
Path Consistency by Dual Consistency

Christophe Lecoutre, Stéphane Cardon, and Julien Vion

CRIL – CNRS FRE 2499,
rue de l’universit́e, SP 16
62307 Lens cedex, France

{lecoutre, cardon, vion}@cril.univ-artois.fr

Abstract. Dual Consistency (DC) is a property of Constraint Networks (CNs)
which is equivalent, in its unrestricted form, to Path Consistency (PC). The prin-
ciple is to perform successive singleton checks (i.e. enforcing arc consistency
after the assignment of a value to a variable) in order to identify inconsistent
pairs of values, until a fixpoint is reached. In this paper, we propose two new
algorithms, denoted by sDC2 and sDC3, to enforce (strong) PC following the
DC approach. These algorithms can be seen as refinements of Mac Gregor’s al-
gorithm as they partially and totally exploit the incrementality of the underlying
Arc Consistency algorithm. While sDC3 admits the same interesting worst-case
complexities as PC8, sDC2 appears to be the most robust algorithm in practice.
Indeed, compared to PC8 and the optimal PC2001, sDC2 is usually around one
order of magnitude faster on large instances.

1 Introduction

Constraint Networks (CNs) can naturally represent many interesting problems raised
by real-world applications. To make easier the task of solving a CN (i.e. the task of
finding a solution or proving that none exists), one usually tries to simplify the problem
by reducing the search space. This is called inference [7].

Consistencies are properties of CNs that can be exploited (enforced) in order to
make inferences.Domain filtering consistencies[6] allow to identify inconsistent values
while relation filtering consistenciesallow to identify inconsistent tuples (pairs when
relations are binary) of values. For binary networks, Arc Consistency (AC) and Path
Consistency (PC) are respectively the most studied domain and relation filtering con-
sistencies. Many algorithms have been proposed to enforce PC on a given CN, e.g. PC3
[18], PC4 [9], PC5 [21], PC8 [5] and PC2001 [2].

Recently, a new relation filtering consistency, called Dual Consistency (DC) has
been introduced [12]. The principle is to record inconsistent pairs of values identified
after any variable assignment followed by an AC enforcement. Just like SAC (Single-
ton Arc Consistency), a domain filtering consistency, DC is built on top of AC. Inter-
estingly, when applied on all constraints of a binary instance (including the implicit
universal ones), DC is equivalent to PC, but when it is applied conservatively (i.e. only
on explicit constraints of the binary network), Conservative DC (CDC) is stronger than
Conservative PC (CPC). In [12], CDC is investigated: in particular, its relationship with
other consistencies is studied and a cost-effective algorithm, called sCDC1, is proposed.

In this paper, we focus on DC and propose two new algorithms to enforce (strong)
PC by following the principle underlying DC. It means that we establish (strong) PC
by performing successive singleton checks (enforcing AC after a variable assignment)
as initially proposed by Mac Gregor [16]. These two algorithms, denoted by sDC2 and
sDC3, correspond to refined versions of the algorithm sCDC1, as they partially and
totally exploit the incrementality of the underlying AC algorithm, respectively.

In terms of complexity, sDC2 admits a worst-case time complexity inO(n5d5) and
a worst-case space complexity inO(n2d2) wheren is the number of variables andd
the greatest domain size. On the other hand, by its full exploitation of incrementality,
sDC3 admits an improved worst-case time complexity inO(n3d4) while keeping a
worst-case space complexity inO(n2d2). It makes sDC3 having the same (worst-case)
complexities as PC8, the algorithm shown to be the fastest to enforce PC so far [5].

The paper is organized as follows. First, we introduce constraint networks and con-
sistencies. Then, we describe two new algorithms to enforce strong path consistency,
following the dual consistency approach, and establish their worst-case complexities.
Finally, before concluding, we present the results of an experimentation we have con-
ducted.

2 Constraint Networks and Consistencies

A Constraint Network (CN)P is a pair(X ,C) whereX is a finite set ofn vari-
ables andC a finite set ofe constraints. Each variableX ∈ X has an associated
domain, denoteddomP (X), which represents the set of values allowed forX. Each
constraintC ∈ C involves an ordered subset of variables ofX , called scope and
denotedscp(C), and has an associated relation denotedrelP (C), which represents
the set of tuples allowed for the variables of its scope. When possible, we will write
dom(X) and rel(C) instead ofdomP (X) and relP (C). Xa denotes a pair(X, a)
with X ∈ X and a ∈ dom(X) and we will say thatXa is a value ofP . d will
denote the size of the greatest domain, andλ the number of allowed tuples over all
constraints ofP , i.e. λ =

∑
C∈C |rel(C)|. If P andQ are two CNs defined on the

same sets of variablesX and constraintsC , then we will writeP ≤ Q iff ∀X ∈ X ,
domP (X) ⊆ domQ(X) and∀C ∈ C relP (C) ⊆ relQ(C). P < Q iff P ≤ Q and
∃X ∈ X | domP (X) ⊂ domQ(X) or ∃C ∈ C | relP (C) ⊂ relQ(C). A binary
constraint is a constraint which only involves two variables. In the following, we will
restrict our attention to binary networks, i.e., networks that only involve binary con-
straints. Further, without any loss of generality, we will consider that the same scope
cannot be shared by two distinct constraints. The densityD of a binary CN is then
defined as the ratio2e/(n2 − n).

A solution to a constraint network is an assignment of values to all the variables
such that all the constraints are satisfied. A constraint network is said to be satisfi-
able iff it admits at least one solution. The Constraint Satisfaction Problem (CSP) is
the NP-complete task of determining whether a given constraint network is satisfiable.
Constraint networks can be characterized by properties called consistencies. The usual
way to exploit them is to enforce them on a CN, while preserving the set of solutions. It
then consists in identifying and removing some inconsistent values (e.g. with arc consis-

tency), inconsistent pairs of values (e.g. with path consistency), etc. Here, “inconsistent”
means that the identified values, pairs of values, etc. correspond tonogoods, i.e. cannot
participate to any solution. We start introducing the consistencies we are interested in at
the level of pairs of values. From now on, we will consider a binary constraint network
P = (X ,C).

Definition 1. A pair (Xa, Yb) of values ofP such thatX 6= Y is:

– arc-consistent (AC) iff either@C ∈ C | scp(C) = {X, Y } or (Xa, Yb) ∈ rel(C);
– path-consistent (PC) iff(Xa, Yb) is AC and∀Z ∈ X | Z 6= X ∧ Z 6= Y , ∃c ∈

dom(Z) such that(Xa, Zc) is AC and(Yb, Zc) is AC.

We can now introduce Arc Consistency (AC) and Path Consistency (PC) with re-
spect to a CN.

Definition 2. A valueXa of P is AC iff ∀Y (6= X) ∈ X , ∃b ∈ dom(Y) | (Xa, Yb) is
AC.P is AC iff∀X ∈X , dom(X) 6= ∅ and∀a ∈ dom(X), Xa is AC.

Definition 3. A pair (X, Y) of distinct variables ofX is PC iff ∀a ∈ dom(X), ∀b ∈
dom(Y), (Xa, Yb) is PC.P is PC iff any pair of distinct variables ofX is PC.

AC admits the following property: for any networkP , there exists a greatest subnet-
work of P which is arc-consistent, denoted byAC(P). Remark that if any variable in
AC(P) has an empty domain,P is unsatisfiable. We will denote this byAC(P) = ⊥.
For any valueXa, we will write Xa ∈ AC(P) iff a ∈ domAC(P)(X) (we will consider
thatXa /∈ ⊥). Finally, P |X=a represents the network obtained fromP by restricting
the domain ofX to the singleton{a}. The singleton check of a pair(X, a) corresponds
to determine whether or notAC(P |X=a) = ⊥. When the check is positive, we say that
(X, a) is singleton arc inconsistent. We can now introduce Dual Consistency (DC) [12].

Definition 4. A pair (Xa, Yb) of values ofP such thatX 6= Y is dual-consistent (DC)
iff Yb ∈ AC(P|X=a) andXa ∈ AC(P|Y =b). A pair (X, Y) of distinct variables ofX ,
is DC iff ∀a ∈ dom(X), ∀b ∈ dom(Y), (Xa, Yb) is DC.P is DC iff any pair of distinct
variables ofX is DC.

Surprisingly, DC appears to be equivalent to PC although it was predictable since
McGregor had already proposed an AC-based algorithm to establish sPC [16]. A proof
can be found in [12].

Proposition 1. DC = PC

Finally, from any relation filtering consistency, it is possible to obtain a new con-
sistency by additionally considering Arc Consistency. Classically, a network is strong
path-consistent, denoted sPC, iff it is both arc-consistent and path-consistent. We can
remark that enforcing AC (only once) on a PC network is sufficient to obtain an sPC
network.

Algorithm 1 : AC (P = (X ,C): Constraint Network, Q: Set of Variables)

while Q 6= ∅ do1

pick and deleteX from Q2

foreachC ∈ C | X ∈ scp(C) do3

let Y be the second variable involved inC4

if revise(C, Y) then5

Q← Q ∪ {Y }6

Algorithm 2 : FC (P =(X ,C): Constraint Network, X: Variable)

foreachC ∈ C | X ∈ scp(C) do1

let Y be the second variable involved inC2

revise(C, Y)3

3 New Algorithms to Enforce Strong Path Consistency

The two algorithms that we propose to establish sPC are called sDC2 and sDC3. Before
describing them, we need to quickly introduce a basic AC algorithm, FC and a direct
adaptation of sCDC1. Remember that the general principle is to perform successive
singleton checks until a fix-point is reached.

3.1 AC and FC

The description of the sDC algorithms (which enforce sPC since DC = PC) is given
in the context of using an underlying coarse-grained AC algorithm, such as AC3 [15],
AC2001/3.1 [2] or AC3rm [13], with a variable-oriented propagation scheme. IfP =
(X ,C) is a CN, thenAC(P,Q) with Q ⊆ X means enforcing arc consistency onP
from the given propagation setQ. Q contains all variables that can be used to detect
arc-inconsistent values in the domain of other variables.

The description is given by Algorithm 1. As long as there is a variable inQ, one is
selected and the revision of any variable connected to it (via a constraint) is performed.
A revision is performed by a call to the functionrevise (e.g. see [2]) specific to the
chosen coarse-grained arc consistency algorithm, and entails removing values in the
domain of the given variable that have become inconsistent with respect to the given
constraint. When a revision is effective (at least one value has been removed), the setQ
is updated. We will not discuss here about potential optimizations.

In the sequel, we will also refer to Forward Checking (FC) [10] which is an al-
gorithm that maintains a partial form of arc consistency. More precisely, whenever a
variable is assigned during search, only unassigned variables connected to it are re-
vised. This is described by Algorithm 2. Remark that the worst-case time complexity
of a call to FC isO(nd) since there are at mostn − 1 revisions and the revision of a
variable against an assigned variable isO(d).

Algorithm 3 : sDC1(P = (X ,C): CN)

P ← AC(P, X)1

X ← first(X)2

marker ← X3

repeat4

if |dom(X)| > 1 then5

if checkV ar1(P, X) then6

P ← AC(P, {X})7

marker ← X8

X ← next-modulo(X , X)9

until X = marker10

3.2 Algorithm sDC1

Here, our purpose is to establish sPC (strong PC). As we know that CDC (i.e. DC only
considered between variables connected by a constraint) is equivalent to PC when the
constraint graph is complete, we can slightly adapt the algorithm sCDC1 introduced in
[12]. We quickly describe this algorithm (in order to make this paper self-contained as
much as possible), called sDC1, before proposing some improvements to it.

In Algorithm 3, AC is enforced first (line1), and then, at each iteration of the main
loop, a different variable is considered (let us call it the current variable). Assuming here
thatX is ordered,first(X) returns the first variable ofX , andnext-modulo(X , X)
returns the variable that followsX in X , if it exists, orfirst(X) otherwise. Calling
checkV ar1 at line 6 enables us to make all possible inferences fromX (this is de-
picted below). If any inference is performed,true is returned and arc consistency is
re-established (line7). Remark that, when the domain of the current variable is single-
ton, no inference can be made anymore since the network is always maintained arc-
consistent. This is the reason of the test at line5 (not present in sCDC1).

Performing all inferences with respect to a variableX is achieved by calling the
function checkV ar1 (Algorithm 4). For each valuea in the domain ofX, AC is en-
forced onP |X=a. If a is singleton arc-inconsistent, thena is removed from the domain
of X (line 5). Otherwise (lines8 to 12), for any valueYb present inP and absent inP ′,
the tuple(Xa, Yb) is removed fromrel(C).

In [12], it is proved that sCDC1 always terminates, enforces sCDC and admits a
worst-case time complexity ofO(λend3). A direct consequence is that sDC1 enforces
sPC and admits a worst-case time complexity ofO(λn3d3).

3.3 Algorithm sDC2

The algorithm sDC2 can be seen as a refinement of sDC1. The idea is to limit the cost
of enforcing AC each time we have to perform a singleton check. In sDC1, we apply
AC(P |X=a, {X}). This is strictly equivalent toAC(FC(P |X=a, X), Q) whereQ de-
notes the set of variables ofP whose domain has been reduced byFC(P |X=a, X). In-
deed, when applyingAC(P |X=a, {X}), we first start by revising each variableY 6= X

Algorithm 4 : checkVar1(P = (X ,C): CN, X: Variable): Boolean

modified← false1

foreacha ∈ domP (X) do2

P ′ ← AC(P |X=a, {X})3

if P ′ = ⊥ then4

removea from domP (X)5

modified← true6

else7

foreachY ∈ X | Y 6= X do8

let C ∈ C | scp(C) = {X, Y }9

foreach b ∈ domP (Y) | b /∈ domP ′
(Y) do10

remove(Xa, Yb) from relP (C)11

modified← true12

returnmodified13

againstX, and put this variable in the propagation queue if some value(s) of its do-
main has been removed. The first pass of AC enforcement is then equivalent to for-
ward checking. Except for the first singleton check of(X, a), in sDC2, we will apply
AC(FC(P |X=a, X), Q′) whereQ′ is a set of variables built from some information
recorded during propagation. The point is that necessarilyQ′ ⊆ Q, which means that
sDC2 is less expensive than sDC1 (since some useless revisions may be avoided, and,
as we will see, the cost of managing the information about propagation is negligible).
Roughly speaking, we partially exploit the incrementality of the underlying arc consis-
tency algorithm in sDC2. An arc consistency algorithm is said incremental if its worst-
case time complexity is the same when it is applied one time on a given networkP and
when it is applied up tond times onP where, between two consecutive executions, at
least one value has been deleted. All current arc consistency algorithms are incremental.

To enforce sPC on a given networkP , one can then call the second algorithm we
propose, sDC2 (see Algorithm 5). This algorithm differs from sDC1 by the introduction
of a counter and a data structure, denotedlastModif , which is an array of integers. The
counter is used to count the number of turns of the main loop (see lines4 and6). The
use oflastModif is defined as follows: for each variableX, lastModif [X] indicates
the number of the last turn where one inference concerningX has been performed.
Such an inference can be the removal of a value indom(X) or the removal of a tuple
in the relation associated with a constraint involvingX. When the functioncheckV ar2
returnstrue, it means that at least one inference concerningX has been performed.
This is whylastModif [X] is updated (line10). Then, AC is maintained (line11), and
if at least one value has been removed sinceX is the current variable (nbV alues(P)
indicates the cumulated number of values inP), we consider that each variable has been
“touched” at the current turn. Of course, a more subtle update of the arraylastModif
can be conceived (looking for variables really concerned by the inferences performed
when maintaining AC). From experience, it just bloats the algorithm without any no-
ticeable benefit.

Algorithm 5 : sDC2(P = (X ,C): CN)

P ← AC(P, X)1

X ← first(X)2

marker ← X3

cnt← 04

repeat5

cnt← cnt + 16

if |dom(X)| > 1 then7

nbV aluesBefore← nbV alues(P)8

if checkV ar2(P, X, cnt) then9

lastModif [X]← cnt10

P ← AC(P, {X})11

if nbV alues(P) 6= nbV aluesBefore then12

lastModif [Y]← cnt, ∀Y ∈ X13

marker ← X14

X ← next-modulo(X , X)15

until X = marker16

All inferences, if any, concerning a given variableX, are achieved by calling the
functioncheckV ar2 (Algorithm 6). For each valuea of dom(X), if this is the first call
to checkV ar2 for X (line 3), then we proceed as usually. Otherwise, incrementality
is partially exploited by removing first at least all values that were removed by the
last AC enforcement of(X, a). This is done by calling FC. Then, we apply AC from
a propagation queue composed of all variables that were concerned by at least one
inference during the last|X | − 1 calls tocheckV ar2. The remaining of the function
is identical tocheckV ar1, except for the update oflastModif (line 13) whenever a
tuple is removed (lastModif [X] is not updated since done at line10 of Algorithm 5).

Proposition 2. The algorithm sDC2 enforces sPC.

Proof.First, it is immediate that any inference performed by sDC2 is correct. Complete-
ness is guaranteed by the following invariant: whenP ′ ← AC(FC(P |X=a, X), Q)
with Q = {Y | cnt − lastModif [Y] < |X |}) is performed at line4 of Algorithm
6, we haveP ′ = AC(P |X=a,X). It simply means thatP ′ is either arc-consistent or
equal to⊥. The reason is that the networkP is maintained arc-consistent whenever a
modification is performed (line11 of Algorithm 5) and that any inference performed
with respect to a valueXa has no impact onP |X=b, whereb is any other value in the do-
main of the variableX. The invariant holds since, whenever an inference is performed,
it is recorded inlastModif . 2

Proposition 3. The worst-case time complexity of sDC2 isO(λn3d3) and its worst-
case space complexity isO(n2d2).

Proof. Remember that the worst-case time and space complexities of sDC1 are respec-
tively O(λn3d3) andO(n2d2). Hence, to obtain the same result for sDC2, it suffices

Algorithm 6 : checkVar2(P = (X ,C): CN, X: Variable, cnt: integer): Boolean

modified← false1

foreacha ∈ domP (X) do2

if cnt ≤ |X | then P ′ ← AC(P |X=a, {X})3

else P ′ ← AC(FC(P |X=a, X), {Y | cnt− lastModif [Y] < |X |})4

if P ′ = ⊥ then5

removea from domP (X)6

modified← true7

else8

foreachY ∈ X | Y 6= X do9

let C ∈ C | scp(C) = {X, Y }10

foreach b ∈ domP (Y) | b /∈ domP ′
(Y) do11

remove(Xa, Yb) from relP (C)12

lastModif [Y]← cnt13

modified← true14

returnmodified15

to remark that the cumulated worst-case time complexity of line13 of Algorithm 5 is
O(n2d), and that the space complexity of the new structurelastModif is θ(n). 2

3.4 Algorithm sDC3

To fully exploit the incrementality of an AC algorithm such as AC31 when enforcing
strong path consistency, we simply need to introduce the specific data structure of AC3
with respect to each value (it is then related to the approach used in [1] for the algo-
rithm SAC-OPT). The setQXa

, which denotes this structure, represents the propagation
queue dedicated to the problemP |X=a. The principle used in sDC3 is the following: If
P1 corresponds toAC(P |X=a,X), andPi with i > 1 denotes the result of theith AC
enforcement wrtXa, thenPi+1 corresponds toAC(P ′

i , QXa) whereP ′
i is a network

such thatP ′
i < Pi andQXa = {X ∈ X | domP ′

i (X) ⊂ domPi(X)}. The cumu-
lated worst-case time complexity of making these successive AC enforcements wrtXa

is clearlyO(ed3) = O(n2d3) since AC3 is incremental and from one call to another, at
least one value has been removed from one domain.

To enforce sPC on a given networkP , sDC3 (see Algorithm 7) can then be called.
As mentioned above, a propagation queueQXa

is associated with any valueXa. We
also introduce a queueQ to contain the set of values for which a singleton check must
be performed. Note thatXa ∈ Q iff QXa

6= ∅. Initially, AC is enforced onP , all
dedicated queues are initialized with a special value denoted> (which is equivalent to
X , although considered as being different) andQ is filled up. Then, as long asQ is not
empty, one value is selected fromQ, a singleton check is performed with respect to this
value and potentially some tuples are removed.

1 To establish our complexity results for sDC3, we do not need to use an optimal AC algorithm.

Algorithm 7 : sDC3(P = (X ,C): CN)

P ← AC(P, X)1

QXa ← >,∀X ∈ X ,∀a ∈ dom(X)2

Q← {Xa | X ∈ X ∧ a ∈ domP (X)}3

while Q 6= ∅ do4

pick and remove an elementXa from Q5

R← checkV alue(P, Xa)6

removeTuples(P, R)7

Algorithm 8 : checkValue(P = (X ,C): CN, Xa: Value): Set of Tuples

R← ∅1

if QXa = > then P ′ ← AC(P |X=a, {X})2

else P ′ ← AC(FC(P |X=a, X), QXa)3

QXa ← ∅4

if P ′ = ⊥ then5

removea from domP (X)6

foreachY ∈ X | Y 6= X do7

foreach b ∈ domP (Y) | (Xa, Yb) is ACdo8

addYb to Q ; addX to QYb9

else10

foreachY ∈ X | Y 6= X do11

foreach b ∈ domP (Y) | b /∈ domP ′
(Y) do12

add(Xa, Yb) to R13

return R14

Algorithm 9 : removeTuples(P = (X ,C): CN, R: Set of Tuples)

initsize← |R|1

cnt← 02

while R 6= ∅ do3

cnt← cnt + 14

pick and delete the first element(Xa, Yb) of R5

remove(Xa, Yb) from relP (C) whereC ∈ C | scp(C) = {X, Y }6

if cnt > initsize then7

addXa to Q ; addY to QXa8

addYb to Q ; addX to QY,b9

foreachZ ∈ X | Z 6= X ∧ Z 6= Y do10

foreach c ∈ domP (Z) | (Zc, Xa) is AC ∧ (Zc, Yb) is ACdo11

if 6 ∃d ∈ domP (X) | (Zc, Xd) is AC ∧ (Xd, Yb) is AC then12

add(Zc, Xa) to the end ofR13

if 6 ∃d ∈ domP (Y) | (Zc, Yd) is AC ∧ (Xa, Yd) is AC then14

add(Zc, Yb) to the end ofR15

WhencheckV alue (see Algorithm 8) is called, it is possible to determine whether
or not this is the first call for the given valueXa. Indeed, ifQXa

= >, this is the case,
and then we just have to make a classical AC enforcement onP |X=a. Otherwise, we
enforce AC by using FC and the dedicated propagation queueQXa . If a is detected as
singleton arc inconsistent, it is removed and we look for any valueYb being compatible
with Xa. For each such value, we addX to QYb

(andYb to Q) since the next time we
will make an AC enforcement wrtYb, the valueXa which was present so far will have
disappeared. We then need to take this into account, thanks toX ∈ QYb

, in order to
guarantee that AC is really enforced. Ifa is not detected as singleton arc inconsistent,
we look for tuples that can be removed. Here, they are simply put in a setR.

WhenremoveTuples (see Algorithm 9) is called, each tuple(Xa, Yb) is considered
in turn in order to remove it (line6). Then, we addY to QXa

(andYb to Q): the next
time we will make an AC enforcement wrtYb, the valueXa which was present so far
(otherwise, the tuple will have already been removed) will have disappeared. Adding
X to QYb

is not necessary if the tuple(Xa, Yb) has been put inR during the execution
of checkV alue (by recording the initial size of the setR and using a counter, we can
simply determine that). Indeed, if this is the case, it means thatYb was removed during
the last AC enforcement wrtXa. Finally, we have to look for any valueZc which is
both compatible withXa andYb. If there is no valueXd compatible with bothZc and
Yb, it means that the tupleZc, Xa can be removed. Similarly, if there is no valueYd

compatible with bothZc andXa, it means that the tupleZc, Yb can be removed.

Proposition 4. The algorithm sDC3 enforces sPC.

Sketch of proof.The following invariant holds: whenP ′ ← AC(FC(P |X=a, X), QXa)
is performed at line3 of Algorithm 8, we haveP ′ = AC(P |X=a,X). 2

Proposition 5. The worst-case time complexity of sDC3 isO(n3d4) and its worst-case
space complexity isO(n2d2).

Proof. The worst-case time complexity of sDC3 can be computed from the cumulated
worst-case time complexity ofcheckV alue and the cumulated worst-case time com-
plexity of removeTuples. First, it is easy to see that, in the worst-case, the number
of calls tocheckV alue, for a given valueXa, is O(nd). Indeed, between two calls,
at least one tuplet of a relation, associated with a constraint involvingX and another
variable, such thatt[X] = a is removed. The cumulated worst-case time complexity of
making the network FC, wrtXa, is thenO(nd × nd) = O(n2d2) whereas the cumu-
lated worst-case time complexity of enforcing AC, wrtXa, is O(ed3) = O(n2d3) if
we use AC3 due to its incrementality. Lines6 to 9 can only be executed once forXa (it
is only O(nd)) and the cumulated worst-case time complexity of executing lines11 to
13, wrt Xa, isO(n2d2). As a result, we obtain a cumulated worst-case time complexity
of checkV alue with respect to any value inO(n2d3) and then a cumulated worst-case
time complexity ofcheckV alue in O(n3d4) since there areO(nd) values.

On the other hand, the cumulated number of turns of the main loop ofremoveTuples
isO(n2d2) since the number of tuples in the constraint network isO(n2d2) and since, at
each turn, one tuple is removed (see line6 of Algorithm 9). As the worst-case time com-
plexity of one turn of the main loop ofremoveTuples is O(nd2), we can deduce that

the cumulated worst-case time complexity ofremoveTuples is thenO(n3d4). From
those results, we deduce that the worst-case time complexity ofsDC3 is O(n3d4).
In terms of space, remember that representing the instance isO(n2d2). The data struc-
tures introduced in sDC3 are the setsQXa which areO(n2d), the setQ which isO(nd)
and the setR which isO(n2d2). We then obtainO(n2d2). 2

Remark that if we use an optimal AC algorithm such as AC2001, the worst-case
time complexity of sDC3 remainsO(n3d4) but the worst-case space complexity be-
comesO(n3d2) since thelast structure, inO(n2d) of AC2001 must be managed in-
dependently for each value. It can also be shared but, contrary to [1], the interest is
limited here. On the other hand, one can easily adopt AC3rm since the specific struc-
ture of AC3rm, in O(n2d), can be naturally shared between all values.

3.5 Complexity Issues

As λ is bounded byO(n2d2), sDC1 and sDC2 may be up toO(n5d5). This seems
to be rather high (this is the complexity of PC1), but our opinion is that, similarly to
sCDC1, both algorithms quickly reach a fix-point (i.e. the number of times the function
checkV ar1 or checkV ar2 is called for a given variable is small in practice) because
inferences about inconsistent values and, especially pairs of values, can be immediately
taken into account. Besides, sDC2 partially benefits from incrementality, and so is close
to sDC3 which admits a nice worst-case time complexity inO(n3d4).

On the other hand, the following proposition indicates that the time wasted to ap-
ply one of the three introduced algorithms on a network which is already sPC is quite
reasonable. The three algorithms have essentially the same behaviour.

Proposition 6. Applied to a constraint network which is sPC, the worst-case time com-
plexity of sDC1, sDC2 and sDC3 isO(n3d3).

Proof. If the network is sPC, the number of singleton checks will beO(nd). As a
singleton check isO(ed2) = O(n2d2) if we use an optimal AC algorithm, we obtain
O(n3d3). 2

Proposition 7. The best-case time complexity of sDC1, sDC2 and sDC3 isO(n2d2).

Proof. The best case is when all constraints are universal (i.e. when all tuples are al-
lowed). Indeed, in this case, enforcing AC corresponds to calling FC since we just need
to check that any value of any variable is compatible with the current assignment. A
singleton check is thenO(nd), and the overall complexity isO(n2d2). 2

There is another interesting case to be considered. This is when after the first pass
of AC (actually, FC), many revisions can be avoided by exploiting Proposition 1 of [3].
Considering a network that is sPC and assuming that all revisions can be avoided by
using thisrevision condition[17], the worst-case time complexity becomesO(nd.(nd+
n2)) = O(n2d.max(n, d)) as for each singleton check the number of revisions which
comes after FC isO(n2), each one beingO(1) since the revision effort is avoided. This
has to be compared with the cost of the initialization phase of PC8 and PC2001 which
is O(n3d2) in the same context. It means that one can expect here an improvement by
a factorO(min(n, d)).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 15 20 25 30 35 40 45

cp
u

(i
n

se
co

nd
s)

tightness t (in %)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 15 20 25 30 35 40 45

cp
u

(i
n

se
co

nd
s)

tightness t (in %)

sPC2001
sPC8
sDC1
sDC2
sDC3

(a)d = 10, e = 612

 0

 1

 2

 3

 4

 5

 6

 7

 10 15 20 25 30 35 40

cp
u

(i
n

se
co

nd
s)

tightness t (in %)

 0

 1

 2

 3

 4

 5

 6

 7

 10 15 20 25 30 35 40

cp
u

(i
n

se
co

nd
s)

tightness t (in %)

sPC2001
sPC8
sDC1
sDC2
sDC3

(b) d = 10, e = 1225

 0

 50

 100

 150

 200

 250

 300

 350

 40 45 50 55 60 65 70 75 80

cp
u

(i
n

se
co

nd
s)

tightness t (in %)

 0

 50

 100

 150

 200

 250

 300

 350

 40 45 50 55 60 65 70 75 80

cp
u

(i
n

se
co

nd
s)

tightness t (in %)

sPC8
sDC1
sDC2
sDC3

(c) d = 50, e = 612

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 30 35 40 45 50 55 60 65 70

cp
u

(i
n

se
co

nd
s)

tightness t (in %)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 30 35 40 45 50 55 60 65 70

cp
u

(i
n

se
co

nd
s)

tightness t (in %)

sPC8
sDC1
sDC2
sDC3

(d) d = 50, e = 1225

 0

 200

 400

 600

 800

 1000

 40 45 50 55 60 65 70 75 80

cp
u

(i
n

se
co

nd
s)

tightness t (in %)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 40 45 50 55 60 65 70 75 80

cp
u

(i
n

se
co

nd
s)

tightness t (in %)

sPC8
sDC1
sDC2

(e)d = 90, e = 612

 0

 100

 200

 300

 400

 500

 600

 40 45 50 55 60 65 70 75 80

cp
u

(i
n

se
co

nd
s)

tightness t (in %)

 0

 100

 200

 300

 400

 500

 600

 40 45 50 55 60 65 70 75 80

cp
u

(i
n

se
co

nd
s)

tightness t (in %)

sPC8
sDC1
sDC2

(f) d = 90, e = 1225

Fig. 1.Average results obtained for100 random binary instances of classes〈50, d, e, t〉.

 0

 10

 20

 30

 40

 50

 60

 46 48 50 52 54 56 58 60 62

cp
u

(i
n

se
co

nd
s)

tightness t (in %)

sDC1
sDC2
sDC3

Fig. 2. Zoom on the average behaviour of sDC1, sDC2 and sDC3 below the threshold for100
random binary instances of classes〈50, 50, 1225, t〉.

4 Experiments

In order to show the practical interest of the approach described in this paper, we have
conducted an experimentation on a i686 2.4GHz processor equipped with 1024 MiB
RAM. We have compared the CPU time required to enforce sPC on (or show the incon-
sistency of) a given network with algorithms sDC1, sDC2, sDC3, sPC8 and sPC2001.
The underlying Arc Consistency algorithm used for sDC algorithms was (an optimized
version for binary constraints of) AC3rm [13] equipped with the revision condition
mechanism [3, 17].

We have first tested the different algorithms against random instances. We have col-
lected results for classes of the form〈50, d, 1225, t〉with d ∈ {10, 50, 90} andt ranging
from 0.01 to 0.99. We also tried classes of the form〈50, d, 612, t〉, that is to say ran-
dom instances involving50% of universal explicit constraints and50% of constraints
of tightnesst. Figure 1 shows the average cpu time required to enforce sPC on these
different classes. The shaded area on each sub-figure indicates tightnesses for which
more than50% of generated instances were proved to be inconsistent. First, we can
remark that when the domain sized is set to50 (resp.90), sPC2001 (resp. sDC3) runs
out of memory. This is the reason why they do not appear on all sub-figures. Second,
when we focus our attention on the three algorithms introduced in this paper, we can
make the following observations. For small tightnesses, sDC1, sDC2 and sDC3 have a
similar behaviour, which can be explained by the fact that no propagation occurs. For
tightnesses below the threshold (see Figure 2) , sDC3 has a better behaviour than sDC1
and sDC2 since it benefits from a full exploitation of incrementality. At and above the
threshold, sDC3 is highly penalized by its fine grain, which prevents it from quickly
proving inconsistency. This is particularly visible in Figure 1(d). On the other hand, the
main result of this first experimentation is that sDC2, while being slightly more efficient
than sDC1, is far more efficient than sPC8 (and sPC2001). For small tightnesses, there is
a significant gap (up to two orders of magnitude ford = 90) existing between sDC2 and
sPC8, which is partly due to the fact many revisions can be avoided as discussed in Sec-

Instances sPC8 sPC2001 sDC1 sDC2 sDC3

queens-30
cpu 5.06 5.37 2.22 2.28 2.60

mem 17 76 17 17 37

queens-50
cpu 50.9 − 4.6 4.5 5.3

mem 30 22 22 149

queens-80
cpu 557.9 − 26.8 24.7 −

mem 97 44 44

queens-100
cpu 1549 − 62 58 −

mem 197 73 73

langford-3-16
cpu 45.45 66.66 4.91 4.44 57.8

mem 27 612 21 21 129

langford-3-17
cpu 63.48 − 6.06 6.07 76.79

mem 34 22 22 157

langford-3-20
cpu 140 − 11 9.7 198

mem 43 26 26 250

langford-3-30
cpu 1247 − 60 50 −

mem 138 56 56

Table 1. Results obtained on academic queens and langford instances ; cpu in seconds and
mem(ory) in MiB.

tion 3.5, while for tightnesses around the threshold, it is still very important (about one
order of magnitude ford = 90). We can even observe that the gap increases when the
density decreases, which is not surprising since the number of allowed tuples increases
with the number of universal constraints and the fact that classical PC algorithms deal
with allowed tuples.

Table 1, built from two series of academic instances, confirms the results obtained
for random instances. Indeed, on such structured instances, sDC2 is about20 times
more efficient than sPC8 for large ones, whatever inference occurs or not. Thequeens
instances are already sPC, which is not the case of thelangford instances.

5 Conclusion

In this paper, we have introduced two algorithms to enforce strong path consistency.
The algorithm sDC2 has been shown to be a good compromise between the basic sDC1
and the more refined sDC3. Even if the worst-case time complexity of sDC2 seems
rather high, its close relationship with sDC3, which admits a complexity close to the
optimal, suggests its practical efficiency. In practice, on random instances, sDC2 is
slightly slower than sDC3 when the number of inferences is limited, but far faster at
the phase transition of path consistency. Compared to sPC8 and the optimal sPC2001,
sDC2 is usually around one order of magnitude faster on large instances.

Maybe, one can wonder about the interest of PC algorithms when the constraint
graph is not complete. Indeed, when a pair of values is identified as not being PC, it
has to be removed from the network. When no constraint binding the two involved
variables exists in the CN, a new one has to be inserted (consequently, changing the
constraint graph). To avoid this drawback, it is possible to enforce relation filtering
consistencies in a conservative way, i.e. without adding new constraints, This gives rise
to consistencies such as CDC and CPC. Of course, some pairs of values identified as
inconsistent must be ignored, and consequently, some information is lost. However,
there exists an alternative to inserting new constraints: recording nogoods, especially
as this approach [8, 20] has been recently re-investigated by the CSP community [11,

4, 19, 14]. As a perspective of this work, we project to enforce strong path consistency
by combining nogood recording with an adaptation of sDC2. Interestingly, it could be
applied to any constraint network (even one involving non binary constraints).

References

1. C. Bessiere and R. Debruyne. Optimal and suboptimal singleton arc consistency algorithms.
In Proceedings of IJCAI’05, pages 54–59, 2005.

2. C. Bessiere, J.C. Ŕegin, R.H.C. Yap, and Y. Zhang. An optimal coarse-grained arc consis-
tency algorithm.Artificial Intelligence, 165(2):165–185, 2005.

3. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Support inference for generic filtering.
In Proceedings of CP’04, pages 721–725, 2004.

4. K. Boutaleb, P. J́egou, and C. Terrioux. (no)good recording and robdds for solving structured
(v)csps. InProceedings of ICTAI’06, pages 297–304, 2006.

5. A. Chmeiss and P. Jégou. Efficient path-consistency propagation.International Journal on
Artificial Intelligence Tools, 7(2):121–142, 1998.

6. R. Debruyne and C. Bessiere. Domain filtering consistencies.Journal of Artificial Intelli-
gence Research, 14:205–230, 2001.

7. R. Dechter.Constraint processing. Morgan Kaufmann, 2003.
8. D. Frost and R. Dechter. Dead-end driven learning. InProceedings of AAAI’94, pages 294–

300, 1994.
9. C.C. Han and C.H. Lee. Comments on Mohr and Henderson’s path consistency.Artificial

Intelligence, 36:125–130, 1988.
10. R.M. Haralick and G.L. Elliott. Increasing tree search efficiency for constraint satisfaction

problems.Artificial Intelligence, 14:263–313, 1980.
11. G. Katsirelos and F. Bacchus. Generalized nogoods in CSPs. InProceedings of AAAI’05,

pages 390–396, 2005.
12. C. Lecoutre, S. Cardon, and J. Vion. Conservative dual consistency. InProceedings of

AAAI’07, pages 237–242, 2007.
13. C. Lecoutre and F. Hemery. A study of residual supports in arc consistency. InProceedings

of IJCAI’07, pages 125–130, 2007.
14. C. Lecoutre, L. Sais, S. Tabary, and V. Vidal. Nogood recording from restarts. InProceedings

of IJCAI’07, pages 131–136, 2007.
15. A.K. Mackworth. Consistency in networks of relations.Artificial Intelligence, 8(1):99–118,

1977.
16. J.J. McGregor. Relational consistency algorithms and their application in finding subgraph

and graph isomorphisms.Information Sciences, 19:229–250, 1979.
17. D. Mehta and M.R.C. van Dongen. Reducing checks and revisions in coarse-grained MAC

algorithms. InProceedings of IJCAI’05, pages 236–241, 2005.
18. R. Mohr and T.C. Henderson. Arc and path consistency revisited.Artificial Intelligence,

28:225–233, 1986.
19. G. Richaud, H. Cambazard, B. O’Sullivan, and N. Jussien. Automata for nogood recording

in constraint satisfaction problems. InProceedings of SAT/CP workshop held with CP’06,
2006.

20. T. Schiex and G. Verfaillie. Nogood recording for static and dynamic constraint satisfaction
problems.International Journal of Artificial Intelligence Tools, 3(2):187–207, 1994.

21. M. Singh. Path consistency revisited.International Journal on Artificial Intelligence Tools,
5:127–141, 1996.

