
Artificial Intelligence 139 (2002) 109–132

www.elsevier.com/locate/artint

Accelerating filtering techniques for numeric CSPs

Yahia Lebbaha, Olivier Lhommeb,∗

a Département Informatique, Faculté des Sciences, Université d’Oran Es-Senia, B.P. 1524,
El-M’Naouar Oran, Algeria

b ILOG, 1681 route des Dolines, F-06560 Valbonne, France

Received 13 July 2001

Abstract

Search algorithms for solving Numeric CSPs (Constraint Satisfaction Problems) make an
extensive use of filtering techniques. In this paper1 we show how those filtering techniques can be
accelerated by discovering and exploiting some regularities during the filtering process. Two kinds
of regularities are discussed, cyclic phenomena in the propagation queueand numeric regularities of
the domains of the variables. We also present in this paper an attempt to unifynumeric CSPs solving
methods from two distinct communities, that of CSP in artificial intelligence, and that of interval
analysis. 2002 Elsevier Science B.V. All rights reserved.

Keywords:Numeric constraint satisfaction problem; Filtering techniques; Propagation; Pruning; Acceleration
methods; Nonlinear equations; Interval arithmetic; Interval analysis; Strong consistency; Extrapolation methods

1. Introduction

In several fields of human activity, like engineering, science or business, people are
able to express their problems as constraint problems. The CSP (Constraint Satisfaction
Problem) schema is an abstract framework to study algorithms for solving such constraint
problems. A CSP is defined by a set of variables, each with an associated domain of
possible values and a set of constraints on the variables. This paper deals more specifically
with CSPs where the constraints are numeric nonlinear relations and where the domains
are continuous domains (numeric CSPs).

* Corresponding author.
E-mail addresses:ylebbah@univ-oran.dz (Y. Lebbah), olhomme@ilog.fr (O. Lhomme).

1 This paper is an extended version of [31].

0004-3702/02/$ – see front matter 2002 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(02)00194-7

110 Y. Lebbah, O. Lhomme / Artificial Intelligence 139 (2002) 109–132

In general, numeric CSPs cannot be tackled with computer algebra systems: there is no
algorithm for general nonlinear constraint systems. And most numeric algorithms cannot
guarantee completeness: some solutions may be missed, a global optimum may never be
found, and, sometimes a numeric algorithm even does not converge at all. The only numeric
algorithms that can guarantee completeness—even when floating-point computations are
used—are coming either from the interval analysis community or from the AI community
(CSP). Unfortunately, thosesafeconstraint-solving algorithms are often less efficient than
non-safe numeric methods, and the challenge is to improve their efficiency.

The safe constraint-solving algorithms are typically a search-tree exploration where a
filtering technique is applied at each node. Improvement in efficiency is possible by finding
the best compromise between a filtering technique that achieves a strong pruning at a high
computational cost and another one that achieves less pruning at a lower computational
cost. And thus, a lot of filtering techniques have been developed. Some filtering techniques
take their roots from numerical analysis: the main filtering technique used in interval
analysis [37] is an interval variation of Newton iterations. (See [24,28] for an overview
of such methods.) Other filtering techniques originate from artificial intelligence: the basic
filtering technique is a kind ofarc-consistency filtering [36] adapted to numeric CSPs [17,
26,32]. Higher-order consistencies similar tok-consistency [21] have also been defined
for numeric CSPs [25,32]. Another technique from artificial intelligence [19,20] is to
merge the constraints concerning the same variables, giving one “total” constraint (thanks
to numerical analysis techniques) and to performarc-consistency on the total constraints.
Finally, [6,45] aim at expressing interval analysis pruning as partial consistencies, bridging
the gap between the two families of filtering techniques.

All the above works address the issue of finding a new partial consistency property that
can be computed by an associated filtering algorithm with a good efficiency (with respect
to the domain reductions performed). Another direction, in the search of efficient safe
algorithms, is to try to optimize the computation of already existing consistency techniques.
Indeed, the aim of this paper is to study general methods for accelerating consistency
techniques. The main idea is to identify some kinds of regularity in the dynamic behavior
of a filtering algorithm, and then to exploit those regularities. A first kind ofregularities
we exploit is the existence of cyclic phenomena in the propagation queue of a filtering
algorithm. A second kind of regularities is a numeric regularity: when the filteringprocess
converges asymptotically, its fixed point often can be extrapolated. As we will see in the
paper, such ideas, although quite general, may lead to drastic improvements in efficiency
for solving numeric CSPs. The paper focus on numeric continuous problems, but the ideas
are more general and may be of interest also for mixed discrete and continuous problems,
or even for pure discrete problems.

The paper is organized in two main parts. The first part (Section 2) presents an
overview of numeric CSPs; artificial intelligence works and interval analysis works
are presented through a unifying framework. The second part consists of the next two
sections, and presents the contribution of the paper. Section 3 introduces the concept of
reliable transformation, and presents two reliable transformations that exploit two kinds
of regularities occurring during the filtering process: cyclic phenomena in the propagation
queue and numeric regularities of the domains of the variables. Section 4 discusses related
works.

Y. Lebbah, O. Lhomme / Artificial Intelligence 139 (2002) 109–132 111

2. Numeric CSPs

This section presents numeric CSPs in a slightly non-standard form, which will be
convenient for our purposes, and will unify works from interval analysis and constraint
satisfaction communities.

A numeric CSP is a triplet〈X ,D,C〉 where:

• X is a set ofn variablesx1, . . . , xn.
• D = 〈D1, . . . ,Dn〉 denotes a vector of domains. Theith component ofD, Di , is the

domain containing all acceptable values forxi .
• C = {C1, . . . ,Cm} denotes a set of numeric constraints.var(Cj) denotes the variables

appearing inCj .

This paper focuses on CSPs where the domains are intervals:D ∈ I(R)n whereI(R)=
{[a, b] | a, b ∈ R ∪ {−∞,+∞}}.

The following notation is used throughout the paper. An interval[a, b] such thata > b
is an empty interval. A vector of domainsD such that a componentDi is an empty
interval will be denoted by∅. The lower bound, the upper bound and the midpoint of an
intervalDi (respectively interval vectorD) are respectively denoted byDi ,Di , andm(Di)

(respectivelyD, D, andm(D)). The lower bound, the upper bound, the midpoint, the
inclusion relation, the union operator and the intersection operator are defined over interval
vectors; they have to be interpreted componentwise. For instanceD means〈D1, . . . ,Dn〉;
D′ ⊂D meansD′

i ⊂Di for all i ∈ 1, . . . , n; D′ ∩D′′ means〈D′
1 ∩D′′

1, . . . ,D
′
n ∩D′′

n〉.
A k-ary constraintCj (xj1, . . . , xjk) denotes ak-ary relation over the real numbers, that

is, a subset ofRk .

2.1. Approximation of projection functions

The algorithms used over numeric CSPs typically work by narrowing domains and
need to compute the projection—denotedΠCj ,xi (D) or alsoΠj,i(D)—of a constraint
Cj (xj1, . . . , xjk) over the variablexi in the space delimited byDj1 × · · · × Djk . The
projectionΠj,i(D) is defined as follows.

• If xi /∈ var(Cj),Πj,i(D)=Di .
• If xi ∈ var(Cj) the projection is defined by the set of all elementsdi ∈Di such that

we can find elementsdj1, . . . , di−1, di+1, . . . , djk for thek − 1 remaining variables of
var(Cj) with 〈dj1, . . . , di−1, di, di+1, . . . , djk 〉 ∈ Cj . Formally:

Πj,i(D)=
{

di | di ∈Di ,∃dj1, . . . , di−1, di+1, . . . , djk

(dj1 ∈Dj1, . . . , di−1 ∈Di−1, di+1 ∈Di+1, . . . , djk ∈Djk ,
〈dj1, . . . , di, . . . , djk 〉 ∈Cj)

}

. (1)

Usually, such a projection cannot be computed exactly due to several reasons, such as:
(1) the machine numbers are floating point numbers and not real numbers so round-off

112 Y. Lebbah, O. Lhomme / Artificial Intelligence 139 (2002) 109–132

errors occur; (2) the projection may not be representable as floating-point numbers; (3) the
computations needed to have a close approximation of the projection of only one given
constraint may be very expensive; (4) the projection may be discontinuous whereas it is
much easier to handle only closed intervals for the domains of the variables.

Thus, what is usually done is that the projection of a constraint over a variable is
approximated. LetπCj ,xi (D) or alsoπj,i(D) denote such an approximation. In order to
guarantee that all solutions of a numeric CSP can be found, a solving algorithm that uses
πj,i(D) needs thatπj,i(D) includes the exact projection. We will also assume in the rest
of the paper thatπj,i(D) satisfies a contractance property. Thus we have:

Πj,i(D)⊆ πj,i(D)⊆D.

πj,i(D) hides all the problems seen above. In particular, it allows us not to go into the
details of the relationships between floating point and real numbers (see for example [2]
for those relationships) and to consider only real numbers. It only remains to build such a
πj,i . Interval analysis [37] makes it possible.

2.1.1. Interval arithmetic
Interval arithmetic[37], on which interval analysis is built, is an extension of real

arithmetic. It defines the arithmetic functions{+,−,∗, /} over the intervals with simple
set extension semantics.

Notation. To present interval arithmetic, we will use the following convention to help the
reading:x, y will denote real variables or vectors of real variables andX,Y will denote
interval variables or vectors of interval variables. Distinction between a scalar variable and
a vector of variables will be clear from the context.

With this notation, an arithmetic function⊙ ∈ {+,−,∗, /} over the intervals is defined
by:

X⊙ Y = {x ⊙ y | x ∈X,y ∈X}.
Thanks to the monotonicity property of arithmetic operators⊙ ,X⊙Y can be computed

by considering the bounds of the intervals only. LetX,Y ∈ I(R), X = [X,X], and
Y = [Y,Y], the arithmetic operators are computed on intervals as follows:

X+ Y = [X+ Y ,X+ Y],
X− Y = [X− Y ,X− Y],
X ∗ Y =

[

min(X ∗ Y ,X ∗ Y,X ∗ Y ,X ∗ Y), max(X ∗ Y,X ∗ Y,X ∗ Y,X ∗ Y)
]

,

X/Y =
[

min(X/Y ,X /Y ,X/Y ,X/Y),

max(X /Y ,X /Y ,X/Y ,X/Y)
]

if 0 /∈ Y.

2.1.2. Interval extension of a real function
For an arbitrary function over the real numbers, it is not possible in general to compute

the exact enclosure of the range of the function [29]. The concept ofinterval extension
has been introduced by Moore: the interval extension of a function is an interval function

Y. Lebbah, O. Lhomme / Artificial Intelligence 139 (2002) 109–132 113

that computes outer approximations on the range of the function over a domain. Different
interval extensions exist. Letf be a function over the real numbers defined over the
variablesx1, . . . , xn, the following interval extensions are frequently used:

• nat(f): the natural interval extension of a real functionf is defined by replacing each
real operator by its interval counterpart. It is easy to see thatnat(f) always contains
the range off , and is thus an interval extension.

Example 1(Natural extension ofx2
1 + x2

2 − 2 andx2
1 + x2).

The natural extension ofx2
1 + x2

2 − 2 is X2
1 +X2

2 − 2.

The natural extension ofx2
1 + x2 is X2

1 +X2.

• tay(f): the Taylor interval extension of a real functionf , over the interval vectorX,
is defined by the natural extension of a first-order Taylor development off [42]:

f
(

m(X)
)

+
n

∑

i=1

nat

(

∂f

∂xi

)

(X) ∗
(

Xi −m(Xi)
)

. (2)

The intuition whytay(f) is an interval extension is given in a footnote.2

Example 2(Taylor extension ofx − x2). Let

f (x)= x − x2, f ′(x)= 1− 2x,

nat(f ′)(X)= 1− 2X.

The Taylor extension off (x) is:

tay(f)(X)=
(

c− c2
)

+ (1− 2X)(X− c) wherec=m(X).

The Taylor extension gives generally a better enclosure than the natural extension on
small intervals.3 Nevertheless, in general neithernat(f) nor tay(f) give the exact range of
f . For example, letf (x)= 1− x + x2, andX = [0,2], we have:

tay(f)([0,1])= [−1,3], nat(f)([0,1])= [−1,5],
whereas the range off overX= [0,1] is [3/4,3].

2 The Taylor interval extension comes from a direct application of the mean value theorem: Letf be a real
function defined over[a,b], let f be continuous and with a continuous derivative over[a,b], let x1, x2 be two
points in[a,b]. Then, there existsξ betweenx1 andx2 such thatf (x2)= f (x1)+ f ′(ξ) ∗ (x2 − x1).

ξ is unknown, but what can be done is to replace it by an interval that contains it, and to evaluate the natural
extension of the resulting expression. Thus we know thatf (x2) ∈ f (x1)+ f ′([a,b]) ∗ (x2 − x1). As this is true
for everyx1 andx2 in [a,b], we can replacex1 by the midpoint of[a,b] andx2 by an interval that contains it.
This leads tof ([a,b])⊆ f (m([a,b]))+ f ′([a,b]) ∗ ([a,b] −m([a,b])).

(2) is the generalization for vectors of the above result.
3 The Taylor extension has a quadratic convergence, whereas the natural extension has a linear convergence;

see for example [42].

114 Y. Lebbah, O. Lhomme / Artificial Intelligence 139 (2002) 109–132

2.1.3. Solution function of a constraint
To compute the projectionπj,i(D) of the constraintCj on the variablexi , we need to

introduce the concept ofsolution functionthat expresses the variablexi in terms of the
other variables of the constraint. For example, for the constraintx + y = z, the solution
functions are:fx = z− y,fy = z− x,fz = x + y.

Assume a solution function is known that expresses the variablexi in terms of the other
variables of the constraint. Thus an approximation of the projection of the constraint over
xi given a domainD can be computed thanks to any interval extension of this solution
function. Thus we have a way to computeπj,i(D).

Nevertheless, for complex constraints, there may not exist such an analytic solution
function; for example, considerx + log(x) = 0. The interest of numeric methods as
presented in this paper is precisely for those constraints that cannot be solved algebraically.
Three main approaches have been proposed:

• The first one exploits the fact that analytic functions always exist when the variable to
express in terms of the others appears only one time in the constraint. This approach
simply considers that each occurrence of a variable is a different new variable. In
the previous example this would give:x(1) + log(x(2)) = 0. That way, it is trivial to
compute a solution function: it suffices to know the inverse of basic operators. In our
example, we obtainfx(1) =− log(x(2)) andfx(2) = exp−x(1) .
An approximation of the projection of the constraint overxi can be computed by
intersecting the natural interval extensions of the solution functions for all occurrences
of xi in Cj . For the last example, we could takeπx+log(x)=0,x(X)=− log(X)∩exp−X .
Projection functions obtained by this way will be calledπnat in this paper.

• The second idea uses the Taylor extension to transform the constraint into an interval
linear constraint. The nonlinear equationf (X)= 0 becomes

f (c)+
n

∑

i=1

nat

(

∂f

∂xi

)

(X) ∗ (Xi − ci)= 0,

wherec = m(X). Now consider that the derivatives are evaluated over a boxD that
containsX. D is considered as constant, and letc=m(D). The equation becomes:

f (c)+
n

∑

i=1

nat

(

∂f

∂xi

)

(D) ∗ (Xi − ci)= 0.

This is an interval linear equation inX, which does not contain multiple occurrences.
The solution functions could be extracted easily. But, instead of computing the solution
functions of the constraint without taking into account the other constraints, we may
prefer to group together several linear equations in a squared system. Solving the
squared interval linear system allows much more precise approximations of projections
to be computed. (See the following section.) Projection functions obtained by this way
are calledπTay. For example, consider the constraintx + log(x) = 0; by using the
Taylor form on the boxD, we obtain the following interval linear equation

c+ log(c)+ (1+ 1/D)(X− c)= 0

Y. Lebbah, O. Lhomme / Artificial Intelligence 139 (2002) 109–132 115

that is:

AX+B = 0,

whereA = 1+ 1/D andB = log(c)− c/D. The unique solution function of this 1-
dimensional linear equation is straightforward:X =−B/A.

• A third approach [6] does not use any analytical solution function. Instead, it
transforms the constraintCj (xj1, . . . , xjk) into k mono-variable constraintsCj,l , l =
1, . . . , k. The mono-variable constraintCj,l on variablexjl is obtained by substituting
their intervals for the other variables. The projectionπj,jl is computed thanks toCj,l .
The smallest zero ofCj,l in the interval under consideration is a lower bound for the
projection ofCj over xjl . And the greatest zero ofCj,l is an upper bound for that
projection. Hence, an interval with those two zeros as bounds gives an approximation
of the projection. Projection functions computed in that way are calledπbox.
In [6], the two extremal zeros ofCj,l are found by a mono-variable version of the
interval Newton method.4

Another problem is that the inverse of a nonmonotonic function is not a function over the
intervals. For example the range of the inverse of the functionf (x) = x2 for an interval
Y is the union of intervals(−

√
Y) ∪ (

√
Y). It is possible to extend interval arithmetic

in order to handle unions of intervals. A few systems have taken this approach [26,44].
Nevertheless, this approach may lead to a highly increasing number of intervals. The
two other approaches more commonly used consist of computing the smallest interval
encompassing a union of intervals:

⋃

0�i�n([ai, bi]) = [min0�i�n(ai),max0�i�n(bi)],
or to split the problem in several sub-problems in which only intervals appear.

2.2. Filtering algorithm as fixed point algorithms

A filtering algorithm can generally be seen as a fixed point algorithm. In the following,
an abstraction of filtering algorithms will be used: the sequence{Dk} of domains generated
by the iterative application of an operatorOp: I(R)n −→ I(R)n (see Fig. 1).

The operatorOp of a filtering algorithm generally satisfies the following three prop-
erties:

• Op(D)⊆D (contractance).
• Op is conservative; that is, it cannot remove solutions.
• D

′ ⊆D ⇒ Op(D′)⊆ Op(D) (monotonicity).

Under those conditions, the limit of the sequence{Dk}, which corresponds to the greatest
fixed point of the operatorOp, exists and is called aclosure. We denote it byΦOp(D).
A fixed point for Op may be characterized by a propertylc-consistency, called a local
consistency, and alternativelyΦOp(D) will be denoted byΦlc(D). The algorithm achieving
filtering by lc-consistency is denotedlc-filtering. A CSP is said to belc-satisfiable iflc-
filtering of this CSP does not produce an empty domain.

4 The general (multi-variable) interval Newton method is briefly presented in Section 2.3.

116 Y. Lebbah, O. Lhomme / Artificial Intelligence 139 (2002) 109–132

Dk =
{

D if k = 0
Op(Dk−1) if k > 0

Fig. 1. Filtering algorithms as fixed point algorithms.

Consistencies used in numeric CSPs solvers can be categorized in two main classes:
arc-consistency-like consistencies and strong consistencies.

2.3. Arc-consistency-like consistencies

Most of the numeric CSP systems (e.g., BNR-prolog [40], Interlog [13,16], CLP(BNR)
[5], PrologIV [15], UniCalc [3], Ilog Solver [27] and Numerica [46] compute an
approximation ofarc-consistency [36] which will be named 2B-consistency in this paper.5

2B-consistency states a local property on a constraint and on the bounds of the domains of
its variables (B of 2B-consistency stands forbound). Roughly speaking, a constraintCj is
2B-consistent if for any variablexi in var(Cj) the boundsDi andDi have a support in the
domains of all other variables ofCj (w.r.t. the approximation given byπ). 2B-consistency
can be defined in our notation as:

Definition 1 (2B-consistency). A CSP 〈X ,D,C〉 is 2B-consistent if and only if
∀Cj ,∀xi(Cj ∈ C ∧ xi ∈ var(Cj)⇒ πj,i(D)=Di).

A filtering algorithm that achieves 2B-consistency can be derived from Fig. 1 by
instantiatingOpas in Operator 1. Note the operatorOp2B applies on thesamevectorD all
theπj,i(D) operators.

Operator 1 (2B-consistency filtering operator).

Op2B(D)=
⋂

Cj∈C

〈

πj,1(D), . . . , πj,n(D)
〉

.

Fig. 2 shows how projection functions are used by a 2B-consistency filtering algorithm
to reduce the domains of the variables.

Depending on the projection functions used, we obtain different 2B-filtering algo-
rithms.

Opnat The operatorOpnat will denoteOp2B with πnat. It abstracts the filtering algorithm
presented in [5,17,32]. There are two main differences between our abstraction
and the implementations.
(1) In classic implementations, projection functions are applied sequentially

and not all on the same domain. In the abstraction (and in our non-classic

5 We have a lot of freedom to chooseπj,i (D), so the definition of 2B-consistency here abstracts both 2B-
consistency in [32] andbox-consistency in [6].

Y. Lebbah, O. Lhomme / Artificial Intelligence 139 (2002) 109–132 117

Fig. 2. 2B-filtering on the constraint system {x2 + y2 = 1, y = x2}.

implementations) they are applied on the same domain. This has the drawback
of increasing the upper bound of the complexity, but has the advantage of
generating much more “regular” sequences of domains. (See Section 3.2.)

(2) Implementations always applied an AC3-like optimization [36]. It consists of
applying at each iteration only those projection functions that may reduce a
domain: only the projection functions that have in their parameters a variable
whose domain has changed are applied. For the sake of simplicity, AC3-like
optimization does not appear explicitly in this algorithm schema.

Opbox This operator denotesOp2B that usesπbox. It abstracts the filtering algorithm
presented in [6,45]. Differences with our abstraction are the same as above.

OpTay This operator denotesOp2B that usesπTay. It abstracts the interval Newton
method [2,37]. The interval Newton method controls in a precise way the order in
which projection functions are computed. It is used for solving squared nonlinear
equation systems such asC = {f1(x1, . . . , xn)= 0, . . . , fn(x1, . . . , xn)= 0}. The
interval Newton method replaces the solving of the nonlinear squared system by
the solving of a sequence of interval linear squared systems. Each linear system
is obtained by evaluating the interval Jacobi matrix over the current domains,
and by considering the first-order Taylor approximation of the nonlinear system.
The resulting interval linear system is typically solved by the interval Gauss–
Seidel method. The Gauss–Seidel method associates each constraintCi with the
variablexi (after a possible renaming of variables), and loops while applying only
the projection functionsπi,i .

To summarize, the main differences with our abstraction are that, in an
implementation, the partial derivatives are recomputed periodically and not at
each step, and that the Gauss–Seidel method does not apply all the projection

118 Y. Lebbah, O. Lhomme / Artificial Intelligence 139 (2002) 109–132

functions. A more realistic implementation of the Interval Newton method would
correspond to Operator 2 as follows.6

Operator 2 (Interval Newton operator).

OpTay(D)=D′ where

D′ :=D;

LetAi,j =
[

nat

(

∂fj

∂xi

)

(D)

]

, j = 1, . . . , n, i = 1, . . . , n

for i = 1, . . . , n

GSi :=
−fi(mid(D))−

∑n
j=1,j =i Ai,j (D

′
j − mid(Dj))

Ai,i
+mid(Di);

D′
i :=Di ∩ GSi;

endfor

Note also that, in general, the Gauss–Seidel method does not converge towards
the solution of the interval linear system, but it has good convergence properties
for diagonally-dominant matrices. So, in practice, before solving the linear
system, a preconditioning step is achieved that transforms the Jacobi matrix
into a diagonally dominant matrix. Preconditioning consists of multiplying the
interval linear equationA ∗X = B by a matrixM, giving the new linear system
A′∗X = B ′ whereA′ =MA andB ′ =MB. The matrixM is typically the inverse
of the midpoint matrix ofA.

A nice property of the interval Newton operator is that in some cases, it is
able to prove the existence of a solution. WhenOpTay(D) is a strict subset of
D, Brouwer’s fixed-point theorem applies and states existence and unicity of a
solution inD (cf. [38]).

2.4. Strong consistencies

The idea of constraint satisfaction is to tackle difficult problems by solving easy-to-
solve sub-problems: the constraints taken individually. It is often worth to have a more
global view, which generally leads to a better enclosure of the domains. This is why strong
consistencies have been proposed for solving CSP [21,22]. Their adaptation to numeric
CSPs is summarized in this section. Interval analysis methods such asOpTay extensively
use another kind of global view: the preconditioning of the Jacobi matrix. Nevertheless,
the need for strong consistencies, although less crucial with interval analysis methods,
may appear for very hard problems such as [43].

Strong consistencies have first been introduced over discrete CSPs (e.g.,path-
consistency,k-consistency [21] and(i, j)-consistency [22]), and then over numeric CSPs

6 The for-loop corresponds to only one iteration of the Gauss–Seidel method and not to the complete solving
of the interval linear system, which in practice is not useful [24].

Y. Lebbah, O. Lhomme / Artificial Intelligence 139 (2002) 109–132 119

(3B-consistency [32] andkB-consistency [33]).kB-consistency is the adaptation of(1, k)-
consistency over numeric CSP. Filtering by(1, k)-consistency is done by removing from
each domain values that can not be extended tok variables.kB-consistency ensures that
when a variable is instantiated to one of its two bounds, then the CSP is|k−1|B-satisfiable.
When k = 2, we refer to Operator 1. More generally, as given in Definition 2,kB(w)-
consistency ensures that when a variable is forced to be close to one of its two bounds
(more precisely, at a distance less thanw), then the CSP is|k − 1|B(w)-satisfiable. For
simplest presentation, 2B(w)-consistency refers to 2B-consistency.

Definition 2 (kB(w)-consistency). We say that a CSP〈X ,D,C〉 is kB(w)-consistent if
and only if:

∀i, i ∈ {1, . . . , n}⇒
ψ(D, i,w) is |k − 1|B(w)-satisfiable, and

ψ(D, i,w) is |k − 1|B(w)-satisfiable,

whereψ(D, i,w) (respectivelyψ(D, i,w)) denotes〈X ,D′,C〉 whereD′ is the same
domain asD except thatDi is replaced byDi ∩ [Di,Di +w] (respectivelyDi is replaced
byDi ∩ [Di −w,Di]).

The direct filtering operatorOpkB(w) underlying thekB(w)-consistency uses a kind of
proof by contradiction: the algorithm tries to increase the lower boundDi by proving that
the closure by|k − 1|B(w)-consistency of〈D1, . . . , [Di,Di +w], . . . ,Dn〉 is not empty
and tries to decrease the upper bound in a symmetric way.

3B-consistency filtering algorithms, used for example in Interlog, Ilog Solver or
Numerica, can be derived from Fig. 1 by instantiating operatorOp to Op3B as defined
in Operator 3.

Operator 3 (kB(w)-consistency filtering operator: OpkB(w)). Let P = 〈X ,D,C〉, the
filtering operatorOpkB(w)(P), with k � 3, is defined as follows:

OpkB(w)(P)= 〈X ,D′,C〉, k � 3.

D′ being computed as follows:

D′ :=D;
for i = 1, . . . , n do

while D′
i = ∅ ∧Φ|k−1|B(w)

(

ψ(D′, i,w)
)

= ∅ do

D′
i :=D′

i +w;
while D′

i = ∅ ∧Φ|k−1|B(w)
(

ψ(D′, i,w)
)

= ∅ do

D′
i :=D′

i −w;
endfor

Fig. 3 shows how 3B(w)-filtering uses 2B-filtering.

120 Y. Lebbah, O. Lhomme / Artificial Intelligence 139 (2002) 109–132

Fig. 3. 3B(w)-filtering on the constraint system{x2 + y2 = 1, y = x2}.

Implementations using this schema may be optimized considerably, but we do not
need to go into details here. The reader is referred to [32] for the initial algorithm,
and to [12] which studies the complexity of an unpublished implementation we used
for years (see for example [30]) and that is more efficient than the algorithm published
in [32].

The algorithm that achieves box-consistency is closely related to 3B-consistency.
Indeed, box-consistency can be seen as a kind of one-way 3B-consistency limited to one
constraint. The reader can found in [14] a theoretical comparison between box-consistency
and 3B-consistency.

3. Acceleration of filtering techniques

The question of choosing the best filtering algorithm for a given constraint system is an
open problem. Some preliminary answers may come from the observation that the above
fixed point algorithms suffer from two main drawbacks, which are tightly related:

• the existence of “slow convergences”, leading to unacceptable response times for
certain constraint systems;

• “early quiescence” [17], i.e., the algorithm stops before reaching a good approximation
of the set of possible values.

The focus of this paper is on the first drawback. Its acuteness varies according to theOp
operator:

Opnat Due to its local view of constraints,Opnat often suffers from early quiescence, but
its simplicity makes it the most efficient operator to compute, and many problems

Y. Lebbah, O. Lhomme / Artificial Intelligence 139 (2002) 109–132 121

are best solved by this filtering operator (e.g., Moreaux problem [46]). At first
sight, one could think that slow convergence phenomena do not occur very often
with Opnat. It is true that early quiescence ofOpnat is far more frequent than
slow convergence. However,Opnat is typically interleaved with a tree search
(or is called from inside another higher-order filtering algorithm). During this
interleaved process, slow convergence phenomena may occur and considerably
increase the required computing time.

Opbox The comments above remain true forOpbox, although it may take more time to be
computed and may perform some stronger pruning in some cases.

OpTay The interval Newton operator, on the one hand, may have a very efficient behavior.
It may have an asymptotically quadratic convergence when it is used near the
solution. In our experience, quadratic convergence is essential to compute precise
roots of nonlinear systems of equations.

On the other hand, far from the solution, the Jacobi matrix has a great chance
of being singular, which typically leads to the “early quiescence” problem. Hence
OpTay does not have really slow convergence problems, but it needs expensive
computation since the preconditioning of the Jacobi matrix needs to compute an
inversion of its midpoint matrix. On some problems like Moreaux problem [46]
with huge dimensionn � 320, OpTay is very expensive, whereas byOpnat the
solution is found quickly.

OpkB(w) kB(w)-consistency filtering algorithms may perform a very strong pruning,
making the tree-search almost useless for many problems.

For example, we have tried 4B(w)-filtering over the transistor problem [41,43].
It finds the unique solution, without search, in the same cpu time as the 3B(w)-
filtering + search method used in [41]. We have also tried 4B(w)-filtering over
the benchmarks listed in [45]. They are all solved without search (onlyp choice
points are made when the system hasp + 1 isolated solutions). Unfortunately,
most of the time slow convergence phenomena occur during akB(w)-filtering.

The different filtering algorithms are thus complementary and the more robust way to
solve a problem is probably to use several of them together. In the fixed point schema of
Fig. 1, the operatorOp would be the result of the composition of some operators above. In
the remainder of this section, we focus on the problem of slow convergence that occurs in
Opnat andOpkB(w).

The observation of many slow convergences of those algorithms led us to notice
that some kinds of “regularity” often exist in a slow convergence phenomenon. Our
intuition was that such regularities in the behavior of algorithms could be exploited to
optimize their convergence. As seen in Section 2, the filtering algorithms are abstracted
through a sequence of interval vectors. Accelerating a filtering algorithm thus consists in
transforming that sequence into another sequence, hoping it converges faster. In numerical
analysis, engineers use such transformation methods. Unfortunately, they cannot be sure of
the reliability of their results. But this does not change the essence of usual floating-point
computation: unreliability is everywhere! For filtering techniques, the completeness of the

122 Y. Lebbah, O. Lhomme / Artificial Intelligence 139 (2002) 109–132

results must be guaranteed, or in other words, no solution of the CSP can be lost. Thus the
question of reliability becomes crucial. This leads us to define areliable transformation.

Definition 3 (Reliable transformation). Let {Sn} be a sequence that is complete for a set
of solutionsSol: ∀k,Sol⊆ Sk . Let A be a transformation and let{Tn} = A({Sn}). A is a
reliable transformation for{Sn} w.r.t. Sol if and only if

∀k, Sol⊆ Tk.

The practical interest of a reliable transformation is directly related to its ability to
accelerate the greatest number of sequences. Acceleration of a sequence is traditionally
defined in terms of improvement of the convergence order of the sequence. Convergence
order characterizes the asymptotic behavior of the sequences. (See Section 3.2 for a formal
definition of the convergence order.) In addition to convergence order, some practical
criteria may be of importance, like, for example, the time needed to compute a term of
a sequence.

To build a reliable transformation that accelerates the original sequence, we will exploit
some regularities in the sequence. When we detect a regularity in the filtering sequence, the
general idea is to assume that this regularity will continue to appear in the following part of
the sequence. The regularities that we are looking for are those which allow computations
to be saved. A first kind of regularity that we may want to exploit is cyclicity. Section 3.1
summarizes a previous work based on that idea. Another kind of regularity, that can be
caught by extrapolation methods, is then developed in Section 3.2.

3.1. A previous work: dynamic cycle simplification

This subsection summarizes a previous work [34,35], built on the idea that there is
a strong connection between the existence of cyclic phenomena and slow convergence.
More precisely, slow convergence phenomena move very often into cyclic phenomena after
a transient period (a kind of stabilization step). The main goal is to dynamically identify
cyclic phenomena while executing a filtering algorithm and then to simplify them in order
to improve performance.

This subsection is more especially dedicated to the acceleration ofOpnat and Opbox
algorithms, although:

• a direct use of those accelerated algorithms also leads to significant gain in speed
for kB(w)-filtering algorithms since they typically require numerous computations of
them;

• this approach could be generalized to identify cyclic phenomena inkB(w)-filtering
algorithms.

Considering the application ofOp2B over Di , there may exist several projection
functions that perform a reduction of the domain of a given variable. AsOp2B performs an
intersection, and since domains are intervals, there may be 0, 1 or 2 projection functions
of interest for each variable. (One that gives the greatest lower bound, one that gives the

Y. Lebbah, O. Lhomme / Artificial Intelligence 139 (2002) 109–132 123

lowest upper bound.) Call these projection functionsrelevantfor Di , and denote byRi the
set of those relevant projection functions forDi .

Thus we have
⋂

f∈Ri f (Di)= Op2B(Di); that is, if we know in advance all theRi , we
can computeΦ2B(D)more efficiently by applying only relevant projection functions. This
is precisely the case in a cyclic phenomenon.

We will say we have a cyclic phenomenon of periodp when:

∀i < N, Ri+p =Ri ,

whereN is a “big” number.
Now, considerRi andRi+1. If a projection function is inRi+1, this is due to the

reduction of domains performed by some projection functions inRi . We will say that
f ∈ Rj depends ong ∈ Ri , wherej > i, denoted byg→ f if and only if g = f andg
computes the projection over a variable that belongs tovar(f).

The dependency graph is the graph whose vertices are pairs〈f, i〉, wheref ∈ Ri ,
and arcs are dependency links. (See Fig. 4(a).) If we assume that we are in a cyclic
phenomenon, then the graph is cyclic. (See Fig. 4(b) where0̂ denotes all the stepsi
such thati mod 3= 0.) According to this assumption, two types of simplification can be
performed:

• Avoid the application of non-relevantprojection functions.
• Postpone some projection functions: a vertex〈f, i〉 which does not have any successor

in the dynamic dependency graph corresponds to a projection function that can be
postponed. Such a vertex can be removed from the dynamic dependency graph.
Applying this principle recursively will remove all non-cyclic paths from the graph.
For instance, in graph (b) of Fig. 4, all white arrows will be pruned.
When a vertex is removed, the corresponding projection function is pushed onto a
stack. (The removing order must be preserved.) Then, it suffices to iterate on the
simplified cycle until a fixed point is reached, and, when the fixed point has been
reached, to evaluate the stacked projection functions.

The transformation that corresponds to the above two simplifications together is clearly
a reliable transformation. It does not change the convergence order, but is in general
an accelerating transformation. In [34] first experimental results are reported, gains in

Fig. 4. Dynamic dependency graphs.

124 Y. Lebbah, O. Lhomme / Artificial Intelligence 139 (2002) 109–132

efficiency range from 6 to 20 times faster for 2B-filtering and 3B(w)-filtering. More
complete experiments have been performed in [23], but, for the sake of simplicity, only the
first simplification (applying only relevant projection functions) has been tried. Different
combinations of several improvements of 2B-filtering are tested. For all problems, the
fastest combination uses cycle simplification. Ratio in CPU time varies from 1 to 20
compared with the same combination without cycle simplification.

3.2. Extrapolation

The previous section aims at exploiting cyclicity in the way projection functions are
applied. The gain is in the computation of each term of{Dn}, but the speed of convergence
of Dn is unchanged. Now we address how to accelerate the convergence of{Dn}.

{Dn} is a sequence of intervals. Numerical analysis provides different mathematical
tools for accelerating the convergence of sequences of real numbers. Extrapolation methods
are especially interesting for our purposes, but{Dn} is a sequence of interval vectors and
there does not exist any extrapolation method to accelerate interval sequences. Nevertheless
an interval can be seen as two reals andD can be seen as a 2-column matrix of reals. The
first column is the lower bounds, and the second the upper bounds. Thus we can apply
the existing extrapolation methods. The field of extrapolation methods, for real number
sequences, is first summarized; for a deeper overview see [10]. Then we will show how to
use extrapolation methods for accelerating filtering algorithms.

3.2.1. Extrapolation methods
Let {Sn} = (S1, S2, . . .) be a sequence of real numbers. A sequence{Sn} converges if

and only if it has a limitS: limn→∞ Sn = S. We say that the numeric sequence{Sn} has
the orderr � 1 if there exist two finite constantsA andB such that7

A� lim
n→∞

|Sn+1 − S|
|Sn − S|r

� B.

A quadratic sequence is a sequence which has the order 2. We say that a sequence is linear
if

lim
n→∞

(xn+1 − x)
(xn − x)

= λ, with 0< |λ|< 1.

The convergence order enables us to know exactly the convergence speed of the sequence.
For example [8], for linear sequences withλ = 0.999, we obtain a significant number
every 2500 iterations. Whereas, for sequences of orderr = 1.01, the number of significant
numbers doubles every 70 iterations. These examples show the interest of using sequences
of orderr > 1.

Accelerating the convergence of a sequence{Sn} amounts of applying a transformation
A which produces a new sequence{Tn}: {Tn} =A({Sn}).

7 For more details, see [10].

Y. Lebbah, O. Lhomme / Artificial Intelligence 139 (2002) 109–132 125

As given in [10], in order to present some practical interest, the new sequence{Tn} must
exhibit, at least for some particular classes of convergent sequences{Sn}, the following
properties:

(1) {Tn} converges to the same limit as{Sn}: limn→∞ Tn = limn→∞ Sn.
(2) {Tn} converges faster than{Sn}: limn→∞ (Tn − S)/(Sn − S)= 0.

These properties do not hold for all converging sequences. Particularly, a universal
transformationA accelerating all converging sequences cannot exist [18]. Thus any
transformation can accelerate a limited class of sequences. This leads us to a so-called
kernel8 of the transformation which is the set of convergent sequences(Sn) for which
∃N,∀n"N,Tn = S where{Tn} =A({Sn}).

A well-known transformation is the iterated+2 process from Aitken [1]

{Tn} =+2({Sn}),

which gives a sequence{Tn} of nth term

Tn =
SnSn+2 − S2

n+1

Sn+2 − 2Sn+1 + Sn
.

The kernel of+2 process is the set of the converging sequences which have the form
Sn = S + αλn, whereα = 0 andλ = 1. Aitken’s transformation has a nice property [10]: it
transforms sequences with linear convergence into sequences with quadratic convergence.

We can apply the transformation several times, leading to a new transformation. For
example, we can apply+2 twice, giving+2(+2({Sn})). Many acceleration transformations
(G-algorithm, ε-algorithm, θ -algorithm,overholt-process,. . .) are multiple application
of transformations. See [11] and [9] for attempts to build a unifying framework of
transformation. Scalar transformations have been generalized to the vectoral and matrix
cases.

Two kinds of optimization for filtering algorithms are now given. The first one makes
a direct use of extrapolation methods and leads to a transformation which is not reliable.
The second one is a reliable transformation.

3.2.2. Applying extrapolation directly
Let {Dn} be a sequence generated by a filtering algorithm. We can naively apply

extrapolation method directly on the main sequence{Dn}. The experimental results given
in the rest of the paper are for scalar extrapolations, which consider each element of the
matrix—each bound of a domain— independently of the others. For example, the scalar
+2 process uses for each bound of domain the last three different values to extrapolate a
value.

8 The definition of the kernel given here considers only converging sequences.

126 Y. Lebbah, O. Lhomme / Artificial Intelligence 139 (2002) 109–132

Accelerating directly the convergence of{Dn} can dramatically boost the convergence,
as illustrated in the following problem:

{

x ∗ y + t − 2∗ z= 4, x ∗ sin(z)+ y ∗ cos(t)= 0,
x − y + cos(z)2 = 0, x ∗ y ∗ z− 2∗ t = 0,
x ∈ [0,1000], y ∈ [0,1000], z ∈ [0,π], t ∈ [0,π].

The following table shows the domain of the variablet in the 278th, 279th, 280th and 281st
iterations of 3B-filtering (after a few seconds on a Sun Sparc 5). The precision obtained is
about 10−4.

it t

278 [3.14133342842583. . . ,3.14159265358979. . .]
279 [3.14134152921220. . . ,3.14159265358979. . .]
280 [3.14134937684900. . . ,3.14159265358979. . .]
281 [3.14135697924715. . . ,3.14159265358979. . .]

By applying Aitken’s process on the domains of the iterations 278,279 and 280,
we obtain the domain below. The precision of this extrapolated domain is 10−14. Such
precision has not been obtained after 5 hours of the 3B-filtering algorithm without
extrapolation.

t

[3.14159265358977. . . ,3.14159265358979. . .]

Let’s take another example:


















y − x = 0;
y − 1.001∗ x = 0;
exp(y)− z1 = 0;
exp(z1)− z2 = 0;
x ∈ [−108,+108];y ∈ [−108,+108]; z1 ∈ [−108,+108]; z2 ∈ [−108,+108];

Table 1 shows the domain of the variablesx andy in the first, second and third iterations
of 5B(w)-filtering. The precision obtained is about 10−6.

Table 1
5B(w)-filtering on the problem above

Iteration domains forx andy

1 x = [−1.1873006558144143e−06,1.0460589320202715e−06]
y = [−1.1884879564702285e−06,1.0471049909522916e−06]

2 x = [−1.1778448513063027e−06,1.0377279935029648e−06]
y = [−1.1790226961576087e−06,1.0387657214964676e−06]

3 x = [−1.1684643539568771e−06,1.0294634035769800e−06]
y = [−1.1696328183108338e−06,1.0304928669805568e−06]

Y. Lebbah, O. Lhomme / Artificial Intelligence 139 (2002) 109–132 127

By applying the+2 process on the domain of the iterations 1, 2 and 3, we obtain the
domains below. The precision of this extrapolated domain is 10−19. Such a precision has
not been obtained after many hours of the 5B(w)-filtering algorithm without extrapolation.

x = [−9.83e−19,3.19e−19]
y = [−8.93e−19,−8.85e−19]

This result is not surprising since we have the following proposition:

Theorem 1 (Convergence property of Aitken’s process [7]).If we apply+2 on some
sequence(Sn) which converges toS and if we have:

lim
n→∞

+Sn+1

+Sn
 = 1

then the sequence+2((Sn)) converges toS, and more quickly than(Sn).

Note that, in the solution provided by Aitken’s process, we have a valid result forx,
but not for y. This example shows that extrapolation methods can lose solutions. The
extrapolated sequence may or may not converge to the same limit as the initial sequence.
This anomaly can be explained by the kernel of the transformation: when the initial
sequence belongs to the kernel, then we are sure that the extrapolated sequence converges
to the same limit. Furthermore, intuition suggests that, if the initial sequence is “close” to
the kernel then there are good hopes to get the same limit. However, it may be the case that
the limits are quite different. This is cumbersome for the filtering algorithms which must
ensure that no solution is lost.

We propose below a reliable transformation that makes use of extrapolation.

3.2.3. Reliable transformation by extrapolation
The reliable transformation presented in this section is related to the domain sequences

generated bykB(w)-filtering algorithms. For the sake of simplicity, we will only deal with
3B(w)-filtering, but generalisation is straightforward.

This transformation is reliable thanks to the proof-by-contradiction mechanism used in
3B(w)-algorithm: it tries to prove—with a 2B-filtering—that no solution exists in a subpart
of a domain. If such a proof is found, then the subpart is removed from the domain, else
the subpart is not removed. The point is that we may waste a lot of time trying to find
a proof that does not exist. If we could predict with good probability that such a proof
does not exist, we could save time in not trying to find it. Extrapolation methods can do
the job. The idea is simply that if an extrapolated sequence converges to a 2B-satisfiable
CSP (which can be quickly known), then it is probably a good idea not to try to prove
the 2B-unsatisfiability. This can be done by defining a new consistency, calledP2B(w)-
consistency, that is built upon the existence of a predicate 2B-predict(D) that predicts
2B-satisfiability. (P2B stands for 2B based onPrediction.)

Definition 4 (P2B-consistency). A CSP〈X ,D,C〉 is P2B-consistent if and only if it is
2B-consistent or 2B-predict(D) is true.

128 Y. Lebbah, O. Lhomme / Artificial Intelligence 139 (2002) 109–132

OpP2B(Dt)=
{

Dt−1 if 2B-predict(D1, . . . ,Dt−1)

Op2B(Dt−1) otherwise

Fig. 5.P2B-consistency filtering schema.

2B-predict(D) may use extrapolation methods, for example the+2 process. Thus,
the prediction 2B-predict(D) may be wrong, but from the Proposition 1 we know that
a filtering algorithm byP2B-consistency cannot lose any solutions.

Proposition 1.ΦP2B(D)⊇Φ2B(D).

The proof is straightforward from the definition.
A filtering algorithm that achievesP2B-consistency can be a fixed point algorithm

whereOp is as defined in Fig. 5. The main difference withOp2B is, before testing for 2B-
satisfiability, to try in the function 2B-predict, to predict 2B-satisfiability by extrapolation
methods. Following that idea, the algorithm schema forFast-3B(w)-consistency can be
modified, as given in Operator 4. (We may obtain in the same way the algorithm schema
for Fast-kB(w)-consistency. It needs aP -kB operator that applies an extrapolator over the
domains generated by thekB operator.)

Operator 4. Let P = 〈X ,D,C〉, the filtering operatorOpFast-3B(w) is defined as follows:

OpFast-3B(w)(P)= 〈X ,D′,C〉, k � 3.

D′ being computed as follows:

D′ :=D;
for i = 1, . . . , n do

while D′
i = ∅ ∧ΦP2B

(

ψ(D′, i,w)
)

= ∅ ∧ Φ2B
(

ψ(D′, i,w)
)

= ∅
do D′

i :=D′
i +w;

while D′
i = ∅ ∧ΦP2B

(

ψ(D′, i,w)
)

= ∅ ∧ Φ2B
(

ψ(D′, i,w)
)

= ∅
do D′

i :=D′
i −w;

endfor

The following proposition means that this algorithm schema allows acceleration
methods to be applied while keeping the completeness property of filtering algorithms.
We thus have a reliable transformation.

Proposition 2 (Completeness).Fast-kB(w)-algorithm does not lose any solutions.

The proof is built on the fact that a domain is reduced only when we have a proof—
by |k − 1|B(w)-satisfiability and without extrapolation—that no solution exists for the
removed part.

Y. Lebbah, O. Lhomme / Artificial Intelligence 139 (2002) 109–132 129

Table 2
Fast-3B(w)-filtering results over some benchmarks

Problem nbr−π(Fast-kB)
nbr−π(kB)

time(Fast-kB)
time(kB)

brown 0.10 0.11
broyden(20) 0.28 0.47
caprasse 0.46 0.60
chemistry 0.61 0.69
cosnard(320) 1.00 1.09
neuro-100 0.53 0.66

The counterpart of this result is that improvements in efficiency ofFast-kB(w)-filtering
compared withkB(w)-filtering may be less satisfactory than improvement provided
by direct use of extrapolation. Another counterpart is that the greatest fixed point of
OpFast-kB(w) is generally greater than the greatest fixed point ofOpkB(w).

In practice the overhead in time has always been negligible and the improvement in
efficiency may vary from 1 to 10. Table 2 comparesFast-3B-filtering with 3B-filtering
over some problems taken from [23,46]. It gives the ratios in time (time(Fast-kB)

time(kB)) and in

number of projection function calls (nbr−π(Fast-kB)
nbr−π(kB)) for the two algorithms.

4. Related works

Two methods commonly used for solving numeric CSPs can be seen as reliable
transformations: preconditioning and adding redundant constraints.

4.1. Preconditioning in the interval Newton operator

Numeric CSPs allow general numeric problems to be expressed, without any limitation
on the form of the constraints. In numerical analysis, many specific cases of numeric CSPs
have been studied. The preconditioning of squared linear systems of equations is among
the most interesting results for its practical importance.

We say that a linear system of equationAx = b is well conditioned when

cond(A)= ‖A‖
∥

∥A−1
∥

∥

is near 1.
In practice, a well conditioned system is better solved than an ill conditioned one.

Preconditioning methods transform the systemAx = b to a new systemA′x = b′ which
has the same solution but is better conditioned than the first system. SolvingA′x = b′ gives
better precision and more reliable computations than solving the original system. A classic
preconditioning method consists of multiplying the two sides of the systemAx = b by an
approximate inverseM of A. Thus we haveA′ =MA andb′ =Mb.

In interval analysis, the interest of preconditioning is not reliability, which already exists
in interval methods, but precision and convergence. As already presented in Section 2.3,
preconditioning is a key component of the interval Newton method. Experimental results

130 Y. Lebbah, O. Lhomme / Artificial Intelligence 139 (2002) 109–132

(for example see [28,45]) show the effectiveness of preconditioning for solving squared
nonlinear systems of equations. Many theoretical results can be found in [2,28,38,39].

4.2. Redundant constraints

A classic reliable transformation is the adding of some redundant constraints to the
original constraint system. This approach is very often used for discrete CSPs to accelerate
the algorithms. It is not the case for interval analysis methods over numeric CSPs, since
they exploit the fact that the system is square. For artificial intelligence methods over
numeric CSPs, Benhamou and Granvilliers [4] propose to add some redundant polynomial
constraints that are automatically generated by a depth-bounded Groebner bases algorithm.

5. Conclusion and perspectives

Our aim in this paper was to accelerate existing filtering algorithms. That led us
to the concept of reliable transformation over the filtering algorithms, which preserves
completeness of the filtering algorithms. Two kinds of reliable transformation have been
proposed. They exploit some regularities in the behavior of the filtering algorithms. The
first one is based on cyclic phenomena in the propagation queue. The second one is an
extrapolation method: it tries to find a numeric equation satisfied by the propagation queue
and then solves it.

A first perspective is to detect other kinds of regularities and to exploit them.
A reliable transformation always has some intrinsic limitations; for example, logarithmic
sequences cannot be accelerated by extrapolation methods. However, in that case, the
cyclic phenomena simplification may improve the running time. Thus, combining different
reliable transformations to try to accumulate the advantages of each transformation may
be of high interest. Finally, a direction of research that could be fruitful comes from the
remark that algorithms are designed with efficiency and simplicity in mind only. Regularity
is never considered as an issue. Perhaps it is time to consider it as an issue, and to try to
make more regular the existing algorithms in order to exploit their new regularities.

Acknowledgements

We would like to thank Christian Bliek, Michel Rueher and Patrick Taillibert for their
constructive comments on an early draft of the paper, and Kathleen Callaway for a lot
of English corrections. This work has been partly supported by the Ecole des Mines de
Nantes.

References

[1] A. Aitken, On Bernoulli’s numerical solution of algebraic equations, Proc. Roy. Soc. Edinburgh 46 (1926)
289–305.

[2] G. Alefeld, J. Hezberger (Eds.), Introduction to Interval Computations, Academic Press, New York, 1983.

Y. Lebbah, O. Lhomme / Artificial Intelligence 139 (2002) 109–132 131

[3] A. Babichev, O. Kadyrova, T. Kashevarova, A.S. Leshchenko, A.L. Semenov, UniCalc, Anovel approach
to solving systems of algebraic equations, Reliable Comput. 2 (1993) 29–47.

[4] F. Benhamou, L. Granvilliers, Automatic generation of numerical redundancies for non-linear constraint
solving, Reliable Computing 3 (3) (1997) 335–344.

[5] F. Benhamou, W. Older, Applying interval arithmetic to real, integer and boolean constraints, J. Logic
Programming 32 (1) (1997) 1–24.

[6] F. Benhamou, D. McAllester, P. Van Hentenryck, CLP(intervals) revisited, in: Proc. 1994 International Logic
Programming Symposium, Ithaca, NY, 1994, pp. 124–138.

[7] C. Brezinski (Ed.), Algorithmes d’Accélération de la Convergence: Étude Numériques, Technip, 1978.
[8] C. Brezinski (Ed.), Introduction à la Pratique du Calcul Numérique, Dunod Université, Dunod, Paris, 1988.
[9] C. Brezinski, A.C. Matos, Derivation of extrapolation algorithms based on error estimates, J. Comput. Appl.

Math. 66 (1996) 5–26.
[10] C. Brezinski, R. Zaglia (Eds.), Extrapolation Methods, Studies in Computational Mathematics, North-

Holland, Amsterdam, 1990.
[11] C. Brezinski, R. Zaglia, A general extrapolation procedure revisited, Adv. Comput. Math. 2 (1994) 461–477.
[12] L. Bordeaux, E. Monfroy, F. Benhamou, Improved bounds on the complexity of kB-consistency, in: Proc.

IJCAI-01, Seattle, WA, Morgan Kaufmann, San Mateo, CA, 2001, pp. 303–308.
[13] B. Botella, P. Taillibert, Interlog: Constraint logic programming on numeric intervals, in: Proc. 3rd Inter-

national Workshop on Software Engineering, Artificial Intelligence and Expert Systems, Oberammergau,
1993.

[14] H. Collavizza, F. Delobel, M. Rueher, A note on partial consistencies over continuous domains solving
techniques, in: Proc. Fourth International Conference on Principles and Practice of Constraint Programming
(CP-98), Springer, Berlin, 1998, pp. 147–161.

[15] A. Colmerauer, Spécifications de Prolog IV, Tech. Rept., GIA, Faculté des Sciences de Luminy, Marseille,
France, 1994.

[16] Dassault Electronique, Interlog 1.0: Guide d’utilisation, Tech. Rept., Dassault Electronique, Saint Cloud,
France, 1991.

[17] E. Davis, Constraint propagation with interval labels, Artificial Intelligence 32 (1987) 281–331.
[18] J. Delahaye, B. Germain-Bonne, Résultats négatifs en accélération de la convergence, Numer. Math. 35

(1980) 443–457.
[19] B. Faltings, Arc consistency for continuous variables, Artificial Intelligence 60 (2) (1994) 363–376.
[20] B. Faltings, E. Gelle, Local consistency for ternary numeric constraints, in: Proc. IJCAI-97, Nagoya, Japan,

Vol. 1, 1997, pp. 392–397.
[21] E. Freuder, Synthesizing constraint expressions, Comm. ACM 21 (1978) 958–966.
[22] E. Freuder, A sufficient condition for backtrack-bounded search, J. ACM 32 (4) (1985) 755–761.
[23] L. Granvilliers, Consistances locales et transformations symboliques de contraintes d’intervalles, Ph.D.

Thesis, Université d’Orléans, France, 1998.
[24] E. Hansen (Ed.), Global Optimization Using Interval Analysis, Marcel Dekker, New York, 1992.
[25] D. Haroud, B. Faltings, Consistency techniques for continuous constraints, Constraints 1 (1–2) (1996) 85–

118.
[26] E. Hyvönen, Constraint reasoning based on interval arithmetic: The tolerance propagation approach,

Artificial Intelligence 58 (1992) 71–112.
[27] ILOG Solver 4.0, Reference Manual, 1997.
[28] R.B. Kearfott, Rigorous Global Search: Continuous Problems, Kluwer Academic, Dordrecht, 1996.
[29] V. Kreinovich, A. Lakeyev, J. Rohn, P. Kahl, Computational Complexity and Feasibility of Data Processing

and Interval Computations, Kluwer, Dordrecht, 1998.
[30] Y. Lebbah, Contribution à la résolution de contraintes par consistence forte, Ph.D. Thesis, Université de

Nantes 2, Nantes, France, 1994.
[31] Y. Lebbah, O. Lhomme, Acceleration methods for numeric CSPs, in: Proc. AAAI-98, Madison, WI, 1998,

pp. 19–24.
[32] O. Lhomme, Consistency techniques for numeric CSPs, in: Proc. IJCAI-93, Chambéry, France, 1993,

pp. 232–238.
[33] O. Lhomme, Contribution à la résolution de contraintes sur les réels par propagation d’intervalles, Ph.D.

Thesis, Université de Nice—Sophia Antipolis, 1994.

132 Y. Lebbah, O. Lhomme / Artificial Intelligence 139 (2002) 109–132

[34] O. Lhomme, A. Gotlieb, M. Rueher, Dynamic optimization of interval narrowing algorithms, J. Logic
Programming 37 (1–3) (1998) 165–183.

[35] O. Lhomme, A. Gotlieb, M. Rueher, P. Taillibert, Boosting the interval narrowing algorithm, in: Proc. 1996
Joint International Conference and Symposium on Logic Programming, MIT Press, Cambridge, MA, 1996,
pp. 378–392.

[36] A. Mackworth, Consistency in networks of relations, Artificial Intelligence 8 (1) (1977) 99–118.
[37] R. Moore (Ed.), Interval Analysis, Prentice Hall, Englewood Cliffs, NJ, 1966.
[38] A. Neumaier, Interval Methods for Systems of Equations, Encyclopedia of Mathematics and its Applica-

tions, Vol. 37, Cambridge University Press, Cambridge, UK, 1990.
[39] A. Neumaier, A simple derivation of the Hansen-Bliek-Rohn-Ning-Kearfott enclosure for linear interval

equations, Reliable Computing 5 (1999) 131–136.
[40] W. Older, A. Velino, Extending prolog with constraint arithmetic on real intervals, in: Proc. IEEE Canadian

Conference on Electrical and Computer Engineering, IEEE Computer Society Press, Los Alamitos, CA,
1990, pp. 14.1.1–14.1.4.

[41] J. Puget, P. Van Hentenryck, A constraints satisfaction approach to a circuit design problem, J. Global
Optim. 13 (1) (1998) 75–93.

[42] H. Ratschek, J. Rokne, Computer Methods for the Range of Functions, Ellis Horwood Ser.: Math. Appl.,
Ellis Horwood, Chichester, 1984.

[43] H. Ratschek, J. Rokne, Experiments using interval analysis for solving a circuit design problem, J. Global
Optim. 3 (1993) 501–518.

[44] G. Sidebottom, W. Havens, Hierarchical arc consistency applied to numeric constraint processing in logic
programming, Technical Report CSS-IS TR 91-06, Center for Systems Science, Simon Fraser University,
Burnaby, BC, 1991.

[45] P. Van Hentenryck, D. McAllester, D. Kapur, Solving polynomial systems using branch and prune approach,
SIAM, J. Numer. Anal. 34 (2) (1997) 797–827.

[46] P. Van Hentenryck, L. Michel, Y. Deville, Numerica: A Modeling Language for Global Optimization, MIT
Press, Cambridge MA, 1997.

