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Université d’Artois
62307 Lens cedex, France

{lecoutre, cardon, vion}@cril.univ-artois.fr

Abstract

Consistencies are properties of Constraint Networks (CNs)
that can be exploited in order to make inferences. When a
significant amount of such inferences can be performed, CNs
are much easier to solve. In this paper, we interest ourselves
in relation filtering consistencies for binary constraints, i.e.
consistencies that allow to identify inconsistent pairs of val-
ues. We propose a new consistency called Dual Consistency
(DC) and relate it to Path Consistency (PC). We show that
Conservative DC (CDC, i.e. DC with only relations associ-
ated with the constraints of the network considered) is more
powerful, in terms of filtering, than Conservative PC (CPC).
Following the approach of Mac Gregor, we introduce an al-
gorithm to establish (strong) CDC with a very low worst-case
space complexity. Even if the relative efficiency of the algo-
rithm introduced to establish (strong) CDC partly depends on
the density of the constraint graph, the experiments we have
conducted show that, on many series of CSP instances, CDC
is largely faster than CPC (up to more than one order of mag-
nitude). Besides, we have observed that enforcing CDC in a
preprocessing stage can significantly speed up the resolution
of hard structured instances.

Introduction
Consistencies are properties of Constraint Networks (CNs)
that can be exploited (enforced) to make inferences. By sim-
plifying the problem, this permits to reduce the search space
so that the CNs are much easier to solve (i.e. find a solution
or prove that none exists). Most of the current Constraint
Programming solvers interleave inference and search.

Currently, the most successful consistencies are domain
filtering consistencies (Debruyne & Bessiere 2001), which
allow to identify inconsistent values that can be removed
from the domains of variables. For binary constraints, one
can cite Arc Consistency (AC) and Singleton Arc Consis-
tency (SAC) (Bessiere & Debruyne 2005). Generalized
Arc Consistency (GAC) and Pairwise Inverse Consistency
(PWIC) (Stergiou & Walsh 2006) hold on non-binary con-
straints. Another class of consistencies are those which al-
low to identify inconsistent pairs of values. They can be
called relation filtering consistencies – but should not be
confused with relational consistencies (Dechter & van Beek
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1997). The most famous one is Path Consistency (PC). A
pair of values for a pair of variables is path-consistent iff
it can be extended to a consistent instantiation of any third
variable. Many algorithms have been proposed to enforce
PC on a given CN: PC4 (Mohr & Henderson 1986), PC8
(Chmeiss & Jégou 1998), PC2001 (Bessiere et al. 2005),
etc.

Path consistency, and more generally relation filtering
consistencies, are somewhat neglected by developers of
Constraint Programming systems. The main reason is that
exploiting such consistencies involves modifying the rela-
tions associated with the constraints, and more importantly,
modifying the structure of the constraint graph. Indeed,
when a pair of values is identified as being path-inconsistent,
it has to be removed from the network. When no constraint
binding the two involved variables exists in the CN, a new
one has to be inserted (consequently, changing the constraint
graph). For example, the CN that represents the instance
scen-11 of the Radio-Frequency Assignment Problem (RL-
FAP) involves 680 variables and 4, 103 constraints. In the
worst-case, enforcing PC on this network will entail the cre-
ation of C2

680 − 4, 103 = 226, 757 new constraints, which
can really be counter-productive both in time and space.

However, it is possible to avoid the main drawback of PC
by adopting a conservative approach. It simply means that
we can limit our attention to existing constraints when look-
ing for inconsistent pairs of values. This is called Conser-
vative Path Consistency (CPC) (Debruyne 1999). We de-
fine a new relation filtering consistency, called Dual Consis-
tency (DC), which exploits the outcome of AC enforcement.
We show that PC is stronger than Conservative DC (CDC)
which itself is stronger than CPC – CDC can filter out con-
servatively more inconsistent pairs of values than CPC. We
propose an algorithm that establishes (strong) CDC, which
can be seen as an adaptation of the one proposed in (Mc-
Gregor 1979). It requires no specific data structure (except
for those of the underlying AC algorithm) and is expected to
quickly converge towards a unique fix-point.

Constraint Networks and Consistencies
A Constraint Network (CN) P is a pair (X , C ) where X is
a finite set of n variables and C a finite set of e constraints.
Each variable X ∈ X has an associated domain, denoted
domP (X), which represents the set of values allowed for
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X . Each constraint C ∈ C involves a subset of variables
of X , called scope and denoted scp(C), and has an asso-
ciated relation denoted relP (C), which represents the set
of tuples allowed for the variables of its scope. When possi-
ble, we will write dom(X) and rel(C) instead of domP (X)
and relP (C). Xa denotes a pair (X, a) with X ∈ X and
a ∈ dom(X) and we will say that Xa is a value of P . λ de-
notes the number of allowed tuples over all constraints of P
(with λ =

∑
C∈C |rel(C)|), and K denotes the number of

3-cliques in P . If P and Q are two CNs defined on the same
sets of variables X and constraints C , then we will write
P ≤ Q iff ∀X ∈ X , domP (X) ⊆ domQ(X) and ∀C ∈ C
relP (C) ⊆ relQ(C). P < Q iff P ≤ Q and ∃X ∈ X |
domP (X) ⊂ domQ(X) or ∃C ∈ C | relP (C) ⊂ relQ(C).
A binary constraint is a constraint which only involves two
variables. In the following, we will restrict our attention to
binary networks, i.e., networks that only involve binary con-
straints. Further, without any loss of generality, we will con-
sider that the same scope cannot be shared by two distinct
constraints. The density D of a binary CN is then defined as
the ratio e/C2

n.
A solution to a constraint network is an assignment of val-

ues to all the variables such that all the constraints are satis-
fied. A constraint network is said to be satisfiable iff it ad-
mits at least one solution. The Constraint Satisfaction Prob-
lem (CSP) is the NP-complete task of determining whether a
given constraint network is satisfiable. Constraint networks
can be characterized by some properties called consisten-
cies. The usual way to exploit them is to enforce them on
a CN while preserving the set of solutions. It then consists
in identifying and removing some inconsistent values (e.g.
with arc consistency), some inconsistent pairs of values (e.g.
with path consistency), etc. Here, “inconsistent” means that
the identified values, pairs of values, etc. correspond to no-
goods, i.e. cannot participate to any solution. We start in-
troducing the consistencies we are interested in at the level
of pairs of values. From now on, we will consider a binary
constraint network P = (X ,C ).

Definition 1. A pair (Xa, Yb) of values of P s.t. X (= Y is:

• arc-consistent (AC) iff either !C ∈ C | scp(C) =
{X, Y } or (Xa, Yb) ∈ rel(C).

• path-consistent (PC) iff (Xa, Yb) is AC and ∀Z ∈ X |
Z (= X ∧ Z (= Y , ∃c ∈ dom(Z) such that (Xa, Zc) is
AC and (Yb, Zc) is AC.

• conservative path-consistent (CPC) iff either !C ∈ C |
scp(C) = {X, Y } or (Xa, Yb) is PC.

We can now introduce Arc Consistency (AC), Path Con-
sistency (PC) and Conservative Path Consistency (CPC (De-
bruyne 1999)) w.r.t. a CN.

Definition 2. A value Xa of P is AC iff ∀Y ((= X) ∈ X ,
∃b ∈ dom(Y ) | (Xa, Yb) is AC. P is AC iff ∀X ∈ X ,
dom(X) (= ∅ and ∀a ∈ dom(X), Xa is AC.

Definition 3. A pair (X,Y ) of distinct variables of X , is
PC (resp. CPC) iff ∀a ∈ dom(X), ∀b ∈ dom(Y ), (Xa, Yb)
is PC (resp. CPC). P is PC (resp. CPC) iff any pair of
distinct variables of X is PC (resp. CPC).

All consistencies φ considered in this paper admit the fol-
lowing property: for any network P , there exists a greatest
subnetwork of P which is φ-consistent, denoted by φ(P ),
and it is possible to compute it in polynomial time. For ex-
ample, AC(P ) will denote the constraint network obtained
after enforcing AC on P . AC(P ) is such that all values of P
that are not arc-consistent have been removed. Remark that
if any variable in AC(P ) has an empty domain, P is unsat-
isfiable. We will denote this by AC(P ) = ⊥. For any value
Xa, we will write Xa ∈ AC(P ) iff a ∈ domAC(P )(X)
(note that Xa /∈ ⊥). Finally, P |X=a represents the network
obtained from P by restricting the domain of X to the sin-
gleton {a}. We can now introduce Singleton Arc Consis-
tency (SAC) and a new consistency, called Dual Consistency
(DC).

Definition 4. A value Xa of P is SAC iff AC(P |X=a) (= ⊥.
P is SAC iff ∀X ∈ X , dom(X) (= ∅ and ∀a ∈ dom(X),
Xa is SAC.

Definition 5. A pair (Xa, Yb) of values of P s.t. X (= Y is:

• dual-consistent (DC) iff Yb ∈ AC(P|X=a) and Xa ∈
AC(P|Y =b).

• conservative dual-consistent (CDC) iff either !C ∈ C |
scp(C) = {X, Y } or (Xa, Yb) is DC.

Definition 6. A pair (X,Y ) of distinct variables of X , is
DC (resp. CDC) iff ∀a ∈ dom(X), ∀b ∈ dom(Y ), (Xa, Yb)
is DC (resp. CDC). P is DC (resp. CDC) iff any pair of
distinct variables of X is DC (resp. CDC).

From any relation filtering consistency, it is possible
to obtain a new consistency by additionally considering
Arc Consistency. Classically, a network is strong path-
consistent, denoted sPC, iff it is both arc-consistent and
path-consistent. Similarly, we can define sCPC, sDC and
sCDC.

Qualitative Study
In order to compare the pruning capability of the different
consistencies that have been presented above, we need to
introduce a pre-order relation as in (Debruyne & Bessiere
2001). A local consistency φ is stronger than another local
consistency ψ, denoted φ , ψ, iff whenever φ holds on a CN
P , ψ also holds on P . φ is strictly stronger than ψ, denoted
φ - ψ, iff φ , ψ and there exists at least one CN P such that
φ holds on P but not ψ. For any pair (φ, ψ) of consistencies
mentioned in this paper, we have φ , ψ iff for any CN P ,
φ(P ) ≥ ψ(P ) and φ - ψ iff φ , ψ and there exists a CN P
such that φ(P ) > ψ(P ). Also, any consistency φ mentioned
in this paper is monotone: it means that for any pair (P,Q)
of CNs such that P ≥ Q, we have φ(P ) ≥ φ(Q). Finally,
we define φ ◦ ψ(P ) as being φ(ψ(P )) and (φ ◦ ψ)n+1(P )
as being φ ◦ ψ ◦ (φ ◦ ψ)n(P ).

Surprisingly, DC appears to be equivalent to PC although
it could be predicted since McGregor had already proposed
an AC-based algorithm to establish sPC (McGregor 1979).
We provide a direct proof in our context:
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Figure 1: A network (no constraint binds X with Z and Y
with T ) that is CDC and sCDC but neither sPC nor PC. For
example, (Xa, Zb) is not PC.

Proposition 1. DC = PC

Proof. We will show that for any CN P , DC(P ) = PC(P ).
Let (Xa, Yb) be a pair of values of P .

• If (Xa, Yb) is not PC, either (Xa, Yb) is not AC and then
(Xa, Yb) is not DC, or ∃Z ∈ X |∀c ∈ dom(Z), (Xa, Zc)
is not AC or (Yb, Zc) is not AC. In this case, we know that
Yb /∈ AC(P|X=a) since after enforcing AC on P|X=a, all
values c of dom(Z) are such that (Xa, Zc) is AC. Nec-
essarily, by hypothesis, all these values are incompatible
with Yb, which entails that b is removed from dom(Y )
when enforcing AC. Then, (Xa, Yb) is not DC.

• If (Xa, Yb) is not DC, it means that Yb /∈ AC(P|X=a) (or
Xa /∈ AC(P|Y =b)). Let H(n) be the following recurrence
hypothesis: if the number of revisions (i.e. the number
of steps in an algorithm such as AC2001) to remove b
from dom(Y ) when enforcing AC on P|X=a is less than
or equal to n then (Xa, Yb) does not belong to PC(P ).
H(1) holds since, in this case, it means that (Xa, Yb) is
not AC. Let us suppose that H(n) is true and let us show
that H(n + 1) holds. If b is removed from dom(Y ) af-
ter n + 1 revisions while enforcing AC on P|X=a, then it
means that the last revision involves a constraint binding
Y and another variable Z. Any value c of dom(Z) that
was supporting Yb has been removed after at most n revi-
sions. By hypothesis, it means that for all such values c,
(Xa, Zc) does not belong to PC(P ). We can then deduce
at this step that (Xa, Yb) is not PC.

In the remaining of this section, we will study the rela-
tionships of the conservative variant of DC, namely CDC,
with PC and CPC.
Proposition 2. PC - CDC.

Proof. Clearly, DC , CDC. So, by Proposition 1, we obtain
PC , CDC. Moreover, Figure 1 depicts a network (edges
represent allowed tuples) which is CDC but not PC.

Proposition 3. CDC - CPC.

Proof. Similarly, as in the first part of the proof of Propo-
sition 1, we can show that CDC , CPC. Moreover, Figure
2 depicts a network which is CPC but not CDC. Indeed, as
there is no 3-clique, the network is trivially CPC.
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bT
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b

Figure 2: A network (no constraint binds X with Z and Y
with T ) that is CPC and sCPC but neither sCDC nor CDC.
For example, (Xa, Ta) is not CDC as AC(P|X=a) = ⊥.

Before studying the relationships between sPC, sCDC and
sCPC, let us remark that that enforcing AC (only once) on
a PC network is sufficient to obtain an sPC network. This
well-known fact is also true for CDC. Actually, all arc-
inconsistent values are completely isolated, as shown by the
following proposition (whose proof is omitted).
Proposition 4. Let P = (X ,C ) be a CN which is PC (resp.
CDC). A value Xa of P is not AC iff ∀Y ∈ X (resp. s.t.
∃C ∈ C | scp(C) = {X, Y }), ∀b ∈ dom(Y ), (Xa, Yb) is
not PC (resp. CDC).
Corollary 1. Let P be a CN. AC ◦PC(P ) = sPC(P ) and
AC ◦ CDC(P ) = sCDC(P ).
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b
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b
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b

Y
a b
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Figure 3: Pattern to show that AC ◦ CPC (= sCPC. No
constraint binds X with Z.

Interestingly enough, the previous proposition does not
hold for CPC. Consider the example depicted in Figure 3.
Enforcing AC implies the removal of Zb. If we enforce CPC,
all tuples corresponding to dotted edges are removed. Next,
if we enforce AC, the value Xb is removed. We can imagine
the same pattern (X,Y,Z,T) occurring on the left of the graph
starting from X . So, for any integer n, we can build a net-
work P such that (AC ◦CPC)n+1(P ) = sCPC(P ) while
(AC ◦ CPC)n(P ) (= sCPC(P ) (and such that the size of
P grows polynomially with n).
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Proposition 5. sPC - sCDC.

Proof. For any CN P , PC(P ) ≥ CDC(P ) by Prop. 2.
By monotony, we obtain AC ◦ PC(P ) ≥ AC ◦ CDC(P ).
By Corollary 1, we obtain sPC(P ) ≥ sCDC(P ). Finally,
Figure 1 shows a network that is sCDC but not sPC.

Proposition 6. sCDC - sCPC.

Proof. Let us first show the following recurrence hypothe-
sis H(n): for any network P , AC ◦ CDC(P ) ≥ (AC ◦
CPC)n(P ). For n = 1, this is immediate since CDC -
CPC. Now, let us suppose H(n) and show that H(n + 1)
holds. We have, by hypothesis, AC ◦ CDC(P ) ≥ (AC ◦
CPC)n(P ). So, we obtain CPC ◦ AC ◦ CDC(P ) ≥
CPC ◦ (AC ◦ CPC)n(P ) by monotony. As AC ◦
CDC(P ) = sCDC(P ), this network is CDC and then
CPC. Hence, we have CPC ◦ AC ◦ CDC(P ) = AC ◦
CDC(P ) ≥ CPC ◦ (AC ◦ CPC)n(P ). By monotony, we
have AC◦AC◦CDC(P ) ≥ AC◦CPC◦(AC◦CPC)n(P ).
We deduce AC ◦ CDC(P ) ≥ (AC ◦ CPC)n+1(P ). As
sCPC = (AC ◦CPC)n(P ) for a given finite integer n, we
have shown that sCDC , sCPC. Finally, Figure 2 shows
a network that is sCPC but not sCDC.

The following proposition is immediate since any single-
ton arc-inconsistent value is removed by an algorithm that
enforces sCDC.
Proposition 7. sCDC - SAC.

Algorithm sCDC-1
The algorithm that we propose to establish sCDC is called
sCDC-1. It performs successive singleton checks until a
fix-point is reached. The description is given in the con-
text of using an underlying coarse-grained AC algorithm,
such as AC3 (Mackworth 1977), AC2001/3.1 (Bessiere et
al. 2005) or AC3rm (Lecoutre & Hemery 2007), with a
variable-oriented propagation scheme. If P = (X ,C ), then
AC(P,Q) with Q ⊆ X means enforcing arc consistency on
P from the given propagation set Q. For a description of AC,
see, for instance, the function propagateAC in (Bessiere &
Debruyne 2005).

To enforce sCDC on a given network P , the function
sCDC-1 is called (see Algorithm 1). AC is enforced first
(line 1), and then, at each turn of the main loop, a dif-
ferent variable is considered: assuming here that X is or-
dered, first(X ) returns the first variable of X and next-
modulo(X, X ) returns the variable which follows X in X ,
or first(X ) if X is the last one. The call to check at line
5 then tries to make some inferences from X . When any in-
ference is performed, check returns true and arc consistency
is re-established (line 6). To manage termination, a marker
initialized with a special value (line 3) and updated when-
ever there are some inferences w.r.t. the current variable X
(line 7) is used.

Performing all sCDC inferences w.r.t. a variable X is
achieved by calling the function check (Algorithm 2). For
each value a in the domain of X , AC is enforced on P |X=a.
If a is singleton arc-inconsistent, then a is removed from the
domain of X (line 5). Otherwise (lines 8 to 12), for any

Algorithm 1: sCDC-1(P = (X ,C ) : CN)
P ← AC(P, X )1
X ← first(X )2
marker ← X3
repeat4

if check(P, X) then5
P ← AC(P, {X})6
marker ← X7

X ← next-modulo(X , X)8
until X = marker9

Algorithm 2: check(P : CN, X : Variable) : Boolean
modified ← false1
foreach a ∈ domP (X) do2

P ′ ← AC(P |X=a, {X})3
if P ′ = ⊥ then4

remove a from domP (X)5
modified ← true6

else7
foreach C ∈ C |X ∈ scp(C) do8

let Y be the second variable in scp(C)9

foreach b ∈ domP (Y )|b /∈ domP ′
(Y ) do10

remove (Xa, Yb) from relP (C)11
modified ← true12

return modified13

value Yb present in P and removed in P ′ such that there
exists a constraint binding X and Y , the tuple (Xa, Yb) is
removed from rel(C).

There is a strong connection between the algorithm
sCDC-1 and the algorithm proposed in (McGregor 1979) to
establish sPC. Our algorithm can be seen as a refinement of
Mac Gregor’s since we can deal with CDC and have inte-
grated two important modifications. First, AC is maintained
during execution in order to start singleton checks with a
propagation set composed of only one variable (it allows to
avoid a lot of unnecessary revisions, in particular on sparse
constraint graphs). Second, we handle termination through
an enhanced mechanism. It is possible to reason about ter-
mination this way because for any variable X and any two
values a and b in dom(X), any inference concerning Xa

(the removal of Xa or the removal of a tuple linking Xa to
another value) has no impact on PX=b, and vice-versa.

Proposition 8. The algorithm sCDC-1 enforces sCDC.

Proof. First, it is immediate that any inference performed
by sCDC-1 is correct. Completeness is guaranteed by
the following invariant: when P ′ = AC(P |X=a, {X})
is performed at line 3 of Algorithm 2, we have P ′ =
AC(P |X=a,X ). The reason is that the network is main-
tained arc-consistent whenever a modification is performed
(line 6 of Algorithm 1) and that any inference performed
w.r.t. a value Xa has no impact on P |X=b, where b is any
other value in the domain of the variable X .
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Proposition 9. The worst-case time complexity of sCDC-1
is O(λend3) and its worst-case space complexity is O(ed2).

Proof. In the worst case, the function check can be called
λ times for a given variable, since between two successive
calls, at least one tuple must be removed from a relation.
An optimal O(ed2) AC algorithm such as AC2001 may be
used on line 3, and removing inconsistent tuples (lines 8 to
12) is O(nd). As n < e is assumed, a call to check is thus
in O(d(ed2 + nd)) = O(ed3). Thus, we obtain O(λend3)
for sCDC-1. In terms of space, one needs to store domains
and relations: this is in O(nd + ed2) = O(ed2) (but only
O(nd + e) if constraints are initially given in intention).
The only data structures used by sCDC-1 are those used by
the underlying AC algorithm. For AC2001 or AC3rm, it
is O(ed). The overall worst-case space complexity is then
O(ed2).

As λ is bounded by O(ed2), sCDC-1 may be up to
O(e2nd5). This seems to be rather high, but our opinion
is that sCDC-1 quickly reaches a fix-point (i.e. the num-
ber of times the function check is called for a given variable
is very small) because inferences about inconsistent values
and, especially pairs of values, can be immediately taken
into account. The following corollary also indicates that the
time wasted to apply sCDC-1 on a network which is already
sCDC is quite limited provided that the size of the domains
is not too high.
Corollary 2. Applied to a sCDC network, the worst-case
time complexity of sCDC-1 is O(end3).

It is also interesting to compare sCDC-1 with algorithms
enforcing sCPC. Due to lack of space, we only give a
few words about the algorithms sCPC8 and sCPC2001 that
can be directly derived from PC8 (Chmeiss & Jégou 1998)
and PC2001 (Bessiere et al. 2005). First, the worst-case
space complexity of these two algorithms is O(ed2) and
O((e + K)d2), respectively. The initialization phase (we
will not discuss about the propagation phase) of these two
algorithms is the same: for each 3-clique of the network,
check that any allowed tuple of a relation of this clique is
PC. This is done in O(Kd3). From these observations, it
appears that, the less dense the network is, the less the num-
ber of 3-cliques is and the less the space and time required
by these algorithms are. On the other hand, if we consider
dense networks (e tending to C2

n), we can adjust the worst-
case time complexity of the initialization phase to O(n3d3).
This is the same as the worst-case time complexity of a sin-
gle pass (calling check for all variables only once) of sCDC-
1. For sparse networks, sCDC-1 should then be slower than
sCPC8 or sCPC2001, but for dense (or highly structured)
networks, we do believe that sCDC-1, due to its capability
to make inferences quickly, should be faster.

Our algorithm is also related to algorithms that estab-
lish singleton arc consistency like SAC-OPT and SAC-SDS
(Bessiere & Debruyne 2005). SAC-OPT admits an optimal
worst-case time complexity of O(end3) but a high worst-
case space complexity of O(end2). SAC-SDS relaxes time
optimality to save space: its worst-case time complexity is in
O(end4) and its worst-case space complexity is in O(n2d2).

AC3rm SAC-SDS sCPC8 / sCPC2001 sCDC-1
Langford (4 instances)
cpu 0.22 0.46 4.02 / 4.94 0.52

λ 105, 854 105, 769 75, 727 75, 727
blackhole-4-13 (7 instances) (K = 92, 769 ; D = 20%)
cpu 1.26 19.39 140.54 / − 46.91

λ 8, 206, 320 8, 206, 320 8, 206, 320 7, 702, 906
〈40, 180, 84, 0.9〉 (20 instances) (K = 12 ; D = 10%)
cpu 0.71 10.57 2.28 / 2.02 17.42

λ 272, 253 244, 887 244, 272 210, 874
〈40, 8, 753, 0.1〉 (20 instances) (K = 8, 860 ; D = 96%)
cpu 0.16 0.21 0.62 / 0.69 0.20

λ 43, 320 43, 320 43, 318 43, 318
job-shop enddr1 (10 instances) (K = 600 ; D = 21%)
cpu 1.58 4.06 7.91 / 10.54 4.67

λ 2, 937, 697 2, 937, 697 2, 937, 697 2, 930, 391
RLFAP scens (11 instances)
cpu 0.86 − 25.96 / − 3.47

λ 1, 674, 286 − 1, 471, 132 1, 469, 286

Table 1: Experimental results (cpu in seconds)

sCDC-1 has the advantage to prune more efficiently the
search space since sCDC - SAC while limiting the worst-
case space complexity to O(ed2).

Experiments
In order to show the practical interest of the approach de-
scribed in this paper, we have conducted an extensive ex-
perimentation on a i686 2.4GHz processor equipped with
1024 MiB RAM. We have compared the CPU time and the
filtering level (the λ value of the network obtained after hav-
ing applied the algorithm) of various algorithms used stand-
alone (i.e. without search). These algorithms are (an opti-
mized version for binary constraints of) AC3rm (Lecoutre &
Hemery 2007), SAC-SDS, sCPC8, sCPC2001 and sCDC-1.
More precisely, we used AC ◦ CPC8 and AC ◦ CPC2001 as
an approximation to establish sCPC as we observed that one
pass was sufficient to reach sCPC most of the time.

We have first tested the different algorithms against dif-
ferent series of problems1. Constraints defined in intention
(i.e. by a predicate) in some instances were converted in ex-
tension (this only had a significant impact on cpu time for
large instances of fapp series). As expected (see Table 1),
sCDC-1 filters more than the other algorithms: the smaller
λ is, the more reduced the search space is. Except for the
series 〈40, 180, 84, 0.9〉, sCDC-1 is from two to eight times
faster than sCPC8 and sCPC2001. Besides, sCDC-1 is al-
most as fast as SAC-SDS which in addition runs out of mem-
ory on some series (symbolized by −). The unstructured
〈40, 180, 84, 0.9〉 binary random instances present only 12
3-cliques on average, which explains why it is cheap here to
enforce sCPC.

Table 2 provides some other representative results, in-
stance per instance. Once again, it appears that, except for
the instance fapp-01-200-4, sCDC-1 largely outperforms
the algorithms enforcing sCPC. There is a difference by one
order of magnitude on instance haystack-40 and by almost
two orders of magnitude on instance knights-50-5. The rel-
ative bad performance of sCDC-1, in terms of cpu time, on
instance fapp-01-200-4 can once again be explained by the
very small density (D is only 0.5%) and the small number

1http://cpai.ucc.ie/06/Competition.html
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AC3rm SAC-SDS sCPC8 / sCPC2001 sCDC-1
driverlogw-09 (K = 233, 834 ; D = 8%)

cpu 1.60 48.42 33.84 / 36.52 10.83
mem 14 87 59 / 155 23

λ 369, 736 147, 115 306, 573 18, 958
haystack-40 (K = 395, 200 ; D = 2%)

cpu 9.64 − 580.48 / − 55.91
mem 19 − 209 / − 107

λ 48, 670, 518 − 48, 670, 518 48, 670, 518
knights-50-5 (K = 10 ; D = 100%)

cpu 12.38 34.43 1759 / − 21.49
mem 5 163 29 / − 19

λ 31, 331, 580 0 0 0
pigeons-50 (K = 19, 600 ; D = 100%)

cpu 1.38 2.85 33.82 / 44.52 2.7
mem 2 12 9 / 636 5

λ 2, 881, 200 2, 881, 200 2, 881, 200 2, 881, 200
qcp-25-264-0 (K = 43, 670 ; D = 5%)

cpu 2.28 6.08 8.15 / 10.49 2.08
mem 8 210 29 / 215 21

λ 77, 234 77, 234 76, 937 76, 937
qwh-25-235-0 (K = 35, 700 ; D = 4.5%)

cpu 1.87 5.62 7.09 / 9.05 2.56
mem 7 183 26 / 173 19

λ 56, 721 56, 721 56, 380 56, 380
fapp01-200-4 (K = 247 ; D = 0.5%)

cpu 10.73 − 16.05 / 18.63 104.05
mem 15 − 22 / 254 17

λ 3, 612, 163 − 3, 317, 135 2, 117, 575
scen-11 (K = 13, 775 ; D = 1.7%)

cpu 2.87 − 85.82 / 78.49 9.78
mem 5 − 22 / 426 16

λ 5, 434, 107 − 4, 829, 442 4, 828, 650

Table 2: Experimental results (mem in MiB)

Instance MAC sCDC+MAC

scen11-f8 cpu 8.08 14.31
nodes 14, 068 4, 946

scen11-f5 cpu 259 225
nodes 1, 327K 680K

scen11-f3 cpu 2, 338 1, 725
nodes 12M 5, 863K

scen11-f2 cpu 7, 521 5, 872
nodes 37M 21M

scen11-f1 cpu 17, 409 13, 136
nodes 93M 55M

Table 3: Impact of sCDC at preprocessing on MAC

of 3-cliques. However, the improvement in terms of filter-
ing is quite significant. Moreover, sCDC-1 is far less space-
consuming than SAC and PC algorithms. The difference ex-
isting with AC3rm comes from the fact that more relations
can be shared by constraints when they are not modified.

Finally, we have compared the performance of the state-
of-the-art generic algorithm MAC with and without sCDC
enforcement at preprocessing on some difficult real-world
instances of the Radio Link Frequency Assignment Problem
(RLFAP). Even if some techniques (restarts, nogood record-
ing, etc.) allow to solve more efficiently these instances, we
do not employ them in order to observe the real impact (on
search) of enforcing sCDC at preprocessing. Table 3 shows
that for the hardest instances, sCDC at preprocessing pays
off: MAC alone is about 40% slower than sCDC+MAC and
visits almost twice more nodes.

Conclusion
General-purpose solvers in constraint satisfaction are usu-
ally built on top of a systematic or local search algorithm.
Making as much inferences as possible during preprocess-
ing can dramatically improve their efficiency: for instance,
enforcing singleton arc consistency on structured networks
before solving them often pays off. Unfortunately, current
algorithms are not able to take into account large amounts

of available information. Indeed, if a value Yb is removed
after having performed the assignment X ← a and enforced
arc consistency, we just learned that X = a and Y = b are
not compatible.

In this paper, we have proposed to take such inferences
into account in a conservative way, i.e. without adding new
constraints. We have introduced a new consistency called
Dual Consistency (DC) and have focused on its conservative
variant CDC. It has been shown in particular that CDC is a
relation filtering consistency which is stronger than conser-
vative PC (CPC), and enforcing strong CDC (i.e. enforcing
both CDC and AC) can be done in a quite natural way. The
experimental results obtained from a wide range of prob-
lems clearly show the practical interest of CPC, in particular
on hard dense problems.
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