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Abstract

Recently, a general definition of arc consistency (AC) for soft constraint frameworks
has been proposed [1]. In this paper we specialize this definition to weighted CSP
and introduce two O(ed3) enforcing algorithms. Then, we refine the definition and
introduce a stronger form of arc consistency (AC*) along with two O(n2d2 + ed3)
algorithms. As in the CSP case, an important application of AC is to combine it
with search. We empirically demonstrate that a branch and bound algorithm that
maintains either AC or AC* is a state-of-the-art general solver for weighted CSP.
Our experiments cover binary Max-CSP and Max-SAT problems.

Key words: Soft constraints, Arc consistency, Branch and Bound, Combinatorial
optimization

1 Introduction

Constraint satisfaction problems (CSPs) involve the assignment of values to
variables subject to a set of constraints [2]. Since many interesting problems
can be naturally modeled as CSPs, the design of efficient CSP solvers has been
an active line of research in the last thirty years. Most state-of-the-art solvers
can be described as generic search procedures which maintain some form of
local consistency during search. This is a highly desirable feature, because it
makes easier to describe, implement and compare different algorithms. There

∗ Corresponding author.
Email addresses: larrosa@lsi.upc.es (Javier Larrosa),

tschiex@toulouse.inra.fr (Thomas Schiex).
1 Research funded by the Spanish CICYT under project TIC2002-04470-C03-01.
2 Research funded by the PICASSO French/Spanish integrated action 05158SM.

Preprint submitted to Elsevier Science 21 February 2004



are several local consistency properties among which arc consistency (AC)
plays a preeminent role.

In the last few years, the CSP framework has been augmented with so-called
soft constraints with which it is possible to express preferences among solu-
tions [3,4]. Soft constraint frameworks associate costs to tuples and the goal
is to find a complete assignment with minimum aggregated cost. Costs from
different constraints are aggregated with a domain dependent operator. Ex-
tending the notion of local consistency to soft constraint frameworks has been
a challenge in the last few years. The extension is direct as long as the ag-
gregation operator is idempotent, but difficulties arise in the non-idempotent
case. In this paper, we focus on the weighted constraint satisfaction problem
(WCSP), a well known non-idempotent soft-constraint framework with several
applications in domains such as resource allocation [5], scheduling [6], com-
binatorial auctions [7], bioinformatics [8], CP networks [9] and probabilistic
reasoning [10]. Some current solvers for WCSP can be found in [11–15,6].

An extension of AC which can deal with non-idempotent aggregation was
introduced in [1,16]. This definition has three desirable properties: (i) it can be
enforced in polynomial time, (ii) the process of enforcing AC reveals unfeasible
values that can be pruned and (iii) it reduces to the standard definition in the
idempotent operator case. The only significant property lost compared to the
classical case is the confluence of the enforcing process: one problem may have
several arc consistent closures. In this paper, we take this work and make a new
step into the practical application of its ideas. Under the usual assumption
of binary problems, we introduce two AC algorithms with time complexity
O(ed3) (e is the number of constraints and d is the largest domain size),
which is an obvious improvement over the O(e2d4) algorithm given in [1]. The
algorithms are based on AC3 and AC2001, respectively. Next, we introduce an
alternative stronger definition of arc consistency (AC*) along with its enforcing
algorithms. Our AC* algorithms have complexity O(n2d2 + ed3) (n is the
number of variables). Although asymptotically equivalent in the general case,
we show that AC2001-based algorithms improve over AC3-based algorithms
under certain conditions. Some of these results were first proposed in [17].

Most current WCSP solvers require a procedural description of the work they
perform at every visited node. In some cases, it is even necessary to give de-
tails of data structures and low level implementation details. Our work aims
at the design of efficient yet semantically well defined solvers, where the lower
bound computation done at each node is not only defined operationally, but
by the enforcing of a specific property. Each AC definition yields a different
solver (namely, a branch and bound which enforces at each visited node the
corresponding AC definition). Since the details of how AC is enforced can be
omitted, the user can understand the algorithm without getting into imple-
mentation details.

2



It is important to mention that our experiments indicate that, despite their
conceptual simplicity, these solvers are competitive with current approaches,
especially in highly over-constrained problems. Our experiments include bi-
nary Max-CSP and Max-2SAT problems. In the later, AC-based branch and
bound can outperform specialized algorithms by orders of magnitude.

An additional contribution of this paper is a slightly modified definition of the
WCSP framework which allows the specification of a maximum acceptable
global cost. As we discuss, this new definition fills an existing gap between
theoretical and algorithmic papers on WCSP.

The structure of the paper is as follows: Section 2 gives preliminary definitions.
Section 3 motivates the use of arc-consistency with soft constraints. Sections 4
and 5 define AC and introduce two enforcing algorithms. Section 6 introduces
AC* and the corresponding enforcing algorithms. Section 7 presents experi-
mental results of using arc consistency algorithms within a branch and bound
solver. Finally, Section 8 gives conclusions and directions of future work.

2 Preliminaries

2.1 CSP

A binary constraint satisfaction problem (CSP) is a triple P = (X ,D, C).
X = {1, . . . , n} is a set of variables. Each variable i ∈ X has a finite domain
Di ∈ D of values that can be assigned to it. (i, a) denotes the assignment of
value a ∈ Di to variable i. A tuple t is an assignment to a set of variables.
Actually, t is an ordered set of values assigned to the ordered set of variables
Xt ⊆ X (namely, the k-th element of t is the value assigned to the k-th element
of Xt). For a subset B of Xt, the projection of t over B is noted as t ↓B. C
is a set of unary and binary constraints. A unary constraint Ci is a subset
of Di containing the permitted assignments to variable i. A binary constraint
Cij is a set of pairs from Di × Dj containing the permitted simultaneous
assignments to i and j. Binary constraints are bidirectional (i.e., Cij ∈ C iff
Cji ∈ C and ab ∈ Cij iff ba ∈ Cji). The set of (one or two) variables affected
by a constraint is called its scope. A tuple t is consistent if it satisfies all the
constraints whose scope is included in Xt. It is globally consistent if it can
be extended to a consistent complete assignment. A solution is a consistent
complete assignment. A problem is consistent if it has at least one solution.
Checking the existence of a solution in a CSP is an NP-complete problem.

Definition 1 [18]
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• Node consistency. (i, a) is node consistent if a is permitted by Ci (namely,
a ∈ Ci). Variable i is node consistent if all its domain values are node con-
sistent. A CSP is node consistent (NC) if every variable is node consistent.

• Arc consistency. (i, a) is arc consistent with respect to constraint Cij if it is
node consistent and there is a value b ∈ Dj such that (a, b) ∈ Cij. Such a
value b is called a support of a. Variable i is arc consistent if all its values
are arc consistent with respect to every binary constraint involving i. A CSP
is arc consistent (AC) if every variable is arc consistent.

Arc inconsistent values can be removed, because they cannot participate in
any solution. AC is achieved by removing arc inconsistent values until a fixed
point is reached. If enforcing AC yields an empty domain, the problem has
been proven inconsistent. Else, its consistency remains uncertain, although
the problem size may be reduced. There is a long list of AC algorithms in the
literature. Two well-known examples are: AC3 [18] and AC2001 [19], with time
complexities O(ed3) and O(ed2), respectively (e is the number of constraints
and d is the largest domain size).

State-of-the-art solvers (Ilog Solver, 3 Choco, 4 ...) perform backtracking
search and enforce arc consistency at every visited node. 5 Backtracking occurs
each time AC yields an empty domain. It is well recognized that such feature
is fundamental to their efficiency.

2.2 Weighted CSPs

Valued CSP [3] (as well as semi-ring CSP [4]) extends the classical CSP frame-
work by associating weights (costs) to tuples. In general, costs are specified
by means of a so-called valuation structure. A valuation structure is a triple
S = (E,⊕,�), where E is the set of costs totally ordered by �. The maximum
and minimum costs are noted > and ⊥, respectively. When a tuple has cost >,
it means that it is maximally forbidden. When a tuple has cost ⊥, it is maxi-
mally accepted. ⊕ is a commutative, associative and monotonic operation on
E used to combine costs. ⊥ is the identity element and > is absorbing. A val-
uation structure is idempotent if ∀a ∈ E, (a⊕ a) = a. It is strictly monotonic
if ∀a, b, c ∈ E, s.t.(a � c) ∧ (b 6= >) we have (a⊕ b) � (c⊕ b).

Definition 2 A valued CSP is a tuple P = (S,X ,D, C). The valuation struc-
ture is S = (E,⊕,�). X and D are variables and domains, as in standard
CSP. C is a set of unary and binary cost functions (namely, Ci : Di → E,
Cij : Di ×Dj → E).

3 http://www.ilog.com.
4 http://www.choco-constraints.net.
5 Sometimes, they enforce a weaker for of arc consistency called bound consistency.
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When a constraint C assigns cost > to a tuple t, it means that C forbids t,
otherwise t is permitted by C with the corresponding cost. The cost of a tuple
t, noted V(t), is the aggregation of all applicable costs,

V(t) =
⊕

Cij∈C, {i,j}⊆Xt

Cij(t ↓{i,j})⊕
⊕

Ci∈C, i∈Xt

Ci(t ↓{i})

A tuple t is consistent (also called feasible) if V(t) < >. It is globally consistent
if it can be extended to a consistent complete assignment. A solution is a
consistent complete assignment. The usual task of interest is to find a solution
with minimum cost, which is NP-hard.

Weighted CSP (WCSP) [3,4] is a specific subclass of valued CSP where costs
are natural numbers or infinity (i.e., E = N∪{∞}) and the operator ⊕ is the
standard sum over the natural numbers. Clearly, in the WCSP model ⊥ = 0
and > = ∞. Observe that the addition of finite costs cannot yield infinity.
Therefore, it is impossible in this model to infer global inconsistency out of
them. Consequently, finite costs are useless for filtering purpose where the goal
is to detect and remove global inconsistent values. This is an obstacle in the
characterization of useful local consistency properties leading to filtering algo-
rithms (such as arc consistency in the classical CSP model). People working in
WCSP solvers have overcome this limitation in an ad-hoc manner. Forbidden
tuples do not receive cost ∞ but a finite cost M , where M is a sufficiently
high natural number. Solvers initially aim at finding assignments with cost
less than M . When they find one assignment with a lower cost cost M ′, they
tight their target to assignments with cost less than M ′. Therefore, all these
solvers are implicitly using a modified version of the WCSP model where it is
possible to express a maximum acceptable cost. In this modified model finite
costs can be used to infer global inconsistency and, as a consequence, filter
out values. The first contribution of this paper is the formalization of this
variation of the WCSP model, which will be used in the sequel. First, we de-
fine the corresponding valuation structure S(k), where k defines the maximum
acceptable cost.

Definition 3 S(k) = ([0, 1, . . . , k],⊕,≥) is a valuation structure where,

• k ∈ N− {0} denotes the maximum cost, which is a strictly positive natural
number.

• [0, 1, . . . , k] is the set of costs, which are natural numbers bounded by k.
• ⊕ is the sum of costs. For all a, b ∈ [0, 1, . . . , k],

a⊕ b = min{k, a + b}

• ≥ is the standard order among naturals.

Definition 4 A binary WCSP is a tuple P = (k,X ,D, C). The valuation
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structure is S(k). X and D are variables and domains, as in standard CSP.
C is a set of unary and binary cost functions (namely, Ci : Di → [0, . . . , k],
Cij : Di ×Dj → [0, . . . , k]).
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Fig. 1. Five equivalent WCSPs.

Example 5 Figure 1.a shows a WCSP with valuation structure S(3) (namely,
the set of costs is [0, . . . , 3], with ⊥ = 0 and > = 3). It has two variables
X = {x, y} and three values per domain Di = {a, b, c}. There is one binary
constraint Cxy and two unary constraints Cx and Cy. Unary costs are depicted
inside a circle, beside their domain value. Binary costs are depicted as labeled
edges connecting the corresponding pair of values. Only non-zero costs are
shown. The problem optimal solution is the assignment of value b to both
variables because it has a minimum cost 2. Observe that all other complete
assignments are inconsistent (their valuation is >).

Clearly, WCSP with k = 1 reduces to classical CSP. In addition, S(k) is
idempotent iff k = 1.

For simplicity in our exposition, we assume that every constraint has a different
scope. We also assume that constraints are implemented as tables. Therefore,
it is possible to consult as well as to modify entries. This is done without loss
of generality: in Subsection 5.3 we will show how the addition of a O(ed) data
structure makes all our algorithms feasible for problems where soft constraints
are cost functions given in analytical form (e.g., algebraic expressions).

3 Solving WCSP with Branch and Bound

WCSP are usually solved with branch and bound search, which explores a tree
where each node represents an assignment. Internal nodes stand for partial
assignments and leaves stand for total ones. From an arbitrary node, children
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are obtained by selecting one unassigned variable and assigning one value
for each child (an alternative is to split the variable domain into sets and
consider one set per child). During search, the algorithm keeps the cost of the
best solution found so far, which is an upper bound ub of the problem best
solution. At each node, the algorithm computes a lower bound lb of the best
solution in the subtree below. If lb is higher than or equal to ub, the algorithm
prunes the subtree below the current node, because the current best solution
cannot be improved by extending the current assignment.

It is possible to associate a WCSP subproblem to each node of the search space.
Starting from the original problem and following any branch in the search tree,
each time a variable i is assigned with a value a, cost Ci(a) must be added
to the lower bound and constraint Ci must be removed. In addition, each
constraint Cij must be replaced by an increment to constraint Cj, Cj(b) :=
Cj(b)⊕Cij(a, b) for every b ∈ Dj. Variable i is removed from the set of problem
variables in the current subproblem. The valuation structure of the current
subproblem is S(ub), where ub is the upper bound of the search.

Algorithm 1: Depth-first Branch and Bound

Function BranchAndBound(t, vt, k,X ,D, C)
1. if (X = ∅) then return lb else
2. i :=ChooseVar(X);
3. foreach a ∈ Di do
4. DD := D; CC := C; Nt := t + (i, a); vNt := vt ⊕ Ci(a);
5. LookAhead(i, a, CC);
6. if (LocalConsist(k,X − {i},DD, CC)) then
7. k :=BranchAndBound(Nt, vNt, k,X − {i},DD, CC);

8. return k;

Procedure LookAhead(i, a, CC)
9. CC := CC − {Ci};

10. foreach Cij ∈ CC do
11. foreach b ∈ Dj do Cj(b) := Cj(b)⊕ Cij(a, b);
12. CC := CC − {Cij};

If we have a collection of local consistency properties (such as those proposed
in this paper), we can enforce any of them at every subproblem. Different
choices of local consistency properties and enforcing algorithms yield differ-
ent solving algorithms. If the enforcing algorithm detects global inconsistency
(e.g., produces an empty domain), the current subproblem does not have any
solution (namely, there is no extension of the current assignment with cost be-
low ub). Then, branch and bound search can prune the tree below. Otherwise,
the current node must be expanded and its children must be generated. All
changes made by the local consistency enforcing algorithm in the current sub-
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problem remain in its children. As far as local consistency enforcing preserve
the problem semantics (which is always assumed), this schema is valid with
any search strategy, from the usual depth, breadth or best first, to more sophis-
ticated ones. Generally, this schema can be used to solve problems using any
valuation structure for which local consistency properties are available. This is
the case for so-called fair valuation structures which have been characterized
in [1,16] and which cover most practical cases including fuzzy and possibilistic
CSP [20], weighted CSP [21], probabilistic CSP [22] and lexicographic CSP [3].

Algorithm 1 demonstrates the schema. It traverses the tree in a depth-first
manner, which is a usual option due to its low space complexity. t is the
current assignment, vt its associated cost and (k,X ,D, C) is the current sub-
problem. If the current subproblem has solutions, the algorithm returns the
cost of the best one. Else it returns k (namely, the highest cost of the val-
uation structure). Procedure LookAhead transforms the current subproblem
into a new subproblem with a new assignment (i, a). Procedure LocalConsist
enforces a given local consistency property in the current subproblem. If an
empty domain is obtained, it returns false, else it returns true and possibly up-
dates the current domains by pruning inconsistent values. Different algorithms
can be obtained by replacing LocalConsist by a specific local consistency en-
forcing algorithm. Observe that vt plays the role of the lower bound and is
updated in LookAhead. Similarly, k plays the role of the upper bound and is
updated in line 7 if the recursive call finds a solution with better cost.

4 Node and Arc Consistency in WCSP

In this Section we define AC for WCSP. Our definition is a refinement of the
general definition given in [1] which takes into account the fact that S(k)
valuation structures have only one so-called absorbing element (an element
α ∈ E such that α ⊕ α = α): the valuation > = k. Our formulation also
emphasizes the similarity with the CSP case (Definition 1). It will facilitate
the extension of AC algorithms from CSP to WCSP. Without loss of generality,
we assume the existence of a unary constraint Ci for every variable (we can
always define dummy constraints Ci(a) = ⊥,∀a ∈ Di)

Definition 6 Let P = (k,X ,D, C) be a binary WCSP.

• Node consistency. (i, a) is node consistent if Ci(a) < >. Variable i is node
consistent if all its values are node consistent. P is node consistent (NC) if
every variable is node consistent.

• Arc consistency. (i, a) is arc consistent with respect to constraint Cij if it is
node consistent and there is a value b ∈ Dj such that Cij(a, b) = ⊥. Value
b is called a support of a. Variable i is arc consistent if all its values are
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arc consistent with respect to every binary constraint affecting i. A WCSP
is arc consistent (AC) if every variable is arc consistent.

In words, node inconsistency characterizes values with an unacceptable unary
cost. Its use is that they can be removed from the problem because they
cannot participate in any solution. Arc inconsistency characterizes values such
that extending their assignment to other variables necessarily produces a cost
increment. It is worth to note at this point that, unlike the CSP case, arc
inconsistent values cannot be removed in the general case, because the cost
increment may not reach >. However, as we will show in the next Section, arc
inconsistent values may sometimes become node inconsistent. Observe that
NC and AC reduce to the classical definition in standard CSP (i.e, k = 1).

Example 7 The problem in Figure 1.a is not node consistent because Cx(c) =
3 = >.The problem in Figure 1.b is node consistent. However it is not arc
consistent, because (x, a) and (y, c) do not have a support. The problems in
Figure 1.d and Figure 1.e are arc consistent.

5 Enforcing Arc Consistency

Arc consistency can be enforced by applying two basic operations: pruning
node-inconsistent values and forcing supports to node-consistent values. As
pointed out in [1], supports can be forced by sending costs from binary con-
straints to unary constraints. Let us review this concept before introducing
our algorithm.

Definition 8 Let a, b ∈ [0, . . . , k], be two costs such that a ≥ b. a	 b is their
difference as,

a	 b =

 a− b : a 6= k

k : a = k

The projection of Cij ∈ C over Ci ∈ C is a flow of costs from the binary to the
unary constraint where costs added to the unary constraint are compensated by
subtracting costs from the binary constraint in order to preserve the problem
semantics.

Definition 9 Let αa be the minimum cost of a with respect to Cij,

αa = min
b∈Dj

{Cij(a, b)}
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The projection consists of adding αa to Ci(a),

Ci(a) := Ci(a)⊕ αa, ∀a ∈ Di

and subtracting αa from Cij(a, b),

Cij(a, b) := Cij(a, b)	 αa, ∀b ∈ Dj,∀a ∈ Di

Theorem 10 [1] Let P = (k,X ,D, C) be a binary WCSP. The projection of
Cij ∈ C over Ci ∈ C transforms P into an equivalent problem P ′ (namely,
solutions and their costs are preserved).

Projecting binary constraints over unary constraints is a desirable transfor-
mation because it may produce new node inconsistent values which can be
pruned. As a result, the problem size may decrease and infeasibility may be
detected.

5.1 W-AC3

Arc consistency can be achieved by pruning node-inconsistent values and pro-
jecting binary constraints over unary constraints until the property is satisfied.

Example 11 Consider the arc-inconsistent problem in Figure 1.a. To restore
arc consistency we must prune the node-inconsistent value c from Dx. The
resulting problem (Figure 1.b) is still not arc consistent, because (x, a) and
(y, c) do not have a support. To force a support for (y, c), we project Cxy over
Cy. This means to add cost 1 to Cy(c) and subtracting 1 from Cxy(a, c) and
Cxy(b, c). The result of this process appears in Figure 1.c. With its unary cost
increased, (y, c) has lost node consistency and must be pruned. After that, we
can project Cxy over Cx, which yields an arc-consistent equivalent problem
(Figure 1.d).

It is important to note that there are several arc consistent problems that can
be obtained from an arc inconsistent problem. The result will depend on the
order in which values are pruned and constraints are projected. For instance,
if in the arc inconsistent problem of Figure 1.b (x, a) is processed before (y, c),
the result is the arc consistent problem of Figure 1.e.

Algorithm 2 shows W-AC3, an algorithm that enforces AC in WCSP. It
is based on AC3 [18], a simple AC algorithm for CSP. The algorithm uses
two procedures. Function PruneVar(i) prunes node-inconsistent values in Di

and returns true if the domain is changed. Procedure FindSupportsAC3(i, j)
projects Cij over Ci. For each value a ∈ Di, it searches the value v ∈ Dj with
the minimum Cij(a, v) (line 2). If value v supports a (namely, Cij(a, v) = ⊥)
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Algorithm 2: Algorithmic description of W-AC3

Procedure FindSupportsAC3(i, j)
1. foreach a ∈ Di do
2. α := minb∈Dj

{Cij(a, b)};
3. Ci(a) := Ci(a)⊕ α;
4. foreach b ∈ Dj do Cij(a, b) := Cij(a, b)	 α;

Function PruneVar(i) : Boolean
5. change :=false;
6. foreach a ∈ Di s.t. Ci(a) = > do
7. Di := Di − {a};
8. change :=true;
9. return change;

Procedure W-AC3(X ,D, C)
10. Q := {1, 2, . . . , n};
11. while (Q 6= ∅) do
12. j :=pop(Q);
13. foreach Cij ∈ C do
14. FindSupportsAC3(i, j);
15. if PruneVar(i) then Q := Q ∪ {i};

lines 3 and 4 do not have any effect. Else, v becomes a support for a by sending
costs from the binary to the unary constraint (lines 3 and 4).

The main procedure W-AC3 has a typical AC structure. Q is a set containing
the variables whose domain has been pruned and therefore adjacent variables
may have new unsupported values in their domains. Q is initialized with all
variables (line 10), because every variable must find an initial support for
every value with respect to every constraints. The main loop iterates while Q
is not empty. An arbitrary variable j is fetched from Q (line 12) and for every
constrained variable i, new supports for Di are found, if necessary (line 14).
Since forcing new supports in Di may increase costs in Ci, node consistency in
Di is checked and inconsistent values are pruned (line 15). If Di is modified,
i is added to Q, because variables connected with i must have their supports
revised. If during the process some domain becomes empty, the algorithm can
be aborted with the certainty that the problem cannot be solved with a cost
below >. This fact is omitted in our description for clarity reasons.

Theorem 12 The time complexity of W-AC3 is time O(ed3), where e and d
are the number of constraints and largest domain size, respectively.

PROOF. FindSupportsAC3(i, j) and PruneVar(i) have complexity O(d2)
and O(d), respectively. In the main procedure, each variable j is added to the
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set Q at most d+1 times: once in line 10 plus at most d times in line 15 (each
time Dj is modified). Therefore, each constraint Cij is considered in line 14 at
most d+1 times. It follows that lines 14 and 15 are executed at most 2e(d+1)
times, which yields a global complexity of O(2e(d + 1)(d2 + d)) = O(ed3).

5.2 W-AC2001

W-AC3 has the same time complexity as AC3, its CSP counterpart. Therefore,
it seems natural to expect that extending optimal AC algorithms to WCSP
will render a lower complexity O(ed2). In this section we consider AC2001,
the simplest optimal AC algorithm, and introduce its natural extension to
WCSP that we call W-AC2001. We show that W-AC2001 has complexity
O(ed3), which gives no asymptotic advantage over W-AC3 in the general case.
However, a refined complexity analysis in terms of the number of softly valu-
ated tuples shows that W-AC2001 may be asymptotically better than W-AC3
under some conditions. In particular, it is O(ed2) in classical CSP.

Let Li be the initial domains of variable i (i.e, before any value pruning)
augmented with a dummy value Nil, which is supposed to be incompatible
with any other value. Without loss of generality, we assume that Li is ordered
being Nil the first element. Let a ∈ Li, then Next(a) denotes the successor of
a in the ordering. If a is the last value of the ordering, Next(a) returns Nil

(i.e, Next establishes a circular ordering in Li).

Algorithm 3: The W-AC2001 algorithm.

Procedure FindSupports2001(i, j)
1. foreach (a ∈ Di s.t. S(i, a, j) /∈ Dj) do
2. α := >; v :=Nil;
3. b :=Next(S(i, a, j));
4. while (α 6= ⊥ ∧ b 6= S(i, a, j)) do
5. if (b ∈ Dj ∧ α > Cij(a, b)) then v := b; α := Cij(a, b);
6. b :=Next(b);

7. S(i, a, j) := v;
8. Ci(a) := Ci(a)⊕ α;
9. foreach b ∈ Dj do Cij(a, b) := Cij(a, b)	 α;

W-AC2001 can be obtained by replacing procedure FindSupportsAC3(i, j)
in Algorithm 2 by FindSupports2001(i, j) in Algorithm 3, which computes
the projection of Cij over Ci in a more clever way. When W-AC2001 finds
a support for a ∈ Di in constraint Cij, such support is recorded in a data
structure S(i, a, j). When new supports are sought for Di in constraint Cij,
only values a ∈ Di such that S(i, a, j) is invalid are considered (line 1). The
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search for a new support is done using Lj. It starts right after S(i, a, j) (line 3).
Because of the circular behavior of function Next, successors of S(i, a, j) are
considered before its predecessors. The search finishes when a supporting value
is found (α = ⊥) or the whole list Lj has been considered (b = S(i, a, j)). At
the end of the search, v is the value in Dj giving the lowest valuation α to a,
which will become the new support. The data structure S(i, a, j) is updated
(line 7) and costs are sent from Cij to Ci (lines 8 and 9). All S(i, a, j) must
be initially set to Nil.

Lemma 13 Let Cij ∈ C be an arbitrary constraint, d the largest domain size,
and sij the number of tuples in Cij which receive cost different from ⊥ and >.
The amortized cost of all calls of W-AC2001 to FindSupports2001(i, j) is
O(d · sij + d2).

PROOF. Let’s consider the total time that FindSupports2001(i, j) spends
searching supports for a fixed value a ∈ Di. This is exactly the total number
of iteration of the while-loop in line 4 with a fixed value a. Let Ta, Ba and Sa

be a partition of Dj such that Ta contains all values such that Cij(a, b) = >,
Ba contains all values such that Cij(a, b) = ⊥ and Sa contains the rest of the
values. Clearly, Ba is the set of original supports of a. Sa is the set of values
that may become a support if their valuation decreases to ⊥ by means of a
projection. Values in Ta cannot possibly support a, because their valuation >
cannot decrease. Procedure FindSupports2001(i, j) finds all supports in Ba

in only one traversal of Dj, because each time a new support is needed search
is resumed from the old support (as AC2001 does in the CSP case). In order
to find supports from Sa, one traversal of Dj is required each time, because
the value with the minimum valuation is needed. Finally, one more traversal
of Dj may be required to go over values in Ta, before detecting that there are
no more supports for a. As a consequence, the while-loop in line 4 traverses Dj

at most 2+ |Sa| times, which is O(d+ |Sa|d). Summing the complexity for each
a ∈ Di, results in O(d2 + d

∑
a∈Di

|Sa|). By definition of sij, sij =
∑

a∈Di
|Sa|,

which yields the final expression O(dsij + d2).

Theorem 14 The time complexity of W-AC2001 is O(ed2+sd), where e and d
are the number of binary constraints and the largest domain size, respectively.
Parameter s is the sum over all binary constraints of the number of tuples
receiving a valuation different from ⊥ and >.

PROOF. Disregarding the time spent in procedure FindSupports2001(i, j)
the complexity of W-AC2001 is O(ed2). From lemma 13 we know that time
spent by all calls to FindSupports2001 is O(

∑
Cij∈C(d sij + d2)) which, by

definition of s, is O(ds+ed2). Thus, the total complexity is O(ds+ed2+ed2) =
O(ed2 + sd).
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Corollary 15 W-AC2001 has complexity O(ed3) on arbitrary WCSP instances.

Corollary 16 W-AC2001 has complexity O(ed2) on classical CSP instances
(a WCSP with k = 1)

The previous theorem shows that W-AC2001 is asymptotically better than
W-AC3 in problems where the number s of binary tuples valuated with a soft
cost is less than O(ed2). Corollaries 15 and 16 emphasize two important cases:
(i) the general WCSP case (s can be as large as O(ed2)) where W-AC2001 has
the same complexity as W-AC3 and (ii) the noteworthy case of CSP instances
(s = 0) where W-AC2001 is d times faster than W-AC3. Observe that in the
CSP case W-AC2001 is as efficient as AC2001, which is optimal [19]. Other
cases where W-AC2001 outperforms W-AC3 are: problems where the number
of constraints with soft costs is asymptotically smaller than the number of
hard constraints, and problems where the number of softly valuated tuples
per constraint is asymptotically smaller than d2.

5.3 The space complexity of enforcing W-AC

Our description of W-AC3 (Algorithm 2) and W-AC2001 (Algorithm 3) have
space complexity O(ed2), because they require binary constraints to be stored
explicitly as tables, each one having d2 entries. However, [16] suggested one
way to avoid that. The idea is to leave the original constraints unmodified and
record the changes in an additional data structure. Observe that each time a
cost in a binary constraint is modified (Algorithm 2 line 4 and Algorithm 3
line 9), the whole row, or column is modified. Therefore, for each constraint
we only need to record row and column changes. Let C0

ij denote the original
constraint (before any projection) and F (i, j, a) denote the total cost that has
been subtracted from C0

ij(a, v), for all v ∈ Dj (F (i, j, a) must be initialized to
⊥). The current value of Cij(a, b) can be obtained as C0

ij(a, b) 	 F (i, j, a) 	
F (j, i, b). There is an F (i, j, a) entry for each constraint-value pair, therefore
the required space is O(ed). Since original constraints are not modified they
can be given in any form. This is very relevant because cost functions are often
given as mathematical expressions (e.g. f(x, y) = |x−y|) or in procedural form.

This idea can also be applied to the algorithms introduced in the following
Section.

5.4 Other classes of problem addressed

If the previous algorithms have been designed to enforce local consistency in
WCSP, their scope of application extends beyond soft constraint networks
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with an additive criteria.

A first class of problems that can also be processed by the previous algorithms
is defined by all problems that can be simply reduced to WCSP. A classical
result is that a direct logarithmic reduction can transform probabilistic prob-
lems into additive problems (taking c = − log(p) to turn probability p into
cost c). This simple reduction allows to process probabilistic networks such
as Bayesian networks [10] and probabilistic constraint networks [22] using our
algorithms. Beyond this usual result, [3] shows that so-called lexicographic con-
straint networks, a refinement of fuzzy/possibilistic constraint networks [20]
can also be reduced to WCSP.

The general frameworks of semi-ring CSP [4] and valued CSP [3] allow us to
give a more general algebraic characterization of the problems that can be
tackled by our algorithms. Since the assumption of a total ordering of costs,
which is ubiquitous in our algorithms, suffices to reduce semi-ring CSP to
valued CSP [23], we can restrict ourselves to the valued CSP case. Beyond the
axioms of VCSP, our algorithms assume that a difference operator 	 is always
available. Such cost structures have been defined as fair valuation structures
in [1]. The specific refinement that our definition of arc consistency brings
compared to the definition of [1] lies in the assumption that there is only one
so-called absorbing or idempotent element in the valuation set E (an element
α ∈ E such that α ⊕ α = α). This element must necessarily be the valuation
>. Our algorithms can therefore apply to any fair valuation structures with a
single idempotent element. In practice, the only significant class excluded by
this assumption is the min-max fuzzy/possibilistic constraint network class
(for which arc consistency enforcing has been already studied [24] and for
which specific enforcing algorithms exist [25,20]).

This also applies to the algorithms introduced in the following Section.

6 Node and Arc Consistency Revisited

Consider constraint Cx in the problem of Figure 1.d. Every value of x has
unary cost 1. Therefore, any assignment to y will necessarily increase its cost
by at least 1, if extended to x. Consequently, node-consistent values of y are
globally inconsistent if their Cy cost plus 1 equals >. For instance, Cy(a) has
cost 2 and is node consistent. But it is globally inconsistent because, no matter
what value is assigned to x, the cost will increase to >. In general, the mini-
mum cost of all unary constraints can be summed up producing a necessary
cost of any complete assignment. This idea, first suggested in [26], was ignored
in the previous AC definition. Now, we integrate it into the definition of node
consistency, producing an alternative definition noted NC*. We assume the

15



x y
C  = 2

x y
C  = 2

x y
C  = 2

x y
C  = 2

e) f)

g) h)

a

b b

1

a

b b

1

a

b

a

b

1
1

b b

Fig. 2. Four more equivalent WCSPs.

existence of a zero-arity constraint (a constant), noted C∅. This is done with-
out loss of generality, since it can be set to ⊥ . The idea is to project unary
constraints over C∅, which will become a global lower bound of the problem
solution.

Definition 17 Let P = (k,X , D, C) be a binary WCSP. (i, a) is node consis-
tent if C∅ ⊕ Ci(a) < >. Variable i is node consistent if: (i) all its values are
node consistent and (ii) there exists a value a ∈ Di such that Ci(a) = ⊥. Such
a value a is a support for the variable node consistency. P is node consistent
(NC*) if every variable is node consistent.

Example 18 The problem in Figure 1.d (with C∅ = 0) does not satisfy the
new definition of node consistency, because neither x, nor y have a supporting
value. Enforcing NC* requires the projection of Cx and Cy over C∅, meaning
the addition of cost 2 to C∅, which is compensated by subtracting 1 from all
entries of Cx and Cy. The resulting problem is depicted in Figure 2.e. Now,
(y, a) is not node consistent, because C∅ ⊕ Cy(a) = > and can be removed.
The resulting problem (Figure 2.f) is NC*.

Property 19 NC* reduces to NC in classical CSP. It is stronger than NC in
WCSP.

The procedure W-NC* (Algorithm 4) enforces NC*. It works in two steps.
First, a support is forced for each variable by projecting unary constraints
over C∅ (lines 2-4). After this, every domain Di contains at least one value
a with Ci(a) = ⊥. Next, node-inconsistent values are pruned (lines 5-7). The
time complexity of W-NC* is O(nd).
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Algorithm 4: The W-NC* algorithm.

Procedure W-NC*(X ,D, C)
1. foreach i ∈ X do
2. α := mina∈Di{Ci(a)};
3. C∅ := C∅ ⊕ α;
4. foreach a ∈ Di do Ci(a) := Ci(a)	 α;
5. foreach i ∈ X do
6. foreach a ∈ Di do
7. if Ci(a)⊕ C∅ = > then Di := Di − {a};

An arc consistent problem is, by definition, node consistent. If we combine the
previous definition of arc consistency (Definition 6) with the new definition of
node consistency (Definition 17) we obtain a stronger form of arc consistency,
noted AC*. Observe that AC* reduces to AC in the standard CSP case (Def-
inition 1). The increased strength of AC* over AC in WCSP becomes clear in
the following example.

Example 20 The problem in Figure 1.d is AC, but it is not AC*, because
it is not NC*. As we previously showed, enforcing NC* yields the problem in
Figure 2.f , where value (x, a) has lost its support. Restoring it produces the
problem in Figure 2.g, but now (x, a) looses node consistency (with respect
to NC*). Pruning the inconsistent value produces the problem in Figure 2.h,
which is the problem solution.

6.1 W-AC*3

Enforcing AC* is a slightly more difficult task than enforcing AC, because:
(i) C∅ has to be updated after projections of binary constraints over unary
constraints, and (ii) each time C∅ is updated all domains must be checked
for new node-inconsistent values. Procedure W-AC*3 (Algorithm 5) enforces
AC*. Before executing W-AC*3, the problem must be made NC*. The struc-
ture of W-AC*3 is similar to W-AC3. We only discuss the main differences.
Function PruneVar differs in that C∅ is considered for value pruning (line 10).
Function FindSupportsAC*3(i, j) projects Cij over Ci (lines 1-4) and subse-
quently Ci is projected over C∅ (lines 5-7) to restore the support for the node
consistency of i. It returns true if C∅ is increased. In the main loop, when
FindSupportsAC*3(i, j) returns true, every variable needs to be checked for
node-inconsistent values (lines 21, 22). The reason is that increments in C∅
may cause node-inconsistencies in any domain.

Theorem 21 The time complexity of W-AC*3 is O(n2d2 + ed3), where n, e
and d are the number of variables, constraints and the largest domain size.
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Algorithm 5: The W-AC*3 algorithm.

Function FindSupportsAC*3(i, j)
1. foreach a ∈ Di do
2. α := minb∈Dj

{Cij(a, b)}; v :=Nil;
3. Ci(a) := Ci(a)⊕ α;
4. foreach b ∈ Dj do Cij(a, b) := Cij(a, b)	 α;

5. α := mina∈Di{Ci(a)};
6. C∅ := C∅ ⊕ α;
7. foreach a ∈ Di do Ci(a) := Ci(a)	 α;
8. return α 6= ⊥;

Function PruneVar(i) : Boolean
9. change :=false;

10. foreach a ∈ Di s.t. Ci(a)⊕ C∅ = > do
11. Di := Di − {a};
12. change :=true;
13. return change;

Procedure W-AC*3(X ,D, C)
14. Q := {1, 2, . . . , n};
15. while (Q 6= ∅) do
16. j :=pop(Q);
17. flag :=false;
18. foreach Cij ∈ C do
19. flag := flag∨ FindSupportsAC*3(i, j);
20. if PruneVar(i) then Q := Q ∪ {i};
21. if flag then
22. foreach i ∈ X s.t. PruneVar(i) do Q := Q ∪ {i};

PROOF. FindSupportsAC*3 and PruneVar have complexities O(d2) and
O(d), respectively. Discarding the time spent in line 22, the complexity is
O(ed3) for the same reason as in W-AC3. The total time spent in line 22 is
O(n2d2), because the while loop iterates at most nd times (once per domain
value) and, in each iteration, line 22 may execute PruneVar n times. Therefore,
the total complexity is O(n2d2 + ed3).

The previous theorem indicates that enforcing AC and AC* has nearly the
same worst-case complexity in dense problems and that enforcing AC can be
up to n times faster in sparse problems. Whether the extra effort pays off or
not in terms of pruned values has to be checked empirically.

Theorem 22 W-AC*3 has complexity O(ed3) on classical CSP instances.
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PROOF. In classical CSP, k = 1. Consequently, C∅ cannot increase to in-
termediate values between ⊥ and >. Therefore, function FindSupportsAC*3

always returns false, which means that line 22 is never executed. Therefore,
the algorithm is essentially equivalent to W-AC3.

6.2 W-AC*2001

Algorithm W-AC*2001 enforces AC* using the AC2001 schema. It is imple-
mented by replacing the function FindSupportsAC*3 in Algorithm 5 by the
function FindSupportsAC*2001 in Algorithm 6. It requires an additional data
structure S(i) containing the current support for the node-consistency of vari-
able i. Before executing W-AC*2001, the problem must be made NC*. Then
data structures must be initialized: S(i, a, j) is set to Nil and S(i) is set to
an arbitrary supporting value (which must exist, since the problem is NC*).

Algorithm 6: The W-AC*2001 algorithm.

Function FindSupportsAC*2001(i, j)
1. supported :=true;
2. foreach a ∈ Di s.t. S(i, a, j) /∈ Dj do
3. α := >;
4. b :=Next(S(i, a, j));
5. while (α 6= ⊥ ∧ b 6= S(i, a, j)) do
6. if (b ∈ Dj ∧ α > Cij(a, b)) then v := b; α := Cij(a, b);
7. b :=Next(b);

8. S(i, a, j) := v;
9. Ci(a) := Ci(a)⊕ α;

10. foreach b ∈ Dj do Cij(a, b) := Cij(a, b)	 α;
11. if (a = S(i) ∧ α 6= ⊥) then supported :=false;
12. if ¬supported then
13. v := argmina∈Di{Ci(a)};
14. α := Ci(v);
15. S(i) := v;
16. C∅ := C∅ ⊕ α;
17. foreach a ∈ Di do Ci(a) := Ci(a)	 α;
18. return α 6= ⊥;

The main difference between FindSupports2001 and FindSupportsAC*2001

is that the latter projects the unary constraint Ci over C∅ if the current
support has been lost (Algorithm 6 lines 12-17).

Theorem 23 The complexity of W-AC*2001 is time O(n2d2 + sd), where n
is the number of variables, d is the largest domain size and s is the number of
binary tuples receiving cost different from ⊥ and >.
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PROOF. The complexity of pruning values is O(n2d2) (see proof of The-
orem 21). The complexity of finding supports is O(sd + ed2) (see proof of
Theorem 14). Therefore, the total complexity is O(n2d2 + sd).

Corollary 24 W-AC*2001 has complexity O(n2d2 +ed3) on arbitrary WCSP
instances.

Corollary 25 W-AC*2001 has complexity O(ed2) on classical CSP instances.

7 Experimental Results

In this Section we perform an empirical evaluation of the effect of maintaining
different forms of local consistency during search. All our algorithms perform
depth-first search and, at every node, they enforce at least NC*. We consider
the following cases:

• BBNC∗ is a basic branch and bound that only maintains NC*. It is, basically,
the PFC algorithm of [26] extended to WCSP.

• BBAC3 maintains AC using the W-AC3 algorithm.
• BBAC2001 maintains AC using the W-AC2001 algorithm.
• BBAC∗3 maintains AC* using the W-AC*3 algorithm.
• BBAC∗2001 maintains AC* using the W-AC*2001 algorithm.

We implemented all these algorithms in C using the common BB procedure
of Algorithm 1 replacing the generic call to a local consistency enforcer by a
call to the corresponding algorithm. For variable selection we use the dm/dg
heuristic which for each variable computes the ratio of the domain-size divided
by the future degree (i.e., degree considering future variables only) and selects
the variable with the smallest value. For value selection we consider values in
increasing order of unary cost Ci. Experiments were executed on a PC with a
Pentium III processor running at 800 MHz. All our plots report average values
over a sample of instances.

Throughout all our experiments we observed that AC2001-based algorithms
were typically better (in terms of cpu time) and never worse than AC3-based
algorithms. Gain ratios ranged from 1 (i.e, both approaches gave similar times)
to 2, typical values being around 1.3. For the sake of clarity in the presen-
tation of results, in the following we will omit results regarding AC3-based
algorithms.
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Fig. 3. Experimental results on the 〈20, 10, 47, t〉 class with four algorithms. The
plot on the left reports average cpu time in seconds. The plot on the right reports
average number of visited nodes.

7.1 Max-CSP

In our first set of experiments we consider the Max-CSP problem, where the
goal is to find the complete assignment with a maximum number of satisfied
constraints in an over-constrained CSP [26]. Max-CSP can be easily formu-
lated as a WCSP by taking the CSP instance and replacing its hard constraints
by cost functions where allowed and forbidden tuples in the hard constraint
receive cost 0 and 1, respectively. The maximum acceptable cost k can be set
to any value larger than the number of constrains.

We experiment with binary random problems using the well-known four-
parameters model [27]. A random CSP class is defined by 〈n, d, e, t〉 where
n is the number of variables, d is the number of values per variable, e is the
number of binary constraints (i.e, graph connectivity), and t the number of for-
bidden tuples in each constraint (i.e, tightness). Pairs of constrained variables
and their forbidden tuples are randomly selected using a uniform distribution.
In all our experiments class samples have 50 instances. In this domain, we
compare our algorithms with PFC-RDAC [12], which is normally considered
as a reference algorithm. We used the implementation available on the web 6 .

We made a preliminary experiment with the 〈20, 10, 47, t〉 class (tightness is
left as a varying parameter). Low tightness problems are solved almost in-
stantly with optimum cost 0 (i.e, all constraints are satisfied). As t approaches
the crossover point, problems become abruptly over-constrained and instances
become harder. Let n, d and e be fixed, we denote to the lowest tightness where
every instance in our sample has optimal cost greater than 0 (i.e, all CSP in-
stances are inconsistent). In the 〈20, 10, 47, t〉 class we found to = 64.

Figure 3 shows our first results. The plot on the right reports average number of

6 www.lsi.upc.es/~larrosa/PFC-MRDAC
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visited nodes (in thousands) and the plot on the left reports average cpu time
(in seconds). As can be observed, all algorithms have a similar performance
with low values of t, where problems are easier (to seems to be a good represen-
tative of this region). When tightness increases differences arise, with BBNC∗
behaving extremely poorly, PFC-RDAC having a very good performance and
AC-based algorithms lying in between. Compared with PFC-RDAC, BBAC

and BBAC∗ show a good performance up to tightness around 85. Beyond that
point, they are not competitive (with tightness around 95, PFC-RDAC is two
orders of magnitude faster than the AC-based methods). Comparing BBAC

and BBAC∗, the later seems to be slightly better both in terms of nodes and
time.

In the following, we perform experiments to see if this behavior can be ex-
tended to different problem classes and how it scales up. For the following
experiments we define different categories of problems.

• According to their tightness, we define two types of problems: loose (L) with
t = to, and tight (T) with t = 3

4
d2 + 1

4
to.

• According to the graph density we define three types of problems: sparse
(S) with e = 2.5n, dense (D) with e = n(n−1)

8
, and completely constrained

(C) with e = n(n−1)
2

.
• We consider three different domain sizes: d = 5, d = 10 and d = 15.

Combining the different types, we obtain 18 different classes. Each one can be
specified with three symbols. For instance LD5 denotes loose dense problems
with d = 5. In each class, the number of variables n is not fixed and can be
used as a varying parameter.

In the first experiment, we explore the performance of our algorithms on loose
problems. Figure 4 shows, from top to bottom, the results obtained with LS10,
LD10 and LC10 (results on problems with d = 5 and d = 15 were very simi-
lar and are omitted). Plots on the left report average cpu time and plots on
the right report average number of visited nodes (note the log scale). The
first observation is that, in all cases, search effort grows exponentially with
n. The performance of all the algorithms seems to be roughly equal up to a
constant factor. Regarding time, PFC-RDAC and BBNC∗ give very similar
results (in the LC10 problems, they are hardly distinguishable), and the same
happens with BBAC and BBAC∗ (except in LS10, where BBAC is slightly
better). PFC-RDAC and BBNC∗ are faster than BBAC and BBAC∗ and the
advantage grows with problem density (the speed-up ratio is about 1.6, 2 and
2.6, in LS10, LD10 and LC10, respectively). Regarding the number of visited
nodes, performance is reversed. BBAC and BBAC∗ clearly visit less nodes than
PFC-RDAC and BBNC∗, and the difference decreases with problem density
(the gain ratio is about 2.5, 2, 1.5 in LS10, LD10 and LC10, respectively).
Therefore, we conclude that in loose problems it is unnecessary to use sophis-
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ticated lower bounds, because the upper bound reaches low values early in the
search which allows pruning at high levels of the search tree. While BBNC∗,
visits more nodes than AC-based algorithms, its low overhead clearly pays-
off. PFC-RDAC, which uses a greedy approach, detects very quickly that it
cannot improve the lower bound and uses the same lower bound as BBNC∗.
Comparing BBAC and BBAC∗, the former is always slightly better both in
terms of time and visited nodes.
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Fig. 4. Experimental results with loose problems with domain size 10 and four
different algorithms. From top to bottom, plots correspond to sparse, dense and
totally connected problem. Plots on the left report average time in milliseconds.
Plots on the right report average number of visited nodes.

Next, we experiment with tight problems. Figure 5 shows, from top to bottom,
the results obtained with TS10, TD10 and TC10 (again, we omit results with
d = 5 and d = 15 because they were similar to the d = 10 case). Plots on the
left report average cpu time and plots on the right report average number of
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visited nodes. Once more, we observe that search effort grows exponentially
with n and the performance of all the algorithms seems to be equal up to
a constant factor. The main observation here is that BBNC∗ behaves very
poorly. In these problems optimal solutions have higher costs, which causes a
high upper bound during search. The weak lower bound of BBNC∗ is unable
to prune until deep levels of the search tree. PFC-RDAC dominates AC-based
algorithms (PFC-RDAC is about 3, 2 and 1.8 times faster than BBAC∗ in
TS10, TD10 and TC10, respectively). Although being close to PFC-RDAC
in terms of visited nodes, BBAC and BBAC∗ have a higher overhead, which
makes them significatively slower in time.

It is worth to mention at this point that PFC-RDAC assigns a direction to ev-
ery constraint in the current subproblem. It has been shown that the efficiency
of the algorithm depends greatly on these directions. In the implementation
that we are using, they are computed using a heuristic method which is very
useful in random Max-CSP. Similarly, the behavior of AC-based algorithms
depends on the order in which variables are fetched from the stream Q and
the order in which values are considered for projection (e.g. observe that not
all ordering transform the problem in 1.a to the problem in 2.h). In our cur-
rent implementation we implemented Q as a stack and always consider values
in lexicographic order. We have not explored other alternatives, which can
be more effective in this domain. A final remark on the experiments is that
BBAC∗ slightly outperforms BBAC in time and visited nodes.

7.2 Max-SAT

In our second set of experiments we consider the Max-2SAT problem, where
the goal is to find the assignment that satisfies a maximum number of clauses
in an 2SAT problem without any solution 7 [28]. Max-2SAT can also be for-
mulated as a WCSP. There is a variable for each logical proposition. Each
variable can be assigned with two values: the two truth assignments. There
is a cost function Cij for each pair of variables xi and xj such that there is
at least one clause referring to them. Each binary tuple receives as cost the
number of clauses violated by the assignment. The maximum acceptable cost
k can be set to any value larger than the number of clauses.

We experiment with randomly generated 2-SAT instances. A 2-SAT class of
problems is defined by the number of proposition n and the number of clauses
m. Instances are generated by randomly selecting two propositions that form
each of the m clauses. Propositions are negated with .5 probability. Duplication
of clauses is not permitted. All samples in our experiments had 50 instances.

7 A 2SAT problem is a SAT problem such that every clause has exactly two literals.
While 2SAT can be solved in polynomial time, Max-2SAT is NP-hard.

24



10

100

1000

10000

100000

1e+06

10 12 14 16 18 20

tim
e 

(m
s.

)

n. of variables

AC*
AC
NC

PFC-RDAC

100

1000

10000

100000

1e+06

1e+07

10 12 14 16 18 20

no
de

s

n. of variables

AC*
AC
NC

PFC-RDAC

10

100

1000

10000

100000

1e+06

10 11 12 13 14 15 16

tim
e 

(m
s.

)

n. of variables

AC*
AC
NC

PFC-RDAC

100

1000

10000

100000

1e+06

1e+07

10 11 12 13 14 15 16

no
de

s

n. of variables

AC*
AC
NC

PFC-RDAC

1000

10000

100000

1e+06

10 10.5 11 11.5 12 12.5 13

tim
e 

(m
s.

)

n. of variables

AC*
AC
NC

PFC-RDAC

10000

100000

1e+06

1e+07

10 10.5 11 11.5 12 12.5 13

no
de

s

n. of variables

AC*
AC
NC

PFC-RDAC

Fig. 5. Experimental results with tight problems with domain size 10 and four
different algorithms. From top to bottom, plots correspond to sparse, dense and
totally connected problem. Plots on the left report average time in milliseconds.
Plots on the right report average number of visited nodes.

In this domain, we compare our algorithms with DPL [28], which extends the
Davis-Putnam-Loveland procedure to Max-SAT. We used the implementation
available on the web 8 .

We made a preliminary experiment with problems having n = 50 and increas-
ing m. Figure 6 plots the results. The first observation is that problems become
exponentially more difficult as the number of clauses increases. BBNC , BBAC

and BBAC∗ seem to have a very close exponential growth. Among these three
algorithms, BBNC shows the worst performance and BBAC∗ is slightly better
than BBAC . The differences seem to grow slowly as the number of clauses

8 www.nmt.edu/~borchers/maxsat.html
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Fig. 6. Experimental results with Max-2SAT problems with 50 variables and four
different algorithms. The plot on the left reports average time in seconds. The plot
on the right reports average number of visited nodes.

0.001

0.01

0.1

1

10

100

1000

20 30 40 50 60 70 80 90

tim
e 

(s
ec

.)

num. of variables

AC*
AC
NC

DPL

10

100

1000

10000

100000

1e+06

1e+07

20 30 40 50 60 70 80 90

no
de

s

num. of variables

AC*
AC
NC

DPL

Fig. 7. Experimental results with Max-2SAT problems slightly over-constrained
( n

m = 2) and four different algorithms. The plot on the left reports average time in
seconds. The plot on the right reports average number of visited nodes.

increases. Apparently, DPL has a much faster exponential growth. While it
is the best algorithm for problems with a small m

n
ratio, it clearly stops being

competitive as m
n

grows.

Next, we take a close look to problems with a low m
n

ratio. In the following
experiment we let n grow while keeping m

n
= 2. Figure 7 shows the obtained

results. Regarding time, BBNC , BBAC and BBAC∗ have a very close perfor-
mance, with AC slightly outperforming the others. DPL is clearly faster than
the others (the gain ratio grows with n and goes as high as 40). Regarding
nodes, BBAC , BBAC∗ and DPL give very similar results, which means that
DPL has the same pruning power, with much less overhead.

Finally, we consider problems with a higher m
n

ratio. Now, we let n grow while
keeping m

n
= 5. Figure 8 shows the obtained results. As anticipated by our

preliminary experiment, DPL is very inefficient in these problems and AC-
based algorithms, as well as BBNC clearly outperform it. BBAC∗, which is the
best algorithm, can be more than 300 times faster than DPL (and the gain
seems to increase with n). It is 2.5 times faster than BBNC and 1.5 times
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Fig. 8. Experimental results with Max-2SAT problems highly over-constrained
( n

m = 5) and four different algorithms. The plot on the left reports average time in
seconds. The plot on the right reports average number of visited nodes.

faster than BBAC .

8 Conclusions and Future Work

We have presented two alternative forms of arc consistency for weighted CSP:
AC (due to [1]) and AC*, along with their corresponding filtering algorithms:
W-AC3, W-AC2001, W-AC*3 and W-AC*2001. It constitutes the first at-
tempt to develop soft constraint solvers which maintain some form of local
consistency. We believe that it is an appealing approach because: (i) it pro-
duces conceptually simple algorithms and (ii) it has been a great success in
classical CSP.

Our definitions have the additional advantage of integrating nicely within
the soft-constraints theoretical models two concepts that have been used in
previous BB solvers: (i) the cost of the best solution found at a given point
during search (upper bound in BB terminology) becomes part of the current
subproblem as value k in the valuation structure S(k), (ii) the minimum
necessary cost of extending the current partial assignment (lower bound in
BB terminology) becomes part of the current subproblem as the zero-arity
constraint C∅.

Our experiments in Max-CSP and Max-SAT show that our algorithms are
competitive with state-of-the-art solvers, and sometimes even outperform them
by several orders of magnitude. PFC-RDAC is still superior to our algorithms,
but we are getting very close without heuristically optimizing the ordering in
which we remove variables from the stream Q and in which we project costs
to unary costs. Since these orderings have an effect in the outcome of the
AC algorithms, we expect to get closer to PFC-RDAC when considering more
sophisticated methods.
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We would like to mention two lines of future work, related to the main weak-
ness of our approach. From the experiments, we observed that enforcing AC
causes too much overhead in easy problems (i.e, lightly over-constrained prob-
lems). Consequently, we need to find ways to switch on the propagation only
when the effort pays off. Our current implementation is restricted to binary
problems. We need to extend our work (possibly using ideas from [29,30]) to
non-binary problems.
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