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Abstract. Dual Consistency (DC) is a property of Constraint Networks (CNs)
which is equivalent, in its unrestricted form, to Path Consistency (PC). The prin-
ciple is to perform successive singleton checks (i.e. enforcing arc consistency
after the assignment of a value to a variable) in order to identify inconsistent
pairs of values, until a fixpoint is reached. In this paper, we propose two new
algorithms, denoted by sDC2 and sDC3, to enforce (strong) PC following the
DC approach. These algorithms can be seen as refinements of Mac Gregor’s al-
gorithm as they partially and totally exploit the incrementality of the underlying
Arc Consistency algorithm. While sDC3 admits the same interesting worst-case
complexities as PC8, sDC2 appears to be the most robust algorithm in practice.
Indeed, compared to PC8 and the optimal PC2001, sDC2 is usually around one
order of magnitude faster on large instances.

1 Introduction

Constraint Networks (CNs) can naturally represent many interesting problems raised
by real-world applications. To make easier the task of solving a CN (i.e. the task of
finding a solution or proving that none exists), one usually tries to simplify the problem
by reducing the search space. This is called inference [7].

Consistencies are properties of CNs that can be exploited (enforced) in order to
make inferenceomain filtering consistencig6] allow to identify inconsistent values
while relation filtering consistencieallow to identify inconsistent tuples (pairs when
relations are binary) of values. For binary networks, Arc Consistency (AC) and Path
Consistency (PC) are respectively the most studied domain and relation filtering con-
sistencies. Many algorithms have been proposed to enforce PC on a given CN, e.g. PC3
[18], PC4 [9], PC5 [21], PC8 [5] and PC2001 [2].

Recently, a new relation filtering consistency, called Dual Consistency (DC) has
been introduced [12]. The principle is to record inconsistent pairs of values identified
after any variable assignment followed by an AC enforcement. Just like SAC (Single-
ton Arc Consistency), a domain filtering consistency, DC is built on top of AC. Inter-
estingly, when applied on all constraints of a binary instance (including the implicit
universal ones), DC is equivalent to PC, but when it is applied conservatively (i.e. only
on explicit constraints of the binary network), Conservative DC (CDC) is stronger than
Conservative PC (CPC). In[12], CDC is investigated: in particular, its relationship with
other consistencies is studied and a cost-effective algorithm, called sCDC1, is proposed.



In this paper, we focus on DC and propose two new algorithms to enforce (strong)
PC by following the principle underlying DC. It means that we establish (strong) PC
by performing successive singleton checks (enforcing AC after a variable assignment)
as initially proposed by Mac Gregor [16]. These two algorithms, denoted by sDC2 and
sDC3, correspond to refined versions of the algorithm sCDC1, as they partially and
totally exploit the incrementality of the underlying AC algorithm, respectively.

In terms of complexity, SDC2 admits a worst-case time complexity in°d°) and
a worst-case space complexity i(n?d?) wheren is the number of variables ant
the greatest domain size. On the other hand, by its full exploitation of incrementality,
sDC3 admits an improved worst-case time complexityim?d*) while keeping a
worst-case space complexity i(n2d?). It makes sDC3 having the same (worst-case)
complexities as PC8, the algorithm shown to be the fastest to enforce PC so far [5].

The paper is organized as follows. First, we introduce constraint networks and con-
sistencies. Then, we describe two new algorithms to enforce strong path consistency,
following the dual consistency approach, and establish their worst-case complexities.
Finally, before concluding, we present the results of an experimentation we have con-
ducted.

2 Constraint Networks and Consistencies

A Constraint Network (CN)P is a pair(2",%) where 2" is a finite set ofn vari-
ables and#” a finite set ofe constraints. Each variabl& € 2 has an associated
domain, denotedom® (X), which represents the set of values allowed Xor Each
constraintC € % involves an ordered subset of variables #f, called scope and
denotedscp(C), and has an associated relation denoted’ (C)), which represents
the set of tuples allowed for the variables of its scope. When possible, we will write
dom(X) andrel(C) instead ofdom? (X) andrel”(C). X, denotes a paitX,a)

with X € 2 anda € dom(X) and we will say thatX, is a value ofP. d will
denote the size of the greatest domain, anithe number of allowed tuples over all
constraints ofP, i.e. A = > . [rel(C)]. If P and@ are two CNs defined on the
same sets of variableg™ and constraint%’, then we will writeP < Q iff VX € 2,
dom® (X) C dom@(X) andVC € € rel”(C) C rel?(C). P < Q iff P < Q and

3X € 2 | domP(X) C dom@(X) or3C € € | rel?’(C) C rel?(C). A binary
constraint is a constraint which only involves two variables. In the following, we will
restrict our attention to binary networks, i.e., networks that only involve binary con-
straints. Further, without any loss of generality, we will consider that the same scope
cannot be shared by two distinct constraints. The derBitgf a binary CN is then
defined as the ratide/(n? — n).

A solution to a constraint network is an assignment of values to all the variables
such that all the constraints are satisfied. A constraint network is said to be satisfi-
able iff it admits at least one solution. The Constraint Satisfaction Problem (CSP) is
the NP-complete task of determining whether a given constraint network is satisfiable.
Constraint networks can be characterized by properties called consistencies. The usual
way to exploit them is to enforce them on a CN, while preserving the set of solutions. It
then consists in identifying and removing some inconsistent values (e.g. with arc consis-



tency), inconsistent pairs of values (e.g. with path consistency), etc. Here, “inconsistent”
means that the identified values, pairs of values, etc. correspardjtmdsi.e. cannot
participate to any solution. We start introducing the consistencies we are interested in at
the level of pairs of values. From now on, we will consider a binary constraint network
P=(2,%).

Definition 1. A pair (X,,Y}) of values ofP such thatX # Y is:

— arc-consistent (AC) iff eithefC' € € | scp(C) = {X, Y} or (X, Y3) € rel(C);
— path-consistent (PC) iffX,,Y;)isACandvZ € | Z #A# X ANZ #Y,3c €
dom(Z) such that(X,, Z.) is AC and(Y}, Z..) is AC.

We can now introduce Arc Consistency (AC) and Path Consistency (PC) with re-
spectto a CN.

Definition 2. A valueX, of Pis ACiffVY (# X) € 2, 3b € dom(Y) | (X4, Ys) is
AC.PisACIffvX € 2, dom(X) # 0 andVa € dom(X), X, is AC.

Definition 3. A pair (X,Y") of distinct variables of2" is PC iff Va € dom(X), Vb €
dom(Y), (X,,Ys) is PC.P is PC iff any pair of distinct variables of" is PC.

AC admits the following property: for any network, there exists a greatest subnet-
work of P which is arc-consistent, denoted By (P). Remark that if any variable in
AC(P) has an empty domairR, is unsatisfiable. We will denote this 4C'(P) = L.

For any valueX ,, we will write X,, € AC(P) iff a € dom“¢")(X) (we will consider

that X, ¢ L). Finally, P|x—, represents the network obtained frdPby restricting

the domain ofX to the singleto{a}. The singleton check of a paiX, a) corresponds

to determine whether or natC(P|x—,) = L. When the check is positive, we say that
(X, a) is singleton arc inconsistent. We can now introduce Dual Consistency (DC) [12].

Definition 4. A pair (X,,Y}) of values ofP such thatX = Y is dual-consistent (DC)
iff Yy € AC(Pix—,) and X, € AC(Pjy—). A pair (X,Y) of distinct variables of2",
is DC iff Va € dom(X), Vb € dom(Y'), (X,,Ys) is DC. P is DC iff any pair of distinct
variables ofZ" is DC.

Surprisingly, DC appears to be equivalent to PC although it was predictable since
McGregor had already proposed an AC-based algorithm to establish sPC [16]. A proof
can be found in [12].

Proposition 1. DC = PC

Finally, from any relation filtering consistency, it is possible to obtain a new con-
sistency by additionally considering Arc Consistency. Classically, a network is strong
path-consistent, denoted sPC, iff it is both arc-consistent and path-consistent. We can
remark that enforcing AC (only once) on a PC network is sufficient to obtain an sPC
network.



Algorithm 1: AC (P =(2", ¥): Constraint Network, Q: Set of Variables)

1 while Q # (¢ do
pick and deleteX from @
foreachC € ¢ | X € scp(C) do
letY be the second variable involveddn
if revise(C,Y’) then
| Q—Qu{y}
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Algorithm 2: FC (P =(4", ¥): Constraint Network, X: Variable)

1 foreachC € ¢ | X € scp(C) do
2 letY be the second variable involved @
3 revise(C,Y)

3 New Algorithms to Enforce Strong Path Consistency

The two algorithms that we propose to establish sPC are called sDC2 and sDC3. Before
describing them, we need to quickly introduce a basic AC algorithm, FC and a direct
adaptation of sCDC1. Remember that the general principle is to perform successive
singleton checks until a fix-point is reached.

3.1 ACandFC

The description of the sDC algorithms (which enforce sPC since DC = PC) is given
in the context of using an underlying coarse-grained AC algorithm, such as AC3 [15],
AC2001/3.1 [2] or AC3™ [13], with a variable-oriented propagation schemeP =
(Z°,%¢)is a CN, thenAC(P, Q) with Q@ C 2" means enforcing arc consistency Bn
from the given propagation sél. (Q contains all variables that can be used to detect
arc-inconsistent values in the domain of other variables.

The description is given by Algorithm 1. As long as there is a variablg@,ione is
selected and the revision of any variable connected to it (via a constraint) is performed.
A revision is performed by a call to the functiervise (e.g. see [2]) specific to the
chosen coarse-grained arc consistency algorithm, and entails removing values in the
domain of the given variable that have become inconsistent with respect to the given
constraint. When a revision is effective (at least one value has been removed),dhe set
is updated. We will not discuss here about potential optimizations.

In the sequel, we will also refer to Forward Checking (FC) [10] which is an al-
gorithm that maintains a partial form of arc consistency. More precisely, whenever a
variable is assigned during search, only unassigned variables connected to it are re-
vised. This is described by Algorithm 2. Remark that the worst-case time complexity
of a call to FC isO(nd) since there are at most— 1 revisions and the revision of a
variable against an assigned variabl©igl).



Algorithm 3: sDC1P = (27, %): CN)

P— AC(P, %)
X — first(Z)
marker — X
repeat
if |[dom(X)| > 1then
if checkVarl(P,X) then
L P AC(P.{X})
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marker — X

9 X «— next-modulo(Z, X)
10 until X = marker

3.2 Algorithm sDC1

Here, our purpose is to establish sPC (strong PC). As we know that CDC (i.e. DC only
considered between variables connected by a constraint) is equivalent to PC when the
constraint graph is complete, we can slightly adapt the algorithm sCDC1 introduced in
[12]. We quickly describe this algorithm (in order to make this paper self-contained as
much as possible), called sDC1, before proposing some improvements to it.

In Algorithm 3, AC is enforced first (lin@), and then, at each iteration of the main
loop, a different variable is considered (let us call it the current variable). Assuming here
thatZ" is ordered first(2") returns the first variable o, andnext-modulo( 2", X)
returns the variable that follow& in 27, if it exists, or first(Z") otherwise. Calling
checkVarl at line 6 enables us to make all possible inferences fr@ngthis is de-
picted below). If any inference is performetdue is returned and arc consistency is
re-established (lin€). Remark that, when the domain of the current variable is single-
ton, no inference can be made anymore since the network is always maintained arc-
consistent. This is the reason of the test at firfaot present in SCDC1).

Performing all inferences with respect to a varialleis achieved by calling the
function checkVarl (Algorithm 4). For each value in the domain ofX, AC is en-
forced onP|x—,. If a is singleton arc-inconsistent, thens removed from the domain
of X (line 5). Otherwise (lines to 12), for any valueY; present inP and absent i’,
the tuple(X,, Y};) is removed fromrel(C').

In [12], it is proved that sSCDCL1 always terminates, enforces sCDC and admits a
worst-case time complexity @ (\end?). A direct consequence is that sDC1 enforces
sPC and admits a worst-case time complexit@ohn>d?).

3.3 Algorithm sDC2

The algorithm sDC2 can be seen as a refinement of sSDC1. The idea is to limit the cost
of enforcing AC each time we have to perform a singleton check. In sDC1, we apply
AC(P|x=a,{X}). This is strictly equivalent tolC'(FC(P|x=a, X), Q) whereQ de-

notes the set of variables #fwhose domain has been reduced®y (P|x=,, X). In-

deed, when applyind C'(P|x—., {X}), we first start by revising each varialife# X



Algorithm 4: checkVarlP = (2", %): CN, X: Variable): Boolean

1 modified «— false

2 foreacha € dom” (X) do

3 | P — AC(P|x—a,{X})

4 if P' = L then

5 removea from dom” (X)
6 modi fied «— true

7 else

8 foreachY € 27 | Y # X do

9 letC € € | sep(C) ={X,Y}

10 foreachb € dom” (Y) | b ¢ dom” (Y') do
11 remove(X,, Y3) from rel” (C)

12 modi fied «— true

=

3 returnmodi fied

againstX, and put this variable in the propagation queue if some value(s) of its do-
main has been removed. The first pass of AC enforcement is then equivalent to for-
ward checking. Except for the first singleton check &f, a), in sDC2, we will apply
AC(FC(P|x=a,X), Q") where@’ is a set of variables built from some information
recorded during propagation. The point is that necessa@¥ilf @, which means that
sDC2 is less expensive than sDC1 (since some useless revisions may be avoided, and,
as we will see, the cost of managing the information about propagation is negligible).
Roughly speaking, we partially exploit the incrementality of the underlying arc consis-
tency algorithm in sDC2. An arc consistency algorithm is said incremental if its worst-
case time complexity is the same when it is applied one time on a given nefnamki
when it is applied up tad times onP where, between two consecutive executions, at
least one value has been deleted. All current arc consistency algorithms are incremental.
To enforce sPC on a given netwofk one can then call the second algorithm we
propose, sDC2 (see Algorithm 5). This algorithm differs from sDC1 by the introduction
of a counter and a data structure, dendtedM odi f, which is an array of integers. The
counter is used to count the number of turns of the main loop (seediaad6). The
use oflastModif is defined as follows: for each variablg, last M odi f[X] indicates
the number of the last turn where one inference concertinigas been performed.
Such an inference can be the removal of a valudoim.(X') or the removal of a tuple
in the relation associated with a constraint involviigWhen the functiomheckV ar2
returnstrue, it means that at least one inference concermihfpas been performed.
This is whylastModi f[X] is updated (line.0). Then, AC is maintained (lingél), and
if at least one value has been removed siAcés the current variablenpV alues(P)
indicates the cumulated number of value#’yy we consider that each variable has been
“touched” at the current turn. Of course, a more subtle update of the larsal/ odi f
can be conceived (looking for variables really concerned by the inferences performed
when maintaining AC). From experience, it just bloats the algorithm without any no-
ticeable benefit.



Algorithm 5: sDC2(P = (27, %): CN)

P— AC(P, %)

X — first(Z)

marker — X

cent «— 0

repeat

ent «—cnt +1

if |dom(X)| > 1then

nbValuesBe fore < nbV alues(P)

if checkVar2(P, X, cnt) then
lastModi f|X] « cnt
P AC(P,{X})
if nbV alues(P) # nbV aluesBe fore then

L lastModif[Y] « ent, VY € &

marker — X
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X « next-modulo(Z , X)
until X = marker

=
o o

All inferences, if any, concerning a given variablg are achieved by calling the
functioncheckVar2 (Algorithm 6). For each value of dom(X), if this is the first call
to checkVar2 for X (line 3), then we proceed as usually. Otherwise, incrementality
is partially exploited by removing first at least all values that were removed by the
last AC enforcement of X, a). This is done by calling FC. Then, we apply AC from
a propagation queue composed of all variables that were concerned by at least one
inference during the lagt2"| — 1 calls tocheckVar2. The remaining of the function
is identical tocheckVarl, except for the update dtist Modif (line 13) whenever a
tuple is removedi@st M odi f[ X] is not updated since done at lile of Algorithm 5).

Proposition 2. The algorithm sDC2 enforces sPC.

Proof. First, it is immediate that any inference performed by sDC2 is correct. Complete-
ness is guaranteed by the following invariant: whéh«— AC(FC(P|x-a,X),Q)

with Q@ = {Y | ent — lastModif[Y] < |Z|}) is performed at linel of Algorithm

6, we haveP’ = AC(P|x—q, Z). It simply means thaP”’ is either arc-consistent or
equal to_L. The reason is that the netwofkis maintained arc-consistent whenever a
modification is performed (liné1 of Algorithm 5) and that any inference performed
with respect to a valu&', has no impact o®| x —, whereb is any other value in the do-
main of the variableX. The invariant holds since, whenever an inference is performed,
itis recorded iNastModi f. |

Proposition 3. The worst-case time complexity of SDC2$\n3d?) and its worst-
case space complexity (¥(n2d?).

Proof. Remember that the worst-case time and space complexities of sDC1 are respec-
tively O(An3d®) andO(n%d?). Hence, to obtain the same result for sDC2, it suffices



Algorithm 6: checkVar2f = (2", %): CN, X: Variable, cnt: integer): Boolean

1 modified «— false

2 foreacha € dom” (X) do

3 | ifent <|2|then P’ — AC(P|x—a,{X})

4 else P/ «+— AC(FC(P|x=a, X),{Y | cnt — lastModif]Y] < |Z'|})
5 if P' = 1 then

6 removea from dom? (X)

7 modi fied < true

8
9

else
foreachY € 27 | Y # X do
10 letC € € | sep(C) ={X,Y}
11 foreachb € dom® (Y) | b ¢ dom” (V') do
12 remove(X,,Ys) fromrel” (C)
13 lastModif[Y] « ent
14 modi fied < true

5 returnmodi fied

=

to remark that the cumulated worst-case time complexity of lihef Algorithm 5 is
O(n?d), and that the space complexity of the new structuggModif isf(n). O

3.4 Algorithm sDC3

To fully exploit the incrementality of an AC algorithm such as AG@hen enforcing
strong path consistency, we simply need to introduce the specific data structure of AC3
with respect to each value (it is then related to the approach used in [1] for the algo-
rithm SAC-OPT). The s&p x, , which denotes this structure, represents the propagation
queue dedicated to the probldix_,. The principle used in sDC3 is the following: If
P, corresponds tlC(P| x—,, Z°), andP; with i > 1 denotes the result of thé* AC
enforcement wrtX,, then P, corresponds tolC(P/, Qx,) whereP/ is a network
such thatP! < P; andQx, = {X € 2 | dom"i(X) C dom™ (X)}. The cumu-
lated worst-case time complexity of making these successive AC enforcemenis wrt
is clearlyO(ed?®) = O(n%d?) since AC3 is incremental and from one call to another, at
least one value has been removed from one domain.

To enforce sPC on a given netwalk sDC3 (see Algorithm 7) can then be called.
As mentioned above, a propagation quéle, is associated with any valug,. We
also introduce a queug to contain the set of values for which a singleton check must
be performed. Note thak, € Q iff Qx, # 0. Initially, AC is enforced onP, all
dedicated queues are initialized with a special value denbt@thich is equivalent to
Z , although considered as being different) &hda filled up. Then, as long ag is not
empty, one value is selected frafh) a singleton check is performed with respect to this
value and potentially some tuples are removed.

! To establish our complexity results for sDC3, we do not need to use an optimal AC algorithm.



Algorithm 7: sDC3@P = (%,%): CN)

1 P—AC(P,Z)

2 Qx, «— T,VX € 2 ,Va € dom(X)
3Q«— {X.|X€XZNaedom®(X)}

4 while Q # 0 do

5 pick and remove an elemeni, from Q
6 R «— checkValue(P, X,)

7 removeTuples(P, R)

Algorithm 8: checkValueP = (2", %): CN, X,: Value): Set of Tuples

R0
if Qxa = T then P/ — AC(P|X:a, {X})
else P' — AC(FC(P|x=a,X),Qx,)
Qx, — 0
if P' = L then
removea from dom” (X)
foreachY € 2| Y # X do
foreachb € dom® (Y) | (Xa,Ys) is ACdo
L | addY; toQ; addX to Qy,
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10 else

11 foreachY € 27| Y # X do

12 foreachb € dom® (Y) | b ¢ dom” (Y) do
13 | add(X,,Ys)toR

14 return R

Algorithm 9: removeTuplesP = (27, %): CN, R: Set of Tuples)

1 initsize «— |R|

2 cent —0

3 while R # () do

4 ent —cent +1

5 pick and delete the first elemefiX,,, Y3 ) of R

6 remove(X,, ;) from rel” (C) whereC € € | sep(C) = {X,Y}
7 if ent > initsize then

8 | addX, toQ;addY toQx,

9 addY; to Q ; add X to Qv
10 foreachZ € 2 | Z# X NZ #Y do

11 foreachc € dom® (Z) | (Z., X.) is AC A (Z.,Y}) is ACdo
12 if Ad € dom”(X) | (Ze,Xa)is AC A (Xg4,Y3) is ACthen
13 | add(Z, X.) to the end ofR

14 if Ad € dom®(Y) | (Z.,Ya)is AC A (Xa,Yq) is ACthen

15 | add(Z,Y}) to the end ofR




WhencheckV alue (see Algorithm 8) is called, it is possible to determine whether
or not this is the first call for the given valug,. Indeed, ifQ x, = T, this is the case,
and then we just have to make a classical AC enforcemerit|qn.,. Otherwise, we
enforce AC by using FC and the dedicated propagation ggeue If a is detected as
singleton arc inconsistent, it is removed and we look for any vajugeing compatible
with X,. For each such value, we addto Qy, (andY; to Q) since the next time we
will make an AC enforcement wit},, the valueX, which was present so far will have
disappeared. We then need to take this into account, thanks ¢oQy,, in order to
guarantee that AC is really enforced.dlfis not detected as singleton arc inconsistent,
we look for tuples that can be removed. Here, they are simply put in&.set

WhenremoveTuples (see Algorithm 9) is called, each tudl&,, Y;) is considered
in turn in order to remove it (lin€). Then, we add” to @ x, (andY} to Q): the next
time we will make an AC enforcement wrf, the valueX, which was present so far
(otherwise, the tuple will have already been removed) will have disappeared. Adding
X to Qy, is not necessary if the tup(eX,, Y;) has been put iR during the execution
of checkV alue (by recording the initial size of the sét and using a counter, we can
simply determine that). Indeed, if this is the case, it meansyfhatas removed during
the last AC enforcement wtX,,. Finally, we have to look for any valug, which is
both compatible withX, andY. If there is no valueX,; compatible with bothZ,. and
Y;, it means that the tuplZ., X, can be removed. Similarly, if there is no vallig
compatible with bottZ, and X, it means that the tuplg.., Y; can be removed.

Proposition 4. The algorithm sDC3 enforces sPC.

Sketch of proofThe following invariant holds: wheR’ «— AC(FC(P|x=a,X), @x,)
is performed at ling of Algorithm 8, we haveP’ = AC(P|x—,, Z). O

Proposition 5. The worst-case time complexity of SDC®ig3d*) and its worst-case
space complexity i©(n2d?).

Proof. The worst-case time complexity of SDC3 can be computed from the cumulated
worst-case time complexity afheckV alue and the cumulated worst-case time com-
plexity of removeT uples. First, it is easy to see that, in the worst-case, the number
of calls to checkValue, for a given valueX,, is O(nd). Indeed, between two calls,
at least one tuple of a relation, associated with a constraint involviigand another
variable, such thaf X] = « is removed. The cumulated worst-case time complexity of
making the network FC, wrk,, is thenO(nd x nd) = O(n?d?) whereas the cumu-
lated worst-case time complexity of enforcing AC, wt,, is O(ed®) = O(n2d?) if
we use AC3 due to its incrementality. Lin@$o 9 can only be executed once faf, (it
is only O(nd)) and the cumulated worst-case time complexity of executing lines
13, wrt X, is O(n%d?). As a result, we obtain a cumulated worst-case time complexity
of checkV alue with respect to any value i@(n?d®) and then a cumulated worst-case
time complexity ofcheckV alue in O(n3d*) since there ar®(nd) values.

On the other hand, the cumulated number of turns of the main loepdveTuples
is O(n?d?) since the number of tuples in the constraint networR(s?d?) and since, at
each turn, one tuple is removed (see liraf Algorithm 9). As the worst-case time com-
plexity of one turn of the main loop ofermoveTuples is O(nd?), we can deduce that



the cumulated worst-case time complexityrefnoveTuples is thenO(nd*). From
those results, we deduce that the worst-case time complexit 68 is O (n3d*).

In terms of space, remember that representing the instarig@s/?). The data struc-
tures introduced in sSDC3 are the sés,, which areO(n?d), the set) which isO(nd)
and the seR which isO(n?d?). We then obtairO(n?d?). O

Remark that if we use an optimal AC algorithm such as AC2001, the worst-case
time complexity of SDC3 remain®(nd*) but the worst-case space complexity be-
comesO(n3d?) since thelast structure, inO(n2d) of AC2001 must be managed in-
dependently for each value. It can also be shared but, contrary to [1], the interest is
limited here. On the other hand, one can easily adopt’ACince the specific struc-
ture of AC3™, in O(n?d), can be naturally shared between all values.

3.5 Complexity Issues

As )\ is bounded byO(n?d?), sDC1 and sDC2 may be up @(n®d®). This seems
to be rather high (this is the complexity of PC1), but our opinion is that, similarly to
sCDC1, both algorithms quickly reach a fix-point (i.e. the number of times the function
checkVarl or checkVar2 is called for a given variable is small in practice) because
inferences about inconsistent values and, especially pairs of values, can be immediately
taken into account. Besides, sDC2 partially benefits from incrementality, and so is close
to sDC3 which admits a nice worst-case time complexit@im3d?).

On the other hand, the following proposition indicates that the time wasted to ap-
ply one of the three introduced algorithms on a network which is already sPC is quite
reasonable. The three algorithms have essentially the same behaviour.

Proposition 6. Applied to a constraint network which is sPC, the worst-case time com-
plexity of sDC1, sDC2 and sDC33(n3d?).

Proof. If the network is sPC, the number of singleton checks will(g:d). As a
singleton check i€)(ed?) = O(n2d?) if we use an optimal AC algorithm, we obtain
O(n3d®). O

Proposition 7. The best-case time complexity of sDC1, sDC2 and sDCRiigd?).

Proof. The best case is when all constraints are universal (i.e. when all tuples are al-
lowed). Indeed, in this case, enforcing AC corresponds to calling FC since we just need
to check that any value of any variable is compatible with the current assignment. A
singleton check is the@(nd), and the overall complexity i©(n?d?). O

There is another interesting case to be considered. This is when after the first pass
of AC (actually, FC), many revisions can be avoided by exploiting Proposition 1 of [3].
Considering a network that is sPC and assuming that all revisions can be avoided by
using thisrevision conditior{17], the worst-case time complexity beconte@:d.(nd+
n?)) = O(n?d.max(n,d)) as for each singleton check the number of revisions which
comes after FC i®)(n?), each one bein@(1) since the revision effort is avoided. This
has to be compared with the cost of the initialization phase of PC8 and PC2001 which
is O(n3d?) in the same context. It means that one can expect here an improvement by
afactorO(min(n,d)).
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60

,,,,,,,,,

IS
(=1
T

cpu (in seconds)
(9%
S

]
(=]
T

x”
e Hemmgme X
XX *

*

46 48 50 52 54 56 58 60 62
tightness t (in %)

Fig. 2. Zoom on the average behaviour of sDC1, sDC2 and sDC3 below the threshdl@bfor
random binary instances of clasgés, 50, 1225, t).

4 Experiments

In order to show the practical interest of the approach described in this paper, we have
conducted an experimentation on a i686 2.4GHz processor equipped with 1024 MiB
RAM. We have compared the CPU time required to enforce sPC on (or show the incon-
sistency of) a given network with algorithms sDC1, sDC2, sDC3, sPC8 and sPC2001.
The underlying Arc Consistency algorithm used for sDC algorithms was (an optimized
version for binary constraints of) AC3 [13] equipped with the revision condition
mechanism [3, 17].

We have first tested the different algorithms against random instances. We have col-
lected results for classes of the foffb, d, 1225, t) with d € {10, 50,90} and¢ ranging
from 0.01 to 0.99. We also tried classes of the for(d0, d, 612, t), that is to say ran-
dom instances involving0% of universal explicit constraints arid% of constraints
of tightnesst. Figure 1 shows the average cpu time required to enforce sPC on these
different classes. The shaded area on each sub-figure indicates tightnesses for which
more than50% of generated instances were proved to be inconsistent. First, we can
remark that when the domain sides set to50 (resp.90), sSPC2001 (resp. sDC3) runs
out of memory. This is the reason why they do not appear on all sub-figures. Second,
when we focus our attention on the three algorithms introduced in this paper, we can
make the following observations. For small tightnesses, sDC1, sDC2 and sDC3 have a
similar behaviour, which can be explained by the fact that no propagation occurs. For
tightnesses below the threshold (see Figure 2) , sDC3 has a better behaviour than sDC1
and sDC2 since it benefits from a full exploitation of incrementality. At and above the
threshold, sDC3 is highly penalized by its fine grain, which prevents it from quickly
proving inconsistency. This is particularly visible in Figure 1(d). On the other hand, the
main result of this first experimentation is that sDC2, while being slightly more efficient
than sDC1, is far more efficient than sPC8 (and sPC2001). For small tightnesses, there is
a significant gap (up to two orders of magnitudedet 90) existing between sDC2 and
sPC8, which is partly due to the fact many revisions can be avoided as discussed in Sec-



Instances sPC8 | sPC2001 | sDC1|sDC2|sDC3
- cpu | 5.06 5.37 292 | 2.28 | 2.60
queens-30 mem| 17 76 17 17 37
- cpu | 50.9 - 16 | 45 | 53
queens-50 mem| 30 22 22 | 149
Leens.80 cpu | 557.9 - 268 | 24.7 | —
q mem| 97 44 44
_ cpu | 1549 — 62 58 —
queens-100 mem| 197 73 73
N cpu | 45.45 | 66.66 | 4.91 | 4.44 | 57.8
langford-3-16 mem| 27 612 21 21 129
" cpu | 63.48 = 6.06 | 6.07 | 76.79
langford-3-17 mem| 34 22 22 | 157
A cpu | 140 — 11 9.7 198
langford-3-20 mem| 43 26 26 | 250
" cpu | 1247 - 60 50 -
langford-3-30 mem| 138 56 56

Table 1. Results obtained on academic queens and langford instances ; cpu in seconds and
mem(ory) in MiB.

tion 3.5, while for tightnesses around the threshold, it is still very important (about one
order of magnitude fod = 90). We can even observe that the gap increases when the
density decreases, which is not surprising since the number of allowed tuples increases
with the number of universal constraints and the fact that classical PC algorithms deal
with allowed tuples.

Table 1, built from two series of academic instances, confirms the results obtained
for random instances. Indeed, on such structured instances, sDC2 is2abiimes
more efficient than sPC8 for large ones, whatever inference occurs or najudées
instances are already sPC, which is not the case dfithef ord instances.

5 Conclusion

In this paper, we have introduced two algorithms to enforce strong path consistency.
The algorithm sDC2 has been shown to be a good compromise between the basic sDC1
and the more refined sDC3. Even if the worst-case time complexity of SDC2 seems
rather high, its close relationship with sDC3, which admits a complexity close to the
optimal, suggests its practical efficiency. In practice, on random instances, sDC2 is
slightly slower than sDC3 when the number of inferences is limited, but far faster at
the phase transition of path consistency. Compared to sPC8 and the optimal sPC2001,
sDC2 is usually around one order of magnitude faster on large instances.

Maybe, one can wonder about the interest of PC algorithms when the constraint
graph is not complete. Indeed, when a pair of values is identified as not being PC, it
has to be removed from the network. When no constraint binding the two involved
variables exists in the CN, a new one has to be inserted (consequently, changing the
constraint graph). To avoid this drawback, it is possible to enforce relation filtering
consistencies in a conservative way, i.e. without adding new constraints, This gives rise
to consistencies such as CDC and CPC. Of course, some pairs of values identified as
inconsistent must be ignored, and consequently, some information is lost. However,
there exists an alternative to inserting new constraints: recording nogoods, especially
as this approach [8, 20] has been recently re-investigated by the CSP community [11,
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19, 14]. As a perspective of this work, we project to enforce strong path consistency

by combining nogood recording with an adaptation of SDC2. Interestingly, it could be
applied to any constraint network (even one involving non binary constraints).
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