
Limited Discrepancy SearchWilliam D. Harvey and Matthew L. GinsbergCIRL1269 University of OregonEugene, Oregon 97403U.S.A.ginsberg@cs.uoregon.eduAbstractMany problems of practical interest can besolved using tree search methods because care-fully tuned successor ordering heuristics guidethe search toward regions of the space that arelikely to contain solutions. For some problems,the heuristics often lead directly to a solution|but not always. Limited discrepancy search ad-dresses the problem of what to do when theheuristics fail.Our intuition is that a failing heuristic mightwell have succeeded if it were not for a smallnumber of \wrong turns" along the way. For abinary tree of height d, there are only d waysthe heuristic could make a single wrong turn,and only d(d�1)2 ways it could make two. Asmall number of wrong turns can be overcomeby systematically searching all paths that dif-fer from the heuristic path in at most a smallnumber of decision points, or \discrepancies."Limited discrepancy search is a backtrackingalgorithm that searches the nodes of the treein increasing order of such discrepancies. Weshow formally and experimentally that limiteddiscrepancy search can be expected to outper-form existing approaches.1 IntroductionIn practice, many search problems have spaces that aretoo large to search exhaustively. One can often �nd solu-tions while searching only a small fraction of the space byrelying on carefully tuned heuristics to guide the searchtoward regions of the space that are likely to containsolutions. For many problems, heuristics can lead di-rectly to a solution|most of the time. In this paper, weconsider what to do when the heuristics fail.We will focus our attention on procedures for treesearch. Our objective is simple: For search problemswith heuristically ordered successors, we will develop asearch procedure that is more likely to �nd a solutionin any given time limit than existing methods such aschronological backtracking and iterative sampling [Lan-gley, 1992]. The outline of this paper is as follows: In

the next section, we discuss existing algorithms. Lim-ited discrepancy search (lds) is introduced in Section 3and compared to existing techniques in Section 4. Wediscuss variations of lds that we believe will be usefulfor solving realistic problems in Section 5. We concludeby presenting our experimental results in Section 6.2 Existing StrategiesConsider a tree search problem for which the succes-sor ordering heuristic is so good that it almost alwaysleads directly to a solution. Such problems are com-mon both in practice and in areas of AI research suchas planning and scheduling [Smith and Cheng, 1993;Wilkins, 1988]. If the heuristic is good enough, one mightbe satis�ed with an algorithm that follows the heuristicand just gives up if the heuristic fails to lead to a solu-tion, an algorithm we will call \1-samp" [Harvey, 1994;Smith and Cheng, 1993]. If the performance of 1-sampis not satisfactory, however, one is confronted with thequestion of what search algorithm to use instead. Itera-tive sampling and backtracking are two candidates.2.1 Iterative SamplingIterative sampling [Langley, 1992], or isamp, is the sim-ple idea of following random paths, or probes, from theroot until eventually a path that leads to a solution isdiscovered. At each node on a path, one of the succes-sors is selected at random and expanded. Then one ofits successors is selected at random, and so on until agoal node or dead end is reached. If the path ends at adead end, isamp starts a new probe, beginning again atthe root.Since the algorithm samples with replacement, there isa uniform chance of �nding a goal node on any particularprobe. Provided that there is a goal node somewherein the space, it follows that the probability of �nd agoal node increases uniformly toward 1 as the number ofprobes grows without limit.Iterative sampling has been shown to be e�ective onproblems where the solution density is high [Crawfordand Baker, 1994], but its performance as a fallback pro-cedure for 1-samp is questionable because it ignores thesuccessor-ordering heuristic. If the heuristic were the keyto solving the problem despite a low solution density, one

would not expect iterative sampling to be e�ective.12.2 BacktrackingAn alternative fallback procedure is simply to backtrackchronologically when 1-samp fails. Our experiments inSection 6 with scheduling show that this approach pro-vides little improvement over 1-samp itself, and the anal-ysis of mistakes provides an explanation [Harvey, 1995].There is a reasonable chance that, somewhere early in1-samp's path, it made a mistake by selecting a succes-sor that had no goal nodes in the entire subtree below it.Once this early mistake is made and the successor's sub-tree is committed to, none of the subsequent decisionsmakes any di�erence.If the subtree below a mistake is large, chronologicalbacktracking will spend all of the allowed run time ex-ploring the empty subtree, without ever returning to thelast decision that actually matters. If one is counting onthe heuristics to �nd a goal node in a small fraction ofthe search space, then chronological backtracking puts atremendous burden on the heuristics early in the searchand a relatively light burden on the heuristics deep in thesearch. Unfortunately, for many problems the heuristicsare least reliable early in the search, before making de-cisions that reduce the problem to a size for which theheuristics become reliable. Because of the uneven re-liance on the heuristics, it is unlikely that chronologicalbacktracking is making the best use of the heuristic in-formation.3 DiscrepanciesLet us return to the search problems for which the suc-cessor ordering heuristic is a good one. Our intuitionis that, when 1-samp fails, the heuristic probably wouldhave led to a solution if only it had not made one or two\wrong turns" that got it o� track. It ought to be pos-sible to systematically follow the heuristic at all but onedecision point. If that fails, we can follow the heuristicat all but two decision points. If the number of wrongturns is small, we will �nd a solution fairly quickly usingthis approach.We call the decision points at which we do not fol-low the heuristic \discrepancies." Limited discrepancysearch embodies the idea of iteratively searching thespace with a limit on the number of discrepancies al-lowed on any path. The �rst iteration, with a limit ofzero discrepancies, is just like 1-samp. The next iterationsearches all possibilities with at most one discrepancy,and so on.The algorithm is shown in Figure 1. We will assumethe search tree is binary. Successors is a function thatreturns a list of the either zero or two successors, withthe heuristic preference �rst.In Figure 1, x is the discrepancy limit. We iterativelycall LDS-Probe, increasing x each time. LDS-Probedoes a depth-�rst search traversal of the tree, limitingthe number of discrepancies to x. When eventually x1We have experimented with biasing the random selec-tion of successors according to the heuristic, but our resultssuggest this is not a viable approach [Harvey, 1995].

LDS-Probe(node, k)1 if Goal-P(node) return node2 s Successors(node)3 if Null-P(s) return nil4 if k = 0 return LDS-Probe(First(s), 0)5 else6 result LDS-Probe(Second(s), k � 1)7 if result 6= nil return result8 return LDS-Probe(First(s), k)LDS(node)1 for x 0 to maximum depth2 result LDS-Probe(node, x)3 if result 6= nil return result4 return nilFigure 1: Limited Discrepancy Search.reaches d, the maximum depth of the tree, LDS-Probesearches the entire tree exhaustively. Thus the searchis guaranteed to �nd a goal node if one exists and isguaranteed to terminate if there are no goal nodes.Since each iteration of LDS-Probe limits the num-ber of discrepancies to x instead of restricting the searchto those nodes with exactly x discrepancies, iteration nreexamines the nodes considered by previous iterations(see Figure 2). As with other iterative techniques, how-ever, the �nal iteration is far and away the most expen-sive and the redundancy is therefore not a signi�cantfactor in the complexity of the search.Figure 2 shows a trace of lds exhaustively searchinga full binary tree of height three. The heuristic ordersnodes left to right. The twenty pictures show all thepaths to depth three, in order. The dotted lines and opencircles represent nodes that were not backtracked oversince the previous picture, so the trace can be followed byexamining at the pictures in sequence. Counting all theblack circles gives the total number of nodes expandedin the search, forty.In general, the number of nodes expanded by lds witha discrepancy limit of x is bounded by dx+1 (for iterationx, there are at most dx fringe nodes, with each path toa fringe node expanding at most d nodes). If d is large,the cost of any single iteration dominates the summedcosts of the preceding ones.4 Comparison with existing methodsIn practice, of course, we will typically not have time tosearch the space exhaustively. We would therefore liketo know the likelihood of �nding a solution, using thevarious methods, in the amount of time we are actuallywilling to wait. We will make this question precise byformalizing what we mean for the heuristic to make a\wrong turn."4.1 Wrong TurnsFor simplicity, we will consider only the case of a fullbinary tree. The two children of each choice point are

19���� ������ � �������18�AA���� �������17����������� �������16�AA�AA����15���� ��������������14�AA�����������13������������������12 �AA�AA�AA�Iteration 3 11���� ������� �������10�AA���� �������9����������� �������8�AA�AA����7���� ��������������6�AA�����������5����AA�AA�Iteration 2 4���� ������� �������3�AA���� �������2����AA����1�������AA�Iteration 10����������Iteration 0

Figure 2: Execution trace of lds.assumed to be in the order of heuristic preference. Wewill further assume that if a choice point has a goal nodein the subtree below it, then with probability p (theheuristic probability) its �rst child has a goal node inits subtree. If the �rst child does not have a goal, theother child must have a goal since the choice point hasonly two children. In this case the heuristic has made awrong turn by putting the children in the \wrong" order.The notion of a wrong turn is closely related to themistake probability. We de�ne a bad node to be a nodethat does not have any goal nodes in its subtree. Wede�ne a mistake to be a bad node whose parent is notbad. The mistake probability , m, is the probability thata randomly selected child of a good node is bad [Harvey,1995]. If the heuristic orders successors randomly, theheuristic probability is the complement of the mistakeprobability, p = 1�m. If the heuristic does better thanrandom selection, p > 1�m.Figure 3 shows the four possibilities for a node andits children. An � indicates a bad node, a solid dot agood node. In the �gure, p is the probability that anode is in class X or Y (the two classes with good leftchildren) given that it is not in class W (the only classwhere the parent is bad). The mistake probability m isone half the probability that a node is in class Y or Z(the classes with one mistake child) given that it is notin class W .Experimentally, it appears that m is generally fairlyconstant throughout many search trees [Harvey, 1995].

 JJJ

 JJJ

 JJJ

 JJJ� � � �� � � �� � � �W X Y ZFigure 3: The four possibilities for a node and its chil-dren.In order to simplify our analyses, we will assume that pis constant as well, although the experimental evidenceis that p tends to increase somewhat as we search thetree because most heuristics are more accurate at deepnodes than at shallow ones.The chance of �nding a solution on a random path todepth d (i.e., using isamp) is simply (1 � m)d. Usingheuristics and assuming a constant p, 1-samp has prob-ability pd of �nding a solution on its one and only path.This observation allows us to estimate p by running 1-samp on a large training set of problems from the domainof interest. Let s be the success rate of 1-samp on thetraining set. Since the probability of success for 1-sampis pd, we have p = s1=d. If s is small, the training set mayhave to be impractically large to get a reliable estimate.For some problems, though, s is not small. Heuristics de-veloped for job shop scheduling have been shown to yielda probability s that is nearly one for small research prob-lems [Smith and Cheng, 1993]. We have found in earlierexperimental work on the same problems [Harvey, 1994]that even standard csp heuristics can yield a success rateof about 75%. On larger scheduling problems [Vaessenset al., 1994] the success rate of 1-samp is less, but moresophisticated heuristics from operations research keep 1-samp competitive with other search techniques [Chengand Smith, 1994].4.2 Theoretical resultsGiven speci�c values for m and for p, Figures 4 and 5show the theoretical probability of success as a func-tion of time for iterative sampling (isamp), chronologi-cal backtracking (dfs), and limited discrepancy search(lds) for various heuristic probabilities p.2 The graphsshow the probability of �nding a solution in some num-ber of probes i, where we de�ne a probe to be a searchuntil a dead end is reached for isamp or lds, or simplya search of an additional d nodes for dfs. The num-ber of probes is limited by the height of the tree be-cause the combinatorics of solving the problem beyondthe one-discrepancy limit are intractable. The analysesare biased toward dfs because depth-�rst search is giventhe highest of the heuristic probabilities shown in each�gure.Figure 4 shows results for a problem of height 30,with a mistake probability m of 0.2. The problem hasabout a billion fringe nodes of which a few more than amillion are goals.3 With a solution density of 1/1000,we would expect iterative sampling to sample about500 fringe nodes before �nding a solution (807, to be2The combinatoric manipulations underlying these �guresare quite involved and appear elsewhere [Harvey, 1995].3The number of goals is (2� 2m)d.

Number of probes
Probability of success

0.00.10.20.30.40.50.60.70.80.91.0
0 10 20 30

� LDS (p = 0.95)
� �/ LDS (p = 0.9)/ /LDS (p = 0.85)� LDS (p = 0.8)� �� isamp (m = 0.2)� �� dfs (p = 0.95)� �Figure 4: A problem of height 30.exact).4 By many accounts, a problem with a solutiondensity of 0.001 is a fairly easy problem. It takes only807�30 = 24; 210 nodes, on average, to �nd a solution us-ing iterative sampling. The expected number of probes isslightly more than the number of probes required to havea 50% chance of �nding a solution, 560 � 30 = 16; 800.5In practice, we may be interested in the number ofnodes required to �nd a solution with a higher probabil-ity of success. The number of nodes required by iterativesampling for a success probability of 0.8 on this problemis 1300 � 30 = 39; 000. Compare this to the performanceof limited discrepancy search. For p = 0:95, lds hasprobability of success 0.8 with just eleven probes, or 990nodes. The savings, nearly a factor of forty, depends onthe heuristic to order successors correctly seven out ofeight times when one of the successors is a mistake.For p = 0:8 = 1�m, the heuristic orders the successorscorrectly half the time, no better than random selection.The p = 0:8 curve in the �gure (almost completely ob-scured by the isamp curve) shows that the performanceof lds is slightly worse than iterative sampling underthese conditions. For p = 0:85; 0:9; and 0:95 the heuris-tic orders nodes correctly �ve, six, and seven out of eighttimes. The curves show that the expected performanceof lds increases dramatically with the better p.The dfs curve for p = 0:95 rises only marginally abovethe probability 0.21 that its �rst fringe node is a goal.6The futility of dfs is even clearer in the deeper searchshown in Figure 5.The problem of Figure 5 has height 100, and approxi-mately 1030 nodes. The density of solutions for m = 0:1is about 2:6 � 10�5. Iterative sampling needs 26,096probes (2.6 million nodes) to have a 50% chance of suc-4The expected number of probes is 1=(1�m)d.5For example, the expected number of coin
ips beforegetting heads is two, whereas it takes only a single coin
ipto have probability 0.5 of getting heads. The number ofprobes required to achieve a given success probability s islog(1�s)log(1�(1�m)d) .6The probability that the �rst fringe node examined bydfs is a goal is simply pd.

Number of probes
Probability of success

0.00.10.20.30.40.50.60.70.80.91.0
0 10 20 30 40 50 60 70 80 90 100
� LDS (p = 0.975)

� � � � � � � � � � � � � � � � � � �/ LDS (p = 0.95)/ /LDS (p = 0.925)� LDS (p = 0.9)� �� isamp (m = 0.1)� �� dfs (p = 0.975)� �Figure 5: A problem of height 100.cess. If, as in the earlier problem, the heuristic ordersnodes correctly seven out of eight times (p = 0:975 form = 0:1), lds has a similar chance with just twentyprobes (2,000 nodes), a savings of three orders of mag-nitude over iterative sampling. The savings is similar ifa success probability of 0.8 is desired instead.For higher probabilities of success, the three ordersof magnitude savings is more doubtful, though perhapsnot as doubtful as the graph seems to suggest. The onediscrepancy iteration ends after 101 probes. The laterprobes of the one discrepancy iteration have much oftheir paths in common, so the likelihood that one of theselater probes succeeds given that the others failed is small.After 101 probes, though, the two discrepancy iterationbegins to explore \fresh" paths again. Consequently, wewould expect the lds curve to rise steadily once againwhere the graph leaves o�.75 Variations and ExtensionsThe reason we have focused on analyzing the early iter-ations of limited discrepancy search is that we believe inpractice they are the only iterations that matter. Earlier,we argued on intuitive grounds that they would be moreimportant than the later iterations. We will now takethe position that in practice the later iterations don'tmatter at all. The reason is that if the objective is tomaximize the probability of �nding a solution in a givennumber of nodes, there are always better things to dothan use those nodes on later iterations of limited dis-crepancy search.This section discusses a few of the more promisingchoices. Since some involve combinations with othertechniques and others depend on search space propertiesthat are di�cult to quantify, this discussion will be lessprecise than that of earlier sections. Here, we will viewlimited discrepancy search as a tool that can be used incombination with other techniques to craft an e�ectivesearch procedure for a given real world problem.7As remarked earlier, we are unfortunately unable to ver-ify this essentially theoretical claim because the combina-torics overwhelm us.

5.1 Variable ReorderingConstraint satisfaction problems and SAT problems areformulated as tree search by �xing an order for the vari-ables to be instantiated or determining the order dynam-ically as the search progresses. In either case, a node inthe search tree is a choice point for the possible instan-tiations of a particular variable. If an e�ective heuristicdoes not solve the problem with a limit of one discrep-ancy for some chosen variable order, it may still solve theproblem with one discrepancy given a di�erent variableorder. The \wrong turn" instantiations that the heuris-tic makes on the �rst variable order may even follow fromunit propagation on the second. This suggests the simpletechnique of repeating the one discrepancy iteration oflds with di�erent variable orders. When variable orderis determined dynamically, it may su�ce simply to beginthe search with a di�erent variable on each iteration. Asimilar technique improves the e�ciency of depth-�rstsearch as well (see Section 6).5.2 Using Di�erent HeuristicsIf multiple heuristics exist for a particular problem, onecan try repeating the one- or two-discrepancy limit iter-ations of lds with di�erent heuristics. If one heuristicis unlucky and makes more than two wrong turns on agiven problem, some other heuristic may be luckier. Ingeneral, what is hard for one heuristic may not be hardfor another. Lds is an e�ective way to give one heuristica reasonable chance before switching to another.5.3 Combining LDS with BoundedBacktrack SearchLds can also be combined with bounded backtracksearch (bbs) [Harvey, 1995] to produce an algorithmthat does not count \small" discrepancies (those thatfail quickly) toward the discrepancy limit. This algo-rithm can also be viewed as modifying the heuristic toavoid choices that can be seen to fail using a �xed looka-head. (The algorithm itself appears in Appendix A.)The combined lds-bbs algorithm outperforms bothlds and bbs on job shop scheduling problems. In fact,lds-bbs appears to be the algorithm of choice among allsystematic backtracking strategies in this domain. Thereis a compelling theoretical argument for this. Many mis-takes result in quick, if not immediate, failures. If aheuristic makes few wrong turns to begin with, it makeseven fewer wrong turns that exceed the backtrack bound.Adding a bounded backtrack enables limited discrepancysearch to discover solutions with a discrepancy limit ofno more than the number of wrong turns that actuallyexceed the backtrack bound, potentially reducing thenumber of required iterations. Since the cost of eachlds iteration grows by a factor of d, the savings can besubstantial. The added cost of the backtrack bound isrelatively insigni�cant. Adding a backtrack bound of onenode can cost at most a factor of 2. A backtrack boundof l costs at most a factor 2l and, for small l, is likelyto be cheaper than the cost of an additional iteration.This upper bound is conservative since the heuristic, byassumption, makes few mistakes.

5.4 Local Optimization Using LDSFor problems like scheduling, lds can also be used tosearch the neighborhood of an existing solution. Theone discrepancy iteration of lds is modi�ed to begin fol-lowing the path of the previous best solution instead offollowing the heuristic. At the depth of the discrepancy,the algorithm diverges from the previous solution andfollows the heuristic for the remaining decisions. If thepath ends in a solution that is better than the previ-ous best, it can be adopted immediately or stored as acontender for the basis of the next iteration.This variation of lds requires some measure of the\goodness" of a solution. For scheduling problems,the schedule length is often the appropriate measure.Searching for a schedule that takes less than time L, ifsuccessful, produces a schedule that takes time L0. A setof standard lds iterations can be repeated with the lowertime bound L0, or the optimization variant of lds canbe applied to consider variations of the previous schedulethat di�er by at most one discrepancy.85.5 Non-Boolean problemsFinally, we should at least comment on the possible ex-tension of lds to constraint-satisfaction problems in-volving variables with domain sizes larger than 2. Al-though we have focussed on Boolean problems in thispaper (in part because the most natural encoding of job-shop scheduling problems is Boolean [Smith and Cheng,1993]), the technique can obviously be applied in a widersetting. There are a variety of choices that will need tobe made, however: Should the one-discrepancy searchinclude every alternate value for the variable that vio-lates the heuristic, or only the single next most attractivechoice? If the number of nodes expanded is to increaseby a factor of no more than d on each iteration, we willneed to take the latter view.6 Experimental ResultsOur experimental results comparing limited discrep-ancy search with chronological backtracking and itera-tive sampling are based on a set of thirteen job shopscheduling problems taken from a recent survey of oper-ations research techniques [Vaessens et al., 1994].9 Eachof the problems involves scheduling the tasks that mightbe involved in producing widgets in a manufacturing set-ting: Each job ji needs to be performed on a particularmachine mi and takes time ti. There are constaints indi-cating that some jobs need to be completed before otherscan be started, and so on.The most e�ective encoding of problems such as thesefocusses directly on the resource contentions that arise;if two jobs ji and jk require the same machine, we intro-duce a variable pik indicating whether it is job ji or jobjk that uses the machine �rst [Smith and Cheng, 1993].8Alternatively, the time bound can be adjusted by binarydivision. A single iteration of lds, though, is not a decisionprocedure, so failure to �nd a schedule for a given time boundis no proof that no such schedule exists.9The problems can be obtained by sending a message too.rlibrary@ic.ac.uk.

Because these variables are Boolean, the search spaceis far smaller than it would be if we were to make thevariables the start times of the various jobs themselves.Our experimental work formulated each problem as acsp with a loose bound on the schedule length. We theniteratively repeated the search, decreasing the boundeach time to slightly less than the length of the lastschedule found. We recorded the length of the bestschedule found as a function of the total number of nodesexpanded until reaching a �nal cuto� of 500,000 nodesper problem (see Figure 6).
Node limit per problem (thousands)

Avg. percent above optimal
05101520
253035

50 100 150 200 250 300 350 400 450 500
� LDS

���� ����� ��������������� ����� ����� ����� �����������
� Isamp ���� ����� �����������/ DFS//// ///// /////////////// ///// ///// ///// ///////////

Figure 6: Comparison to dfs and iterative sampling.At any given node cuto� M � 500; 000, each algo-rithm had completed some number of iterations for eachproblem, resulting in schedules of various lengths. Weevaluated the schedules by these lengths, measuring theirpercent above the optimal length for each problem.10We took the average percent above optimal (a functionof M) as the overall measure of the performance of thesearch algorithms.In Figure 6, lds is clearly superior to chronologicalbacktracking and iterative sampling. We chose this par-ticular benchmark, though, so that we could also com-pare our results with other scheduling research in arti�-cial intelligence and operations research. On this bench-mark, contemporary OR scheduling programs score inthe range 0.45% to 8.31% above optimal [Vaessens et al.,1994]. Although the performance of our implementationdoes not match the best of these programs, it appears tobe in the same range.Our scheduling implementation uses general cspheuristics, which are weak by scheduling standards. Rel-10The optimal lengths were taken to be the best reportedlengths as of November, 1994.

ative to the larger pool of programs, our implementa-tion appears to be comparable using limited discrepancysearch but disastrous using chronological backtrackingand iterative sampling. Since limited discrepancy searchrelies heavily on the heuristics, we expect that the com-bination of lds with the more accurate heuristics of thededicated scheduling programs would have the best per-formance overall. Experiments in this vein are underway.We also experimented with a variety of nonsystem-atic algorithms [Harvey, 1995]. Depth-�rst search withrestarts, iterative broadening, and bounded backtracksearch scored 4.9%, 4.6%, and 4.2% above optimal on thebenchmark and all outperformed pure limited discrep-ancy search slightly (lds was also 4.9% above optimal).11However, since all of these nonsystematic methods relyless on the heuristics than lds, we believe that lds islikely to bene�t more signi�cantly from future improve-ments to the heuristics. As we commented in Section 5.3,limited discrepancy search can also be combined withbounded backtrack search. The results are shown in Fig-ure 7.12
Node limit per problem (thousands)

Avg. percent above optimal
01234
5678

50 100 150 200 250 300 350 400 450 500� l = 0
����� ����� ����� ����� ��������������� ����� ����� �� l = 1

������� ����� ����� ����� ��������������� ����� ����� �/ l = 4
/////// ///// ///// ///// /////////////// ///// ///// /

Figure 7: Adding bounded backtrack improves bbs.The combination of limited discrepancy with boundedbacktrack search had the best performance of all the sys-tematic and nonsystematic methods we tested. At 3.68%over optimal, its performance with a four-node backtrack11Although the overall di�erence of 0.7% between the bestand worst of these algorithms may appear slight, it is sub-stantial in this domain, since the problems can be expectedto become exponentially more di�cult as one approaches thecrossover point corresponding to optimality [Crawford andAuton, 1993].12The parameter l in the �gure is the depth of backtrackallowed in checking for heuristics that led to dead ends.

bound is respectable when compared to the dedicatedscheduling programs.7 ConclusionWe have shown both theoretically and experimentallythat limited discrepancy search is an e�ective way toexploit heuristic information in tree search problems. Itis more e�ective than either chronological backtrackingor iterative sampling, and we have attempted to explainwhy.The scheduling problems that we used in our experi-ments, while large by contemporary research standards,are not large relative to the types and sizes of schedulingproblems it would be useful to solve in the real world.Because of the complexity of scheduling, it is likely thatthe challenge of scaling up from research problems to realworld problems will be met more quickly by advances inheuristics than by the evolution of brute force methods.We expect that in the future, techniques that depend onheuristics yet recover gracefully by searching alternativeswhen the heuristics fail will be the methods of choice forsolving real world problems.AcknowledgementThis work has been supported by the Air Force O�ceof Scienti�c Research under contract 92-0693 and byARPA/Rome Labs under contracts F30602-91-C-0036and F30602-93-C-00031. The authors would like tothank to Andrew Baker, Ari J�onsson, Jimi Crawford andDavid Etherington for valuable feedback in the course ofthis research.A The combined LDS-BBS algorithmLB-Probe(node, k , look)1 if Goal-P(node) return hnode ; 0i2 s Successors(node)3 if k > 0, s Reverse(s)4 i 05 count 06 maxheight 07 for child in s8 if k = 0 and count � 1 break9 if k � 0 and i = 0 k0 k � 110 else k0 k11 hresult; heighti LB-Probe(child , k0, look)12 maxheight Max(maxheight , 1 + height)13 if result 6= nil return hresult; 0i14 i i + 115 if height � look , count count + 116 return h nil, maxheight i

LDS-BBS(node, look)1 for x 0 to maximum depth2 hresult; heighti LB-Probe(node, x , look)3 if result 6= nil return result4 return nilReferences[Cheng and Smith, 1994] C. Cheng and S. Smith. Gen-erating feasible schedules under complex metric con-straints. In Proc. of the Twelvth National Conferenceon Arti�cial Intelligence, 1994.[Crawford and Auton, 1993] J. Crawford and L. Auton.Experimental results on the crossover point in satis�-ability problems. In Proc. 11th AAAI, 1993.[Crawford and Baker, 1994] J. Crawford and A. Baker.Experimental results on the application of satis�abil-ity algorithms to scheduling problems. In Proc. 12thAAAI, 1994.[Harvey, 1994] W. Harvey. Search and job shop schedul-ing. Technical Report CIRL TR 94-1, CIRL, Univer-sity of Oregon, 1994.[Harvey, 1995] W. Harvey. Nonsystematic BacktrackingSearch. PhD thesis, Stanford University, 1995.[Langley, 1992] P. Langley. Systematic and nonsystem-atic search strategies. In Arti�cial Intelligence Plan-ning Systems: Proceedings of the First InternationalConference, 1992.[Smith and Cheng, 1993] S. Smith and C. Cheng. Slack-based heuristics for constraint satisfaction scheduling.In Proc. of the Eleventh National Conference on Ar-ti�cial Intelligence, 1993.[Vaessens et al., 1994] R. Vaessens, E. Aarts, andJ. Lenstra. Job shop scheduling by local search. Tech-nical Report COSOR 94-05, Eindhoven University ofTechnology, 1994.[Wilkins, 1988] D. Wilkins. Practical Planning: Ex-tending the Classical AI Planning Paradigm. MorganKaufman, San Mateo, California, 1988.

