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Abstract. In Constraint Programming (CP), Generalized Arc Consistency (GAC)
is the central property used for making inferences when solving Constraint Sat-
isfaction Problems (CSPs). Developing simple and practical filtering algorithms
based on consistencies stronger than GAC is a challenge for the CP community.
In this paper, we propose to combine k-Wise Consistency (kWC) with GAC,
where kWC states that every tuple in a constraint can be extended to every set
of k � 1 additional constraints. Our contribution is as follows. First, we derive a
domain-filtering consistency, called Domain k-Wise Consistency (DkWC), from
the combination of kWC and GAC. Roughly speaking, this property corresponds
to the pruning of values of GAC, when enforced on a CSP previously made kWC.
Second, we propose a procedure to enforce DkWC, relying on an encoding of
kWC to generate a modified CSP called k-interleaved CSP. Formally, we prove
that enforcing GAC on the k-interleaved CSP corresponds to enforcing DkWC on
the initial CSP. Consequently, we show that the strong DkWC can be enforced
very easily in constraint solvers since the k-interleaved CSP is rather immedi-
ate to generate and only existing GAC propagators are required: in a nutshell,
DkWC is made as simple and practical as GAC. Our experimental results show
the benefits of our approach on a variety of benchmarks.

1 Introduction

Constraint Propagation is a key concept to Constraint Programming (CP). Interleaved
with (backtrack) search decisions such as classical variable assignments, it typically
discards many useless substantial parts of the search space of Constraint Satisfaction
Problems (CSPs) by filtering out inconsistent values and/or tuples. Different levels of
filtering exist, and usually they can be characterized by properties, called consistencies,
of constraints or constraint networks. The central consistency in CP is Generalized Arc
Consistency (GAC) [13], also called Domain Consistency (DC): it is the highest filter-
ing level of variable domains when constraints are considered one at a time. Consisten-
cies weaker than GAC are cheaper to enforce but they lose ground progressively, at least
for binary and table constraints3, as they reduce (far) less the search space of CSPs. On
the other hand, consistencies stronger than GAC are more and more studied, and often

3 For example, this is the case of the partial form of GAC maintained in Forward Checking.



tested on difficult problem instances, where the cost of enforcing them can be coun-
terbalanced by their large inference capabilities. However, such strong consistencies
need to reason with several constraints simultaneously, which makes the development
of filtering algorithms complex, especially for integration into existing CP solvers.

Most of the consistencies can also be classified in two categories: domain-based (or
domain-filtering) consistencies and constraint-based ones. Domain-based consisten-
cies identify inconsistent values that can be removed from the domains of variables
whereas constraint-based ones identify inconsistent tuples in the constraints, for which
the removal is not always a possible option in constraint solvers. Different examples of
such consistencies can be found in [1,4,3,8,10,17]. Interestingly enough, combining a
constraint-based consistency with a domain-based one such as GAC allows the pruning
achieved in term of tuples to further prune variable domains. This is what we propose in
this paper by combining k-Wise Consistency (kWC) with GAC. The constraint-based
kWC states that every tuple in the scope of a constraint can be extended to every set of
k � 1 other constraints. Note that kWC and GAC have already been theoretically com-
bined in [7,6]. They have also been practically combined under weaker forms in [3,17]
and a practical sophisticated algorithm for the full combination has been proposed in
[8].

Our contribution in this paper is two-fold. First, we derive a domain-filtering consis-
tency, called Domain k-Wise Consistency (DkWC), from the combination of kWC and
GAC. Roughly speaking, this property corresponds to kWC and GAC combined, but
where only the outcome in term of pruned values is considered. Second, we propose a
simple and practical filtering procedure to enforce DkWC on a given initial CSP con-
taining table constraints, relying on an encoding of kWC to generate a modified CSP,
called k-interleaved CSP. This encoding allows invalidating k-wise inconsistent tuples
by means of dual variables, without effectively removing them from constraint scopes,
as pure k-wise consistency would do. Formally, we prove that enforcing GAC on the
k-interleaved CSP corresponds to enforcing DkWC on the initial CSP. Consequently,
we show that the strong DkWC can be enforced very easily in constraint solvers since
the k-interleaved CSP is rather immediate to generate (and only once) and only existing
GAC propagators are required: in a nutshell, DkWC is made as simple and practical as
GAC. We also define two weaker variants of our filtering procedure, that can be used
when the problems are too large for the full filtering. Our experimental results show the
benefits of our approach on a variety of benchmarks including table constraints.

2 Background

A Constraint Satisfaction Problem (CSP) P = (X,D,C) is composed of an ordered set
of n variables X = {x1, . . . ,xn

}, a set of domains D = {D(x1), . . . ,D(x
n

)} where
D(x

i

) is the finite set of possible values for variable x
i

, and a set of e constraints C =
{c1, . . . , ce}, where each constraint c

j

restricts the possible combinations of values,
called allowed tuples, on a subset of variables of X ; this subset is called the scope of
c
j

and denoted by scp(c
j

). Because variable domains may evolve (be reduced), D(x)
is referred to as the current domain of x, which is a subset of the initial domain of x
denoted by Dinit(x). If Y ✓ X then D[Y ] is the restriction of D to variables in Y . For



any value refutation x 6= a, P |
x 6=a

denotes the CSP P where the value a is removed
from D(x), and for any set of value refutations �, P |

�

is defined similarly. The arity
of a constraint c is |scp(c)|, i.e., the number of variables involved in c. In this paper,
we shall refer to (positive) table constraints where a table constraint c is a constraint
given in extension by its explicit list rel(c) of allowed tuples. A table constraint c holds
iff (x1, . . . ,xr

) 2 rel(c), where scp(c) = {x1, . . . ,xr

}. The size of a constraint c
corresponds to its number of allowed tuples and will be denoted by |rel(c)|. If ⌧ is a
r-tuple (a1, . . . , ar) then ⌧ � b denotes the r + 1 tuple (a1, . . . , ar, b).

We assume an implicit total ordering on X , and given Y = {y1, . . . , yk} ✓ X , the set
of tuples in D(y1) ⇥ . . . ⇥ D(y

k

) will be denoted by D(Y ), and the set of tuples in
Dinit(y1) ⇥ . . . ⇥ Dinit(y

k

) will be denoted by Dinit(Y ). A constraint c is satisfied
by a tuple ⌧ 2 Dinit(scp(c)) iff ⌧ is allowed by c ; the test evaluating to true iff ⌧
is allowed by c is denoted by c(⌧), or equivalently by ⌧ 2 c. We shall use the term
literal to refer to a variable value pair ; a literal of a constraint c is a pair (x, a) where
x 2 scp(c) and a 2 D(x). An assignment of a set of variables Y = {y1, . . . , yk}
is a set of literals {(y1, v1), . . . , (yk, vk)} with (v1, . . . , vk) 2 Dinit(Y ) ; it is a valid
assignment if (v1, . . . , vk) 2 D(Y ). Note that any tuple ⌧ in Dinit(Y ) can be seen as an
assignment of Y . Actually, for simplicity, we shall use both concepts (assignments and
tuples) interchangeably, with the same notations ⌧ , ⌧ 0, . . . For any tuple or assignment
⌧ , the ith value in ⌧ , associated with the variable y

i

, will be denoted by ⌧ [y
i

]. A solution
of P is a valid assignment of X that satisfies all constraints of P . Two CSPs P and P 0

are equivalent iff they have the same set of solutions.

Now, let us turn to consistencies. On the one hand, Generalized Arc Consistency (GAC),
also called Domain Consistency (DC) in the literature, is a well-known domain-filtering
consistency. To define it, we need first to introduce the notion of support as follows: a
support on a constraint c is a tuple ⌧ 2 D(scp(c)) such that c(⌧), and a support (on c)
for a literal (x, a) of c is a support ⌧ on c such that ⌧ [x] = a. Note that supports are valid
tuples, meaning that involved values are necessarily present in the current domains.

Definition 1. (GAC) A constraint c is generalized arc consistent (GAC) iff there exists
at least one support for each literal of c. A CSP P is GAC iff every constraint of P is
GAC.

Enforcing GAC is the task of removing from domains all values that have no support
on a constraint. Many algorithms have been devised for establishing GAC according to
the nature of the constraints.

On the other hand, k-Wise Consistency (kWC) [7,1] can be classified as a constraint-
based consistency because it allows us to identify inconsistent tuples (initially accepted
by constraints) instead of inconsistent values. It is based on the idea of extending (valid)
assignments.

Definition 2. (Extension) Let Y and Z be two sets of variables. An assignment ⌧ 0 of
Y [ Z is an extension on Y [ Z of an assignment ⌧ of Y iff ⌧ 0[y] = ⌧ [y], 8y 2 Y .

Of course, a valid extension is simply an extension that corresponds to a valid assign-
ment. We can now define k-wise consistency, which basically guarantees that every



support on a constraint can be extended to any set of k � 1 additional constraints. This
kind of property allows us to reason about connections between constraints through
shared variables.

Definition 3. (kWC) A CSP P = (X,D,C) is k-wise consistent (kWC) iff 8c1 2 C,
8⌧ 2 c1 : ⌧ 2 D(scp(c1)), 8c2, . . . , ck 2 C, 9⌧ 0 valid extension of ⌧ on

S
k

i=1 scp(ck)
satisfying c2, . . . , ck.

Note that k-wise consistency is called pairwise consistency for k=2 and three-wise con-
sistency for k=3. It is immediate that k-wise consistency implies (k-1)-wise consistency.
Enforcing kWC on a CSP involves removing from the constraints (i.e., considering as
no more allowed) the tuples that cannot be extended. It thus modifies constraints, not
domains. As a result, kWC is incomparable with GAC : a CSP can be kWC but not
GAC and reciprocally [6]. However, combining both consistencies allows us to make
more pruning of the domains than domain consistency alone. In this paper, we consider
such a combination.

Definition 4. (GAC+kWC) A CSP P is GAC+kWC iff P is both GAC and kWC.

At this stage, although already suggested earlier, we can observe that GAC, kWC and
GAC+kWC are well-behaved consistencies. We recall that a consistency  is well-
behaved [10] when for any CSP P , the  -closure of P exists, where the  -closure of
P is the greatest CSP, denoted by  (P ), which is both  -consistent and equivalent to
P . The underlying partial order on CSPs is: P 0 = (X,D0,C 0) � P = (X,D,C)
iff 8x 2 X,D0(x) ✓ D(x) and there exists a bijection µ from C to C 0 such that
8c 2 C,µ(c) ✓ c. Enforcing  on P means computing  (P ), and an algorithm that
enforces  is called a  -algorithm.

Interestingly, from GAC+kWC, we can derive a domain-filtering consistency, called
domain k-wise consistency, or DkWC in short. When a CSP P is domain k-wise con-
sistent, it means that all variable domains of P cannot be reduced when enforcing
GAC+kWC.

Definition 5. (DkWC) A CSP P = (X,D,C) is domain k-wise consistent (DkWC) iff
GAC+kWC(P ) is a CSP Q = (X,DQ,CQ) such that D = DQ.

GAC+kWC is both domain-filtering and constraint-filtering, which may render uneasy
its implementation in constraint solvers, whereas DkWC is only domain-filtering. In
this paper, we propose to enforce DkWC indirectly by considering a reformulation of
the CSP to be solved.

3 Enforcing kWC using k-dual CSPs

This section presents a filtering process for achieving kWC. The filtering procedure is a
generalization to the k-wise case of the filtering process presented in [6], and different
from the one presented in [7]. It will be useful for our DkWC algorithm, presented in
the next section. Due to explicit access to the list of allowed tuples, table constraints are
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particularly adapted for strong constraint-based consistencies. The filtering procedures
proposed in this paper are thus designed for such table constraints. From now on, all
constraints will be assumed to be table constraints.

As kWC is a constraint-based consistency, the idea is to define and use a special dual
form of the given CSP in order to obtain kWC by simply enforcing GAC on the dual
representation. Because this dual form depends on the value of k, we call it k-dual
CSP. This is a generalization of the dual used in [6] that is equivalent to the order
k constraint graph defined in [7]. Specifically, the k-dual of a CSP contains one dual
variable x0

i

per constraint c
i

in the original CSP and one k-dual constraint c0
j

per group of
k original distinct constraints. Each variable x0

i

has a domain which is the set of indexes
of the tuples in the original constraint c

i

, and each constraint c0
j

is a table constraint
representing the join of k original constraints. Note that the tuples in those new tables
are represented with the indexes of the tuples in the original constraints, which allows
the new constraints to have arity k only.

Definition 6. (k-dual CSP) Let P = (X,D,C) be a CSP. The k-dual of P is the CSP
P kd = (Xkd,Dkd,Ckd) where:

– for each constraint c
i

2 C, Xkd contains a variable x0
i

with its domain defined as
Dkd(x0

i

) = {1, 2, . . . , |rel(c
i

)|},

– for each subset S of k constraints of C, Ckd contains a constraint c0 such that
scp(c0) = {x0

i

| c
i

2 S} and c0 is a k-ary table constraint containing the join of all
constraints in S (represented with the indexes of the original tuples).

If P kd is the k-dual of P , then variables and constraints of P are said to be original
whereas variables and constraints of P kd are said to be dual. An example of a k-dual
CSP for k = 3 can be found in Example 1.

Example 1. Let P = (X,D,C) be a CSP such that X = {u, v,w,x, y, z}, D =
{1, 2, 3, 4}6 and C = {c1, c2, c3} where:
- scp(c1) = {u, v,w} and rel(c1) = {(1, 2, 3), (1, 2, 4)},
- scp(c2) = {u,x, y} and rel(c2) = {(1, 3, 4), (2, 3, 4)},
- scp(c3) = {v,x, z} and rel(c3) = {(2, 3, 1), (3, 3, 2)}.
The 3-dual of P is a CSP P kd = (Xkd,Dkd,Ckd) such that Xkd = {x0

1,x
0
2,x

0
3},

Dkd = {1, 2}3, and Ckd = {c0} with scp(c0) = {x0
1,x

0
2,x

0
3} and rel(c0) = {(1, 1, 1),

(2, 1, 1)}. It represents the full join of the original constraints on {u, v,w,x, y, z},
which is composed of the tuples (1, 2, 3, 3, 4, 1) and (1, 2, 4, 3, 4, 1). For example, the
first tuple is obtained by joining the first tuple of c1, the first tuple of c2 and the first one
of c3.

Property 1. A CSP is kWC iff its k-dual CSP is GAC. [6,7].

Property 1 is introduced in [6] for k = 2 and the general result is established in [7] for
a similar k-dual CSP. A filtering procedure to enforce GAC+2WC (i.e., both pairwise
consistency and generalized arc consistency) on a CSP P consists in (1) enforcing GAC



on the 2-dual of P , then (2) restraining the constraints of P in order to only contain
tuples corresponding to valid dual values, and finally (3) establishing GAC on P [7,3].
The generalization of this procedure to the k-wise case uses the k-dual instead of the
2-dual.

4 Enforcing DkWC using k-interleaved CSPs

In this section, we propose to reformulate the CSP P to be solved in order to be able
to enforce DkWC in a single step, just by applying classical GAC. Basically, to enforce
DkWC with GAC propagators only, we first add to P all variables and all constraints
from the k-dual CSP of P . Then, we link dual variables and original constraints be-
cause, otherwise, the removal of a value from a dual variable would not leverage its
corresponding original constraint (and reciprocally). In the definition of GAC+kWC
(on which DkWC is based), only valid tuples can serve as supports either for values
(generalized arc consistency part) or for other tuples (k-wise consistency part). The link
we make guarantees that original tuples corresponding to invalid dual values are inval-
idated, and reciprocally, ensuring that original constraints and dual variables keep the
same pace during filtering. The link we propose involves transforming each original
constraint c

i

into a new hybrid constraint �(c
i

) involving the original variables in the
scope of c

i

as well as the dual variable x0
i

that is associated with c
i

. For each tuple ⌧
in rel(c

i

), we generate a tuple in rel(�(c
i

)) by simply appending to ⌧ its position in
rel(c

i

).

Definition 7. (Hybrid Constraints) Let P = (X,D,C) be a CSP. The set of hybrid
constraints �(C) of P is the set {�(c

i

) | c
i

2 C} where:

– scp(�(c
i

)) = scp(c
i

) [ {x0
i

}

– rel(�(c
i

)) = {⌧
j

� j | ⌧
j

is the jth tuple of rel(c
i

)}

with x0
i

denoting the dual variable associated with c
i

.

In this way, the removal of a value j from D(x0
i

) will be reflected in �(c
i

), as the tuple
⌧
j

� j will be invalidated. Also, when the tuple ⌧
j

� j becomes invalid due to a value
removed from the domain of an original variable, j will be removed from D(x0

i

). We
can now introduce k-interleaved CSPs.

Definition 8. (k-Interleaved CSP) Let P = (X,D,C) be a CSP. The k-interleaved of
P is the CSP P ki = (Xki,Dki,Cki) = (X [ Xkd,D [ Dkd,�(C) [ Ckd) where
(Xkd,Dkd,Ckd) is the k-dual of P and �(C) the hybrid constraints of P .

The following property shows an interesting connection: enforcing GAC on the k-
interleaved CSP of a CSP P is equivalent to enforcing GAC+kWC on P , when the
focus is only on the domains of the variables of P .

Property 2. Let P = (X,D,C) be a CSP and P ki = (Xki,Dki,Cki) be the k-
interleaved CSP of P . If Q = (X,DQ,CQ) is the GAC+kWC-closure of P and
R = (Xki,DR,Cki) is the GAC-closure of P ki, then we have DQ = DR[X] (i.e.,
DQ(x) = DR(x), 8x 2 X).



The intuition of the proof is as follows. On the one hand, each literal (x, a) of DQ

is supported on each constraint cQ involving x by a valid tuple in Q. This tuple is k-
wise consistent in Q. By Property 1, the dual variables in Xki precisely encode this
k-wise consistency. On the other hand, each literal (y, b) of DR[X] is supported on
each constraint cki involving y by a valid tuple in R. As all supports on constraints of
Cki include a valid dual variable, we have that DQ = DR[X].

Then, we can deduce the following corollary.

Corollary 1. If the k-interleaved CSP of a CSP P is GAC then P is DkWC.

It is important to note that “k-interleavedness” is preserved after refuting any value.
This is stated by the following property (whose proof is omitted).

Property 3. Let P = (X,D,C) be a CSP and P ki be the k-interleaved CSP of P .
8x 2 X, 8a 2 D(x), P ki|

x 6=a

is the k-interleaved CSP of P |
x 6=a

.

From Properties 2 and 3, we can derive the following important corollary.

Corollary 2. Let P = (X,D,C) be a CSP and P ki = (Xki,Dki,Cki) be the k-
interleaved CSP of P . Let � be a set of value refutations on variables of X . If Q =
(X,DQ,CQ) is the GAC+kWC-closure of P |

�

and R = (Xki,DR,Cki) is the GAC-
closure of P ki|

�

, then we have DQ = DR[X].

Corollary 2 is central to our approach. It allows us to achieve DkWC indirectly using
GAC, and at any stage of a backtrack search. So, it is important to note that the gener-
ation of the k-interleaved CSP is only performed once since it can be used during the
whole search.

The complexity of enforcing DkWC is the complexity of enforcing GAC on the k-
interleaved CSP. As the k-interleaved CSP only contains table constraints, the com-
plexity analysis will use the optimal time complexity for a table constraint given in
[14]. Let P be a CSP with n variables, a maximum domain size d, e constraints, a
maximum number t of tuples allowed by a constraint, and a maximum constraint arity
r. The k-interleaved CSP of P is a CSP with n0 = n + e variables, a maximum do-
main size d0 = max(d, t), e0 = e +

�
e

k

�
constraints4, an upper bound t0 = tk of the

maximum number of allowed tuples by a constraint, and a maximum constraint arity
r0 = max(r + 1, k) Enforcing GAC on the k-interleaved CSP with optimal table con-
straint propagators has a complexity of O(e0·(r0·t0+r0·d0)) = O((

�
e

k

�
+e)·(r0·t0+r0·d0)).

Necessity of Hybrid Constraints. It is important to note that the filtering procedure for
DkWC presented in this paper is stronger than the propagation that would be obtained
by simply replacing the original constraints by their joins. The reason is that, in the
second setting, the invalidation of a tuple in a join is not reflected in the other joins,
whereas with the k-interleaved CSP, the supports for the tuples on a join must them-
selves be supported. This is illustrated by Example 2.

4
�
e
k

�
is the binomial coefficient corresponding to the number of subsets of size k that can be

formed using elements from a set of size e.



Example 2. Let P = (X,D,C) be a CSP such that X = {x, y,u, v}, D = {0, 1}4 and
C = {c1, c2, c3} with scp(c1) = {x, y,u, v}, scp(c2) = {x, y} and scp(c3) = {u, v},
and rel(c1), rel(c2) and rel(c3) defined as in Figure 2(a). Let us compare domain pair-
wise consistency (D2WC) with the joins of any two pairs of constraints: in this CSP,
the two possible joins and the 2-interleaved CSP are depicted in Figure 1. On the one
hand, enforcing GAC on the two join constraints J12 and J13 has no effect (observe that
values 0 and 1 are present in each column of both tables). On the other hand, enforcing
GAC on the 2-interleaved CSP reduces D(y) to {1} and D(v) to {0}. The reduction of
D(y) comes from the tuple (0, 0) in rel(c2) which is the only support for y = 0 on c2.
This tuple is only supported in J 0

12 by the second tuple of c1: (0, 0, 0, 1). As (0, 0, 0, 1)
has no support on J 0

13, we can safely remove 0 from D(y).
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(a) Original CSP (b) Classical Joins

(c) 2-interleaved CSP

Fig. 1: Illustration of (a) the CSP, (b) the classical joins and (c) the 2-interleaved CSP
from Example 2

5 Practical Use of k-interleaved CSPs

Enforcing GAC on the k-interleaved CSP may be expensive. One possible cause is the
number of constraints from the k-dual CSP that are added to the k-interleaved CSP:�
e

k

�
for an original CSP with e constraints. Some of those constraints can safely be

ignored. For instance, this is trivially the case for k-dual constraints that are based on
original constraints sharing no variables. Of course, a trade-off can be made between
propagation strength and time complexity by integrating only a subset of all possible�
e

k

�
constraints. In that case, we shall not achieve DkWC completely. Suppose that



we limit the integration to the p most promising constraints from the k-dual CSP. The
complexity, following our analysis performed above, becomes O((e+p)·(r0 ·t0+r0 ·d0))
: the term

�
e

k

�
has been replaced by p. The most promising constraints can be selected,

for example, according to the size of the joins. Indeed, small joins will induce more
pruning whereas using large joins is another cause of inefficiency, as it is related to t0.

Following this discussion, we propose two weak variants of DkWC, and refer to them
as weak DkWC: they only consider a subset of all possible k-dual constraints. The first
one, called DkWCcy only considers constraints from the k-dual CSP corresponding to
cycles of original constraints (i.e., sequences of constraints at least sharing variables
with previous and next constraints in a circular manner). There are typically far less cy-
cles of k constraints than combinations of k constraints and besides they usually form
smaller joins. The consistency level attained by DkWCcy is weaker than DkWC but
in practice, as we shall see, it shows good performances. Since all the original con-
straints are included in DkWCcy , the consistency level attained is stronger than GAC.
Unsurprisingly, for some problems, the size of the joins of some cycle constraints may
be too large to be treated efficiently. For instance, in the modifiedRenault benchmark,
some joins computed from cycles of length 3 exceed 106 tuples. This is why the second
variant of DkWC, called DkWCcy�, only considers constraints from the k-dual CSP
corresponding to cycles of original constraints and admitting a join size smaller than a
specified parameter (e.g., a percentage of the size of the largest table). In other words,
a maximum size is imposed on the size of the joins. The consistency level attained by
DkWCcy� is weaker than DkWC and DkWCcy , but its practical interest will be shown
on some problems. DkWCcy� attains a level of consistency stronger than GAC.

6 Related Work

GAC has already been combined with 2WC, 3WC and kWC [7,6,3,17,8,16]. A first
approach consists in weakening the combination, to obtain a pure domain-based con-
sistency. We obtain then max-restricted pairwise consistency (maxRPWC) [16,17,15].

Definition 9. (maxRPWC) A CSP P = (X,D,C) is max-restricted pairwise consis-
tent (maxRPWC) iff 8x 2 X , 8a 2 D(x), 8c 2 C | x 2 scp(c), 9⌧ 2 D(scp(c)) such
that ⌧ [x] = a, ⌧ 2 c and 8c0 2 C there exists a valid extension of ⌧ on scp(c)[ scp(c0)
satisfying c0.

MaxRPWC is a domain-filtering consistency, close to the idea of DkWC and GAC+2WC
but weaker than GAC+2WC [3]. In [11], the authors propose a specialized filtering
procedure, called eSTR, for enforcing GAC+2WC (called full pairwise consistency in
their work) on table constraints. Two techniques are combined: simple tabular reduc-
tion (STR) and tuple counting. This allows eSTR to keep and update a counter, for each
tuple of each table, of the number of supports it has in the other tables. This counter
can be used to detect and remove unsupported tuples. This approach is orthogonal to
the one presented in this paper. Indeed, in [11], the authors lift up an existing GAC
propagator, STR, to eSTR. Our approach is to propose a filtering procedure, relying on
a modified CSP, only using existing pure GAC propagators and we are not restricted to
GAC+2WC.



Other approaches compute the kWC-closure of a CSP in a first step and then apply
GAC in a second step, as proposed in [7,6,3] for 2WC and [8] for kWC. The approach
in [8] relies on a specialized propagator, inspecting each constraint with respect to each
relevant group of k constraints. Inspecting a constraint means searching, for each tuple
of the constraint, a support in each group. This search for support is performed using a
backtracking search (Forward Checking), on the dual encoding of the CSP. This whole
process is sped up by memorizing, for each constraint and each group, the last en-
countered support. A similar approach is developed in [20] for relational neighborhood
inverse consistency. In [8], the authors also propose a slightly weaker consistency, con-
sidering only groups of constraints forming connected components in the minimal dual
graph. Although attractive, these original forms of propagators can be hard to include
in existing constraint solvers. For instance, in Comet, the context management system
makes the start of an independent search inside a propagator impossible.

Other related approaches exist, although not trying to enforce directly GAC+kWC. In
[12], the authors propose a consistent reformulation for the conjunction of two tables
sharing more than one variable, keeping the space complexity low. In [2], the authors
propose an algorithm to achieve GAC on global constraints. In this work, the global
constraints are perceived as groups of constraints and the CSPs they define are solved
on the fly to achieve GAC on them. GAC+kWC on a group of k constraints can be seen
as solving the subproblem they define, but in our approach, the subproblems are not
solved on the fly.

The easy integration of strong levels of consistency into existing solvers has been stud-
ied in [19]. The integration is performed within a generic scheme, incorporating the
subset of the constraints involved in the local consistency into a global constraint.

7 Experimental Results

This section presents some experimental results concerning DkWC. For each test, we
propose to maintain this property on k-interleaved CSPs at each node of the search trees
developed by a backtrack search. However, as discussed in Section 5, including all k-
dual constraints is unpractical for many problems, because of the number of additional
constraints and/or because of their size. So, in our experiments, we have only used the
weaker versions defined in Section 5, namely, DkWCcy and DkWCcy�, and we have
focused our attention to weak D3WC and weak D4WC. Those values of k allow a
significant search space reduction with respect to GAC while keeping the number and
size of k-dual constraints tractable. Notice that labeling is only performed for original
variables during search, and that all solutions are searched for. The GAC propagator
used for the original constraints as well as the k-dual ones is the optimal state-of-the-art
propagator from [14].

Our filtering procedure is compared with the GAC propagator from [14], the max-
RPWC3 procedure from [3] and the state-of-the-art eSTRw propagator from [11]. The
eSTRw propagator is weaker than eSTR but easier to incorporate into an existing solver,
and is at least as good as eSTR on the benchmarks used in [11]. All the algorithms are



(re-)implemented on top of Comet, but as mentioned in Section 6, it is unfortunately im-
possible to implement the filtering algorithm from [8] in Comet. Eight different bench-
marks have been used. Two of them contain only binary table constraints, five of them
contain binary and ternary table constraints and the last benchmark contains table con-
straints up to arity 10. The tests are executed on an Intel Xeon 2.53GHz using Comet
2.1.1. A timeout of 20 minutes on the total execution time is used for each instance.
When comparing different techniques in terms of CPU time and search space sizes, we
can only use the subset of instances for which none of the techniques timed out. In the
results, we thus do not report measurements for some of the techniques on some bench-
marks because including them would cause the common instance set to be empty or too
small for a meaningful comparison. In the tables, a ’-’ thus represents a technique that
timed out on the set of instances considered. The percentage of the instance set that is
solved is however given for each technique on each benchmark.

The results are presented in Table 1. For each instance set and each technique, we report
means of different quantities (times are in seconds): the execution time (T), the "post-
ing" time (pT), the join selection time (jST) that corresponds to the amount of time used
to select the joins for the k-interleaved CSPs, the join computation time (jT), the number
of propagator calls (nP), the number of fails (nF) and the number of choice points (nC).
Table 1 also reports the percentage to the best with respect to execution time (%b), the
mean of the percentage to the best instance by instance (µ%b) and the percentage of
instances from the sets that are solved (%sol). The total time (T) includes all precom-
putations the algorithms have to perform before search. This means that both times of
join selection (jST) and join computation (jT) for our DkWC algorithm are included in
T. The posting time (pT) is the time taken between the loading of the instance file and
the start of search without the time for jT. It thus includes time for all precomputations
except for join computation. The difference between %b and µ%b is the following. For
%b, all execution times are averaged before computing it: there is thus one identified
best algorithm. For µ%b, the percentages are first computed instance by instance, and
then aggregated with a geometrical mean (as suggested in [5]): this measure takes into
account the fact that different instances may have different best algorithms.

Binary Random Instances This instance set contains 50 instances involving binary ta-
ble constraints. These instances have 50 variables, a uniform domain size of 10 and
166 constraints whose proportion of allowed tuples is 0.5. They have been generated
using the model RD [21], in or close to the phase transition. The search strategy used to
solve them (for all techniques) is a lexicographic variable and value ordering. On this
benchmark, D3WCcy includes on average 48.4 3-dual constraints, and their tables con-
tain on average 111.5 tuples. We can see that the pruning obtained by D3WCcy on this
benchmark allows it to reduce drastically the search space. Moreover, since the mean
number of added constraints from the 3-dual CSP and their size is small, D3WCcy has
the lowest overall computation time. Propagators maxRPWC3 and eSTRw also reduce
the search space with respect to GAC (partly due to the presence of constraints with
identical scopes), but this reduction comes at the price of a greater total computation
time.



propagator T pT jST jT nP nF nC %b µ%b %sol

Binary Random
GAC 9.9 0.0 0.0 0.0 3 M 7.7 k 1 213.2 337 218 100

maxRPWC3 72 0.7 0.0 0.0 148 k 2.2 k 340.1 2448 1833 98
eSTRw 11.4 0.1 0.0 0.0 293 k 2.2 k 340.1 389 283 100

D3WCcy
2.9 0.1 0.0 0.1 963 k 0.5 k 68.4 100 113 100

Ternary Random
GAC 23.1 0.0 0.0 0.0 4 M 42.4 k 11.8 k 183 223 100

maxRPWC3 124 0.2 0.0 0.0 237 k 8.2 k 2.2 k 982 1455 90
eSTRw 16.6 0.0 0.0 0.0 409 k 7.7 k 2.1 k 131 189 100

D3WCcy
12.6 0.5 0.1 0.4 2 M 0.6 k 0.1 k 100 143 100

AIM
GAC 82 0.1 0.0 0.0 35 M 941.6 k 522 k 6745 460 46
maxRPWC3 14.7 1.0 0.0 0.0 46 k 1.2 k 0.7 k 1204 1481 46
eSTRw 1.2 0.3 0.0 0.0 35 k 0.7 k 0.4 k 100 208 50
D3WCcy 3.4 2.4 1.2 0.5 139 k 0.1 k 0.1 k 279 497 88

Pret
GAC 160 0.0 0.0 0.0 58 M 7 M 5 M 121 121 50

maxRPWC3 977 0.0 0.0 0.0 26 M 7 M 5 M 741 741 50

eSTRw 504 0.0 0.0 0.0 30 M 7 M 5 M 382 382 50

D3WCcy
132 0.0 0.0 0.0 57 M 4 M 3 M 100 100 50

Langford-2
GAC 0.5 0.0 0.0 0.0 171 k 1.4 k 1 k 100 100 58

maxRPWC3 44.6 2.2 0.0 0.0 43 k 1.4 k 1 k 9637 3863 46
eSTRw 1.5 0.1 0.0 0.0 65 k 1.4 k 1 k 326 233 54
D3WCcy 10.5 0.9 0.1 3.2 2 M 0.7 k 0.7 k 2270 1782 50

Dubois
GAC 793 0.0 0.0 0.0 158 M 42 M 37 M 394 390 15
maxRPWC3 - - - - - - - - - 8
eSTRw 598 0.0 0.0 0.0 37 M 5 M 3 M 297 294 15
D4WCcy

201 0.1 0.0 0.0 68 M 2 M 1 M 100 100 30

TSP-20
GAC 52 0.5 0.0 0.0 14 M 17 k 7 k 100 100 93

maxRPWC3 - - - - - - - - - 33
eSTRw 233 1.5 0.1 0.0 5 M 17 k 7 k 447 438 80
D3WCcy - - - - - - - - - 40
D3WCcy� 94 4.3 0.6 0.1 40 M 17 k 7 k 180 270 93

Modified Renault
GAC - - - - - - - - - 6
eSTRw - - - - - - - - - 0
maxRPWC3 743 0.0 0.0 0.0 23.7 0.0 0.0 148 417 26
D3WCcy - - - - - - - - - 0
D3WCcy�

502 497 3.9 5.1 33 k 0.0 0.0 100 111 34

Table 1: Results of the experiments on the different benchmarks. T is the mean time in
seconds, pT is the mean posting time in seconds, jST is the mean join selection time,
jT is the mean join time, nP is the number of calls to the propagators, nF is the number
of fails during the search, nC is the number of choice points during the search, %b
is the percentage to the best, µ%b is the mean percentage to the best and %sol is the
percentage of instances solved.



Ternary Random Instances This instance set contains 50 instances involving ternary
table constraints. These instances have 50 variables, a uniform domain size of 5 and
75 constraints whose proportion of allowed tuples is 0.66. They have been generated
using the model RD [21], in or close to the phase transition. The search strategy used to
solve them is a lexicographic variable and value ordering. On this benchmark, D3WCcy

includes, on average 112.3 3-dual constraints, and their tables contain on average 529.5
tuples. As for the binary case, the search space reduction obtained by D3WCcy is im-
portant. On this benchmark, the size and number of added constraints is small enough
to allow D3WCcy to be the fastest technique. Note that the search space reduction ob-
tained by maxRPWC3 doesn’t repay its cost, contrary to eSTRw.

AIM Instances This instance set contains 24 instances from the AIM series used in
the CSP solver competition [18] (100 variables, a majority of ternary constraints and
binary ones). The search strategy used is a lexicographic variable and value ordering.
D3WCcy includes 3000 constraints from the 3-dual, on average, and the added con-
straints contain on average 30.3 tuples. On this benchmark, the filtering obtained by
maxRPWC3, eSTRW and D3WCcy allows each of them to be significantly faster than
GAC. Although D3WCcy achieves the best search space reduction, eSTRw remains
the fastest technique. The greater computation time for D3WCcy is due to the number
of 3-dual constraints included in the 3-interleaved CSPs: 3000 on average while the
number of original constraints lies between 150 and 570. Even if the 3-dual constraints
have small tables, they still have to be propagated during search. Interestingly, D3WCcy

solves significantly more instances than the other techniques.

Pret Instances This instance set also comes from the CSP solver competition [18] and
counts 8 instances (only ternary table constraints). The search strategy used is a lexico-
graphic variable and value ordering. D3WCcy includes on average 13 constraints that
have a mean size of 8 tuples. On this benchmark, neither maxRPWC3 nor eSTRw is
able to reduce the search space with respect to GAC. Their additional computations
make them slower than GAC. The small number of small constraints from the 3-dual
CSP included by D3WCcy allows it to significantly reduce the search space and to be
the fastest on this series. The mean percentage to the best (µ%b) of D3WCcy means that
it is the best technique on average but also on each instance. Note that the join selection,
join computation and posting times are negligible on this problem.

Langford Problem Langford number problem is Problem 24 of CSPLIB5, here modeled
with binary table constraints only. We used the set Langford-2 containing 24 instances
that can be found in [9]. The search strategy used is dom/deg combined with a lexi-
cographic value ordering. On this set, D3WCcy includes, on average, 328 3-dual con-
straints whose tables contain 274.7 tuples on average. On this benchmark, GAC is the
fastest technique on average (actually, it is the fastest technique on each instance). Nei-
ther maxRPWC3 nor eSTRw are able to reduce the search space with respect to GAC.
However, they have a lower propagator call count. This is due to their ability to reach
the fixed point faster. The number of constraints added from the 3-dual by D3WCcy

is large comparatively to the number of original constraints (the non-timeout instances

5 www.csplib.org



are the smallest ones). The small search space reduction obtained by D3WCcy does not
compensate the cost to propagate all the added constraints. The number of propagator
calls is significantly larger for D3WCcy . We can also see that, on this benchmark, the
time required to compute the joins is larger than the time required by GAC to solve the
instances.

Dubois Instances Those 13 instances also comes from the CSP solver competition [18]
(ternary table constraints). These instances do not contain any cycle of original con-
straints of length 3. We thus present the results of D4WCcy . On this series, D4WCcy

adds on average 156 4-dual constraints and their tables contain, on average, 15.2 tuples.
Clearly, D4WCcy is the fastest approach here and solves more instances than the other
techniques. D4WCcy is also the fastest on each instance, as shown by the mean percent-
age to the best (µ%b). The search space reduction obtained by eSTRw is less than that
obtained by D4WCcy but it allows it to be faster than GAC.

Travelling Salesman Problem We used the set of 15 Travelling Salesman satisfaction
instances tsp-20 from [9] (table constraints of arity 2 and 3). The search strategy used
here is dom/deg combined with a lexicographic value ordering. On this instance set,
there is, on average, 1000 cycles of length 3 in the 3-dual CSP and they contain up to
2000 tuples. In that context, D3WCcy only solves 40% of the instances. We thus present
the results for D3WCcy� where the limit on the size of the joins is set to one percent
of the maximal original constraint size (200). D3WCcy� includes 59.8 constraints from
the 3-dual CSP on average, and their tables contain, on average, 26 tuples. As we can
see, on those instances, neither eSTRw nor D3WCcy� is able to reduce the search space.
The extra computations of eSTRw and the extra propagation effort of D3WCcy� make
them slower than GAC (which is also the fastest approach on each instance). However,
D3WCcy� is faster than eSTRw and it is the only one able to solve the same number of
instances as GAC.

Modified Renault Problem The modified Renault problem instances originate from a
real Renault Megane configuration problem, modified to generate 50 instances[9] (large
tables and arities up to 10). The search strategy used is dom/deg variable ordering com-
bined with a lexicographic value ordering. Since the tables of the original problem can
count up to 50K tuples, D3WCcy is unpractical because of the size of the joins. We
thus present the results for D3WCcy� where the limit on the size of the joins has been
set to one percent of the largest original constraint size (500), as in the TSP bench-
mark. On those instances, D3WCcy� includes 481.6 3-dual constraints on average, and
their tables contain on average 253.9 tuples. As we can see, both maxRPWC3 and
D3WCcy� detect the inconsistencies of all instances without performing any search.
However, despite the fact that D3WCcy� has a larger propagator call count, it is faster
than maxRPWC3. D3WCcy� is also able to solve more instances than maxRPWC3.

Summary of the Experimental Results: A summary of the experimental results can be
found in Table 2. This table contains the total execution time (T) and the percentage
of instances solved (% sol) for each technique. The column wDkWC represents our
weak DkWC approach: it is D3WCcy for binary random, ternary random, AIM, Pret
and Langford-2 instances, D4WCcy for Dubois instances and D3WCcy� for TSP-20



and modified Renault instances. Weak DkWC is faster than maxRPWC3 and eSTRw,
except for two benchmarks. It is also faster than GAC on all but two benchmarks, where
GAC is faster than all strong consistencies. Weak DkWC is also the strong consistency
leading to the largest reductions of search space. Except on Langford-2, weak DkWC
solves the largest number of instances within the time limit.

For all these benchmarks, we insist that (full) DkWC is unpractical because of the num-
ber of possible joins and/or their size. This is the reason why we have introduced weak
DkWC. On the majority of benchmarks, we used DkWCcy but on two benchmarks, even
D3WCcy suffers from the number of 3-dual constraints and their sizes. Consequently,
we also used DkWCcy�, for which the best limit on the joins size has been empirically
found to be equal to 1 percent of the maximum original constraint size. This parameter
value allows D3WCcy� to include a significant number of small (highly filtering) 3-
dual constraints without including too many of them. All these results show, on a large
variety of benchmarks with constraints of various arities, that the weak DkWC filtering
procedures defined in this paper are competitive.

Benchmark GAC maxRPWC3 eSTRw wDkWC
T %sol T %sol T %sol T %sol

Binary Random 9.9 100 72 98 11.4 100 2.9 100

Ternary Random 23.1 100 124 90 16.6 100 12.6 100

AIM 82 46 14.7 46 1.2 50 3.4 88

Pret 160 50 977 50 504 50 132 50

Langford2 0.5 58 44.6 46 1.5 54 10.5 50
Dubois 793 15 - 8 598 15 201 30

TSP-20 52 93 - 33 233 80 94 93

ModRenault - 6 743 0 - 26 502 34

Table 2: Summary of the results of the experimental section. T is the total solving time
in seconds and %sol is the percentage of the instances solved

8 Conclusion

In this paper, we have derived a domain-filtering consistency, DkWC, from the com-
bination of kWC and GAC. We have shown how to establish and maintain this strong
consistency by simply establishing and maintaining GAC on so-called k-interleaved
CSPs. Such reformulated CSPs, which integrate dual variables, hybrid constraints and
k-dual constraints, are simple to generate, and need to be generated only once before
search. To manage the complexity of join operations, we have proposed a few solutions
such as the ones relying on the presence of cycles or on the use of a limit on the maximal
size of joins. The experimental results that we have obtained show, on a large variety of
problems, that our weak DkWC filtering procedures are competitive.
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