ∆ be
a partial state such that vars(∆) ⊆ vars(P ). ∆ almost dominates P iff there exists
a membership decision x ∈ Dx in ∆ such that domP (x) ̸⊆ dom∆(x), domP (x) ∩
dom∆(x) ̸= ∅ and ∆ \ {x ∈ Dx} dominates P .

The interesting cases are where dominance or almost dominance involves
inconsistent partial states. If a constraint network P is dominated by an inconsistent
partial state then P is necessarily unsatisfiable; this follows from Proposition 11.8.
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Moreover, a constraint network P that is almost dominated by an IPS ∆ can be
simplified by removing every value which would make the network dominated.
Indeed, if x is the only variable of P such that domP (x) ̸⊆ dom∆(x), we can
safely infer that each value in domP (x) ∩ dom∆(x) is inconsistent; by definition,
domP (x) ∩ dom∆(x) ̸= ∅, so we know that at least one inconsistent value is
identified. This is called enforcing 1-dominance consistency in [RAZ 03]. For
example, the constraint network P ′′ in Figure 11.3 is almost dominated by ∆. If ∆
is an IPS on P , the values a, b and d in the domain of z are inconsistent and can be
removed without loosing any solution.

Strictly speaking, as shown below, 1-dominance consistency is not exactly a new
consistency if we consider that each inconsistent partial state is represented by a
dominance constraint. If ∆ is an IPS, then a dominance constraint c∆ can be built
such that its scope is vars(∆) and its relation forbids any tuple that simultaneously
satisfies the membership decisions in ∆.

EXAMPLE.– Let x, y and z be three variables such that dominit(x) = dominit(y) =
dominit(z) = {a, b, c} and ∆ = {x ∈ {a, b}, y ∈ {c}, z ∈ {b, c}} be an IPS.
The ternary dominance constraint c∆ is such that scp(c∆) = {x, y, z} and rel(c∆) =
dominit(x)×dominit(y)×dominit(z)\{a, b}×{c}×{b, c}. Equivalently, rel(c∆) =
{c}× {a, b, c}× {a, b, c}∪ {a, b, c}× {a, b}× {a, b, c}∪ {a, b, c}× {a, b, c}× {a}.

Like nogood constraints (see section 10.3.1), dominance constraints can be
represented in intensional form simply by applying De Morgan’s law on inconsistent
partial states viewed as logical conjunctions of membership decisions. For example,
from the IPS ∆ = {x ∈ {a, b}, y ∈ {c}, z ∈ {b, c}}, we can formulate the dominance
constraint c∆ : x /∈ {a, b}∨ y /∈ {c}∨ z /∈ {b, c}, or equivalently c∆ : x ∈ {c}∨ y ∈
{a, b} ∨ z ∈ {a} if dominit(x) = dominit(y) = dominit(z) = {a, b, c}. Generally
speaking, for each decision x ∈ Dx occurring in ∆, the complementary decision
x ∈ dominit(x) \Dx occurs in (the predicate expression of) the dominance constraint
c∆. We shall refer to these complementary decisions as decisions of the constraint
c∆, which will sometimes be considered to be a set.

Membership decisions may be in three different states with respect to the current
problem. A membership decision x ∈ Dx is said to be satisfied (i.e. inevitably true) iff
dom(x) ⊆ Dx. A membership decision x ∈ Dx is said to be falsified (i.e. inevitably
false) iff dom(x) ∩ Dx = ∅. A membership decision which is neither satisfied nor
falsified is said to be free (undetermined); here we have ∅ ⊂ dom(x)\Dx ⊂ dom(x).
For example, if dom(x) = {a, b}, dom(y) = {b} and dom(z) = {a, c}, then x ∈
{c} ∨ y ∈ {a, b} ∨ z ∈ {a} is (the predicate expression of) a dominance constraint
such that the first decision is falsified, the second is satisfied and the third is free.

An IPS ∆, viewed as a dominance constraint c∆, simply states that at least
one decision occurring in the predicate expression of c∆ must be evaluated to
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true. Similarly to nogood constraints, four cases are possible when dealing with a
dominance constraint c∆:

1) c∆ is entailed because one decision of c∆ is satisfied: the current problem
cannot be dominated by ∆.

2) c∆ is disentailed because all decisions of c∆ are falsified: the current problem
is dominated by ∆ (so backtrack is necessary).

3) c∆ contains no satisfied decisions and exactly one free decision: the current
problem is almost dominated by ∆ (this free decision can be forced to be satisfied).

4) c∆ contains no satisfied decisions and (at least) two free decisions: the current
problem is neither dominated nor almost dominated by ∆.

It is easy to see that so long as there are (at least) two free decisions in c∆,
the constraint c∆ is generalized arc-consistent. In other words, it is only when ∆
dominates or almost dominates the current network that the constraint c∆ is not
generalized arc-consistent. If the current problem is dominated by the IPS ∆, this
means that the constraint c∆ is violated and consequently one has to backtrack (if
possible). If the current problem is almost dominated by the IPS ∆, then forcing the
unique free decision (to be satisfied) means enforcing generalized arc consistency by
removing some value(s) from the domain of the variable involved in this decision.
Consequently, checking dominance and enforcing 1-dominance consistency [RAZ 03]
from an IPS ∆ is equivalent to enforcing generalized arc consistency on c∆.

Algorithm 81: enforceGAC-ips(P : P , c∆: dominance constraint): set of vars
Output: the set of variables in scp(c∆) with reduced domain
X ← {x ∈ scp(c∆) | dom(x) ̸⊆ dom∆(x)}1
if |X| = 0 then2

throw INCONSISTENT // P is dominated by the IPS ∆3

if |X| = 1 then4
let x be the variable in X5
if dom(x) ∩ dom∆(x) ̸= ∅ then6

// P is almost dominated by the IPS ∆

dom(x) ← dom(x) \ dom∆(x)7
return {x} // potentially, dom(x) = ∅8

return ∅9

Algorithm 81 is a non-revision-based filtering procedure that enforces GAC on
a dominance constraint. This algorithm [RAZ 03] can be called by Algorithm 9:
enforceGAC-type in Algorithm 9 corresponds here to enforceGAC-ips. Algorithm 81
is not optimized but clearly shows how GAC can be enforced. However, in the
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same way as for nogood constraints, the lazy data structure of watched literals
[MOS 01, ZHA 02b, EÉN 03] can be used to enforce GAC efficiently on dominance
constraints. In our context, we shall refer to watched values (or watched v-values),
instead of watched literals. The idea is to mark two values in two distinct membership
decisions of each dominance constraint: these allow identification of the moment
where an IPS dominates or almost dominates the current problem.

EXAMPLE.– Assume that we have found two inconsistent partial states (on P init)
∆1 = {x ∈ {c}, y ∈ {a}, z ∈ {a, b}} and ∆2 = {x ∈ {b, c}, w ∈ {a, c}}, and
recorded them as dominance constraints c∆1 : x ∈ {a, b} ∨ y ∈ {b, c} ∨ z ∈ {c} and
c∆2 : x ∈ {a} ∨ w ∈ {b}; the initial domain of each variable is {a, b, c}. Figure 11.4
shows the dominance constraint base, with v-values (x, a) and (z, c) watched in the
first dominance constraint and v-values (x, a) and (w, b) watched in the second one.
Watched values are designated by markers w1 and w2. We also have an array of nd
entries such that each entry corresponds to a v-value (x, a) of the (initial) problem and
represents the head of a linked list allowing the access to the dominance constraints
of B that contain the watched v-value (x, a). We can access such a list, denoted by
B(x,a), in constant time.

..
.

..
.

..
.

..
.

w1 w2

c∆2
w ∈ {b}x ∈ {a}

x ∈ {a, b}

w1 w2

c∆1
y ∈ {b, c} z ∈ {c}

(z, c)

(x, a)

(w, b)

(y, b)

nil

nil

nil

nil

Figure 11.4. A dominance constraint base B including two dominance constraints
c∆1 : x ∈ {a, b} ∨ y ∈ {b, c} ∨ z ∈ {c} and c∆2 : x ∈ {a} ∨ w ∈ {b}

So long as both watched values in a dominance constraint are present, the
membership decisions in which they appear are free (or satisfied), and consequently
the constraint is generalized arc-consistent. Propagation is guided by deleted values.
Whenever a v-value (x, a) is deleted, the list B(x,a) is visited. For each dominance
constraint c of this list, a watchable value, i.e. a value present in the current problem,
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w1 w2

c∆2
w ∈ {b}x ∈ {a}

x ∈ {a, b}

w1 w2(x, a)

(w, b)

(y, b)

nil

nil

(z, c) nil

c∆1
y ∈ {b, c} z ∈ {c}

Figure 11.5. The dominance constraint base B of Figure 11.4 after deleting the value c from
dom(z). (y, b) is the new watched v-value in c∆1
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(x, a)

(w, b)

(y, b)

nil

nil

(z, c) nil

c∆1
y ∈ {b, c} z ∈ {c}x ∈ {a, b}

c∆2
w ∈ {b}x ∈ {a}

⇓

⇓

y ∈ {b, c}

w = b

Figure 11.6. The dominance constraint base B of Figure 11.5 after assigning the value c to x.
The decisions y ∈ {b, c} and w = b are inferred because no other value is watchable in both

constraints
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must be sought (but not in the domain containing the second watched value). Either
this search is successful and this value becomes the new watched one (replacing
(x, a)), or we have to force the decision involving the second watched value of c∆ in
order to make c∆ generalized arc-consistent (possibly generating a domain wipe-out).
EXAMPLE.– The dominance constraint base in Figure 11.5 is obtained from
Figure 11.4 when the v-value (z, c) is removed. Consequently, the v-value (y, b)
is now watched instead of (z, c) in c∆1 . Imagine that the variable x is later assigned
the value c; the v-values (x, a) and (x, b) are then deleted. The two dominance
constraints in B(x,a) allow some inferences to be made (because there is no longer a
watchable value). This is shown in Figure 11.6.

Using watched values in dominance constraints has two main advantages. First,
the worst-case time complexity of enforcing GAC on a dominance constraint c∆ is
linear in the size of c∆. More precisely, if k is the total number of values occurring
in membership decisions of c∆, i.e. k =

∑
(x∈Dx)∈c∆

|Dx|, then c∆ can be made
generalized arc-consistent in O(k); this is bounded by O(nd). It is sufficient to check
only once whether a value is watchable. For example, w1 can traverse the list of
values occurring in c from left to right while w2 can traverse the same list in reversed
order. The search for a watchable value is stopped when w1 and w2 refer to the
same membership decision. The second advantage of using watched values is that,
as expected, no restoration work is required upon backtracking. This saves time and
furthermore the integration of this technique into constraint solvers is made easy2
Whenever a v-value (x, a) is deleted, the dominance constraint base B is woken up,
and more precisely, dominance constraints accessed by B(x,a) are reviewed. When
values are restored, no maintenance is required.

Use of the structure of watched literals has been suggested in [KAT 03, RIC 06] to
propagate generalized nogoods. And as seen in the next section, generalized nogoods
are basically equivalent to inconsistent partial states. For generalized nogoods,
inferences may be conducted by using watched decisions, possibly positive or
negative, generalizing the approach described in Chapter 10 and developed for nogood
constraints. However, this reveals to be strictly weaker than enforcing GAC. For
example, let x = a∨x = b∨ y ̸= c be a generalized nogood, seen here as a constraint
after applying De Morgan’s law. We have dominit(x) = dominit(y) = {a, b, c},
dom(x) = {a, b, c} and dom(y) = {c}. In this nogood constraint, the two
decisions x = a and x = b are free, and so can be watched without producing
any inference. The dominance constraint equivalent to this generalized nogood
constraint is x ∈ {a, b} ∨ y ∈ {a, b}. When GAC is enforced on this dominance

2. Nevertheless, this requires intercepting each deletion of a value as an elementary event, which
makes propagation of dominance constraints a little bit more intrusive than propagation of
nogood constraints.
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constraint, x ̸= c is inferred (this is guaranteed in practice by the fact of selecting two
watched values in two different domains).

In [RIC 06], a different approach to store and enforce GAC on (generalized)
nogoods is proposed. Nogoods are compactly represented by an automaton but the
dynamic compilation of nogoods seems difficult to achieve in practice.

11.2. Learning from explanations and failed values
This section presents two approaches to the identification of inconsistent partial

states during search. The first approach allows global IPSs (or equivalently,
generalized nogoods) to be identified through the management of eliminating
explanations. The second approach allows IPSs to be identified from inconsistent
values called failed values. The implementation of each of these two approaches can
be regarded as an operator ρ that extracts inconsistent partial states from certain nodes
of the search tree, or (IPS) extraction operator.

11.2.1. Learning generalized nogoods
It is worth mentioning that inconsistent partial states are basically equivalent to

generalized nogoods. From any inconsistent partial state, it is possible to build an
equivalent generalized nogood that only contains negative decisions. Conversely, for
any generalized nogood there exists a unique equivalent strict inconsistent partial state;
see Proposition 1.59. In fact, strict partial states represent a useful kind of canonical
form for equivalent generalized nogoods.
EXAMPLE.– Consider three variables x, y and z such that dominit(x) = dominit(y) =
dominit(z) = {a, b, c}. The sets {x = a, y ̸= b, y ̸= c, z ̸= b} and {x = a, y =
a, z ̸= b}, regarded as generalized nogoods, are equivalent. They are also equivalent
to the strict inconsistent partial state {x ∈ {a}, y ∈ {a}, z ∈ {a, c}}. A generalized
nogood only involving negative decisions and equivalent to previous nogoods is {x ̸=
b, x ̸= c, y ̸= b, y ̸= c, z ̸= b}.

To derive generalized nogoods (or equivalently inconsistent partial states) the
initial observation made in [KAT 03] is the following: if x is a variable of the
problem, then to find a solution x must necessarily be assigned a value from its
domain. This means that we cannot have: x ̸= a1 ∧ x ̸= a2 ∧ · · · ∧ x ̸= ad

where dominit(x) = {a1, a2, . . . , ad}. The set {x ̸= a1, x ̸= a2, . . . , x ̸= ad}
is thus a “must have a value” generalized nogood3. If during search, we obtain a

3. Strictly speaking, according to our definitions, this is not a generalized nogood since the set
is not well-formed.
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domain wipe-out for x, and if we have an eliminating explanation expl(x ̸= ai)
for each value ai ∈ dominit(x), then a nogood can be computed automatically: this
is ∪ai∈dominit(x) expl(x ̸= ai). However, when classical eliminating explanations
are collected, this nogood is standard (i.e. not generalized) because it only contains
positive decisions.

To discover generalized nogoods, it is only necessary to keep track of the order in
which decisions are made. The depth of a positive decision (i.e. variable assignment)
taken during search is (p, 0) where p denotes the number of instantiated variables.
The depth of the negative decisions (i.e. value removals4) inferred (directly from the
positive decision that have just been taken, or indirectly from propagation) in sequence
after this assignment is (p, i) where i is the order in which they occur. A decision δ′

at depth (p′, i′) is deeper than a decision δ at depth (p, i) iff p′ > p or p′ = p and
i′ > i. A scheme, called a first-decision scheme, for learning generalized nogoods
is proposed in [KAT 05]. After each conflict, Algorithm 82 iteratively replaces the
deepest negative decisions in the implicit “must have a value” nogood with their
eliminating explanations until a positive decision becomes the deepest decision.

Algorithm 82: computeGeneralizedNogood(P : P , x: variable): nogood
Require: x is a variable whose domain has been wiped-out
Output: a generalized nogood
∆ ← {x ̸= ai | ai ∈ dominit(x)}1
while the deepest decision in ∆ is not positive do2

pick and delete the deepest negative decision y ̸= b in ∆ ; // y may be x3
∆ ← ∆ ∪ expl(y ̸= b)4

return ∆5

EXAMPLE.– In the following illustration of the first-decision scheme, Figure 11.7
shows the way some decisions are taken and inferred during depth-first search. Solid
and dotted lines are respectively labeled with positive and negative decisions. Here,
we have four variables w, x, y and z whose domains are {a, b, c}. The first positive
decision w = a taken by search immediately entails w ̸= b and w ̸= c. Here, by
propagation, x ̸= a is assumed to be inferred, and an eliminating explanation is
computed. The respective depths of w = a, w ̸= b, w ̸= c and x ̸= a are (1, 0),
(1, 1), (1, 2) and (1, 3). Two additional positive decisions are taken by search (y = a
and z = a), and a few negative decisions are inferred.

Instantiation (and propagation) of the three variables w, y and z leads to a conflict
where every value has been removed from dom(x). A standard nogood computed

4. Without any loss of generality, we assume that each inference corresponds to the removal of
a value.
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b

x
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p

expl(x ̸= a) = {w = a}

expl(x ̸= c) = {z = a}

expl(x ̸= b) = {y = a, z = a}

Figure 11.7. Illustration of decisions taken and inferred during search. p is the number of
instantiated variables; the values inside circles indicate the order in which decisions occur at
each level. Eliminating explanations are arbitrarily given for values removed from dom(x)

≡

≡

{x ̸= a, y = a, z = a}

{x = c, z = a}

{x ̸= a, x ̸= b, z = a}

{x ̸= a, x ̸= b, x ̸= c}

{x = b, y = a, z = a}

expl(x ̸= c) = {z = a}

expl(x ̸= b) = {y = a, z = a}

Figure 11.8. Generalized nogood computed following the first-decision scheme
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from this conflict using eliminating explanations is {w = a, y = a, z = a}. However,
by running Algorithm 82, we obtain {x ̸= a, y = a, z = a}, which is a generalized
nogood, as shown in Figure 11.8. Initially, x ̸= c is the deepest decision in the “must
have a value” nogood {x ̸= a, x ̸= b, x ̸= c}; this is why it is replaced by expl(x ̸= c).
Then x ̸= b becomes the deepest decision; this is why it is replaced by expl(x ̸= b).
Finally, the algorithm stops, and the negative decision x ̸= a is not replaced, because
its depth is (1, 3), whereas the depth of z = a is (3, 0).

Note that the generalized nogood {x ̸= a, y = a, z = a} is more interesting
(powerful) than the standard nogood {w = a, y = a, z = a}. Indeed, we deduce
from the standard nogood that if w = a and y = a then necessarily z ̸= a. But we
can also make the same deduction from the generalized nogood if we simultaneously
consider the nogood {w = a, x = a}, i.e. the eliminating explanation expl(x ̸= a).
Besides, there are other situations where only the generalized nogood can be applied:
for example, if a /∈ dom(x) and y = a then necessarily z ̸= a. For more information,
see the extended version of [KAT 03].

When MAC is the backtrack search algorithm, the method can profitably be refined
as follows. With each value pruned within MAC, we can associate an eliminating
explanation that only contains negative decisions. More specifically, when a value is
detected GAC-inconsistent because it has no support on a constraint c, it is sufficient
to collect all pruned values among the domains of the variables in the scope of the
constraint c. For example, if x, y and z are three variables such that dominit(x) =
dominit(y) = dominit(z) = {0, 1, 2}, if the v-values (x, 2) and (y, 2) have been
removed, and if the constraint cxyz : x + y > z is enforced to be GAC-consistent,
then (z, 2) is removed and a possible explanation is expl(z ̸= 2) = {x ̸= 2, y ̸=
2}. More sophisticated methods can be conceived to provide smaller sets of pruned
values that cover the supports of the pruned value [KAT 05]. What is particularly
interesting is that storing generalized explanations permits retention of the logical
chain of inferences made during search. From this implicit implication graph, various
schemes corresponding to different strategies of learning generalized nogoods can be
conceived [ZHA 01a, RIC 06]. Note that the 1-UIP scheme that is popular in SAT
solving has been found experimentally to be less effective for constraint satisfaction
than the first-decision scheme [KAT 05].

11.2.2. Reasoning from failed values

During search some values, which we call failed values, are proved to be
inconsistent, i.e. not to participate to any solution. It is known [FRE 93] that
failed values “convey” some information: given a binary constraint network P and
a v-value (x, a) of P , if there is no solution of P containing (x, a) then every
solution of P contains a value for a variable y ̸= x which is not compatible with
(x, a). Thus problem instances can be decomposed dynamically and iteratively
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[FRE 93, BEN 08]. This condition concerning failed values is also used as a pruning
technique in [RAZ 07].

We now show that each failed value identifies a local inconsistent partial state. A
failed value [LEC 09a] is defined as follows:

DEFINITION 11.10.– [Failed Value] Let P and P ′ be two constraint networks such
that P ′ ≺d P .

– A failed value of P ′ with respect to P is a v-value (x, a) of P such that P |x=a is
unsatisfiable and a /∈ domP ′

(x).
– A failed value of P ′ is a failed value of P ′ with respect to a constraint network

strictly greater than P .

In practice, a failed value is a value pruned from a constraint network because it has
been proved to be globally inconsistent. A failed value can be identified by inference
and/or search methods. For example, if P init|x=a is shown to be unsatisfiable, clearly,
(x, a) can be removed from dominit(x). We then obtain a smaller constraint network
P = P init \ {(x, a)} with (x, a) being a failed value of P (with respect to P init). In
propositions stated in [RAZ 07], values removed during backtracking correspond to
failed values.

We need to define conflict sets of constraint networks in terms of instantiations.

DEFINITION 11.11.– [Conflict Set] Let P be a constraint network, x be a variable of
P and a ∈ dominit(x).

– The conflict set of (x, a) on a constraint c of P involving x, denoted by
κP (c, x, a), is the set of valid instantiations I of scp(c) \ {x} on P such that
I ∪ {(x, a)} does not satisfy c.

– The conflict set of (x, a) on P is κP (x, a) = ∪c∈cons(P )|x∈scp(c)κP (c, x, a).

a b c

a b c a b c

x

w

a cb

y z

Figure 11.9. Illustration of conflict sets
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For every conflict set κ, vars(κ) = ∪I∈κ vars(I). Figure 11.9 shows a simple
constraint network P with a binary constraint between w and x and a ternary constraint
between w, y and z; dashed edges represent forbidden tuples. Here κP (w, a) =
{{(x, b)}, {(y, a), (z, a)}} and κP (w, c) = {{(x, b)}, {(x, c)}, {(y, c), (z, c)}};
{(x, b)} and {(y, a), (z, a)} are two instantiations in κP (w, a) of size 1 and 2.

Failed values and instantiations can be connected as follows:

DEFINITION 11.12.– [Covering and Satisfaction] Let P be a constraint network,
(x, a) be a failed value of P and I be a valid instantiation on P .

– (x, a) is covered by I iff vars(κP (x, a)) ⊆ vars(I).
– (x, a) is satisfied by I iff ∃J ∈ κP (x, a) | J ⊆ I .

Note that a failed value satisfied by an instantiation is not necessarily covered by
it. However, it is shown below that when a failed value is covered by an instantiation
but cannot be satisfied, a nogood is identified.

DEFINITION 11.13.– [Failure Consistency] Let P be a constraint network.
– A valid instantiation I on P is failure-consistent for a failed value (x, a) of P iff

either (x, a) is not covered by I or (x, a) is satisfied by I .
– A valid instantiation I on P is failure-consistent iff it is failure-consistent for

every failed value of P ; otherwise, I is said to be failure-inconsistent.

PROPOSITION 11.14.– Any failure-inconsistent instantiation is globally inconsistent.

Proof. Without any loss of generality, we consider here that I is a valid instantiation
on a constraint network P that is failure-inconsistent for a failed value (x, a) of P
with respect to P init; we have P ≺d P init. We know that there is no solution of P init

involving (x, a) because (x, a) is a failed value of P wrt P init. We can even say more:
for every solution S of P init, the complete instantiation, denoted by S[x/a], obtained
from S by replacing the value assigned to x in S by a is not a solution because at
least one constraint involving x is violated [FRE 93]. Because I is failure-inconsistent
for (x, a), we know that I covers vars(κP (x, a)) while (x, a) being not satisfied by
I . This means that it is not possible to extend I into a complete instantiation I ′ on
P such that I ′[x/a] violates at least one constraint involving x. Every solution of P
is a solution of P init (since P ≺d P init) and every solution S of P init is such that
S[x/a] violates at least one constraint involving x. We can deduce that I is a nogood
of P .

Otherwise stated, some nogoods can be identified via deleted values (that are
themselves nogoods). These nogoods are not necessarily of size 1. For example, in
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Figure 11.10 there is a failed value (w, a) and three binary constraints involving w.
Any valid instantiation of {x, y, z} is globally inconsistent if it only contains values
compatible with (w, a), i.e. values that correspond to strict supports for (w, a). In
other words, every tuple in Cx × Cy × Cz is a nogood (of size 3).

w

x zCx

Ix

Cy Iy

Cz

Iz

y

Figure 11.10. A failed value (w, a), its compatible values in Cx, Cy and Cz and its
incompatible values in Ix, Iy and Iz

For binary constraint networks, each failed value identifies an inconsistent partial
state. In Figure 11.10, this is {x ∈ Cx, y ∈ Cy, z ∈ Cz}. When a failed value
corresponds to a globally inconsistent value of the initial problem P init then the
identified inconsistent partial state is global. Otherwise, this only holds in the subtree
rooted by the constraint network on which the failed value is defined.

Finally, note that the kernel of a failed value (x, a) of a constraint network P ,
as defined in [RAZ 07], is basically vars(κP (x, a)). However, by using so-called
responsibility sets (a kind of unsatisfiable cores), kernels can be reduced in size.
By means of responsibility sets and kernels, the dominance of the current node by
“recorded” inconsistent partial states can be checked. This is illustrated with FC and
MAC [RAZ 07]. Interestingly, it is shown that FC-CBJ can be simulated by means of
responsibility sets and kernels.

11.3. Reducing elementary inconsistent partial states

As briefly described in section 11.2, generalized nogoods can be learned during
search, by analyzing conflicts before backtracking. Typically, generalized nogoods
involve some instantiated variables as well as some deleted values. Each of them is
built from the variable whose domain has been wiped-out, using the implicit “must
have a value” nogood. Inconsistent partial states generated this way are constructed
by using eliminating explanations.

An alternative approach works directly with states of internal dead-ends
encountered during search. Internal dead-ends are nodes that are roots of fruitless
subtrees. As already mentioned, the current state of each internal dead-end is a global
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inconsistent partial state. More precisely, if v is an internal dead-end and P = cn(v)
is the constraint network associated with v, then the current state of P is an IPS on
P init. Such inconsistent partial states built from internal dead-ends are elementary.

Storing an elementary IPS in a transposition table or representing it by a
dominance constraint is not relevant, because this partial state cannot dominate
any node developed later by the backtrack search algorithm. In this section, we
present several reduction operators, a special form of extraction operators, that
discard variables (strictly speaking, membership decisions) from elementary IPSs.
Partial states obtained by means of these operators are subsets of elementary IPSs and
are said to be simple.

DEFINITION 11.15.– [Simple Partial State] A partial state∆ on a constraint network
P is simple iff ∀x ∈ vars(∆), dom∆(x) = domP (x).

EXAMPLE.– Consider a constraint network P such that vars(P ) = {x, y, z} with
domP (x) = domP (y) = domP (z) = {a, b, c}. ∆ = {x ∈ {a, b, c}, z ∈ {a, b, c}} is
a simple partial state on P , whereas ∆′ = {x ∈ {a, b, c}, z ∈ {a, b}} is a partial state
on P that is not simple because dom∆′

(z) ̸= domP (z).

The simple partial states obtained after reduction (as proposed in this section) are
global inconsistent partial states that can be exploited later during search. Intuitively,
the fewer the number of variables involved in a simple inconsistent partial state, the
higher its pruning capability, and the lower its memory consumption.

We now consider a binary branching backtrack search algorithm that enforces
a domain-filtering consistency φ at each step of the search. We assume here that
φ at least performs backward checking, ensuring satisfaction of every constraint
that only involves instantiated variables. We also assume that φ at most enforces
generalized arc consistency. For example, the φ-search algorithm could be BT, FC
or MAC. Consequently, any inference is performed locally, i.e. at the level of a
single constraint, during constraint propagation. The consistency φ can be enforced
by using a collection of local propagators associated with each constraint, called
φ-propagators. These propagators may correspond either to a generic coarse-grained
revision procedure, or to a specialized filtering procedure (e.g. for global constraints).

11.3.1. E-eliminable variables

We present first a reduction operator that removes e-eliminable variables.
E-eliminable variables are variables that can no longer play a role because they
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are involved only in entailed constraints. It is rather easy to show that an e-eliminable
variable is an eliminable variable; see Definition 1.70 on page 86.

DEFINITION 11.16.– [e-eliminable Variable] A variable x of a constraint network P
is e-eliminable from P iff ∀c ∈ cons(P ) | x ∈ scp(c), c is entailed.

ρent is a reduction operator that eliminates e-eliminable variables and returns a
simple partial state. In ρent(P ), we only keep non-e-eliminable variables.

DEFINITION 11.17.– [ρent] For any constraint network P , ρent(P ) denotes the simple
partial state {(x ∈ domP (x)) | x ∈ vars(P ) ∧ x not e-eliminable from P} on P .

The following proposition establishes that ρent is an operator that permits
extraction of an inconsistent partial state from an unsatisfiable constraint network.

PROPOSITION 11.18.– If P is an unsatisfiable constraint network then ρent(P ) is an
inconsistent partial state on every constraint network P ′ ≽d P .

Proof. (Sketch) Let ∆ = ρent(P ) and let P ′ be a constraint network such that
P ′ ≽d P . In P ′′ = P ′|∆, for each x ∈ vars(∆), we have domP ′′

(x) = dom∆(x) =

domP (x) and for each x /∈ vars(∆), we have domP ′′

(x) = domP ′

(x). What
distinguishes P from P ′′ is that some values are present in P ′′ but not in P . But
those values necessarily belong to the domain of e-eliminable variables from P .
Consequently, the satisfiability of P ′′ is equivalent to the satisfiability of P = P |∆,
and so ∆ is an IPS on P ′.

This means that for each internal dead-end v encountered during search, ρent

extracts from cn(v) an IPS on P init; this is a global IPS.

COROLLARY 11.19.– If P is an unsatisfiable constraint network derived from P init,
i.e. P ≤d P init, then ρent(P ) is a global IPS, i.e. an IPS on P init.
EXAMPLE.– To illustrate the value of the operator ρent, consider an instance of the
classical pigeonhole problem; here, we have five pigeons. This instance involves five
variables x0, . . . , x4 that represent the pigeons, and each initial variable domain is
{0, . . . , 3} that represents the holes. The constraints state that two pigeons cannot be
in the same hole, making this problem unsatisfiable since there are five pigeons for
only four holes. This can be represented by a clique of binary inequation constraints:
x0 ̸= x1, x0 ̸= x2, . . . , x1 ̸= x2, . . . Figure 11.11 shows a partial view of the search
tree built by MAC for this instance, together with the state at each node.

In Figure 11.11(b), we first notice that the constraint networks associated with the
nodes v1, . . . , v6 are all different, since domains of variables differ by at least one
value. At nodes v3 and v6 the only difference lies in the domains of x0 and x1, which
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v1
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v3 v5
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x0 = 0
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x2 = 2

x0 ̸= 0

(a) Search tree

{

{

x4 ∈ {0, 2, 3}
x3 ∈ {0, 2, 3}
x2 ∈ {0, 2, 3}
x1 ∈ {0, 2, 3}
x0 ∈ {1}

x4 ∈ {1, 2, 3}
x3 ∈ {1, 2, 3}

x1 ∈ {1, 2, 3}
x2 ∈ {1, 2, 3}

x0 ∈ {0}

v2 :

v5 :

{

{ x0 ∈ {0, 1, 2, 3}
x1 ∈ {0, 1, 2, 3}
x2 ∈ {0, 1, 2, 3}
x3 ∈ {0, 1, 2, 3}
x4 ∈ {0, 1, 2, 3}

x0 ∈ {1, 2, 3}
x1 ∈ {0, 1, 2, 3}

x3 ∈ {0, 1, 2, 3}
x2 ∈ {0, 1, 2, 3}

x4 ∈ {0, 1, 2, 3}

v1 :

v4 :

x1 ∈ {1}
x2 ∈ {2, 3}
x3 ∈ {2, 3}

x0 ∈ {1}
x1 ∈ {0}
x2 ∈ {2, 3}
x3 ∈ {2, 3}
x4 ∈ {2, 3}

{

x4 ∈ {2, 3}

x0 ∈ {0}

v3 :

{

v6 :

(b) States

Figure 11.11. Pigeonholes: partial states identified at different nodes of the search tree

are respectively reduced to the singletons {0} and {1} in v3, and {1} and {0} in v6.
The domains of the other variables x2, x3 and x4 are all equal to {2, 3}. Figure 11.12
represents the networks, cn(v3) and cn(v6) associated with nodes v3 and v6 by their
compatibility graphs. The structure of these two networks is very similar, the only
difference being the inversion of the values 0 and 1 between x0 and x1.

Two crucial points about v3 and v6 are: (1) neither x0 nor x1 will subsequently
play a role, and (2) checking the satisfiability of cn(v3) is equivalent to checking the
satisfiability of cn(v6). Point (1) is easy to see: since arc consistency is maintained,
all constraints involving x0 and x1 are entailed: whatever the assignment of values
to the other variables, these constraints will be satisfied. Variables x0 and x1 are
e-eliminable and can therefore be disconnected from the constraint networks in v3

and v6. Consequently we can immediately see that point (2) is true: the constraint
sub-networks cn(v3) ⊖ {x0, x1} and cn(v6) ⊖ {x0, x1} consisting of the remaining
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x3

x0 x1

x4 x2

(a) cn(v3)

x3

x4 x2

x1x0

(b) cn(v6)

Figure 11.12. Pigeonholes: the structure of the constraint networks cn(v3) and cn(v6),
associated with nodes v3 and v6, is similar. Differently, cn(v6) is dominated by

ρent(cn(v3)) = {x2 ∈ {2, 3}, x3 ∈ {2, 3}, x4 ∈ {2, 3}}

variables x2, x3 and x4 and of the constraints involving them are identical, so cn(v3)
is satisfiable if and only if cn(v6) is satisfiable.

If we apply the operator ρent on node v3, we obtain ρent(cn(v3)) = {x2 ∈
{2, 3}, x3 ∈ {2, 3}, x4 ∈ {2, 3}}. After proving that v3 is an internal dead-end, we
can record ρent(cn(v3)) as an inconsistent partial state. By using this IPS, MAC can
avoid expanding node v6, because it is dominated by ρent(cn(v3)).
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11.3.2. Proof-based extraction

Not all constraints of an unsatisfiable constraint network are necessary to prove its
unsatisfiability. Some of them form (minimal) unsatisfiable cores (see Definition 2.12
on page 112), and different methods have been proposed to extract these. Constraints
of an unsatisfiable core can be identified iteratively by means of a constructive
[SIQ 88], a destructive [BAK 93] or a dichotomic approach [JUN 04, HEM 06].

The following proposition states that an inconsistent partial state can be extracted
from any unsatisfiable core.

PROPOSITION 11.20.– If K is an unsatisfiable core of a constraint network P then
∆ = {(x ∈ domP (x)) | x ∈ vars(K)} is an inconsistent partial state on every
constraint network P ′ ≽d P .

Proof. We reason by contradiction. If ∆ is not an IPS on P ′, i.e. if P ′′ = P ′|∆ is
satisfiable, there exists a complete instantiation I of vars(P ′′) = vars(P ′) = vars(P )
such that P |I entails ∆ (by construction of P ′′) and such that every constraint c ∈
cons(P ′′) = cons(P ) is satisfied. Since each constraint of K is included in P , and so
in P ′′, this contradicts our hypothesis that K is an unsatisfiable core. Hence ∆ is an
IPS on P ′.

From each unsatisfiable core identified during search, a global IPS can be
extracted.

COROLLARY 11.21.– If K is an unsatisfiable core of a constraint network P then
∆ = {(x ∈ domP (x)) | x ∈ vars(K)} is a global IPS, i.e. an IPS on P init.

We may wish to extract such cores at internal dead-ends. Computing a posteriori
(minimal) unsatisfiable cores from scratch using one of the approaches mentioned
above seems very expensive, since even for the dichotomic approach the worst-case
number of calls to the φ-search algorithm is O(log(e).ke) [HEM 06], where ke is
the number of constraints of the extracted core. However, it is possible to identify an
unsatisfiable core efficiently by keeping track of all constraints involved in a proof of
unsatisfiability [BAK 93]. Such constraints are those used during search to remove,
through their propagators, at least one value in the domain of one variable. This
“proof-based” approach can be adapted to extract an unsatisfiable core from any dead-
end by collecting relevant information in the fruitless subtree that has been explored.

Algorithm 83 implements this method within a backtrack φ-search algorithm.
This is an adaptation of Algorithm 68. The recursive function binary-φ-searchprf

determines the satisfiability of the given network P and returns a set of variables
which is either empty if P is satisfiable or represents a proof of unsatisfiability
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(non-empty set of variables). A proof is composed of the variables involved in the
scope of the constraints that triggered at least one removal during φ-propagation.

At each node, a proof is built from all inferences produced when enforcing φ
(line 2) and also from the proofs (lines 8 and 11) associated with the left and right
subtrees (once a v-value (x, a) has been selected). Note that when an IPS ∆ allows
some inference(s) when enforcing φ, this participates in the proof of unsatisfiability.
Since ∆ can be seen as an additional (dominance) constraint included in the initial
network, each variable in vars(∆) must be taken into account in the proof. When a
node is proved to be an internal dead-end after having considered the two branches
(one labeled with x = a and the other with x ̸= a), a proof of unsatisfiability is
obtained by simply merging the proofs associated with the left and right branches;
here, this is for P ′. Note that the worst-case space complexity of managing the
different local proofs of the search tree is in O(n2d) since storing a proof is O(n) and
there are at most O(nd) nodes per branch.

Using Algorithm 83, we can introduce a second reduction operator that only
retains variables involved in a proof of unsatisfiability. This operator can be used
incrementally at any internal dead-end of a search tree.

Algorithm 83: binary-φ-searchprf(P : P): set of variables
Output: a proof of unsatisfiability of P , or ∅ if P is satisfiable
localProof ← ∅1
P ′ ← φ(P ) // localProof is updated according to φ2
if P ′ = ⊥ then3
return localProof4

if ∀x ∈ vars(P ′), |dom(x)| = 1 then5
// Display the solution
return ∅6

select a v-value (x, a) of P ′ such that |dom(x)| > 17
leftProof ← binary-φ-searchprf(P ′|x=a)8
if leftProof = ∅ then9
return ∅ // since P is satisfiable10

rightProof ← binary-φ-searchprf(P ′|x̸=a)11
if rightProof = ∅ then12
return ∅ // since P is satisfiable13

// leftProof ∪ rightProof is an unsat proof for P ′

// localProof ∪ leftProof ∪ rightProof is an unsat proof for P
return localProof ∪ leftProof ∪ rightProof14
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DEFINITION 11.22.– [ρprf] LetP be a constraint network. ρprf(P ) denotes the simple
partial state {(x ∈ domP (x)) | x ∈ binary-φ-searchprf(P)} on P .

The following proposition establishes that ρprf is an operator which permits
extraction of an inconsistent partial state from an unsatisfiable constraint network.

PROPOSITION 11.23.– If P is an unsatisfiable constraint network then ρprf(P ) is an
inconsistent partial state on every constraint network P ′ ≽d P .

Proof. Let X = binary-φ-searchprf(P ). We can show that K = (X, {c ∈ cons(P ) |
scp(c) ⊆ X}) is an unsatisfiable core of P . We deduce the result from both the
definition of ρprf and Proposition 11.20.

COROLLARY 11.24.– If P is an unsatisfiable constraint network derived from P init

then ρprf(P ) is a global IPS, i.e. an IPS on P init.

In practice, in Algorithm 83, the operator ρprf can extract an IPS between lines
13 and 14. Interestingly enough, the following proposition establishes that ρprf is
stronger than ρent (i.e. allows extraction of inconsistent partial states representing
larger portions of the search space).

PROPOSITION 11.25.– If P is an unsatisfiable constraint network then ρprf(P ) ⊆
ρent(P ).

Proof. An entailed constraint cannot occur in any unsatisfiability proof computed
by binary-φ-searchprf . An e-eliminable variable only occurs in entailed constraints,
so is necessarily discarded by ρprf (from assumptions given at the beginning of this
section).

Note that, unlike ρent, an inconsistent partial state can be extracted using ρprf only
when the fruitless subtree has been explored completely. Consequently, this operator
cannot be used for pruning equivalent states using a transposition table whose keys
correspond to partial states, as presented in section 11.4. Nevertheless, ρprf can be
fully exploited in the context of dominance detection.

11.3.3. Justification-based extraction

The idea of the reduction operator presented in this section is to build a simple
partial state by eliminating the variables whose current domains can be inferred from
the others. This is made possible by keeping track of the constraints at the origin of
value removals. When a propagator associated with a constraint c deletes a v-value
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(x, a), the constraint c is recorded as the justification of (x, a) being eliminated,
denoted by just(x ̸= a) = c. This is a form of eliminating explanation although
eliminating explanations are classically decision-based (i.e. formed of positive and
negative decisions). To some extent, this corresponds to a basic use of the general
definition of nogood proposed in [SCH 94a] that includes a set of constraints playing
the role of nogood justification. In the context of achieving arc consistency for
dynamic CSP instances [BES 91], such justifications are also used to put values back
into domains when constraints are retracted.

Explanations can be represented collectively by an implication graph. Given a set
of decisions (the current partial instantiation), the inference process can be modeled
using a fine-grained implication graph. More precisely, for each removed value, one
can record positive and negative decisions implying this removal (through eliminating
explanations in CSP and through clauses in SAT). For our purpose, we simply need to
reason with a coarse-grained implication graph, called a dependency graph here, built
from justifications. When a positive decision x = a is taken (by the search algorithm),
just(x ̸= b) is set to nil for all values b ∈ dom(x) such that b ̸= a, and when a
negative decision x ̸= a is taken, just(x ̸= a) is also set to nil . On the other hand,
whenever a value (x, a) is removed by a propagator associated with a constraint c,
the justification of x ̸= a is simply given by c: we have just(x ̸= a) = c. Since we
aim to circumscribe a simple partial state (subset of the current state), we only need to
know for each removed v-value (x, a), the variables responsible for its removal; these
are the ones involved in just(x ̸= a). From this information, it is possible to build a
directed graph G where vertices correspond to variables and arcs (directed edges) to
dependencies between variables. More precisely, there is an arc in G from a variable
x to a variable y if there is a removed v-value (y, b) whose justification is a constraint
involving x. A special node denoted by nil is employed; there is an arc from nil to
a variable x if x is involved in a (positive or negative) decision taken by the search
algorithm, i.e. if there is a removed v-value (x, a) whose justification is nil . As shown
below, the dependency graph can be used to reduce inconsistent partial states.
EXAMPLE.– In Figure 11.13, there is an initial binary constraint network P init; see
Figure 11.13(a). P init involves four variables and three constraints; vars(P init) =
{w, x, y, z} and cons(P init) = {cwx : w ̸= x, cxy : x ≥ y, cxz : x ≥ z}.
In Figure 11.13(b), we have the constraint network P obtained from P init after
assigning the value 3 to w and enforcing AC (φ = AC ). Figure 11.13(c) provides
the justifications of values removed in P as well as the dependency graph built from
these explanations. Justifications are obtained as follows. When the positive decision
w = 3 is taken, the justifications of w ̸= 1 and w ̸= 2 are set to nil . These removals
are propagated to x through the constraint w ̸= x, leading to the removal of 3 from
dom(x), whence just(x ̸= 3) = cwx. This new removal is now propagated to y and
z: 3 is removed from dom(y) through the propagation of x ≥ y which constitutes its
justification, and 3 is removed from dom(z) through the propagation of x ≥ z. The
dependency graph is built directly from these justifications.
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Important In all definitions and propositions given below, it is to be understood that
P is a constraint network associated with a node of the φ-search tree developed for
P init. We obviously have P ≼d P init.

DEFINITION 11.26.– [Justification of Deletion] Let x be a variable of P and a ∈
dominit(x)\domP (x). The justification of the deletion of (x, a), denoted by just(x ̸=
a) is, if it exists, the constraint c whose associated φ-propagator has removed (x, a)
along the path leading from the root of the search tree to node v where cn(v) = P ;
otherwise just(x ̸= a) is nil .

Justifications can be used to extract a partial state from a constraint network with
respect to a set of variables X . This partial state contains the variables of X that cannot
be “explained” by X , called j-eliminable variables.

P
init

y z

w

x

w ̸= x

x ≥ zx ≥ y

(a) P init

y z

w

x

w ̸= x

x ≥ zx ≥ y

P

(b) P = AC (P init|w=3)

y z

x

w

just(w ̸= 1) = nil

just(w ̸= 2) = nil

just(x ̸= 3) = cwx : w ̸= x

just(y ̸= 3) = cxy : x ≥ y

just(z ̸= 3) = cxz : x ≥ z

nil

(c) Justifications of values removed in P and dependency graph built from these
justifications

Figure 11.13.Managing justifications during search
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DEFINITION 11.27.– [j-eliminable Variable] Let X ⊆ vars(P ) be a set of variables
of P . A variable x ∈ X is j-eliminable from P wrtX iff ∀a ∈ dominit(x)\domP (x),
just(x ̸= a) is a constraint c such that c ̸= nil and scp(c) ⊆ X .

The dependency graph introduced earlier allows direct identification of those
variables. We have the following alternative definition.

DEFINITION 11.28.– [j-eliminable Variable] Let X ⊆ vars(P ) be a set of variables
of P and G be the dependency graph associated with P . A variable x ∈ X is j-
eliminable from P wrt X iff Γ−(x), the set of predecessors of x in G, is such that
Γ−(x) ⊆ X .

ρjst can be considered to be a reduction operator that eliminates j-eliminable
variables and returns a simple partial state. In ρjst(P ), we only keep non-j-eliminable
variables.

DEFINITION 11.29.– [ρjst] Let X ⊆ vars(P ) be a set of variables of P . ρjst
X (P ) is

the simple partial state {(x ∈ domP (x)) | x ∈ X ∧ x not j-eliminable from P wrt
X} on P .

The following proposition (whose proof is omitted) shows that reducing simple
partial states by discarding j-eliminable variables does not fundamentally lose any
information when considering P init and φ.

PROPOSITION 11.30.– Let ∆ be a simple partial state on P and ∆′ = ρjst
vars(∆)(P ).

We have: φ(P init|∆′) = φ(P init|∆).

Using Proposition 11.30, we can show that for any unsatisfiable constraint network
P , ρjst

vars(P )(P ) produces an inconsistent partial state on P init. However, this IPS is not
interesting because it is basically equivalent to the current state of P . Indeed, it is a
partial state with all variables involved in a decision taken by the search algorithm.
Roughly speaking, this IPS is equivalent to the generalized nogood corresponding to
the set of decisions labeling the path that leads from the root of the search tree to P .
Fortunately, we can safely use the operator ρjst after any other that produces a simple
inconsistent partial state, as shown by the following corollary.

COROLLARY 11.31.– Let ∆ be a simple partial state on P and ∆′ = ρjst
vars(∆)(P ). If

∆ is an IPS on P init then ∆′ is an IPS on P init.

Proof. If ∆ is an IPS on P init then P init|∆ is unsatisfiable (by definition). As φ
preserves satisfiability (because φ is assumed to be a nogood-identifying consistency),
and φ(P init|∆′) = φ(P init|∆) from Proposition 11.30, we deduce that P init|∆′ is
unsatisfiable. Consequently ∆′ is an IPS on P init.
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A direct consequence of Corollary 11.31 is that the next two operators are
guaranteed to produce inconsistent partial states from unsatisfiable constraint
networks.

DEFINITION 11.32.– [ρjst⊙ent, ρjst⊙prf] Let P be a constraint network.
– ρjst⊙ent(P ) = ρjst

vars(∆)(P ) with ∆ = ρent(P ).
– ρjst⊙prf(P ) = ρjst

vars(∆)(P ) with ∆ = ρprf(P ).

Figure 11.14 illustrates (here, on consistent partial states) the behavior of ρent,
ρjst and their combination ρjst⊙ent. Applying ρent to P from Figure 11.13 leads to
the elimination of w, yielding the simple partial state ∆1, because w is only involved
in entailed constraints. Indeed, the remaining value 3 in dom(w) is compatible with
the two remaining values 1 and 2 in dom(x) within the constraint cwx : w ̸= x.
The three other variables are involved in constraints that are not entailed. Applying
ρjst to P wrt X = vars(P ) leads to the elimination of x, y and z, yielding the
simple partial state ∆2 = {w ∈ {3}}. Indeed, w is the only variable for which
a removal is justified by nil ; X being vars(P ), this is the only relevant condition
for determining variables of interest. This illustrates the fact that applying ρjst wrt
all variables of a constraint network has no value: since we obtain the set of taken
decisions (here w = 3), the partial state can never be encountered, or dominated, later
without restarts. More interesting is the application of ρjst⊙ent. Once ρent has been
applied, yielding the partial state ∆1 whose variables are {x, y, z}, ρjst is applied
to determine which variables of ∆1 have domains that can be determined by other
variables of ∆1. The variable x is the only one for which all removed values cannot be
justified by constraints involving variables inside ∆1: just(x ̸= 3) involves a variable
outside the variables of interest. This is directly visible with the dependency graph in
Figure 11.13(c). We thus obtain the simple partial state ∆3 = {x ∈ {1, 2}}.

The space complexity of recording justifications is O(nd) while the time
complexity of managing this structure is O(1) whenever a value is removed or
restored during search. The worst-case time complexity of ρjst is O(ndr) where r
denotes the greatest constraint arity. Indeed, there are at most O(nd) removed values
admitting a justification.

11.4. Equivalence detection

In practice, identified inconsistent partial states can be used to prune dominated
nodes of the search tree, as explained in section 11.1.2. An alternative is to identify
nodes that are not dominated but are strictly equivalent to IPSs. Although this
appears to be a weaker way of using inconsistent partial states, it is appropriate
for transposition tables. A transposition table is classically implemented as a hash
table, which associates keys with values. Keys correspond to precise descriptions of
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P
init :

⎧
⎪⎪⎨

⎪⎪⎩

w ∈ {1, 2, 3}
x ∈ {1, 2, 3}
y ∈ {1, 2, 3}
z ∈ {1, 2, 3}

⎫
⎪⎪⎬

⎪⎪⎭

(a) Current state of P init

P :

⎧
⎪⎪⎨

⎪⎪⎩

w ∈ {3}
x ∈ {1, 2}
y ∈ {1, 2}
z ∈ {1, 2}

⎫
⎪⎪⎬

⎪⎪⎭

(b) Current state of P

∆1 = ρ
ent(P ) =

⎧
⎨

⎩

x ∈ {1, 2}
y ∈ {1, 2}
z ∈ {1, 2}

⎫
⎬

⎭

∆3 = ρ
jst⊙ent(P ) = ρ

jst
vars(∆1)

(P ) = { x ∈ {1, 2} }

∆2 = ρ
jst
vars(P )

(P ) = { w ∈ {3} }

(c) Extraction of simple partial states on P

Figure 11.14. Current states of P init and P from Figure 11.13, and simple partial states on P
extracted using ρent, ρjst and ρjst⊙ent

states: two keys computed from two different states must be different5. Values usually
correspond to scores obtained after evaluating the states. An example of a hashing
function has been proposed in [ZOB 70] for board games such as chess and Go. The
transposition table technique has been adapted to heuristic search algorithms such
as IDA* [REI 94], and has also been employed successfully in modern automated
STRIPS planners such as FF [HOF 01] and YAHSP [VID 04].

In our context, values need not be stored because the only relevant information is
that (partial) states are inconsistent. This means that a simple set is sufficient to store
IPSs. For efficiency reasons, it is advisable to use a hash set, i.e. a set backed by a hash
table. Here this set is perceived as a transposition table. Inconsistent partial states
identified during search can be stored in the transposition table and can be checked
before expanding each new node. A lookup in the table avoids exploration of a subtree
that is equivalent to one already explored. For example, the operators ρent and ρjst can
be used to compute a partial state ∆ whenever a new node v is created. If ∆ belongs
to the transposition table, v can be discarded. Otherwise, if v is proved later to be a
dead-end, ∆ is added to the transposition table. Figure 11.15 provides an illustration.
Notice that ρprf cannot immediately compute a key: this requires complete exploration
of the subtree rooted at v.

5. This condition may be relaxed for some applications in game playing.
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v2

v3

v1

∆1

∆2

⊥

⊥

∆1 = ρ(cn(v1))

∆2 = ρ(cn(v2))

∆3 = ρ(cn(v3))

Figure 11.15. Two inconsistent partial states∆1 and∆2 extracted using the operator ρ and
stored in a transposition table. If the partial state∆3 belongs to the table, v3 can be discarded

It is important to note that when equivalence is considered, recording strict IPSs
is worthwhile. This means that if ∆ is an IPS on P init (for example, extracted by ρent

or ρjst or learned by the first decision scheme), it is better to record ∆s(P init) instead
of ∆. Indeed, ∆s(P init) is shorter than ∆, and ∆s(P init) is also an IPS on P init; see
Proposition 11.6. When MAC is used to solve binary instances, strict inconsistent
partial states identified by ρent during search involve neither fixed variables nor
variables with their initial domains.

PROPOSITION 11.33.– Let v be a node in the search tree developed by MAC to solve
a binary constraint network P init, P = cn(v), ∆ = ρent(P ) and ∆′ = ∆s(P init). ∆′

is an IPS on P init such that ∀x ∈ vars(∆′), 1 < |dom∆′

(x)| < |dominit(x)|.

Proof. A fixed variable x is necessarily not present in ∆ because all constraints
involving x are entailed (AC has been enforced). In ∆′, a variable x such that
|dom∆′

(x)| = |dominit(x)| is discarded by definition.

Intuitively, the more variables absent from an IPS ∆, the more future nodes can be
pruned by ∆. Indeed, if a node v such that P = cn(v) is pruned because the partial
state extracted from P is equivalent to ∆, this is because the domains of the variables
in P that do not appear in ∆ are in any of several possible configurations: for example,
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they can still contain all initial values or they can be reduced so that they only belong
to entailed constraints. We can expect that recording strict IPSs is beneficial.

Figures 11.16 and 11.17 illustrate this observation (with consistent partial states).
Here an initial network P init involves four binary constraints and four variables
whose initial domains are {1, 2, 3}. A first constraint network P1 is obtained after
assigning the variable y to 1 and enforcing AC on P init. This leaves the domain
of w unchanged while eliminating the value 2 from both dom(x) and dom(z), as
shown in Figure 11.16. A second constraint network P2 is obtained after assigning
the variable w to 1 and enforcing AC on P init. This time the domain of y remains
unchanged while the value 2 is eliminated from dom(x) and from dom(z), as shown
in Figure 11.17. Whereas ρent produces two different partial states ∆1 and ∆2 from
P1 and P2, the strict partial states ∆s(P init)

1 and ∆s(P init)
2 derived directly from ∆1 and

∆2 are identical. Although the reasons for eliminating the variables w and y in P1 and
P2 to build partial states are different, we can use the fact that ∆s(P init)

1 = ∆s(P init)
2

to deduce that P1 is satisfiable iff P2 is satisfiable.

Algorithm 84: binary-φ-searchtt(in P : P): Boolean
Require: an operator ρ to extract partial states
Output: true iff P is satisfiable
P = φ(P )1
if P = ⊥ then2
return false3

if ∀x ∈ vars(P ), |dom(x)| = 1 then4
// Display the solution
return true5

∆ ← ρ(P )s(P init) // a strict partial state is extracted6
if∆ ∈ transpositionTable then7
return false8

select a v-value (x, a) of P such that |dom(x)| > 19
if binary-φ-searchtt(P |x=a) ∨ binary-φ-searchtt(P |x̸=a) then10
return true11

// P is unsatisfiable and ∆ is an IPS on P init

add ∆ to transpositionTable12
return false13

Algorithm 84, which is an adaptation of Algorithm 68, embeds a transposition
table within a backtrack φ-search algorithm. The recursive function binary-φ-
searchtt determines the satisfiability of a given network P ; it maintains a domain
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P1 = AC(P init|y=1)

x

z

w

y

y + 1 ̸= z

w + 1 ̸= x

y + 1 ̸= x

w + 1 ̸= z

(a) Constraint network

∆1 = ρ
ent(P1) =

⎡

⎣
w ∈ {1, 2, 3}
x ∈ {1, 3}
z ∈ {1, 3}

⎤

⎦ ∆s(P init)

1 =

[
x ∈ {1, 3}
z ∈ {1, 3}

]

(b) Partial states

Figure 11.16. Extracting a strict partial state from P1 = AC (P init|y=1)

x

z

w

y

y + 1 ̸= z

w + 1 ̸= x

y + 1 ̸= x

w + 1 ̸= z

P2 = AC(P init|w=1)

(a) Constraint network

∆2 = ρ
ent(P2) =

⎡

⎣
x ∈ {1, 3}
y ∈ {1, 2, 3}
z ∈ {1, 3}

⎤

⎦ ∆s(P init)

2 =

[
x ∈ {1, 3}
z ∈ {1, 3}

]

(b) Partial states

Figure 11.17. Extracting a strict partial state from P2 = AC (P init|w=1)
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filtering consistency φ (at least, it performs backward checking), and prunes some
nodes by means of a transposition table (tt stands for transposition table) and an
extraction operator ρ. At any given stage, if the current network (after enforcing φ)
is unsatisfiable, then false is returned, whereas if all variables are fixed, then true is
returned. Otherwise, we extract a strict partial state ∆ by means of the operator ρ. If
∆ belongs to the transposition table, this means that ∆ is an IPS on P init and that P is
dominated by ∆. P is then inferred to be unsatisfiable, so false is returned. If search
continues, we select a v-value (x, a) and perform binary branching. If a solution is
found, true is returned. Otherwise, the current network has been proven unsatisfiable
and ∆ can be added to the transposition table (because it is a global IPS), before
returning false.

11.5. Experimental results

To demonstrate the potential of state-based backtrack search, we present some
promising results obtained using the extraction (reduction) operators introduced in
section 11.3. Other promising results are reported in [KAT 05, LEC 07g, LEC 07d,
RAZ 07]. Here, our priority is dominance detection. Using a Xeon processor clocked
at 3 GHz and 1 GB RAM, we have experimented with benchmarks from the second
constraint solver competition including binary and non-binary constraints expressed
in extensional and intensional form. We have used MAC with various combinations
of extraction operators and variable ordering heuristics. Performance is measured in
terms of CPU time in seconds, number of visited nodes (nodes), memory in MB
(mem) and average number of variables eliminated when building inconsistent partial
states (elim). For ρent, we applied the restriction mentioned in [LEC 07g]: only fixed
variables involved in constraints whose scope contain at most one unfixed variable
are discarded (such variables are necessarily e-eliminable and can be detected with a
modest computational effort). We also experimented with equivalence detection (using
a transposition table) using the operator ρent; the results are shown between brackets
in the ρent columns.

Table 11.1 shows the results on some series of structured instances. Tested
configurations are labeled ¬ρ (MAC without state-based reasoning), ρent and
ρjst⊙prf , each being combined with the two heuristics dom/ddeg and dom/wdeg.
A first observation is that whatever the heuristic, more instances are solved using
ρjst⊙prf . A second observation is that the performance of dominance detection can be
damaged when ρent is used: more instances are solved using equivalence detection
for dom/ddeg (results between brackets). For ρent, IPSs can often be quite large,
which directly affects dominance checking (even if watched values are used), whereas
equivalence detection can be performed in nearly constant time using a hash table.

Table 11.2 shows some results on difficult RLFAP instances. The only heuristic
used here is dom/wdeg, in combination with all reduction operators mentioned in this
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MAC
dom/ddeg dom/wdeg

Series # ¬ρ ρent ρjst⊙prf ¬ρ ρent ρjst⊙prf

aim 48 32 25 (29) 38 48 43 (47) 48
dubois 13 4 1 (2) 13 5 13 (3) 11

ii 41 10 9 (10) 16 20 18 (19) 31
os-taillard-10 30 4 4 (4) 4 10 10 (10) 13

pigeons 25 13 17 (19) 13 13 16 (18) 10
pret 8 4 4 (4) 8 4 8 (4) 8

ramsey 16 5 3 (5) 5 6 5 (6) 6
scens-11 12 0 0 (0) 4 9 7 (8) 9

193 73 63 (73) 105 115 120 (115) 136

Table 11.1. Number of solved instances per series (1,800 seconds allowed per instance); # is
the number of instances per series. Between brackets, results are for equivalence detection

MAC-dom/wdeg
Instance ¬ρ ρent ρjst⊙ent ρprf ρjst⊙prf

scen11-f7
CPU 26.0 11.1 (9.23) 10.4 (10.06) 5.5 5.6
mem 29 168 (73) 49 (37) 33 33
nodes 113 K 13,016 (14,265) 12,988 (13,220) 2,096 1,765
elim 25.2 (25.4) 584.1 (584.7) 647.5 654.8

scen11-f6
CPU 41.2 15.0 (10.61) 15.5 (10.14) 6.4 6.8
mem 29 200 (85) 53 (37) 33 33
nodes 217 K 16,887 (18,938) 16,865 (17,257) 2,903 2,585
elim 22.7 (22.1) 588.6 (589.3) 648.8 654.8

scen11-f5
CPU 202 − (72.73) 195 (98.16) 31.5 12.2
mem 29 256 342 (152) 53 41
nodes 1,147 K 257 K 218 K (244 K) 37,309 14,686
elim 24.1 592.6 (583.36) 651.6 655.7

scen11-f4
CPU 591 − (−) 555 (261.67) 404 288
mem 29 639 (196) 113 93
nodes 3,458 K 365 K (924 K) 148 K 125 K
elim 586.6 (593.1) 651.7 655.0

Table 11.2. Results on difficult RLFAP instances (1,800 seconds allowed per instance). Each
instance involves 680 variables. Between brackets, results are for equivalence detection

www.it-ebooks.info

http://www.it-ebooks.info/


494 Constraint Networks

chapter. Dominance detection with ρent clearly suffers from memory consumption:
two instances remain unsolved because of the size of the IPSs,. Combining ρent with
ρjst (i.e. ρjst⊙ent) saves memory. The best performance is obtained by combining
justification-based and proof-based reasonings, i.e. with ρjst⊙prf . Note that the average
size of the inconsistent partial states recorded in the base is very small: these involve
about 680 − 655 = 25 variables.

11.6. Conclusion

State-based reasoning is related to symmetry detection which is a key issue
in constraint programming. This form of automated reasoning allows automatic
elimination of some forms of symmetry during search. For example, state-based
reasoning may discard redundant states arising from interchangeable values.
Specifically, if P is a binary constraint network such that values a and b for variable
x of P are interchangeable, the partial states obtained from P |x=a and P |x=b are
identical after enforcing arc consistency and applying a basic extraction operator such
as ρent.

Explicit exploitation of symmetries, which is the topic of the next chapter, can
dramatically reduce the search effort required to solve a CSP instance. To reach
this goal, one has to identify symmetries before making use of them. There are
several different ways to make use of symmetries; symmetry breaking via dominance
detection (SBDD) [FAH 01, FOC 01, PUG 05b, SEL 05] is one of them and is a form
of state-based reasoning. The idea of SBDD is that whenever the search algorithm
reaches a new node, it just checks whether this node is equivalent to, or dominated
by, a symmetric node that has been expanded previously. This requires (1) storage
of information about nodes explored during search (2) using this information by
considering some or all of the symmetries in the symmetry group identified initially
(i.e. associated with the initial network).

Inconsistent partial states extracted by non-trivial operators or schemes are
sufficient alone to break some forms of local6 symmetry automatically. No symmetry
(group) need be identified initially. However, it would be particularly interesting to
combine symmetry-breaking methods with methods that extract inconsistent partial
states. This would allow the effect of state-based pruning to be reinforced. This is an
important perspective.

6. [BEN 07] proposes an original strategy to detect and eliminate local symmetries.
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Chapter 12

Symmetry Breaking

The use of symmetries in search problems is conceptually simple. If two distinct
nodes in a search tree are related by a symmetry, there is no need to explore both of
them, because symmetries preserve satisfiability. When a node is an internal dead-end,
the nodes that are symmetric to it are guaranteed to be internal dead-ends as well.
When a node is the root of a fruitful subtree, symmetric solutions can be computed
automatically, i.e. without exploring symmetric nodes. Breaking symmetries can
facilitate determining the satisfiability of an instance or counting/computing the full
set of solutions.

Symmetry breaking involves two distinct issues. First, symmetries must be
identified. Either the user is asked to perform this (often difficult) task, or otherwise
an automatic procedure identifies symmetries. Much published work does not attempt
symmetry detection, but instead assumes that symmetries are given. Second, the
symmetries must be exploited. For this, there are two main categories of approaches
(apart from reformulation techniques). One approach posts symmetry-breaking
constraints during a preprocessing stage, to speed up subsequent search. The other
main strategy is to use symmetries dynamically during search to prevent exploration
of irrelevant nodes.

Symmetry breaking is an important research topic in constraint programming.
Avoidance of symmetric parts of a constraint network may dramatically reduce
the search effort required to find a solution or to prove unsatisfiability. For
the exploitation of symmetries, published methods include symmetry-breaking
constraints [CRA 96, FLE 02, WAL 06b], symmetry-breaking heuristics [MES 01],
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symmetry breaking during search (SBDS) [BAC 02b, GEN 00, GEN 02b], symmetry
breaking via dominance detection (SBDD) [FAH 01, FOC 01, PUG 05b, SEL 05],
among others. Whatever technique is used, the construction of robust black-box
solvers requires automatic discovery of symmetries.

Automatic detection of symmetries was originally introduced [CRA 92, CRA 96]
in the domain of Boolean satisfiability (SAT). The idea is to identify symmetries by
identifying graph automorphisms. A graph is constructed from a problem instance
such that there is a one-one correspondence between symmetries of the instance and
symmetries (automorphisms) of the graph. Graph automorphisms can be found by
using software such as Nauty [MCK 81] or Saucy [DAR 04]. This technique has
been applied successfully to SAT and CSP [ALO 02, ALO 06, RAM 04, PUG 05a,
MEA 09].

This chapter is focused mainly on automatic symmetry detection. Section 12.1
presents basic notions of group theory, and section 12.2 introduces symmetry
definitions for constraint networks. An overview of symmetry-breaking methods and
automatic detection of symmetries is given in sections 12.3 and 12.4. Lightweight
(automatic) detection of variable symmetries is proposed in section 12.5, and an
algorithm to enforce GAC on lexicographic ordering constraints (which are usually
posted to break symmetries) is described in section 12.6. Section 12.7 reports a few
experimental results.

12.1. Group theory

This section provides a brief introduction to group theory (partly inspired from
[VER 06, GEN 06c]). Group theory (see e.g. [BAB 96]) is the part of the mathematical
discipline of abstract algebra that studies the algebraic structures known as groups.
Permutation groups were the first to be studied systematically.

DEFINITION 12.1.– [Group] A group is a pair (G, ⋆) composed of a set G and a
binary operation ⋆ defined on G, such that the following requirements are satisfied.

– Closure: ∀f ∈ G,∀g ∈ G, f ⋆ g ∈ G.
– Identity element: ∃e ∈ G | ∀f ∈ G, e ⋆ f = f ⋆ e = f .
– Inverse element: ∀f ∈ G,∃g ∈ G | f ⋆ g = g ⋆ f = e; g is notated f−1.
– Associativity: ∀f ∈ G,∀g ∈ G,∀h ∈ G, (f ⋆ g) ⋆ h = f ⋆ (g ⋆ h).

For example, (Z,+) is a group, where Z denotes the set of integers, and + denotes
ordinary addition.
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A subgroup of a group (G, ⋆) is a group (H, ⋆) such that H ⊆ G. The order of
a group (G, ⋆) is the number |G| of elements in G. A group can be represented by
means of a subset of its elements, called a generating set.
DEFINITION 12.2.– [Generating Set] A generating set of a group (G, ⋆) is a subset
H of G such that each element of G can be expressed by composition (using ⋆) of
elements ofH , called generators, and their inverses. We writeG = ⟨H⟩. A generating
set is irredundant iff no generator can be expressed by composition of the other
generators.

For example, if f = g ⋆ h, we say that f is obtained (expressed) by composition
of g and h. Generating sets allow compact representations of groups, as stated by the
following proposition; an example is given later.
PROPOSITION 12.3.– For any group (G, ⋆), there exists a generating set of size
log2(|G|) or smaller.

This proposition holds in particular for irredundant sets of generators. This means
that groups can be represented by irredundant sets of generators with an exponential
compression.

We are interested in permutation groups because we will be concerned with the
symmetries that are permutations.
DEFINITION 12.4.– [Permutation] A permutation on a set D is a bijection σ defined
from D onto D. The image of an element a ∈ D by σ is denoted1 by aσ .

For example, let D = {1, 2, 3, 4} be a set of four integers. A possible permutation
σ on D is: 1σ = 2, 2σ = 3, 3σ = 1 and 4σ = 4. A permutation can be represented
by a set of cycles of the form (a1, a2, . . . , ak) which means that ai is mapped to ai+1

for i ∈ 1..k − 1 and ak is mapped to a1. The set of cycles for our permutation σ is
{(1, 2, 3), (4)}, but in practice, cycles of length 1 can be omitted because such cycles
have no effect; therefore we obtain {(1, 2, 3)}. Considering D as being an ordered list
rather than a set, a permutation is a rearrangement of elements in D. A permutation
can be naturally applied to tuples, sets, etc. For example:

– (3, 4, 2, 3)σ = (3σ, 4σ, 2σ, 3σ) = (1, 4, 3, 1);
– {3, 4}σ = {3σ, 4σ} = {1, 4};
– {(1, 2), (3, 4)}σ = {(1, 2)σ, (3, 4)σ} = {(1σ, 2σ), (3σ, 4σ)} = {(2, 3), (1, 4)}.

Henceforth, permutations will be represented by sets of cycles.

1. The notation aσ has the advantage over the notation σ(a) that it simplifies reading (mainly
by omitting two round brackets).
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The number of permutations on a set of n elements is n!. Permutations can
be composed by applying several of them in sequence. It is easy to show that any
composition of permutations is itself a permutation.

DEFINITION 12.5.– [Composition] Let D be a set and let σ1, σ2 be two permutations
on D. The composition σ3 = σ1 ◦ σ2 of σ1 and σ2 is defined as follows: ∀a ∈ D,
aσ3 = aσ1◦σ2 = (aσ2)σ1 .

For the previous example, if σ′ = {(2, 4), (1, 3)} is a second permutation on D,
then σ′′ = σ′ ◦ σ is: 1σ′′

= 4, 2σ′′

= 1, 3σ′′

= 3 and 4σ′′

= 2, which gives {(1, 4, 2)}
in cyclic form.

We can now introduce permutation groups.

DEFINITION 12.6.– [Permutation Group] A permutation group is a group (Σ, ◦)
where Σ is a set of permutations on an underlying set D.

In the following general definition of symmetry, a set of subsets of a set D is called
a structure on D. 2D is the powerset of D, i.e. the set of all subsets of D.

DEFINITION 12.7.– [Symmetry] Let D be a set and R ⊆ 2D be a structure on D. A
permutation σ on D is a symmetry on D for R iff Rσ = R.

A symmetry can be regarded as a permutation that preserves the structure R of a
set D; each element of this structure is a subset of D. Equivalently, the pair (D,R)
can be regarded as a hypergraph H; a symmetry on D for R is an automorphism of
the hypergraph H (see Appendix A.1). By considering the full set of symmetries for
a structure, we obtain a group.

PROPOSITION 12.8.– Let D be a set and R ⊆ 2D be a structure on D. The set of
symmetries on D for R constitutes a group.

Proof. The composition of two symmetries is a symmetry. The identity permutation
is a symmetry and plays the role of neutral element for the set of symmetries on D
for R. The inverse of a symmetry is a symmetry and the composition of symmetries is
associative.

EXAMPLE.– The symmetries (i.e. rotations and reflections) of a square form a group
called a dihedral group. A square can be represented by a set of four vertices D =
{1, 2, 3, 4} and a set of four edges R = {{1, 2}, {2, 3}, {3, 4}, {4, 1}}. Figure 12.1
shows the eight possible symmetries for a square. In cyclic form, these symmetries
are:

r0 = {}, r90 = {(1, 4, 3, 2)}, r180 = {(1, 3), (2, 4)}, r270 = {(1, 2, 3, 4)}
fv = {(1, 4), (2, 3)}, fh = {(1, 2), (3, 4)}, fd = {(1, 3)}, fc = {(2, 4)}
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Rotations of the square by 0◦ right, 90◦ right, 180◦ right, and 270◦ right are
denoted by r0, r90, r180 and r270, respectively. Note that r0 is the identity permutation
leaving the square unchanged. Reflections through the horizontal and vertical middle
lines are respectively denoted by fv and fh. Reflections through the diagonal and
counter-diagonal are respectively denoted by fd and fc.

A generating set of the dihedral group is {r90, fd}. Here:
r0 = r90 ◦ r90 ◦ r90 ◦ r90, r90 = r90, r180 = r90 ◦ r90, r270 = r90 ◦ r90 ◦ r90

fv = fd ◦ r90, fh = r90 ◦ fd, fd = fd, fc = r90 ◦ r90 ◦ fd

(a) r0 (b) r90 (c) r180 (d) r270

(e) fv (f) fh (g) fd (h) fc

Figure 12.1. The eight symmetries of the symmetry group of the square. r0 is the identity
permutation

12.2. Symmetries on constraint networks

For constraint networks, two definitions of symmetries have been recognized
[COH 06] as particularly relevant because they are sufficiently general to encompass
most of the previous definitions in the literature. Generality comes from the set on
which symmetries are defined: this is the set of v-values (variable–value pairs). The
first definition, which is used for example in [KEL 04, PUG 05a], introduces solution
symmetries that only preserve sets of solutions. The second definition introduces
constraint symmetries (or problem symmetries) that preserve the set of constraints.
The second definition is less general than the first but is more applicable in practice.
A constraint symmetry is a syntactical symmetry [BEN 94] that is not limited by
necessarily choosing values in the same domain.
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A simple mechanism to define symmetries, including solution and constraint
symmetries, is to refer to instantiations. Sets of valid instantiations play the role of
structure:
DEFINITION 12.9.– [Symmetry on a Constraint Network] Let P be a constraint
network and R be a set of valid instantiations on P . A symmetry on P for R is a
permutation σ of v-vals(P ) such that Rσ = R.

This general definition is basically equivalent to Definition 12.7, but is given here in
a form that is specific to constraint networks. Sometimes symmetries are restricted
so that only variables or values are permuted. A variable symmetry does not change
values, whereas a value symmetry does not change variables.
DEFINITION 12.10.– [Variable and Value Symmetries] Let P be a constraint network
and R be a set of valid instantiations on P .

– A variable symmetry on P for R is a symmetry σ on P for R such that for every
(x, a) ∈ v-vals(P ), (x, a)σ = (xσvars , a) where σvars is a permutation of vars(P ).

– A value symmetry on P for R is a symmetry σ on P for R such that for every
(x, a) ∈ v-vals(P ), (x, a)σ = (x, aσx) where σx is a permutation of dom(x).

Clearly, a variable symmetry is defined (equivalently) by a permutation on
vars(P ), and a value symmetry by a permutation on each domain. We shall sometimes
use these simpler permutations. The following proposition is related to Proposition
12.8; the proof is omitted.
PROPOSITION 12.11.– Let P be a constraint network and R be a set of valid
instantiations on P . The set of symmetries on P for R is a group, denoted by
Sym(P,R). The set of variable symmetries on P forR and the set of value symmetries
on P for R are two subgroups of Sym(P,R).

We now define solution and constraint symmetries simply by considering two
special structures (sets of instantiations). A solution symmetry is a permutation of
the v-values that preserves the set of solutions.
DEFINITION 12.12.– [Solution Symmetry] A solution symmetry on a constraint
network P is a symmetry on P for sols(P ), i.e. a permutation σ of v-vals(P ) such
that sols(P )σ = sols(P ). Hereafter, symmetry alone means a solution symmetry.

A constraint symmetry (also called a problem symmetry) is a permutation of the v-
values of a constraint network P that preserves its set of constraints, or more precisely,
its compatibility hypergraph (or micro-structure) µ(P ); see Definition 1.32.
DEFINITION 12.13.– [Constraint Symmetry] A constraint symmetry on a constraint
network P is a symmetry on P for µE(P ), i.e. a permutation σ of v-vals(P ) such that
µE(P )σ = µE(P ) where µE(P ) is the set of hyperedges in the micro-structure of P .
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Note that hyperedges in the set µE(P ) are valid instantiations on P ; this satisfies
Definition 12.9. A constraint symmetry is necessarily a solution symmetry, but the
reverse is not true. For example, any permutation of the v-values of an unsatisfiable
constraint network is a solution symmetry, irrespective of whether the network has
any constraint symmetry. The group Sym(P, µE(P )) is a subgroup [COH 06] of
Sym(P, sols(P )) and is equivalent to the automorphism group of the micro-structure
of P .

Figure 12.2. Relationships between groups of symmetries (represented by ovals) on a
constraint network. FI and NI symmetries are symmetries built from full interchangeable

v-values and neighborhood interchangeable v-values, respectively

A particular case of solution symmetry is full interchangeability; see Definition
1.62. More precisely, if (x, a) and (x, b) are two interchangeable v-values, then the
permutation σ(x,a)↔(x,b) that only swaps the two v-values is a solution symmetry;
in cyclic form, we have σ(x,a)↔(x,b) defined by the unique cycle ((x, a), (x, b)).
This is also a value symmetry. On the other hand, neighborhood interchangeability
is a weakened form of full interchangeability: neighborhood interchangeability is a
sufficient but not a necessary condition for full interchangeability [FRE 91]. Two
v-values (x, a) and (x, b) are neighborhood interchangeable iff they admit the same
set of strict supports on each constraint. Figure 12.2 shows the relationships between
different groups of symmetries. Note that the identity belongs to all groups.

EXAMPLE.– To illustrate symmetries on constraint networks, let us again consider
the 4-queens instance (modeled as a normalized binary constraint network). As
in section 1.3.1, there is one variable per queen (column) and the values are row
numbers. Denoting the variables by xa, xb, xc and xd, to clarify the correspondence
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with columns, Figure 12.3 shows the two solutions for this instance. The first is
{(xa, 2), (xb, 4), (xc, 1), (xd, 3)} and the second is {(xa, 3), (xb, 1), (xc, 4), (xd, 2)}.
This instance has exactly eight constraint symmetries, which are the geometrical ones
shown for the square in Figure 12.1. For r90, a first cycle is ((xa, 1), (xa, 4), (xd, 4), (xd, 1)),
a second cycle is ((xa, 2), (xb, 4), (xd, 3), (xc, 1)), etc. Among these eight symmetries,
if we disregard the identity permutation r0, only fh is a variable symmetry and only
fv is a is value symmetry. Using a simplified notation for fh where only variables
are swapped, we obtain in cyclic form {(xa, xd), (xb, xc)}, which means that xa

is swapped with xd and xb is swapped with xc. It is interesting to compare the
eight constraint symmetries on 4-queens with the 46,448,640 solution symmetries
[COH 06].

(a) First Solution (b) Second Solution

Figure 12.3. The two solutions of the 4-queens instance

Because symmetries preserve the structure of constraint networks, we can reason
from solutions and nogoods as will be explained below. We first need to introduce the
notion of admissible instantiations [WAL 06b].

DEFINITION 12.14.– [Admissibility] Let P be a constraint network, σ be a symmetry
on P and I be a valid instantiation on P . I is admissible for σ iff Iσ is an instantiation
on P .

EXAMPLE.– Consider the instantiation I = {(xa, 1), (xb, 2)} for the 4-queens
instance. For the symmetry r90, we obtain Ir90

= {(xa, 4), (xb, 3)}, which is an
instantiation. Thus I is admissible for r90. Now if I = {(xa, 1), (xb, 1)}, by r90,
we obtain Ir90

= {(xa, 4), (xa, 3)}, which is not an instantiation. By definition, an
instantiation cannot contain two v-values involving the same variable.

There is no problem of “admissibility” when symmetries only act on variables or
only act on values.

REMARK 12.15.– Valid instantiations are always admissible for variable symmetries
and for value symmetries.
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Symmetries preserve solutions. The following proposition is related to Proposition
2.1 in [CRA 96].

PROPOSITION 12.16.– Let P be a constraint network, σ be a symmetry on P and I
be a complete valid instantiation on P . I is a solution of P iff Iσ is a solution of P .

Proof. If I ∈ sols(P ) then necessarily Iσ ∈ sols(P ) since sols(P )σ = sols(P ). The
other direction holds because σ−1 is also a solution symmetry.

For example, for the 4-queens instance, {(xa, 2), (xb, 4), (xc, 1), (xd, 3)}fh gives
{(xd, 2), (xc, 4), (xb, 1), (xa, 3)} which is the second solution. Interestingly, this
result can be refined as follows.

PROPOSITION 12.17.– Let P be a constraint network, σ be a symmetry on P and I
be a valid instantiation on P . I is a good (globally consistent instantiation) on P iff
Iσ is a good on P .

Proof. If I is a good, this means that there exists at least a solution I ′ of P that extends
I . We know from Proposition 12.16 that I ′σ is also a solution of P . Necessarily, I ′σ

extends Iσ , so Iσ is a good.

COROLLARY 12.18.– Let P be a constraint network, σ be a symmetry on P and I be
a valid instantiation on P . I is a nogood (globally inconsistent instantiation) on P iff
either I is not admissible for σ or Iσ is a nogood on P .

Proof. From Proposition 12.17, we know that I is a good on P iff Iσ is a good on P .
This is equivalent to: I is not a good on P iff Iσ is not a good on P . Because I is by
hypothesis a valid instantiation, I is necessarily a nogood. However, nothing can be
said precisely about Iσ . Iσ is not a good, which means that either I is not admissible
for σ or Iσ is a nogood.

12.3. Symmetry-breaking methods

To solve a given problem instance, there are three main classical ways to tackle
symmetries:

– reformulate the model of the problem to reduce the number of symmetries;
– identify symmetries in the model (or instance) and post symmetry-breaking

constraints before starting the solving process;
– use every explored search subtree to avoid exploring symmetric ones.
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Different models of the same problem can differ significantly in their number of
symmetries. Appropriate reformulation of a problem can help the constraint solver by
limiting the number of symmetries. Modeling and reformulation are clearly outside the
scope of this book because they are (typically) neither general-purpose nor automatic
tasks. More information about modeling can be found in [SMI 06], and [GEN 06c]
provides more information about reformulation to deal with symmetries.

12.3.1. Symmetry-breaking constraints

Symmetries (in a given group) induce an equivalence relation on the set of
complete instantiations. Two complete instantiations are equivalent iff they are
symmetric. Consequently, every equivalence class contains either solutions or non-
solutions. For example, if P is a constraint network, S a solution of P and Sym a
group of symmetries on P , then the orbit of S defined as {Sσ | σ ∈ Sym} forms
a class comprising solutions equivalent to S (including S itself since the identity is
necessarily a symmetry).

To preserve satisfiability when solving an instance, it “suffices” to retain just one
representative from each equivalence class. For groups of variable symmetries, there
is a simple approach [CRA 96] (initiated in [PUG 93]) for breaking all symmetries:
posting symmetry-breaking constraints that can only be satisfied by representatives.
The idea is to order all complete instantiations lexicographically and to consider
each representative as a canonical element that is the lexicographically smallest
instantiation from its class. By means of posted constraints we avoid wasting time
with elements that are not canonical. Roughly speaking, the search now visits each
equivalence class rather than visiting every complete instantiation. This method is
called lex-leader.

A lexicographic order ≤lex on the search space is derived naturally from a
total order on domains and a total order on variables; see Definition 1.5. For
variable symmetries, lexicographic ordering constraints play the role of symmetry-
breaking constraints. They are defined on two vectors of variables, and when
variables are represented by letters, the two vectors represent words and we obtain
the classical order used by dictionaries. A vector of q variables is denoted by
−→x = ⟨x1, x2, . . . , xq⟩. Lexicographic ordering constraints are defined as follows.

DEFINITION 12.19.– [Lexicographic Ordering Constraint] A lexicographic ordering
constraint is a constraint defined on two vectors −→x = ⟨x1, x2, . . . , xq⟩ and −→y =
⟨y1, y2, . . . , yq⟩ of variables. We have:

– −→x <lex
−→y iff ∃i ∈ 1..q such that xi < yi and ∀j ∈ 1..i − 1, xj = yj;

– −→x ≤lex
−→y iff −→x <lex

−→y or −→x = −→y (i.e. ∀i ∈ 1..q, xi = yi).
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Here, we assume that the vectors have the same length. The first type of constraint
is denoted by Lex. When vectors only contain one variable, we have a binary
constraint “less than or equal” of the form x ≤ y, denoted by Le. Strict lexicographic
ordering constraints (<lex) will not be considered in this book. Returning to our
example, the vector of ordered variables of the constraint network P is denoted by
⟨x1, x2, . . . , xn⟩. All variables symmetries can be broken by adding the following
lexicographic ordering constraints to the constraint network P :

⟨x1, x2, . . . , xn⟩ ≤lex ⟨x1, x2, . . . , xn⟩σ,∀σ ∈ Sym

which is equivalent to2:
⟨x1, x2, . . . , xn⟩ ≤lex ⟨xσ

1 , xσ
2 , . . . , xσ

n⟩,∀σ ∈ Sym

Such constraints ensure that any solution found is canonical, which means that
it is lexicographically less than any symmetric solution obtained by re-ordering the
variables. For example, if we consider the variable symmetry fh on the 4-queens
instance, we obtain:

⟨xa, xb, xc, xd⟩ ≤lex ⟨xa, xb, xc, xd⟩f
h

which gives:
⟨xa, xb, xc, xd⟩ ≤lex ⟨xd, xc, xb, xa⟩

A portion of the search space is ignored by backtrack search algorithms when
this constraint is included. If the instantiation {(xa, 2), (xb, 4), (xc, 1), (xd, 3)}
remains a solution of the “reduced” constraint network, this is not the case for
{(xa, 3), (xb, 1), (xc, 4), (xd, 2)} because ⟨3, 1, 4, 2⟩ ̸≤lex ⟨2, 4, 1, 3⟩. However, if fh

is applied to the remaining solution, we obtain the second solution of the original
network for free.

In theory, posting all possible symmetry-breaking constraints enables the
breaking of all variable symmetries. However, in many cases, the size of the
group of symmetries is exponential, which renders this technique computationally
impracticable. Although symmetries can be organized into a symmetry tree that
can be pruned further (potentially obtaining a drastic reduction in size [CRA 96]),
there are cases where approximations are really necessary. For example, we can
decide to process only symmetries that constitute an irredundant set of generators.
This has been studied and shown to be effective in [ALO 02, ALO 06]. This partial
form of symmetry breaking captures a reasonable pruning capability “... because an

2. We consider here that each variable symmetry on P is defined by a permutation on vars(P ),
although we do not use the notation σvars as in Definition 12.10.
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irredundant set of generators contains maximally independent symmetries (none of
them can be expressed in terms of others)”.

The lex-leader method can also be applied to value symmetries [PUG 06,
WAL 06b]. Furthermore, it has been extended [WAL 06b] to symmetries acting
independently on variables and values by keeping the same variable ordering, and
simultaneously on variables and values, by introducing the concept of admissibility
(presented in section 12.2). This makes the method quite powerful.

12.3.2. Dynamic symmetry breaking

There is an opportunity to learn useful information in order to break symmetries
whenever a fruitless3 search subtree has been fully explored. This information is
basically a nogood, but it can also be an inconsistent partial state. By considering
symmetric nogoods and inconsistent partial states obtained after applying known
symmetries, we can avoid exploring many irrelevant nodes. This can be achieved by
posting constraints during search (SBDS for symmetry breaking during search) or
by detecting dominance during search (SBDD for symmetry breaking via dominance
detection). The difference between SBDS and SBDD (in its basic form) is essentially
a matter of implementation [HAR 01].

We first consider the basic use of dynamic symmetry breaking, assuming a
constraint network P init to be solved, and a given group4 Sym of symmetries on
P init. We also assume an internal dead-end node v in the search tree developed for
P init by a backtracking algorithm (that uses a binary branching scheme) such as
MAC. The set of decisions dn(v) labeling successive edges in the path from the root
of the search tree to v is a nogood on P init. We also know that the set ∆ of positive
decisions in dn(v) is a nogood of P init, which is called a reduced nld-nogood in
section 10.2.1. Then for every symmetry σ ∈ Sym, ∆σ is a nogood on P init that can
be exploited after backtracking from v.

SBDS has been introduced in [BAC 99, GEN 00, BAC 02b]. In practical terms,
symmetric nogoods are generated when the last decision taken to reach v is a positive
decision x = a. The right sibling of v is a node v′ considered after taking the negative
decision x ̸= a. At node v′, for every symmetry σ of Sym we add a nogood constraint
c∆σ , as in Figure 12.4.

3. We restrict our attention to fruitless subtrees, but the idea is directly adaptable to fruitful
subtrees.
4. To simplify, we assume that every valid instantiation is admissible for every symmetry in
Sym. For example, Sym is a group of variable symmetries or a group of value symmetries.
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Figure 12.4. Dynamic symmetry breaking in action. Whenever a nogood∆ is identified from a
left subtree, its symmetric variants are considered in the right subtree
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∆σ11 ,∆σ21 , . . . ,∆σ12 ,∆σ22 , . . .

Figure 12.5. Symmetric nogoods obtained from the current branch are posted
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Although generated symmetric nogoods are global, i.e. valid on P init, they
are dynamically included in the constraint network cn(v′) before exploring the
subtree rooted at v′, and later retracted when backtracking from v′. The reason is
that symmetric nogoods identified at the ancestor of v′ where the search algorithm
backtracks subsume those posted at v′. In other words, only symmetric nogoods
obtained from a reduced nld-nogood extracted from the current branch are relevant
and must be activated at a given node. Figure 12.5 provides an illustration.

SBDD has been introduced in [BRO 88, FOC 01, FAH 01]. Just before exploring
a new node, the search algorithm checks whether the constraint network associated
with this node entails (or almost entails) a symmetric nogood obtained from a
reduced nld-nogood that can be extracted from the current branch. If this is the case,
then a backtrack is forced. The main difference between SBDS and SBDD is that
SBDD does not really impose new constraints (in their classical forms), but instead
stores separately information about explored node and use (specific) functions to
determine whether a node is dominated by a previously explored one under some
symmetry. Collected information is called global cut seeds in [FOC 01] and patterns
in [FAH 01]. Patterns are partial states that are equivalent to standard nogoods as
shown in [PUG 05b]. Nevertheless, the partial states identified in [FOC 01], which are
called extended dead end seeds, are more general because they represent generalized
nogoods (that are not standard). Automated and efficient procedures for dominance
detection have been proposed, e.g. see [GEN 03, SEL 05].

Dynamic symmetry breaking, as implemented by SBDS and SBDD, is known
to respect the variable and value ordering heuristics: the first solution found by
the search algorithm without symmetry breaking is the same as the first solution
found by the search algorithm with symmetry breaking. This is not guaranteed when
symmetry-breaking constraints are added to the initial problem. However, even for
dynamic symmetry-breaking, this is no longer true if adaptive heuristics are used.
Finally, an original dynamic symmetry breaking method, employing heuristics, has
been proposed in [MES 01]. The idea is to choose at each step a positive decision that
allows the maximum number of symmetries to be broken.

12.4. Automatic symmetry detection

Most methods for breaking symmetries in constraint networks assume that
symmetries are given by the user. Some symmetries are well-known, such as the eight
symmetries of the geometrical square, and so can be given as input to the constraint
solver. However, even when symmetries seem natural, the user may need considerable
expertise in order to specify symmetries correctly. A requirement for expertise tends
to restrict the use of constraint solvers to experienced users, which is not in accord
with our ambition to promote black-box solvers. Furthermore, there is no guarantee
that the user will not miss some important symmetries. These considerations have
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motivated automatic detection of symmetries. We briefly present several recent
approaches in this section.

A system called CGRASS [FRI 02b] analyzes CSP instances to identify
symmetries and implied constraints automatically. The heart of the system performs
a syntactic comparison via computation of normal forms. To detect symmetric
variables, the system first groups together pairs of variables with the same domain and
with the same number of occurrences in the set of constraints. The set of constraints
obtained after swapping each pair of variables is normalized and compared with
the original form. Moreover, the transitivity of symmetry serves to minimize the
number of pairs of variables that need to be compared. Unfortunately, as mentioned in
[FRI 02b], this approach is generally impractical, due to the complexity of computing
normal forms over all pairs of variables and over the full set of constraints. A related
approach [HEN 05] allows derivation of symmetries in a compositional fashion from
symmetries specified for global constraints. These forms of symmetries correspond to
value and variable interchangeability.

Quite importantly, the automatic detection and exploitation of symmetries has
been addressed using software that computes graph automorphisms. The well-
known software of Nauty [MCK 81] and Saucy [DAR 04] has been developed for
identifying irredundant generating sets of colored graphs. In practice, from a problem
structure that corresponds to a hypergraph, an encoding to a vertex-colored graph
is required. This allows symmetry groups to be captured. Symmetries map each
vertex into a vertex with the same color; colors do not introduce any computational
difficulties and can be formally reduced to plain graph automorphism. Finding the
set of automorphisms in a graph is known as the graph automorphism problem. The
theoretical complexity of this problem is not known precisely: the problem is in NP,
but whether or not it is in P is currently unknown.

The first implementation of symmetry detection via graph automorphisms was for
SAT. Crawford [CRA 92] has presented a prototype system that takes a propositional
theory in clausal form and constructs an approximate symmetry-breaking formula
from it. Given a SAT instance in conjunctive normal form, a colored graph is built as
follows. Every propositional variable x is represented by two vertices that correspond
to the positive literal x and the negative literal ¬x. Every clause is represented by a
vertex, and there is an edge between a clause c and a literal l if the literal l appears in
the clause c. Considering refinements proposed in [CRA 96, ALO 02], literal vertices
are painted with a first color, while clause vertices are painted with a second color,
vertices of opposite literals are directly linked by an edge, and literals of binary clauses
are directly linked by an edge (without creating a vertex for the binary clause). This
encoding allows identification of phase-shift symmetries, i.e. symmetries that map a
literal x to its opposite ¬x, and more generally symmetries that map a positive literal
to a negative literal.
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EXAMPLE.– Figure 12.6 shows the graph obtained for a SAT instance comprising
three variables x, y and z, and three clauses c1, c2 and c3. A non-trivial symmetry on
this instance is {(x,¬x), (y,¬z), (¬y, z), (c1, c2)} [ALO 02].

y z

¬z

¬x

¬yx

c2

c1

Figure 12.6. Vertex-colored graph representing a SAT instance (CNF formula) composed of
clauses c1 = ¬x ∨ y ∨ z, c2 = x ∨ ¬y ∨ ¬z and c3 = ¬y ∨ z

Ramani and Markov [RAM 04] reduce CSP instances into SAT ones while
capturing their symmetric structure (before reduction). They generalize techniques
of [CRA 96, ALO 04] to detect symmetries in high-level constraints via reduction
to graph automorphism. They use a C-like language to specify constraints and a
customized tool to build parse trees. A parse tree (graph) is built from the predicate
expressions associated with constraints, and various transformations (e.g. removing
brackets, grouping operators) facilitate the detection of symmetries. The authors
develop a set of rules for constraints formed from a restricted set of arithmetic and
relational operators, but the approach can be extended to additional operators.

EXAMPLE.– Figure 12.7 shows the parse graph for an example in which there are two
integer variables x1 and x2, two unary constraints c1 : x1 ≥ 1 and c2 : x2 ≥ 1 and
one binary constraint c3 : x1 × x1 + x2 × x2 = 25. For this example, the symmetry
of variables x1 and x2 can be detected.

In this vein, a general automatic symmetry detection method has been proposed
in [PUG 05a]. This method allows detection of value and variable symmetries, as
well as some non-trivial ones involving both variables and values. Symmetries are
computed from different representations of constraints: extension, intension or global
constraints. For an extensional constraint, the graph is constructed as follows. There
is one vertex per variable and one vertex per value. If a is a value in the domain of
a variable x, then there is an edge linking the value vertex a to the variable vertex
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1 1

× ×
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=

≥ ≥

x1

+

x2

Figure 12.7. Parse graph built from constraints c1 : x1 ≥ 1, c2 : x2 ≥ 1 and
c3 : x1 × x1 + x2 × x2 = 25. Vertices are shaped differently to indicate different colors

x. There is one vertex per constraint and one vertex per support on the constraint.
If τ = (a1, . . . , ar) is a support on a constraint c, then there is an edge linking the
constraint vertex c to the support vertex τ which is itself linked to each value vertex
ai occurring in τ . A unique color is used for all variable vertices, another for all value
vertices5, another for all support vertices and finally there is one color for all constraint
vertices.
EXAMPLE.– Figure 12.8 shows the colored graph obtained for a binary constraint
cxy such that dom(x) = dom(y) = {1, 2, 3} and rel(cxy) = {τ1 = (1, 2), τ2 =
(1, 3), τ3 = (2, 3)}. There is an automorphism in the graph composed of the cycles
(x, y), (1x, 3y), (2x, 2y), (3x, 1y) and (τ1, τ3); aw designates value vertex a linked to
variable vertex w. We can then derive the symmetry {((x, 1), (y, 3)), ((x, 2), (y, 2)),
((x, 3), (y, 1))}, which is non-trivial.

12.5. Lightweight detection of variable symmetries
This section proposes automatic detection of variable symmetries by partitioning

the scope of each constraint. Each partition shows locally symmetric variables. From
this local information, which is computed in time polynomial in the size of the
constraints and their arity, we build a so-called lsv-graph whose automorphisms
correspond to variable symmetries. This approach allows us to disregard the
representation of constraints: whatever representation (extension, intension, global)

5. To detect variable symmetries only, a distinct color for value vertices must be used per
variable domain.
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3
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Figure 12.8. Colored graph obtained for an extensional constraint using Puget’s method.
Variable vertices are light gray, value vertices are white, support vertices are mid gray, and the

constraint vertex is dark gray

is used, the same notion (kind of vertices) is implemented in the lsv-graph. Besides,
the size of the lsv-graph is only O(er) where r is the greatest constraint arity, making
symmetry detection efficient on very large instances with available tools such as
Nauty and Saucy. This is what we call lightweight detection of variable symmetries.

The proposed approach proceeds in three steps. The first is a local analysis of each
constraint in order to identify locally symmetric variables. The second is concerned
with the construction of an lsv-graph. In the third step, generators for the symmetry
group are classically computed using a graph automorphism algorithm.

12.5.1. Locally symmetric variables

We start by introducing locally symmetric variables (related definitions can be
found in [PUG 93, ROY 98]). Two variables are locally symmetric for a constraint
c, in which they are involved, iff both variables can be permuted without modifying
the set of allowed tuples. Note that if τ is a tuple of values built on a set of variables
containing x and y then τx↔y denotes the tuple obtained from τ by swapping τ [x] and
τ [y].

DEFINITION 12.20.– [Locally Symmetric Variables] Two variables x and y are
locally symmetric for a constraint c such that {x, y} ⊆ scp(c) iff ∀τ ∈ rel(c), τx↔y ∈
rel(c).

For example, the variables x and y are locally symmetric for the constraint cxy :
x ̸= y iff dom(x) = dom(y). Indeed, these variables can be permuted since ̸= is
commutative. Another example is for the inequality x + y + z + 1 < v + w where
the domain of each variable is {1, 2, 3}. Variables in {x, y, z} are pairwise locally
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symmetric since + is commutative and associative; the same holds for {v, w}. Here
we propose an algorithm that detects locally symmetric variables. This algorithm can
be run with intensional constraints using tree representations of predicate expressions
as shown in Figure 12.9(a), and also with extensional constraints using tables directly
as shown in Figure 12.9(b). Shaded areas in the table emphasize that permutations are
possible.

<

1y z v wx

+ +

(a) Tree

⟨1, 1, 1, 2, 3⟩
⟨1, 1, 1, 3, 3⟩
⟨2, 1, 1, 3, 3⟩
⟨1, 2, 1, 3, 3⟩
⟨1, 1, 2, 3, 3⟩

⟨1, 1, 1, 3, 2⟩

(b) Table

Figure 12.9. Representation of the inequality x + y + z + 1 < v + w by a tree (intensional
form) and a table (extensional form)

As symmetry is a transitive property, for each constraint we can compute a partition
of its scope, each element of this partition being a set of pairwise locally symmetric
variables. This is the role of the function computeSymmetricVariables, Algorithm 85,
which identifies locally symmetric variables for any extensional, intensional or global6
constraint c. A set X is first initialized with all variables involved in c. At each turn
of the main loop, the algorithm picks a variable x from X , and computes the set T of
variables locally symmetric with x for c. Once, T has been computed, it is added to
the partition Γ that is currently being built.

At the heart of Algorithm 85, there is a call to the function isLocallySymmetric,
Algorithm 86. For a given constraint c and two variables x and y involved in c,
the function isLocallySymmetric simply determines whether x and y are locally
symmetric for c. Generally speaking, three cases have to be considered depending on
the representation of the constraint c:

1) If the constraint is defined in extension (lines 1 to 5), then the function builds,
for each tuple in the (positive or negative) table associated with c, a new tuple by

6. We only illustrate our intention with two patterns of global constraints, namely, allDifferent
and weightedSum.
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Algorithm 85: computeSymmetricVariables(c: constraint): partition
Output: a partition of the scope of c

Γ ← ∅1
X ← scp(c)2
while X ̸= ∅ do3

pick and delete x from X4
T ← {x}5
foreach variable y ∈ X | y ̸= x do6
if isLocallySymmetric(c, x, y) then7

T ← T ∪ {y}8
X ← X \ {y}9

// T is a set of pairwise locally symmetric variables for c
Γ ← Γ ∪ T10

return Γ11

Algorithm 86: isLocallySymmetric(c: constraint, x, y: variables): Boolean
Output: true iff x and y are locally symmetric for c

if c is defined in extension then1
// table[c] means indifferently a positive or negative table
foreach tuple τ ∈ table[c] do2
if τx↔y ̸∈ table[c] then3
return false4

return true5

if c is defined in intension then6
G ← buildCanonicalTree(expr [c])7
G′ ← buildCanonicalTree(expr [c]x↔y)8
return G = G′9

// necessarily, c is a global constraint
if pattern of c is allDifferent then10
return true11

if pattern of c is weightedSum then12
return coefficient(c, x) = coefficient(c, y)13

. . .14
return false15
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swapping the values of variables x and y, and then checks whether this new tuple also
belongs to the table of c.

2) If the constraint is defined in intension (lines 6 to 9), then the algorithm builds
at line 7 a canonical tree representation of the predicate expression expr [c] associated
with c by a call to function buildCanonicalTree. A detailed description of this approach
(but no algorithm) is given in section 12.5.2. A second canonical tree representation
is built at line 8 after swapping variables x and y in expr [c], denoted by expr [c]x↔y .
Both canonical representations are compared, and variables x and y are identified as
being locally symmetric for c iff both representations are identical. For example, if
expr [c] = x + y < z then expr [c]x↔y = y + x < z. Both expressions have the same
canonical representation (following the description given in section 12.5.2), so x and
y are locally symmetric for c.

3) If the constraint is an instance of a global constraint pattern (lines 10 to 15),
this must be treated in a manner that is specific to that constraint. For example, any
two variables involved in an allDifferent global constraint are locally symmetric for it.
Another example is that two variables involved in a weightedSum global constraint
are locally symmetric if they have the same attached coefficient in the constraint. For
example, if c is a weightedSum global constraint that represents 3x + 2y + 3z = 5,
then coefficient(c, x) = coefficient(c, z) = 3, and so x and z are locally symmetric
for c.

A partition of the scope of a constraint c (defined in extension or intension) is
computed in time polynomial in the arity and the representation size of c. Recall that
the representation of an extensional constraint is a table and the representation of an
intensional constraint is a predicate expression. The size t of a table corresponds to
the number of elements it has, whereas the size of an expression corresponds to the
number of tokens (operators, constants and variables) that it contains. We have the two
following complexity results:

THEOREM 12.21.– The worst-case time complexity of computeSymmetricVariables
for an extensional constraint c is O(r3t log(t)) where r denotes the arity of c and t
the size of the table associated with c.

Proof. The number of calls to isLocallySymmetric is bounded by O(r2). In the worst
case, we have to iterate over all the tuples of the table associated with c and to perform
a constraint check whose complexity is O(log(t)r) (see sections 5.1.1 and 5.6.1). So,
we obtain O(r3t log(t)).

THEOREM 12.22.– The worst-case time complexity of computeSymmetricVariables
for an intensional constraint c is O(r2t2 log(t)) where r denotes the arity of c and t
the size (number of tokens) of expr [c].
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Proof. The number of calls to isLocallySymmetric (and, so to buildCanonicalTree)
is bounded by O(r2). As shown later by Theorem 12.23 in section 12.5.2,
buildCanonicalTree is in O(t2 log(t)). So, we obtain O(r2t2 log(t)).

In practice, one may expect better behavior than that predicted in the worst case.
First, the number of calls to isLocallySymmetric is only r − 1 when the constraint
is fully symmetric (i.e. all variables are pairwise locally symmetric), due to the
transitivity of symmetry. Second, for an intensional constraint, buildCanonicalTree is
reduced to O(t2) when operators in the predicate expression are binary. Third, when
two variables are not locally symmetric for an extensional constraint, we can hope
to exit quickly from the foreach loop starting at line 2 of Algorithm 86. Finally, the
function computeSymmetricVariables is not necessarily called for each constraint.
Indeed, a key (string) can be associated with each constraint, using domain types of
variables as prefix. We append to the key the type of the relation for an extensional
constraint, and we append a representation of the canonical form of the predicate
expression (referring to variables by their position in the scope) for an intensional
constraint. Two constraints with the same key admit the same partition. This happens
frequently in structured instances.

12.5.2. Computing normal forms of predicate expressions

To identify symmetric variables of constraint networks, normal forms [FRI 02b]
have been applied globally to the set of constraints, making this approach impracticable
(except for small instances). Here, we propose to apply a similar approach to each
constraint taken individually. This can be quite efficient, except for some very specific
cases where predicate expressions or constraint arities are very large.

To make our presentation concrete, we now consider the grammar [ROU 09],
introduced in the context of constraint solver competitions, which can construct
predicate expressions. Many of the operators involved are both commutative and
associative: add (+), mul (*), min, max, and, or, xor, iff, eq (=), ne (̸=). The following
indicates simple rewriting rules that can be applied to any expression.

– Group associative operators using n-ary equivalent operators [RAM 04]. For
example, replace add(x, add(y, z)) by add(x, y, z).

– Put occurrences of not (unary logical negation operator) higher in the expression
when possible. For example, replace and(not(e1), not(e2)) by not(or(e1, e2)), where
e1 and e2 are sub-expressions.

– Replace all occurrences of ge (≥) and gt (>) by le (≤) and lt (<) [FRI 02b]. For
example, replace ge(x, y) by le(y, x).

– Replace the sequence abs sub with a new commutative operator abssub
combining both operators. For example, replace abs(sub(x, y)) by abssub(x, y).
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42

<

y x

(a) Initial parse tree

42

<

x y

(b) Canonical parse tree

Figure 12.10. Initial and canonical representations of the predicate |y − x| > 42 built with
the function buildCanonicalTree

A parse tree (in which each node is labeled with a token of the expression) can be
constructed in one pass while taking all of these rules into account. Although some
additional sophisticated rules may be imagined (e.g. specific rules for linear and non-
linear equations), this simple set of rules is sufficient to capture locally symmetric
variables of many classical constraints. The new operator abssub is important because
it occurs in various problems (e.g. frequency assignment problems). Because this new
operator is commutative, it allows identification of symmetries that are missed when
the (non-commutative) operator sub is used.

To obtain a canonical form from an initial parse tree, it is sufficient to make
canonical the root of the tree. A node is made canonical as follows: first, all child
nodes (if any) are made canonical and also are sorted if the label associated with the
node is a commutative operator. To obtain a normal form, it is necessary to define a
total order over the set of operators, integers and variables. This order can be defined
rather naturally [FRI 02b].

EXAMPLE.– Figure 12.10(a) shows the initial (i.e. before normalization) parse
tree representing the predicate expression |y − x| > 42. Since the new operator
abssub is commutative, we obtain as the canonical representation the one shown
in Figure 12.10(b), assuming that variables are lexicographically ordered by their
names.

Except when the size of the predicate expression is large, computing a canonical
tree is cheap. Indeed, we have the following complexity result:

THEOREM 12.23.– The worst-case time complexity of building a tree in canonical
form, from a predicate expression expr [c], is O(t2 log(t)) where t denotes the size of
expr [c].
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Proof. In O(t) operations, a tree (containing t nodes) can be built while taking account
of all of the rewriting rules mentioned above. In the worst case, the total number of
comparisons to sort all nodes is bounded by O(t log(t)), and each comparison involves
visiting at most t nodes. So, we obtain O(t2 log(t)).

12.5.3. Constructing lsv-graphs

Once locally symmetric variables have been identified for each constraint
(through partitioning), we build a colored graph for use in the search of variable
symmetries. Each automorphism of this graph identifies a variable symmetry in
the constraint network. As mentioned previously, this approach was introduced in
[CRA 92, CRA 96] and implemented for example in [ALO 02, RAM 04, PUG 05a].
We now show that the colored graphs that we build are of limited size while capturing
many variable symmetries.

Colored graphs, called lsv-graphs, are constructed as follows. Each variable of the
given constraint network P is represented by a vertex called a variable vertex. For
each constraint of arity r, we include a constraint vertex and r binding vertices, one
per variable involved in the constraint. Binding vertices connect constraint vertices to
variable vertices: if c is a constraint involving x then we have a connection between the
constraint vertex representing c and the variable vertex representing x via a binding
vertex.

A color is associated with each vertex of the graph (permutations are only allowed
between vertices of the same color). Variables with the same domain have the same
color (alternatively, we could have used a unique color for all variable vertices by
inserting unary constraints to represent domains). Similar constraints (i.e. constraints
defined by the same relation or expression) have the same color. For each constraint,
binding vertices that correspond to locally symmetric variables have the same color.
The same coloring schema of binding vertices is used for similar constraints. In all
other cases, colors must be different.

We can show that the above construction is correct: any automorphism in the
lsv-graph identifies a variable symmetry in the constraint network. Every element
(domain, constraint) constraining the search space of the constraint network is taken
into account when constructing the graph and assigning colors.
EXAMPLE.– Consider, for example, a constraint network P that has four variables
{w, x, y, z} and four intensional constraints {cwx, cwy, cxz, cyz}. The associated
predicate schema of both cwx and cwy is |$0 − $1| = 56 while it is |$0 − $1| > 42
for cxz and cyz , where $i denotes the ith variable (viewed as a formal parameter) of
the predicate expression. This means, for example, that expr [cwx] is |w − x| = 56
by setting $0 = w and $1 = x. Figure 12.11 shows the lsv-graph built for P : the
four white circles are the variable vertices (assuming that they have the same domain)
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and the four gray circles are the constraint vertices (mid gray ones for cwx and cwy

and dark gray ones for cxz and cyz). Each constraint vertex is linked to two variable
vertices through two binding vertices since constraints are binary.

x

z

y

w

cwx

cxz

cwy

cyz

Figure 12.11. An lsv-graph composed of four variable vertices (white circles), four constraint
vertices (middle and dark gray circles) and eight binding vertices (circles with line patterns)

Running Algorithm 85 on cwx, variables w and x are detected as being locally
symmetric for xwx. Consequently, the two binding vertices introduced for cwx receive
the same color, which is represented with a horizontal line pattern. In our example, cwy

is similar to cwx (the semantics are the same since both constraints are represented by
the same predicate schema). This is why the same set of colors is used for cwx and for
cwy . A similar observation applies to constraints cxz and cyz: all binding vertices for
these two constraints are assigned the same color, represented here by a vertical line
pattern. A graph automorphism algorithm (Saucy) identifies a symmetry that maps x
into y, and vice-versa, as can be seen in Figure 12.11.

An advantage of lightweight detection of variable symmetries is the controlled size
of lsv-graphs.

THEOREM 12.24.– The number of vertices and edges in the lsv-graph built for a
constraint network is O(er) where r denotes the greatest constraint arity.

Proof. There is a vertex for each variable and each constraint of P . For each variable
involved in a constraint, there are a vertex and two edges. Assuming that n is O(e),
overall complexity is O(er) for both the number of vertices and the number of edges.
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Some variable symmetries cannot be detected by means of lsv-graphs, but
this is not very surprising because finding all variable symmetries of a CSP
instance is an intractable task. Although some variable symmetries correspond to
interchangeable variables (see Definition 1.68), locally symmetric variables are
not necessarily interchangeable. Moreover, variable symmetries identified via lsv-
graphs cannot always be expressed in terms of interchangeable variables. For the
4-queens instance, as in section 12.2, there is only one variable symmetry (other
than identity). This is fh = {(xa, xd), (xb, xc)} which is obtained automatically
from the lsv-graph generated for 4-queens. The two solutions of 4-queens are
{(xa, 2), (xb, 4), (xc, 1), (xd, 3)} and {(xa, 3), (xb, 1), (xc, 4), (xd, 2)}. The reader
can check that there is no pair of interchangeable variables for this instance.

It is important to relate this approach to that described in [PUG 05a] when
restricted to the identification of variable symmetries. The size of generated lsv-
graphs is O(er), whereas the size of Puget’s graphs grows exponentially with the
arity of the constraints when constraints are defined in extension and the size of
the tables is not bounded. When constraints are binary, both approaches detect the
same groups of variable symmetries, but this is not always true for non-binary
constraints. For example, the constraint c such that scp(c) = {w, x, y, z} and
rel(c) = {(4, 3, 2, 1), (1, 2, 3, 4)} admits a variable symmetry σ such that wσ = z,
xσ = y, yσ = x and zσ = w, but no locally symmetric variables. This is a
symmetry composed of two cycles, similar to that found for 4-queens. At the level
of a single constraint, an lsv-graph cannot handle this. It would be worthwhile to
extend lightweight detection of symmetries to deal with locally symmetric groups of
variables (that is, a generalization of locally symmetric variables), while controlling
the time complexity of local symmetry detection and the space complexity of
generated lsv-graphs.

12.6. A GAC algorithm for lexicographic ordering constraints

Once symmetries have been detected, it remains to make use of them. One
approach, introduced in section 12.3.1, employs symmetry-breaking constraints
implemented by lexicographic ordering constraints. Classically, a lexicographic
ordering constraint is posted for each generator returned by graph automorphism
software. Indeed, it has been shown difficult to improve upon symmetry breaking
based only on generators [ALO 06]. Symmetries (generators or not) may involve
one or several cycles, some of them possibly of length strictly greater than 2. We
now illustrate how constraints are posted to break variable symmetries according to
different representative scenarios. Consider a constraint network P with four variables
w, x, y and z. Imagine that a variable symmetry σ on P is defined by a unique cycle
(x, y). In this case we post:

⟨w, x, y, z⟩ ≤lex ⟨w, x, y, z⟩σ
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which is equivalent to:
⟨w, x, y, z⟩ ≤lex ⟨wσ, xσ, yσ, zσ⟩

and also:
⟨w, x, y, z⟩ ≤lex ⟨w, y, x, z⟩

Passive variables, which are variables located at the same position in both vectors,
can be safely discarded. This gives:

⟨x, y⟩ ≤lex ⟨y, x⟩

Swapped variables are pairs of variables occurring together in two different
positions of both vectors7. The second occurrence of swapped variables can be safely
discarded, yielding:

⟨x⟩ ≤lex ⟨y⟩

or simply with a usual binary constraint:
x ≤ y

To summarize, vectors can be reduced by discarding passive variables and second
occurrences of swapped variables. Imagine now that the symmetry σ on P is defined
by a cycle (w, x, y) of length 3. In this case we post:

⟨w, x, y, z⟩ ≤lex ⟨x, y, w, z⟩

which simplifies to:
⟨w, x, y⟩ ≤lex ⟨x, y, w⟩

This lexicographic ordering constraint, which cannot be reduced further, contains
shared variables, i.e. variables that occur several times in the combined list
(w, x, y, x, y, w) of variables of the two vectors. A lexicographic ordering constraint
posted for a variable symmetry involving a cycle of length strictly greater than two
generally contains shared variables. Finally, if the symmetry σ is defined by two
cycles (w, x) and (y, z) of length 2, we obtain:

⟨w, y⟩ ≤lex ⟨x, z⟩

A similar constraint should be posted to break the variable symmetry of the 4-queens
instance.

7. Naturally, swapped variables correspond to cycles of length 2.
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We now present an algorithm that enforces GAC on lexicographic ordering
constraints. It is important that this algorithm can be used when shared variables
are present. Before this algorithm commences, passive variables must be discarded.
This algorithm, derived from one described in [KIZ 04], is quite simple to implement
and is well-adapted to generic black-box solvers. We denote by min(x) and max(x)
the smallest and greatest value in dom(x). A vector of variables is denoted by
−→x = ⟨x1, x2, . . . , xq⟩, and a subvector ⟨xi, . . . , xj⟩ from index i ≥ 1 to index j ≤ q
inclusive is denoted by −→x i..j .

To the best of our knowledge, only two algorithms have been described in the
literature to enforce GAC on lexicographic ordering constraints. The first, introduced
in [FRI 02a, FRI 06], employs two indices denoted by α and β. The index α is the
least position of variables in −→x and −→y that are not fixed and equal (q + 1 if no such
position exists). The index β is the least position at which we have the guarantee that
−→x β..q >lex

−→y β..q (q + 2 if no such position exists).
EXAMPLE.– The expression

−→x = ⟨ x1, x2, x3, x4 ⟩
{1} {0} {0, 1} {1}
{1} {0} {0, 1} {0}

−→y = ⟨ y1, y2, y3, y4 ⟩

represents the constraint −→x ≤lex
−→y . Domains are located below the name of variables

in −→x and above the name of variables in −→y . Here, we have α = 3 because at indices
1 and 2, variables are fixed and equal, and we have β = 4.

By reasoning from α and β, GAC can be enforced efficiently: the worst-case time
complexity of one call is O(qλ), where q is the length of the vectors and λ is the
complexity of tightening a domain bound. Classically, in solver implementations, we
have either λ which is O(1) or λ which is O(d), where d is the greatest domain size.
The second algorithm, introduced in [CAR 02], employs a finite automaton operating
on a string that captures the relationship between each variable pair of the two vectors.
The string (signature) is built from current domains and is given as input to the
automaton. Filtering is achieved while making transitions in this automaton. This
elegant approach detects entailment and also admits a time complexity in O(qλ) plus
constant amortized time per propagation event (assuming λ in O(1)).

One limitation of the two proposed algorithms is that they are not adapted to the
case where there are shared variables. When lexicographic ordering constraints are
used to break symmetries, this may happen quite often, as seen above.
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EXAMPLE.– The expression
−→x = ⟨ v0, v1, v2, v3 ⟩

{0, 1} {0, 1} {0, 1} {1}
{0, 1} {0, 1} {0, 1} {0}

−→y = ⟨ v1, v2, v0, v4 ⟩

represents the constraint −→x ≤lex
−→y with shared variables v0, v1 and v2. The domain

of all variables is {0, 1}, except for v3 and v4, whose respective domains are {1} and
{0}. If we employ the algorithms mentioned above, we do not filter anything, although
(v0, 1) has no support.

Similarly,
−→x = ⟨ v0, v1, v2, v3 ⟩

{0, 1} {0, 1} {0, 1} {1}
{0, 1} {0, 1} {0, 1} {0}

−→y = ⟨ v2, v0, v1, v4 ⟩
represents another Lex constraint. Once again, if we employ the algorithms mentioned
above, we do not filter anything, although (v2, 0) has no support. To remedy this,
Kiziltan has proposed an extension [KIZ 04] to the algorithm in [FRI 02a, FRI 06].
The algorithm presented below is inspired by this.

Algorithm 87 enforces generalized arc consistency on a lexicographic ordering
constraint c of the form ⟨x1, x2, . . . , xq⟩ ≤lex ⟨y1, y2, . . . , yq⟩; recall that GAC
enforcement on a constraint c is denoted by GAC (c). This is a non-revision-based
(or specific) filtering procedure. For example, enforceGAC-lex can be seen as an
implementation (for lexicographic ordering constraints) of enforceGAC-type called in
Algorithm 9. To simplify the presentation, enforceGAC-lex simply returns a Boolean
value (this can easily be adapted so that a set of variables is returned). So long as xα

and yα are fixed and equal (the test at line 5 is the opposite condition) after enforcing
AC on xα ≤ yα (line 3), the value of α is incremented. This process is stopped a)
when an inconsistency is found while enforcing AC, or b) when α = q + 1, or c)
when xα and yα are no longer fixed and equal. The value of α obtained is similar to
that obtained in [FRI 02a, FRI 06], but it is computed in a slightly different manner
(besides, at α, we have already enforced xα ≤ yα). If α = q + 1, this means that all
variables are fixed and equal, so the constraint is GAC-consistent. If α = q, only the
last (pair of) variables of both vectors are not fixed and equal. However, we know that
xα ≤ yα, whence it is not difficult to see that the constraint is GAC-consistent. Both
cases are taken into account at line 8. At line 10 we know that only two values are not
guaranteed to be GAC-consistent, specifically, (xα,max(xα)) and (yα,min(yα)).
When these values are removed, all other values remain GAC-consistent, as stated by
Lemmas 12.25 and 12.26 given below. Note that min(yα) may have no support only
if min(yα) = min(xα). In this case, we have to seek a support for min(yα) by calling
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function seekSupportLex, with short-circuit evaluation of the operator ∧. The value
max(xα) must be treated similarly.

Algorithm 87: enforceGAC-lex(P : P , c: constraint): Boolean
Require: c is a lexicographic constraint ⟨x1, x2, . . . , xq⟩ ≤lex ⟨y1, y2, . . . , yq⟩
Output: true iff GAC (c) ̸= ⊥
α ← 11
while α ≤ q do2
if ¬enforceAC(xα ≤ yα) then3
return false4

if |dom(xα)| ≠ 1 ∨ dom(xα) ̸= dom(yα) then5
break6

α ← α + 17

if α ≥ q then8
return true9

// only (xα,max(xα)) and (yα,min(yα)) may be GAC-inconsistent
ifmin(xα) = min(yα) ∧ ¬seekSupportLex(α,min(yα)) then10

remove min(yα) from dom(yα)11

ifmax(xα) = max(yα) ∧ ¬seekSupportLex(α,max(xα)) then12
remove max(xα) from dom(xα)13

return true14

Algorithm 88: enforceAC(c: constraint): Boolean
Require: c is a binary inequation constraint xi ≤ yi

Output: true iff GAC (c) ̸= ⊥
ifmax(xi) > max(yi) then1

max(xi) ← max(yi) // a ∈ dom(xi) is removed if a > max(yi)2
if dom(xi) = ∅ then3
return false4

ifmin(yi) < min(xi) then5
min(yi) ← min(xi) // b ∈ dom(yi) is removed if b < min(xi)6
if dom(yi) = ∅ then7
return false8

return true9
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Algorithm 89: seekSupportLex(α: integer, v: value): Boolean
Output: true iff a support is found for value v

I ← {(xα, v), (yα, v)} // I is a temporary instantiation1
for i ranging from α + 1 to q do2
if xi ∈ vars(I) then3

a ← I[xi]4
else5

a ← min(xi)6

// a is the minimum (or fixed) value of xi

if yi ∈ vars(I) then7
b ← I[yi]8

else9
b ← max(yi)10

// b is the maximum (or fixed) value of yi

if a < b then11
return true12

if a > b then13
return false14

// a = b, which requires fixing xi and yi

I ← I ∪ {(xi, a), (yi, b)}15

return true16

The function seekSupportLex, Algorithm 89, finds a support when min(xα) =
min(yα) or max(xα) = max(yα). The idea is to record in a set I the values that are
now fixed: I can be regarded as a temporary instantiation. Recall that vars(I) denotes
the set of variables covered by I , and I[x] is the value a such that (x, a) ∈ I . The set
I is initialized with the same value for xα and yα. For each position i, we compare the
smallest value of xi with the greatest value of yi (but when variables are given a fixed
value in I , this must be taken into account). The result of this comparison identifies
a support, or a failure or the requirement to fix new variables. Roughly speaking, the
function seekSupportLex corresponds to the procedure SeekSupport in [KIZ 04].

To prove that the proposed algorithm enforces GAC, we introduce the following
lemmas. The set of v-values of P for the variables involved in a constraint c is denoted
by v-vals(c): thus v-vals(c) = {(x, a) | x ∈ scp(c) ∧ a ∈ dom(x)}.

LEMMA 12.25.– When line 10 of Algorithm 87 is reached, every value that belongs
to v-vals(c) \ {(xα,max(xα)), (yα,min(yα))} is GAC-consistent.
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Proof. For any position i < α, we know that xi and yi are fixed and equal. At position
α, we know that max(xα) ≤ max(yα) and min(yα) ≥ min(xα) since enforceAC has
been called for position α. We also know that min(xα) < max(yα) since the main
loop has been terminated with a break, and consequently, we know that there is at
least one value a in dom(xα) and one value b in dom(yα) such that a ̸= b. Hence,
every value of every variable z ∈ scp(c) different from xα and yα admits a support
τ such that τ [xα] = min(xα) and τ [yα] = max(yα); recall that xα ̸= yα since
passive variables have been discarded. On the other hand, every value a < max(xα)
in dom(xα) has a support τ in c with τ [yα] = max(yα) since a < max(xα) ≤
max(yα). Similarly, every value b > min(yα) in dom(yα) has a support τ in c with
τ [xα] = min(xα) since b > min(yα) ≥ min(xα). We therefore have the guarantee
that all values in v-vals(c) \ {(xα,max(xα)), (yα,min(yα))} are GAC-consistent.

LEMMA 12.26.– When line 10 of Algorithm 87 is reached, if |dom(xα)| = 1, then
the unique value in dom(xα) is GAC-consistent. Similarly, if |dom(yα)| = 1, then
the unique value in dom(yα) is GAC-consistent.

Proof. If dom(xα) is a singleton {a}, we have to consider two cases. On the one
hand, assume that there is only one value b in dom(yα). a > b is not possible since
we necessarily have a = max(xα) ≤ max(yα) = b. Furthermore, a = b is not
possible since α would have been increased (both variables being fixed and equal).
Necessarily, we have a < b, and consequently, a, the unique value in dom(xα) is
generalized arc-consistent. On the other hand, assume now that there are at least two
values in dom(yα). We can deduce that max(yα) > a since max(yα) > min(yα)
(because there are two values in dom(yα)) and min(yα) ≥ min(xα) = a. Once
again, a, the unique value in dom(xα) is proved to be generalized arc-consistent. We
can reason similarly with |dom(yα)| = 1.

THEOREM 12.27.– Algorithm 87 enforces GAC.

Proof. When α ≥ q at line 8, the constraint is necessarily GAC-consistent. Using
Lemmas 12.25 and 12.26, we can prove that when line 14 is reached the constraint
is also GAC-consistent. The proof is as follows. If min(yα) is removed, this means,
by using Lemma 12.26, that there was at least another value in dom(yα). Therefore
max(yα) is still present, even if min(yα) is removed. Similarly, we can show that
min(xα) is still present even if max(xα) is removed. This means that supports
identified in the proof of Lemma 12.25 are still valid. Hence all values are generalized
arc-consistent.
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THEOREM 12.28.– The worst-case time complexity of Algorithm 87 is O(nλ).

It is worth noting that this algorithm can be made incremental simply by preserving
the value of α from one call to the next. The alternative algorithm introduced in
[KIZ 04] to deal with shared variables uses a β value, but in the worst-case this
value remains equal to q + 2. As a consequence, in the worst case, a support will
have to be sought at each call by iterating all variables between α + 1 and q. Thus
both algorithms have a similar worst-case behavior. Note also that while propagation
effort can sometimes be reduced by using β, computing such a value may be costly
compared to the approach presented here (since Algorithm 87 finishes as soon as
enforcement of GAC is guaranteed). Finally, it is important that Algorithm 87 relaxes
the condition of a fine-grained management of events. Previous approaches require
all bound events to be taken into account individually in order to update values of α
and β. In our new approach, events can be aggregated, potentially saving many calls
to the algorithm. Finally, note that Algorithm 87 can be easily extended to deal with
entailment (i.e. to detect entailed constraints).

12.7. Experimental results

To show the practical value of lightweight detection of variable symmetries, we
have experimented extensively using a cluster of Xeon 3.0 GHz with 1 GB of RAM
under Linux. We have measured performance in terms of CPU time (in seconds) and
the number of nodes visited. We have integrated with MAC several variants of the
symmetry breaking approach described in sections 12.5 (automatic identification of
variable symmetries) and 12.6 (exploitation of variable symmetries). We have used
different variable ordering heuristics (dom/ddeg, bz and dom/wdeg) and the time-out
has been set to 20 minutes per instance.

MAC MACLe MACLex MAC∗
Le

MAC∗
Lex

dom/wdeg 2,886 2,941 2,921 2,944 2,952
dom/ddeg 2,394 2,424 2,444 2,458 2,486

bz 2,415 2,452 2,469 2,474 2,504

Table 12.1. Number of solved instances when running MAC and its symmetry-breaking
variants on a selection of 4,003 instances

Saucy has been used to identify variable symmetries. For each generator (of the
symmetry group) returned by Saucy, we have applied four distinct symmetry breaking
procedures. The first, denoted by MACLe, posts a binary constraint Le (constraint of
the form x ≤ y) whose scope contains the two first variables of the first cycle of the
generator. The second, denoted by MACLex, posts a lexicographic ordering constraint
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dom/ddeg dom/wdeg
MAC MAC∗

Le
MAC∗

Lex
MAC MAC∗

Le
MAC∗

Lex

haystack-06 CPU 9.83 0.45 0.46 time-out 0.44 0.44
nodes 125 K 40 12 − 28 12

haystack-08 CPU time-out 0.72 0.62 time-out 0.61 0.61
nodes − 1,359 595 − 641 501

haystack-10 CPU time-out 12.2 1.77 time-out 4.42 1.49
nodes − 105 K 9,822 − 22,764 4,524

haystack-12 CPU time-out 738 55.0 time-out 195 8.82
nodes − 6,565 K 416 K − 962 K 38,830

haystack-14 CPU time-out time-out time-out time-out time-out 452
nodes − − − − − 2,120 K

fpga-10-8 CPU time-out time-out 9.2 12.4 1.66 1.06
nodes − − 66,053 88,611 7,706 4,148

fpga-11-9 CPU time-out time-out 18.3 271 19.6 1.14
nodes − − 140 K 1,519 K 116 K 3,228

fpga-12-10 CPU time-out time-out 694 time-out 3.28 5.96
nodes − − 3,005 K − 12,333 35,462

fpga-13-11 CPU time-out time-out 417 time-out 566 5.32
nodes − − 1,985 K − 2,380 K 23,811

fpga-14-12 CPU time-out time-out time-out time-out time-out 10.7
nodes − − − − − 41,809

chnl-10-11 CPU time-out 614 1.06 time-out 377 1.19
nodes − 3,301 K 1,827 − 1,617 K 2,572

chnl-10-15 CPU time-out time-out 3.14 time-out time-out 5.32
nodes − − 2,571 − − 2,706

chnl-10-20 CPU time-out time-out 75.3 time-out time-out 193
nodes − − 3,501 − − 5,273

chnl-15-20 CPU time-out time-out 762 time-out time-out time-out
nodes − − 101 K − − −

bibd-6-60-30 CPU 746 703 1.8 477 1,129 2.15
nodes 2,938 K 2,938 K 2,949 1,832 K 4,330 K 2,876

bibd-6-80-40 CPU time-out time-out 3.11 time-out time-out 3.06
nodes − − 5,423 − − 3,524

bibd-7-28-12 CPU 108 108 2.67 0.82 2.58 1.59
nodes 362 K 362 K 5,066 1,052 10,139 3,310

bibd-7-49-21 CPU time-out time-out 8.86 1.11 166 time-out
nodes − − 13,587 1,776 681 K −

bibd-9-36-12 CPU time-out time-out 6.88 11.7 49.3 186
nodes − − 8,187 41,568 150 K 554 K

bibd-9-60-20 CPU time-out time-out 28.3 186 1,128 6.63
nodes − − 25,919 438 K 3,176 K 8,786

Table 12.2. Cost of running MAC and its symmetry-breaking variants on some selected
instances
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MAC MACLe MACLex MAC∗
Le MAC∗

Lex

scen11-f10 CPU 1.77 1.82 2.08 1.81 1.9
nodes 468 327 722 109 77

scen11-f9 CPU 2.15 1.96 2.23 1.84 1.97
nodes 1,064 576 922 109 90

scen11-f8 CPU 2.1 2.09 2.28 2.02 2.0
nodes 1,354 558 997 112 115

scen11-f7 CPU 4.83 2.28 2.37 1.91 2.05
nodes 8,369 955 1,247 121 135

scen11-f6 CPU 8.29 2.14 2.37 2.1 2.08
nodes 17,839 571 1,333 172 157

scen11-f5 CPU 32.0 2.2 3.13 2.19 2.13
nodes 85,104 988 3,465 253 226

scen11-f4 CPU 112 2.66 3.88 2.36 2.53
nodes 345 K 1,983 5,007 593 903

scen11-f3 CPU 403 3.41 7.98 2.55 2.45
nodes 1,300 K 3,926 17,259 946 696

scen11-f2 CPU time-out 4.32 16.4 2.95 2.92
nodes − 6,014 40,615 1,700 1,591

scen11-f1 CPU time-out 7.56 19.7 3.49 3.4
nodes − 14,997 47,318 3,199 2,609

Table 12.3. Cost of running MAC and its symmetry breaking variants on hard RLFAP
instances (38 generators). The variable ordering heuristic is dom/wdeg

Lex (involving all variables of all cycles of the generator). A Lex constraint is clearly
stronger than the corresponding Le constraint: its filtering capability is higher. Note
that when the two first variables of the first cycle are contained in the scope of a (non-
global) constraint c of the network, c can be merged with a binary constraint Le. In
practice, if c is defined in intension, its associated predicate is modified, whereas if c
is defined in extension, the set of tuples disallowed by the constraint Le are removed
from the table associated with c; see section 1.2.1. The application of such a merging
method produces two additional procedures, denoted by MAC∗

Le and MAC∗
Lex.

Our first series of experiments have tested the four variants (plus MAC alone)
on 4,003 instances essentially coming from the 2006 constraint solver competition.
Table 12.1 provides an overview of the results in terms of the number of solved
instances within the time limit. Whatever variable ordering heuristic is used, the
number of solved instances increases with MAC∗ (merging method). Although, all
in all, the use of MACLex allows more instances to be solved than MACLe, this last
approach represents an efficient alternative that is easy to implement. Table 12.2
focuses on some representative instances using dom/ddeg and dom/wdeg. We only
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present results obtained with MAC∗
Le and MAC∗

Lex since Table 12.1 shows that,
overall, MACLe and MACLex are outperformed by these variants. On some series
of instances that have variables with Boolean domains (bibd, chnl, fpga), MAC∗

Lex

is (unsurprisingly) very efficient. The gap between MAC∗
Lex and MAC∗

Le is less
significant on some other series such as haystack. Table 12.3 shows some results
for the hardest RLFAP instances. Clearly, the symmetry breaking methods allow
greater efficiency than the classical MAC algorithm. This is partly due to the use
of the operator abssub which allows detection of locally symmetric variables.
Interestingly enough, on the pigeonhole problem (modeled as a clique of binary
inequation constraints), MAC∗

Le can prove the unsatisfiability of every instance simply
by enforcing arc consistency at preprocessing. Indeed, combining new Le constraints
with constraints of the initial clique amounts to imposing a total ordering on the
variables of the problem. The results are not presented in tables of this book.

To summarize, the practical value of lightweight detection of variable symmetries
has been shown on many series of instances. The number of solved instances has
been increased significantly when employing different variable ordering heuristics,
showing the robustness of this approach. The best variant identified in this chapter
uses lexicographic ordering constraints while merging (when possible) binary Le

constraints with original constraints. It is important to note that the time required
to determine locally symmetric variables and to compute automorphisms from
lsv-graphs was found to be negligible in our experiments. These results confirm
that automatically breaking symmetries constitutes a significant breakthrough for
black-box constraint solvers.
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Appendix A

Mathematical Background

We propose a partial introduction to the basic elements of discrete mathematics. A
more detailed description can be found in e.g. [COR 01].

A.1. Sets, relations, graphs and trees

A.1.1. Sets, relations and functions

Set, partition, combination A set is a collection of distinguishable objects, called its
elements. A set is empty if it contains no element. An empty set is denoted by ∅. The
number of elements in a set D is called the cardinality or the size of the set, and is
denoted by |D|. A set whose cardinality is 1 is singleton. The difference between two
sets D1 and D2 is {a ∈ D1 | a /∈ D2} and is denoted by D1 \ D2. The set of all
subsets of a set D, including the empty set and D itself, is denoted by 2D and is called
the powerset of D. For example, 2{a,b} is {∅, {a}, {b}, {a, b}}. Two sets D1 and D2

are disjoint iff D1 ∩ D2 = ∅. A set F of subsets of a set D is a partition of D iff
the elements of F are pairwise disjoint and the union of all elements of F gives D.
A permutation is an ordered sequence of elements selected without repetition from a
given set. The number of possible permutations (of size n) from a set of size n is n!
where ! denotes the factorial operator; n! = n× (n− 1)× · · ·× 2× 1. A combination
of elements of a set D is a subset of D. A k-combination of a set D is a subset of
D with k elements. The number of k-combinations from a set D which contains n
elements is n!/[k!(n − k)!] and is denoted by (n

k ).

Relation, basic properties of relations The Cartesian product of two sets D1 and D2

is denoted by D1 × D2 and is equal to {(a1, a2) | a1 ∈ D1 ∧ a2 ∈ D2}. A binary
relation R on two sets D1 and D2 is a subset of the Cartesian product D1 × D2. A
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binary relation R on a set D is a subset of D×D. Instead of (a, b) ∈ R, we sometimes
use a R b.

A binary relation R on a set D is:
– reflexive iff ∀a ∈ D, (a, a) ∈ R;
– irreflexive iff ∀a ∈ D, (a, a) /∈ R;
– symmetric iff ∀a, b ∈ D, (a, b) ∈ R ⇒ (b, a) ∈ R;
– antisymmetric iff ∀a, b ∈ D, (a, b) ∈ R ∧ (b, a) ∈ R ⇒ a = b;
– transitive iff ∀a, b, c ∈ D, (a, b) ∈ R ∧ (b, c) ∈ R ⇒ (a, c) ∈ R.

Equivalence relation, preorder, order A relation that is reflexive, symmetric and
transitive is an equivalence relation. If ∼ is an equivalence relation on a set D and a
an element of D, then the equivalence class of a in D is {b ∈ D | a ∼ b} and denoted
by [a]. The equivalence classes of any equivalence relation ∼ defined on a set D forms
a partition of D; the set of all equivalence classes is denoted by D/∼. A relation that
is reflexive and transitive is a preorder. A relation that is reflexive, antisymmetric and
transitive is a partial order; hence a partial order is an antisymmetric preorder. A
partially ordered set, or poset, is a pair (D,≼) that consists of a set D together with
a partial order ≼ defined on D. Given a poset (D,≼), an equivalence relation ∼ can
be defined on D by ∀a, b ∈ D, a ∼ b iff a ≼ b and b ≼ a, and a partial order ≼∼

can be defined on D/∼ by ∀[a], [b] ∈ D/∼, [a] ≼∼ [b] iff a ≼ b where a and b are
any representatives (elements) in [a] and [b]. A total or linear order is a partial order
≼ on a set D that additionally verifies: ∀a, b ∈ D, we have a ≼ b or b ≼ a. A relation
that is irreflexive and transitive is a strict order. A strict order ≺ on a set D is total
iff ∀a, b ∈ D, exactly one of a ≺ b, b ≺ a or a = b holds. For each partial order ≼
defined on a set D there is an associated strict order ≺ on D defined by: ∀a, b ∈ D,
a ≺ b iff a ≼ b and a ̸= b. If ≼ is total then ≺ is total. Similarly, for each strict order ≺
defined on a set D there is an associated partial order ≼ on D defined by: ∀a, b ∈ D,
a ≼ b iff a ≺ b or a = b. If ≺ is total then ≼ is total.

Function, bijection, permutation A binary relation f defined on two sets D1 and
D2 is a mapping or (total) function iff ∀a ∈ D1, ∃!b ∈ D2 | (a, b) ∈ f . We often
write f(a) to denote the unique value of D2 in relation with a by f ; f(a) is the image
of a by f . The set D1 is called the domain of f , D2 is called the codomain of f ,
and we note f : D1 → D2. A function f : D1 → D2 is surjective or onto iff
∀b ∈ D2,∃a ∈ D1 | f(a) = b. A function f : D1 → D2 is injective or one-to-one iff
a ̸= b ⇒ f(a) ̸= f(b). A function is a bijection iff it is both surjective and injective.
A bijection from a set to itself is called a permutation.
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A.1.2. Graphs, hypergraphs and trees
Graph, clique, path, cycle A simple graph G is a pair (V,E) where V is a set of
elements, called vertices or nodes, and E is a set of elements, called edges, which are
subsets of V composed of exactly two vertices. We have E ⊆ {{v, v′} | v ∈ V ∧ v′ ∈
V }. An edge corresponds to an unordered pair of vertices. In a simple graph, the
vertices in each edge are distinct, and there is not more than one edge between each
pair of distinct vertices. Hereafter, graph alone means a simple graph. A complete
graph is a graph in which there is an edge between every pair of vertices. A clique
of a graph G = (V,E) is a set V ′ ⊆ V of vertices such that there is an edge in G
between every pair of vertices in V ′. A k-clique is a clique that consists of k vertices;
a maximal clique is a clique that is not contained in any other clique. If e = {v, v′} is
an edge of a graph G, we say that the vertices v and v′ are adjacent or neighbors in
G, and that e is incident on or connects v and v′. The degree of a vertex is the number
of vertices adjacent to it. A vertex whose degree is 0 is isolated. A path from a vertex
v to a vertex v′ in a graph G = (V,E) is a sequence ⟨v0, v1, . . . , vk⟩ of vertices of
G such that v = v0, v′ = vk and {vi, vi+1} ∈ E, ∀i ∈ 0..k − 1. The length of a
path ⟨v0, v1, . . . , vk⟩ is k, i.e. the number of edges in the path. A path is simple if
all vertices in the path are distinct. A path ⟨v0, v1, . . . , vk⟩ is a cycle iff v0 = vk. A
cycle is simple iff all edges in the cycle are distinct. Hereafter, cycle alone means a
simple cycle. A graph with no cycles is acyclic. Figure A.1 provides an illustration of
(simple) graph. A graph is triangulated or chordal if every cycle composed of four or
more vertices has a chord, which is an edge joining two vertices that are not adjacent
in the cycle.

v

v

Figure A.1. A (simple) graph

Subgraph, connected components Two vertices v and v′ of a graph G are connected
iff there exists a path ⟨v0, v1, . . . , vk⟩ in G such that v = v0 and v′ = vk. A graph G
is connected iff any two vertices of G are connected. A subgraph G′ = (V ′, E′) of a
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graph G = (V,E) is a graph such that V ′ ⊆ V and E′ ⊆ E. The subgraph of a graph
G = (V,E) vertex-induced by a set of vertices V ′ ⊆ V is the graph G′ = (V ′, E′)
such that E′ = {e ∈ E | e ⊆ V ′}. The subgraph of a graph G = (V,E) edge-induced
by a set of edges E′ ⊆ E is the graph G′ = (V ′, E′) such that V ′ = {v ∈ V | v ∈
∪e∈E′e}. A connected subgraph G′ of a graph G is maximal if G′ is not a subgraph of
any other connected subgraph of G. The connected components of a graph G are the
maximal connected subgraphs of G.

v

v

Figure A.2. A rooted tree

Forest, rooted tree, parent, child An acyclic graph is called a forest. A connected
forest is a (free) tree. In a tree, any two vertices are connected by a unique simple path,
and the number of edges is equal to the number of vertices minus 1. A rooted tree is
a tree in which one of the vertices, called the root of the tree, is distinguished from
the others. Vertices in rooted trees are often called nodes. If ⟨v0, v1, . . . , vk−1, vk⟩ is
a path (with k ≥ 1) from the root r = v0 of a rooted tree to a node vk, then vk−1

is the parent of vk, and vk is the child of vk−1. Two nodes with the same parent are
siblings. The root is the only node with no parent. Any node on the (unique) path from
the root of a tree to a node v is called an ancestor of v. If a node v′ is an ancestor of a
node v then v is a descendant of v′. The subtree rooted at a node v is the tree induced
by the descendants of v, rooted at v. A node with no children is an external node or
leaf ; it is an internal node otherwise. The depth of a node v is the length of the path
from the root to v. A binary tree is a tree such that each node has either no children or
two children: the left child and the right child. Figure A.2 provides an illustration of
rooted tree.

Graph isomorphism, graph automorphism An isomorphism from graph G =
(V,E) to graph G′ = (V ′, E′) is a bijection f : V → V ′ such that {v, v′} ∈ E
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iff {f(v), f(v′)} ∈ E′. Two graphs G and G′ are isomorphic iff there exists an
isomorphism from G to G′; vertices of G can be relabeled to to be vertices of
G′ while preserving the edges. An automorphism of a graph G = (V,E) is an
isomorphism from G to itself, i.e. a bijection f : V → V such that {v, v′} ∈ E iff
{f(v), f(v′)} ∈ E. The set of automorphisms of a graph forms a group (defined
in section 12.1). Figure A.3 shows a graph automorphism. In the depicted graph G,
vertices are identified by numbers from 1 to 4. The bijection f defined by f(1) = 3,
f(2) = 2, f(3) = 1 and f(4) = 4 is an automorphism.

(a) A graph G (b) G after applying f

Figure A.3. A graph automorphism obtained by swapping vertices labeled 1 and 3
(through a bijection f )

Hypergraph, primal graph, dual graphA hypergraphH is a pair (V,E) where V is
a non-empty set of elements, called vertices or nodes, and E is a set of elements, called
hyperedges, which are non-empty subsets of V . We have E ⊆ 2V \ ∅ where 2V is the
powerset of V . A (simple) graph G is a special hypergraph in which each hyperedge
links exactly two distinct vertices. The primal graph of a hypergraph H = (V,E) is
a pair (W,F ) where W = V and F = {{v, v′} | ∃e ∈ E such that {v, v′} ⊆ e}.
The dual graph of a hypergraph H = (V,E) is a pair (W,F ) where W = E and
F = {{e, e′} | e ∈ E ∧ e′ ∈ E ∧ e ∩ e′ ̸= ∅}.

Directed graph, directed path A directed graph is a pair (V,E) where V is a set of
vertices and E is a binary relation on V . Each element of E is called a directed edge
or an arc. Self-loops, arcs from an edge to itself, are possible. A directed path from a
vertex v to a vertex v′ in a directed graph G = (V,E) is a sequence ⟨v0, v1, . . . , vk⟩ of
vertices of G such that v = v0, v′ = vk and (vi, vi+1) ∈ E, ∀i ∈ 0..k − 1. A directed
path ⟨v0, v1, . . . , vk⟩ is a directed cycle iff v0 = vk. A directed graph is acyclic if it
has no directed cycle. A directed acyclic graph is often called a DAG.
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A.2. Complexity

A.2.1. Asymptotic notation

Throughout the book, we analyze the behavior of algorithms by determining their
efficiency in terms of running time and consumed memory. Indeed, an algorithm is
planned to become a piece of software that makes use of computational resources,
which are typically CPU time and memory space. The complexity of an algorithm
expresses the order of growth of a resource consumption with respect to the size of
the input. When resources of interest are time and space, we obtain time complexity
and space complexity, respectively. A common approach to computational complexity
is the worst-case analysis, i.e. the estimation of the maximal amount of consumed
resources to run an algorithm for an input of a certain size. Below, we focus on time
complexity.

Complexity analysis is conducted asymptotically. That is, our concern is how the
running time T (n) of an algorithm behaves (usually, increases) with respect to the
size n of the input, when the size of the input increases without bound. Assuming
that n ∈ N+, i.e. n is a positive integer, the task is to find an estimation of T (n) for
n → ∞. The notation used to describe the asymptotic running time of an algorithm is
defined in terms of several sets of functions. We present first the O-notation which is
clearly the most employed in practice. For a given function g(n), n ∈ N+, O(g(n)) is
defined as follows:

O(g(n)) = {f(n) | ∃c ∈ N+,∃n0 ∈ N+ s.t. 0 ≤ f(n) ≤ cg(n),∀n ≥ n0}

We use O-notation to give an asymptotic upper bound on a function. Intuitively, a
function f(n) is in O(g(n)) iff for all values of n that are sufficiently large (n ≥ n0),

n0 n

f(n)

cg(n)

(a) f(n) is O(g(n))

n0 n

cg(n)

f(n)

(b) f(n) is Ω(g(n))

Figure A.4. Illustration of O and Ω notation
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the value of f(n) is bounded above by cg(n) for some constant c. Stated otherwise,
f(n) does not grow faster than g(n). Figure A.4(a) gives an illustration. For example,
if the running time T (n) of an algorithm is in O(n2), or following the usage T (n) is
O(n2), this means that for large enough inputs, the number of basic steps performed
by the algorithm is bounded by cn2 with c being a constant. Suppose now that a
detailed analysis of an algorithm shows that the number of basic operations performed
by the algorithm for an input of size n is exactly 4 + n + 2n2 in the worst-case (i.e.
among all inputs of size n, one requires 4 + n + 2n2 operations, which is the highest
possible cost). We do not usually need to say that the worst-case time complexity is
precisely 4 + n + 2n2 because some terms in the expression are negligible. Indeed,
when n → ∞, the lower-order terms 4 and n can be ignored; we have for example,
limn→∞ n/n2 = limn→∞1/n = 0. Besides, the coefficient 2 of the highest-order
term 2n2 can also be ignored when the O-notation is used. Consequently, we say that
the worst-case time complexity of the algorithm is O(n2), which is usually sufficient
for establishing a comparison with other algorithms.

On the other hand, Ω-notation provides asymptotic lower bounds. For a given
function g(n), n ∈ N+, Ω(g(n)) is defined as follows:

Ω(g(n)) = {f(n) | ∃c ∈ N+,∃n0 ∈ N+ s.t. 0 ≤ cg(n) ≤ f(n),∀n ≥ n0}

Figure A.4(b) gives a pictorial illustration. Finally, Θ-notation is used for asymptotic
tight bounds. A function g(n) is an asymptotic tight bound for a function f(n) iff
g(n) is both an asymptotic upper bound and an asymptotic lower bound for f(n).
Otherwise stated, f(n) is Θ(g(n)) iff f(n) is O(g(n)) and f(n) is Ω(g(n)).

It is important to be aware that there is a gap between polynomial-time algorithms
and exponential-time algorithms. Polynomial time refers to the running-time T (n) of
an algorithm that is polynomially bounded, i.e. T (n) is O(nk) for some constant k. As
the size n of the input increases linearly, the time to run the algorithm is not greater
than a polynomial function of n. Exponential time refers to the running-time T (n) of
an algorithm that is tightly bounded by an exponential function, i.e. T (n) is Θ(kn)
for some constant k > 1. As the size of the input increases linearly, the time to run
the algorithm increases exponentially. Note that there are algorithms that are neither
polynomial-time nor exponential-time.

Figure A.5 shows the growth of some representative functions. Whereas the
exponential function y = 2x has an extremely fast growth, the logarithmic function
y = log2(x), which is its inverse, has an extremely slow growth. The linear function
y = x and the quadratic function y = x2 are polynomial functions that are negligible
with respect to y = 2x. We have for example limx→∞ x2/2x = 0. Polynomial-time
algorithms are considered to be feasible or acceptable computing procedures.
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Figure A.5. Growth of representative functions

A.2.2. Complexity classes
We now turn to complexity classes that identify problems for which algorithms of

certain complexity exist. A decision problem is a problem that takes as input a string
x and outputs “yes” or “no”. Each string given as input defines a problem instance;
the size of the instance is the size, denoted by |x|, of the string x that defines it. An
instance x of P is positive (resp. negative) when P returns “yes” (resp. “no”) for x. P
is the class of decision problems that can be solved by an algorithm (more precisely,
by a deterministic Turing machine) that runs in polynomial time. This means that if a
decision problem P is in P then there exists an algorithm A and integer constants c
and k such that A can solve every instance x of P in at most c|x|k basic steps. P is the
complexity class of decision problems which are believed to be “efficiently” solvable
or tractable.

A verification algorithm V for a decision problem P is an algorithm that takes
as input two strings and outputs “yes” or “no”. P is said to be positively verified
by V when an instance x of P is positive if and only if there exists a string y,
called a certificate, such that V (x, y) returns “yes”. NP is the complexity class1 of
decision problems that can be positively verified by an algorithm (more precisely, by a
deterministic Turing machine) that runs in polynomial time. P is said to be negatively
verified by V when an instance x of P is negative if and only if there exists a string y
such that V (x, y) returns “yes”. co-NP is the class of decision problems that can be

1. NP is equivalently defined as the set of decision problems that are solvable in polynomial
time by a non-deterministic Turing machine.
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Figure A.6. Relationships between some complexity classes, under the assumption that
P ̸= NP

negatively verified by a polynomial time algorithm. In other words, the validity of a
certificate can be verified in polynomial time for all problems in NP and also for all
problems in co-NP.

We have P ⊆ NP. Indeed, a polynomial-time verification algorithm can be easily
built from a polynomial-time algorithm that solves a problem. NP-complete problems
form an additional central complexity class. Informally, complete problems of a
complexity class are the hardest problems of that class. All other problems in the
same class can be reduced to them using polynomial-time transformations (reduction
functions). A problem P is NP-hard iff every problem in NP can be reduced in
polynomial time to P ; P is then at least as hard as any problem in NP. If P is also
in NP, P is NP-complete. Several thousands of problems have been identified as
NP-complete. However, no polynomial-time algorithm is known for any problem
of this class. If a polynomial-time algorithm is ever found to solve an NP-complete
problem, then we shall be able to solve all NP problems in polynomial time. It is
widely accepted that no such algorithm exists, or equivalently that P ̸= NP. However,
no formal proof has been produced so far. Figure A.6 shows relationships among
some complexity classes under the hypothesis that P ̸= NP.
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XML Representation of Constraint Networks

Before being attacked by a constraint solver, instances of the constraint satisfaction
problem must be represented and stored in computer data files1. The extensible
markup language (XML) [WWW97] offers standardized representation of problem
instances. XML is a simple and flexible text format that is increasingly important in
the exchange of a wide variety of data on the web. The aim of the XML representation
of CSP instances is to facilitate testing and comparison of constraint algorithms
by providing a common test-bed. The CSP XML representation format, denoted by
XCSP, has been introduced for international constraint solver competitions. Its current
specification, XCSP 2.1 [ROU 09], is low-level, although introducing higher level
constructs is envisioned. XCSP exhaustively describes domains, variables, relations
(if any), predicates (if any) and constraints for each CSP instance.

Interestingly, the proposed XML format offers two variants: a fully tagged
representation and an abridged representation. The first is a full, completely structured
XML representation that is suitable for use in generic XML tools, but is also relatively
verbose. The second is a shorthand notation for the first representation, and is easier
for a human to read and write. The two representations are equivalent: automatic
translation tools allow us to use the shorthand notation to encode an instance while
still being completely able to use available XML tools.

The XML format XCSP is intended to be a good compromise between readability,
verbosity and structuring.

1. CSP instances can also be directly generated by programming, but this prevents broadcasting
them.
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Indeed, the representation is:
– Readable: we can easily modify an instance by hand, whereas this would be

almost impossible with a tabular format. Only a few constructions require an a priori
knowledge of the format.

– Concise: with the abridged version which does not systematically use XML tags
and attributes, the proposed representation can be comparable in length to one that
would be given in tabular format. This is important, for example, in the representation
of instances that involve extensional constraints.

– Structured: because the format is based on XML, it is easy to parse instances and
it is possible to use XML tools.

It is important that many forms of constraints and constraint networks can be
represented:

– extensional constraints;
– intensional constraints;
– global constraints;
– quantified constraint networks;
– weighted constraint networks.

For global constraints, a direct XML translation from the well-known catalog of
global constraints [BEL 08] has been proposed. By inserting quantification and cost
functions, we obtain instances of the QCSP (Quantified CSP) and WCSP (Weighted
CSP) frameworks, but we will not discuss these.

Each CSP instance is represented in the format given in Figure B.1, where q, n, r,
p and e respectively denote the number of distinct domains, the number of variables,
the number of distinct relations, the number of distinct predicates and the number
of constraints. Some attributes have been omitted here. Note that q ≤ n because the
same domain definition can be used for different variables. Moreover, r ≤ e and p ≤ e
because the same relation or predicate definition can be used for different constraints.
Thus, each instance is defined by an XML element, which is <instance> and which
contains four, five or six elements. Indeed, an instance may be defined without any
reference to a relation and/or to a predicate, in which case the elements <relations>
and <predicates> are missing (instead, only global constraints are referenced).

For more information about the format, see [ROU 09]. As illustrations, Figures
B.2 and B.3 show the XML representations of the 3-queens instance, by considering
two of the models introduced in section 1.3.1. Many series of instances, collected over
years, are represented in format XCSP 2.1 and can be downloaded2.

2. See http://www.cril.fr/~lecoutre
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<instance>
<presentation name=’the name of the instance’ ...

format=’XCSP 2.1’/>
<domains nbDomains=’q’>

<domain name=’the name of the domain’>
Put here the list of values

</domain>
...

</domains>
<variables nbVariables=’n’>

<variable name=’the name of the variable’
domain=’the name of the variable domain’/>

...
</variables>
<relations nbRelations=’r’>

<relation name=’the name of the relation’
semantics=’supports or conflicts’>

Put here the list of tuples
</relation>
...

</relations>
<predicates nbPredicates=’p’>

<predicate name=’the name of the predicate’>
<parameters>

Put here a list of formal parameters
</parameters>
<expression>

Put here a representation of the predicate expression
</expression>

</predicate>
...

</predicates>
<constraints nbConstraints=’e’>

<constraint name=’the name of the constraint’
scope=’the constraint scope’
reference=’the name of a relation, a predicate

or a global constraint’>
...

</constraint>
...

</constraints>
</instance>

Figure B.1. XML representation of constraint networks
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<instance>
<presentation name="Queens" nbSolutions="0"

format="XCSP 2.1">
This is the 3-queens instance represented in intension.

</presentation>
<domains nbDomains="1">

<domain name="D0" nbValues="3">
1..3

</domain>
</domains>
<variables nbVariables="3">

<variable name="V0" domain="D0"/>
<variable name="V1" domain="D0"/>
<variable name="V2" domain="D0"/>

</variables>
<predicates nbPredicates="1">

<predicate name="P0">
<parameters> int X0 int X1 int X2 </parameters>
<expression>

<functional> ne(abs(sub(X0,X1)),X2) </functional>
</expression>

</predicate>
</predicates>
<constraints nbConstraints="4">

<constraint name="C0" arity="3" scope="V0 V1 V2"
reference="global:allDifferent">

<constraint name="C1" arity="2" scope="V0 V1"
reference="P0">

<parameters> V0 V1 1 </parameters>
</constraint>
<constraint name="C2" arity="2" scope="V0 V2"

reference="P0">
<parameters> V0 V2 2 </parameters>

</constraint>
<constraint name="C3" arity="2" scope="V1 V2"

reference="P0">
<parameters> V1 V2 1 </parameters>

</constraint>
</constraints>

</instance>

Figure B.2. The 3-queens instance represented in intension (abridged version)
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<instance>
<presentation name="Queens" nbSolutions="0"

format="XCSP 2.1">
This is the 3-queens instance represented in extension.

</presentation>
<domains nbDomains="1">

<domain name="D0" nbValues="3">
1..3

</domain>
</domains>
<variables nbVariables="3">

<variable name="V0" domain="D0"/>
<variable name="V1" domain="D0"/>
<variable name="V2" domain="D0"/>

</variables>
<relations nbRelations="2">

<relation name="R0" arity="2" nbTuples="2"
semantics="supports">

1 3|3 1
</relation>
<relation name="R1" arity="2" nbTuples="4"

semantics="supports">
1 2|2 1|2 3|3 2

</relation>
</relations>
<constraints nbConstraints="3">

<constraint name="C0" arity="2" scope="V0 V1"
reference="R0"/>

<constraint name="C1" arity="2" scope="V0 V2"
reference="R1"/>

<constraint name="C2" arity="2" scope="V1 V2"
reference="R0"/>

</constraints>
</instance>

Figure B.3. The 3-queens instance represented in extension (abridged version)
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nogood constraints 443

BC 370
benchmarks 107, 122

composed 108, 401
crosswords 123, 284
ehi 108
FAPP 124
frb 108
geo 108
haystacks 123
Langford 130, 353
radar surveillance 124
renault 124
RLFAP 125, 315, 349, 492, 530
scheduling 125
traveling salesperson 127

bi-directionality 194, 212
bijection 532
binary

branching 362
constraint 43
constraint network 52
relation 531
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search 265
tree 534

binary representation 227, 229
bitwise operation 224
black-box solver 30
black hole problem 128
bound SAC 300
branching 366

2-way 362
binary 362
constraint 362
d-way 362
decision 362
non-binary 362

broken-triangle property 183
BT 371, 378
BTD 120
bundling 363
bz heuristic 394

C
c-value 54
canonical nogood representation 64
cardinality of conflict sets 215
Cartesian product 42
CBJ 370, 380
CDC 321
certificate 538
check

constraint 48, 90, 201
singleton 155
validity 48, 199

chessboard coloration problem 128
child node 534
chordal graph 116
chronological backtracking 360, 370
class

co-NP 539
NP 538
NP-complete 539
NP-hard 539
P 538

class of instances 179
class of random instances 95, 100, 101, 105
clause 55
clique 113, 533
closed node 362

closed path 166
closure 144, 496
cluster 116
CNF 55
co-NP 539
coarse-grained filtering algorithm 186
combination 531
compatibility hypergraph 58, 95
compatible 54
complete graph 533
complete instantiation 35, 59
complete search 357, 359
complexity 536

Ω-notation 537
Θ-notation 537
O-notation 536
space 536
time 536
worst-case 536

complexity class
co-NP 539
NP 538
NP-complete 539
NP-hard 539
P 538

composed (benchmarks) 108, 401
composition 498
compressed table 261, 281
compressed tuple 261, 281
conflict 47
conflict-directed backjumping 370
conflict-directed heuristic 403
conflict set 474
conformal graph 116
conjunction 55
connected components 534
connected graph 533
connected row-convex constraint 180
connected vertices 533
conservative consistency 164
conservative dual consistency 321
conservative path consistency 169
consistency

(i, j)-consistency 142
arc consistency 151, 184
bound SAC 300
closure 144
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conservative consistency 164
conservative dual consistency 321
conservative path consistency 169
domain-filtering consistency 147, 150
dual consistency 321
enforcement 144
existential SAC 307
first-order consistency 150
fixed point 146
generalized arc consistency 151
global consistency 139, 173
higher-order consistency 162
inverse consistency 155
iteration-free 146
k-consistency 138
k-wise consistency 171
kth-order consistency 147
max-restricted pairwise consistency

158
max-restricted path consistency 156
monotonic consistency 147
neighborhood inverse consistency 158
node consistency 52, 151, 184
nogood-identifying 145
pairwise consistency 170
partial path consistency 169
path-inverse consistency 155
path consistency 167, 184
preorder 149
relation-based consistency 170
relation-filtering consistency 147
relational (i, m)-consistency 172
relational neighborhood inverse

consistency 160
relational path inverse consistency 158
second-order consistency 164
singleton arc consistency 154
stability 143, 152
stable consistency 145
strong (i, j)-consistency 143
strong k-consistency 139
strong consistency 322
strong path consistency 322
strong relational (i, m)-consistency

172
weak (i, j)-consistency 143
well-behaved consistency 144

consistent path 166
constraint 27, 33, 42

case 259
regular 263
allDifferent 46, 264, 515
stretch 264
0/1/all 180
arity 43
bi-directionality 194, 212
binary constraint 43
binary representation 229
branching 362
check 48, 90, 201
connected row-convex 180
covered by an instantiation 60
disentailed 50, 442, 466
dominance constraint 465
empty constraint 50
entailed 50, 52, 442, 466, 478
equality 128, 222
extensional constraint 45
generalized arc-consistent 151
global constraint 46
inequation 67, 218, 222, 420
intensional constraint 45
lexicographic ordering 504
looseness 50, 175
m-loose 175
m-tight 174, 179
max-closed 180
multi-directionality 207
network 51
nogood constraint 441, 506
non-binary 43
properly m-tight 175
relation 42
row-convex 177, 179, 180
satisfied by an instantiation 60
scope 42
symmetry-breaking 504
tailored constraint 43
ternary constraint 43
tightness 50, 174
tightness-bounded 222
tree-convex 177, 179
unary constraint 43, 52
universal constraint 50
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unsatisfied constraint 43
violated constraint 43
weakly m-tight 175, 179

constraint-oriented propagation scheme
195

constraint check 48, 90, 201
constraint graph 34
constraint hypergraph 56, 95
constraint network 28, 51

φ+ψ-consistent 144
φ-consistent 144, 151
φ-inconsistent 148
acyclic 116
binary 52
canonical nogood representation 64
compatibility hypergraph 58, 95
d-valued 173
data structures 86
density 57
domain 296
dual graph 56
equivalence 62
examples 65
GAC-consistent 151
GAC-inconsistent 153
hypergraph 56, 95
instantiation 59
minimal 143
nogood-equivalence 64
nogood representation 63
non-binary 52
normalized 52
partial order 75
primal graph 56
puzzles 65
random 94
satisfiable 61
singleton φ-inconsistent 155
solution 61
structured 109
sub-network 64
trivially unsatisfiable 62
unsatisfiable 61
unsatisfiable core 112

constraint programming 27
constraint propagation 186, 366
constraint satisfaction problem 28, 61

constraint solver 28
constraint symmetry 500
constraint weighting 399
constructive minimization scheme 452
contention principle 415
copying 86
core

minimal unsatisfiable 112
unsatisfiable 112, 408, 481

CP 27
CPC 169
CPC2001 335
CPC8 334
crossover point 96
crossword problem 68, 123, 284
CSP 28, 61

instance 61
CSP class 179

hybrid 183
relational 179
structural 181

culprit decision 417
culprit subsequence 417
cumulative distribution function 433
current domain 40
current state 461
current variable 370
cutoff 435
cycle 497, 533

D
d-valued 173
d-way branching 362
DAG 257, 535
dancing links 89
data structure

bitset 89
constraint network 86
dancing links 89
MDD 257, 264, 281
sparse set 89, 260
trie 253, 267

DBT 370, 390
DC 321
ddeg heuristic 394
dead-end 35, 361, 415

internal 361
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sequence 416
decision

almost entailed 441
branching 362
culprit 417
depth 471
entailed 81
membership 80, 460
negative 78
positive 78
strict 80
valid 78, 80
well-formed set 78, 81

decision problem 357
deg heuristic 394
degree 53, 533
density 57
dependency graph 484
depth 534
depth-first search 35
descendant node 534
destructive minimization scheme 452
deterministic finite automaton 263
DFA 263
DFS 35
dichotomic minimization scheme 452
directed acyclic graph 257
directed edge 535
directed graph 535

acyclic 535
arc 535

disallowed tuple 43
discrete instance 28
discrete variable 40
disentailed constraint 50, 442, 466
disjoint set 531
disjunction 55
diversification 431
dom/ddeg heuristic 394
dom/wdeg heuristic 403
domain 33

binary representation 227
constraint network 296
current 40
initial 40
restoration 86

domain-filtering consistency 147, 150

domain permutation 180
domain wipe-out 148, 360
dom heuristic 394
dominance 463
dominance constraint 465
dominance constraint base 467
domino problem 128, 189, 194, 221
dual consistency 321
dual graph 56, 535
dynamic

backtracking 370, 390
degree 53
symmetry breaking 506
variable ordering heuristic 394

E
e-eliminable variable 478
edge 533
edge-induced 534
edge-matching puzzle 72
ehi (benchmarks) 108
elementary inconsistent partial state 477
eliminating explanation 360, 372
enforcing consistency 144
entailed constraint 50, 420, 442, 466, 478
entailed decision 81
enumeration 362
equality constraint 128, 222
equivalence class 532
equivalence relation 532
equivalent constraint networks 62
ESAC3 309
existential SAC 307
explanation 360, 372
explicit nogood 63
exponential-time 537
exponential function 537
extensional constraint 45
extension of instantiation 60

F
fail-first principle 392
failed value 474
failure consistency 475
falsified membership decision 465
falsified negative decision 442
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FAPP (benchmarks) 124
FC 195, 370, 378
FC+ 341
FC-CBJ 371
filtering 38
filtering algorithm 186

coarse-grained 186
fine-grained 186

fine-grained filtering algorithm 186
first-decision scheme 471
first-order consistency 150
fixed cutoff 436
fixed point 146
fixed variable 40
forbidden tuple 43
forest 534
forward checking 195, 370, 378
frb (benchmarks) 108
free membership decision 465
free negative decision 442
frequency assignment problem 124, 125
fruitless tree 362
function 532

automorphism 498, 501, 535
bijection 532
exponential 537
injective 532
isomorphism 535
linear 537
logarithmic 537
quadratic 537
surjective 532

G
GAC 151
GAC+ 290
GAC-allowed 240, 242
GAC-allowed-compressed 261
GAC-consistent 151
GAC-inconsistent

constraint network 153
value 152

GAC-nextDiff 250
GAC-nextDiffb 250
GAC-nextIn 245
GAC-nextInb 247
GAC-trie 256

GAC-valid 197, 240, 241
GAC-valid+allowed 264
GAC-valid+forbidden 280
GAC2001 202
GAC3 201
GAC3r 220
GAC3rm 219
GAC4 210, 278
GAC algorithm 154, 185

incrementality 206
multi-directionality 207

GAC closure 152
general-purpose filtering algorithm 185
generalized arc consistency 151
generalized explanation 473
generalized nogood 80
generate and test 35, 370
generating set 497
generator 497
generic filtering algorithm 185
geo (benchmarks) 108
global consistency 139, 173
global constraint 29, 46
global cut seed 464, 508
globally inconsistent instantiation 62
global partial state 464
Golomb ruler problem 128
good 503
graph 533

acyclic 115, 533
automorphism 535
characteristic path length 121
chordal 116
clique 533
clustering coefficient 121
complete 533
conformal 116
connected 533
connected components 534
constraint 34
directed 535
directed edge 535
dual 56, 535
edge 533
isomorphism 535
join-tree 115
path 533
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primal 56, 535
random 121
scale-free 122
simple 533
small world 121
subgraph 534
tree-width 116
tree decomposition 116
triangulated 116, 533
vertex 533
width 181

graph-path 166
graph automorphism problem 509
graph coloring problem 34
greedy run 292
group 496, 535
group theory 496

H
haystacks problem 123
heavy-tailed 433
heuristic 366, 392

adaptive 398
bz 394
ddeg 394
deg 394
dom 394
dom/ddeg 394
dom/wdeg 403
dynamic 394
lexico 393, 398
min-conflicts 397, 413
random 396, 398
revision ordering 195
static 393
tie 394
val-impact 405
var-impact 405
wdeg 403

heuristic search 459
hierarchy of consistencies 162
higher-order consistency 162
hyperedge 535
hypergraph 535

acyclic 115
compatibility 58, 95
constraint 56, 95

dual graph 535
hyperedge 535
primal graph 535
vertex 535

I
IBT 371
identification problem 179
identity element 496
impact 404

assignment 404
average 404
variable 404

impact heuristic 405
incomplete search 357, 359
inconsistent partial state 460, 462
inconsistent value 81
incrementality 205, 206
indexing structure

nextDiff 250
nextIn 244

inequation constraint 67, 218, 222, 420
initial domain 40
injective function 532
instance

CSP 61
instance of problem 28
instantiated variable 35, 40
instantiation 59

φ-inconsistent 145
φ-consistent 145
admissible 502
complete 35, 59
covering a constraint 60
extension 60
globally inconsistent 62
locally consistent 35, 60
nogood 62
on constraint network 59
partial 59
path-consistent 167
restriction 60
satisfying a constraint 60
solution 61
valid 59

intelligent backtracking 360
intensional constraint 45
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interchangeability 82, 494, 501
interchangeable variable 520
internal dead-end 361
internal node 361, 534
inverse w-consistency 160
inverse consistency 155
inverse element 496
IPS 462
irredundant generating set 497
irreflexivity 532
isolated variable 54
isolated vertex 533
isomorphism 535
iteration-free consistency 146
IwC 160

J
j-eliminable variable 486
join-tree 115
justification 484

K
k-consistency 138
k-wise consistency 171
knights problem 387, 407
kth-order consistency 147
kWC 171

L
labeling 362
Langford (benchmarks) 130, 353
last-conflict reasoning 416, 418
LC 416, 418

subsequence 418
testing-set 418

Le 505
leaf node 361, 534
learning 366, 431
Lex 505
lex-leader 504
lexicographic order 41
lexicographic ordering constraint 504
lexico heuristic 393, 398
lightweight detection of variable

symmetries 512
linear function 537

literal 55
locally consistent instantiation 35, 60
locally symmetric variables 512
local partial state 464
logarithmic function 537
look-ahead 360
look-back 360
looseness 50, 175
lsv-graph 518

M
m-loose constraint 175
m-tight constraint 174, 179
MAC 367, 370, 378
MAC-DBT 371, 377
macro-structure 56, 95
maintaining arc consistency 370
map coloring problem 33
mapping 532
matrix 46, 177
max-closed constraint 180
max-restricted pairwise consistency 158
max-restricted path consistency 156
MaxRPC 156
MaxRPWC 158
MD5 104
MDD 257, 264, 281
membership decision 80, 460

falsified 465
free 465
satisfied 465

message digest 104
micro-structure 58, 95
min-conflicts heuristic 397, 413
minimal φ-nogood 450
minimal constraint network 143
minimal unsatisfiable core 112
minimization scheme 452

constructive 452
destructive 452
dichotomic 452

minimized nogood 450
mistake node 362
modeling 67
model of random constraint networks

model B 95
model D 95
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model RB 100, 434
model RD 101
model RDint 105

monotonic consistency 147
morphing 122
multi-directionality 207

negative 207
positive 207

multi-valued decision diagram 257, 264,
281

N
Nauty 509
near-unanimity operation 178
negative decision 78

falsified 442
free 442
satisfied 442

negative multi-directionality 207
negative table constraint 239, 279
negative uni-directionality 207
neighborhood interchangeability 501
neighborhood inverse consistency 158
neighbors 54, 533
nFC2 196
NIC 158
nld-nogood 437
nld-subsequence 436
node 533-535

ancestor 534
child 534
closed 362
descendant 534
opened 362
parent 534

node consistency 52, 151, 184
nogood 35, 62, 383, 417, 503

φ-nogood 150
equivalence 80
explicit 63
generalized 80
minimized 450
standard 79
subsumed 63
subsumption 80

nogood-equivalence 64
nogood-identifying consistency 145

nogood constraint 441, 506
nogood constraint base 443
nogood recording 431
nogood recording from restarts 436
nogood representation 63
non-binary

branching 362
constraint 43
constraint network 52

normalized constraint network 52
NP 538
NP-complete 61, 539
NP-hard 539

O
O-notation 536
one-to-one 532
onto function 532
opened node 362
orbit 504
order

group 497
lexicographic 41
on values 41
on variables 41
partial 532
strict 532
total 532

P
P 538
pairwise consistency 170
parent node 534
partial instantiation 59
partial order 532
partial order on constraint networks 75
partial path consistency 169
partial state 459, 460

elementary 477
global 464
inconsistent 462
local 464
restriction 461
simple 477
strict 460

partition 531
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partitioning 363
past variable 368
path 166, 533

closed 166
consistent 166
cycle 533
graph-path 166
length 533
simple 533
support 166

path-consistent instantiation 167
path-inverse consistency 155
path consistency 167, 184
pattern 464, 508
PC 167
PC2001 331, 333
PC4 331
PC8 331, 333
PDB 390
permutation 497, 531, 532
permutation group 498
phase transition 96
PIC 155
pigeonhole problem 128, 478
pivot 417
polynomial-time 537
poset 532
positive decision 78
positive multi-directionality 207
positive table constraint 239, 240
positive uni-directionality 207
powerset 531
PPC 169
preorder 532
preorder on consistencies 149
preprocessing 38, 367
primal graph 56, 535
primes problem 130
principle

contention principle 415
fail-first principle 392
promise principle 392, 412

probing 415
problem

crossword problem 68
edge-matching problem 72
graph coloring problem 34

map coloring problem 33
queens problem 65, 315, 353, 378, 394,

501
Sudoku problem 70

progress saving 390
promise principle 392, 412
propagation of constraints 186, 366
propagation scheme 186

arc-oriented 187
constraint-oriented 195
queue 187
variable-oriented 190

propagator 187, 192, 477
properly m-tight constraint 175
puzzles 65
PWC 170

Q
QCP 124
quadratic function 537
quasi-group completion problem 124
quasi-group with holes problem 124
queen attacking problem 129
queens-knights problem 130, 387, 405,

410, 424, 454
queens problem 65, 315, 353, 378, 394,

501
queue 187
quick shaving 424
QWH 124

R
radar surveillance problem 124
Ramsey problem 131
random constraint network 94

benchmarks 107
crossover point 96
intension 103
model B 95
model D 95
model RB 100
model RD 101
model RDint 105
phase transition 96
theorems of models RB/RD 101
threshold 96
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random heuristic 396, 398
randomization 435
random probing 415
reduced nld-nogood 438
reduction operator 477
reduction problem 180
reflexivity 532
refutation 78, 362
refutation tree 361
regular language 263
relation 42

antisymmetric 532
binary 531
equivalence 532
irreflexive 532
preorder 532
reflexive 532
symmetric 532
transitive 532

relation-based consistency 170
relation-filtering consistency 147
relational (i, m)-consistency 172
relational neighborhood inverse

consistency 160
relational path inverse consistency 158
relation wipe-out 148
renault problem 124
residual support 219
residue 219
resolution 438
resolvent 438
restart run 434
restart strategy 434

fixed cutoff 436
restoration 86
restriction of instantiation 60
restriction over a partial state 461
revision 187, 217, 410

arc 188
condition 217, 218
effective 188
fruitful 188
fruitless 188
useless 188

revision ordering heuristic 195
RLFAP (benchmarks) 125, 315, 349, 492,

530

rNIC 160
robust solver 30
root 534
rooted tree 534
row-convex constraint 177, 179, 180
rPIC 158
run 434
runtime distribution 433

S
SAC 154

bound 300
existential 307
singleton check 155, 289
support 290
weak k-SAC 311

SAC-consistent 154
SAC-Opt 290
SAC-SDS 292
SAC1 289
SAC2 290
SAC3 292
SAC3+ 296
SAC algorithm 288
SAT 61, 388, 390, 509

clause 55
CNF 55
conjunction 55
disjunction 55
instance 61
literal 55
non-binary encoding 55
NP-complete 61
tractable classes 111
unsatisfiable core 112

satisfiable constraint network 61
satisfied membership decision 465
satisfied negative decision 442
Saucy 509
SBDD 494, 506
SBDS 506
SBT 370
scale-free graph 122
scaling behavior 102
sCDC 322
sCDC1 336
scheduling problem 125
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scheme
minimization

constructive 452
destructive 452
dichotomic 452

propagation
arc-oriented 187
constraint-oriented 195
variable-oriented 190

support-seeking
GAC-allowed 240, 242
GAC-allowed-compressed 261
GAC-nextDiff 250
GAC-nextDiffb 250
GAC-nextIn 245
GAC-nextInb 247
GAC-trie 256
GAC-valid 240, 241
GAC-valid+allowed 264
GAC-valid+forbidden 280

Schur’s Lemma problem 131
scope 42
sCPC 322
sDC 322
sDC2 340
search 35

φ-search 364
backtrack 35, 357, 359
backtrack-free 140, 181
binary 265
complete 357, 359
incomplete 357, 359
systematic 357

search-guiding heuristic 392
search problem 179, 357
search space 35
search tree 361
second-order consistency 164
set

cardinality 531
combination 531
difference 531
disjoint 531
partition 531
permutation 531
powerset 531
singleton 531

SHA 104
shared variables 521
shavable value 155
shaving 300
siblings 534
simple graph 533
simple partial state 477
simple path 533
simple tabular reduction 269
singleton 531
singleton φ 154
singleton φ-inconsistent

constraint network 155
value 154

singleton arc consistency 154
singleton check 155, 289
small world 121
solution 28, 61
solution symmetry 500
solver

black-box 30
robust 30

space complexity 536
sparse set 89, 260
sPC 322
sPPC 322
stable consistency 145
stand-alone consistency enforcement 188
standard backtracking 370, 378
standard nogood 79
state-based reasoning 460
static variable ordering heuristic 393
STR 269
strict order 532
strict partial state 460
strict support 48
strong

(i, j)-consistency 143
backdoor 110
consistency 322
k-consistency 139
path consistency 322
relational (i, m)-consistency 172

stronger property 84
structural decomposition 116
structure

backbone 109
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backdoor 110
clique 113
cycle 115
small world 121
unsatisfiable core 112

structured constraint network 109
benchmarks 122

sub-network 64
sub-table 241
subgraph 534
subgroup 497
substitutability 82, 208
subsumption 80
subtree 534
succeed-first principle 392
Sudoku problem 70, 152
support 47

condition 217, 218
path 166
residual 219
SAC 290
strict 48

support-seeking scheme
GAC-allowed 240, 242
GAC-allowed-compressed 261
GAC-nextDiff 250
GAC-nextDiffb 250
GAC-nextIn 245
GAC-nextInb 247
GAC-trie 256
GAC-valid 197, 240, 241
GAC-valid+allowed 264
GAC-valid+forbidden 280

surjective function 532
survival function 433
symmetric relation 532
symmetry 498

constraint 500
on a constraint network 500
solution 500
value 500
variable 500

symmetry-breaking constraint 504
symmetry breaking

dynamic 506
systematic search 357

T
table 240

compressed 261, 281
table constraint 239

negative 279
positive 240

tailored constraint 43
ternary constraint 43
testing-set 417
thrashing 35, 357
threshold 96
tie 394
tightness 50, 174
tightness-bounded constraint 222
time-stamp 190
time-stamping 191, 340
time complexity 536
total order 532
total strict order 532
tractable 538

class 179
problem 179

trailing 86, 372
transition constraint 451
transition decision 450, 451
transitivity 532
transposition 459
transposition table 459, 487
traveling salesperson problem 127
tree 534

ancestor 534
binary 534
child 534
depth 534
descendant 534
fruitless 362
leaf 534
node 534
parent 534
refutation 361
root 534
rooted 534
search 361
siblings 534
subtree 534

tree-convex constraint 177, 179
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tree-convex set 176
tree clustering 118
tree decomposition 116
triangulated graph 116, 533
trie 253, 267
tuple 41

accepted 43
allowed 43
allowed compressed 261
compressed 261, 281
conflict 47
disallowed 43
forbidden 43
support 47
valid 47, 197

U
unary constraint 43, 52
unfixed variable 40
uni-directionality

negative 207
positive 207

uninstantiated variable 40
universal constraint 50
unsatisfiable constraint network 61
unsatisfiable core 112, 408, 481
unsatisfied constraint 43

V
v-value 54, 499

φ-consistent 151
generalized arc-consistent 151

valid instantiation 59
validity check 48, 199
valid tuple 47, 197
valid value 40
value

φ-consistent 151
assignable 83
c-value 54
compatible 54
eliminable 83
failed 474
fixable 83
GAC-inconsistent 152
generalized arc-inconsistent 152

implied 81
inconsistent 81
interchangeable 82, 494
order (total) 41
refutation 78, 362
removable 83
replaceable 83
singleton φ-inconsistent 154
substitutable 82
v-value 54
valid 40

value ordering heuristic 397
lexico 398
min-conflicts 397, 413
random 398
val-impact 405

value symmetry 500
variable 33, 39

φ-consistent 151
assigned 40
assignment 40, 78, 362
continuous 40
current 370
degree 53
dependent 85
determined 85
discrete 40
e-eliminable 478
eliminable 86
fixed 40
generalized arc-consistent 151
instantiated 35, 40
interchangeable 85
involved 43
irrelevant 85
isolated 54
j-eliminable 486
locally symmetric 512
neighbor 54
order (total) 41
past 368
unfixed 40
uninstantiated 40
weighted degree 403

variable-oriented propagation scheme 190
variable ordering heuristic 393

adaptive
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dom/wdeg 403
var-impact 405
wdeg 403

dynamic 394
bz 394
dom 394
dom/ddeg 394
random 396

static 393
ddeg 394
deg 394
lexico 393
random 396

variable symmetry 500
lightweight detection 512

vertex 533, 535
vertex-induced 534
violated constraint 43

W
watchable

decision 443
value 469

watched
decision 443

decision invariant 445
literals 432
value 467

wdeg heuristic 403
weak (i, j)-consistency 143
weak k-SAC 311
weak backdoor 110
weakly m-tight constraint 175, 179
weighted degree 403
weightedSum 515
weighting of constraints 399
well-behaved consistency 144
well-formed set of decisions 78, 81
width 181
wipe-out

domain 148, 360
relation 148

worst-case complexity 536
WSAC 311
WSACk 311

X
XCSP 2.1 541
XML 541
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Back Cover

Constraint networks are abstract models used in timetabling, scheduling, vehicle
routing, planning and bio-informatic applications, as well as in solving crosswords,
Eternity II and other puzzles. A constraint network is an expression of a collection
of constraints that must be satisfied. This expression of constraints is naturally
declarative, and can therefore be understood and employed by many people.
Constraint networks are important because of their broad applicability and because of
the ready availability of a vast range of practical algorithms and heuristics.

During the past decade, there have been many substantial new developments, most
of these characterized by conceptual simplicity of general techniques and underlying
algorithms. This work is comprehensively and rigorously presented in the present
book, which provides the reader with a gentle introduction to this active field of
research. Pragmatically, the book concentrates on general-purpose approaches that
have proven to be effective in practice. These approaches are the source of a nascent
generation of robust constraint solvers that are accessible to the average user.

Following a couple of introductory chapters, the book is divided into two main
parts. The first presents general inference methods based on local consistencies, which
are relational and structural properties of constraint networks. Recently published
techniques and algorithms are explained and compared. The second part of the book
describes sophisticated general search methods, which learn before and during the
search, so as to reduce the number of combinations that are explored. Concepts,
techniques and algorithms are illustrated by many examples.

The book’s intended audience includes researchers, PhD students, graduate
students and other people interested in constraint programming or related fields
such as operations research, artificial intelligence, computer science and applied
mathematics. No prior knowledge of constraint satisfaction is required to read and
understand the main concepts of this book.
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