
Qualitative Simulation: Then and Now�Benjamin KuipersyB. J. Kuipers. 1993. Qualitative simulation: then and now.Arti�cial Intelligence 59: 133-140.Qualitative reasoning about physical systems has become one of the mostactive and productive areas in AI in recent years. While there are many dif-ferent kinds of qualitative reasoning, the central role is played by qualitativesimulation: prediction of the possible behaviors consistent with incompleteknowledge of the structure of physical system.In the retrospective on my 1984 paper, \Commonsense reasoning aboutcausality: deriving behavior from structure", I describe the framework forqualitative reasoning that has motivated this work, and the applicationsthat have come out of that framework. That paper includes the conjecturethat the structural and behavioral representations for qualitative simula-tion could be rigorously shown to be abstractions of ordinary di�erentialequations and their solutions. My 1986 paper, \Qualitative simulation",established that conjecture and legitimized the term qualitative di�erentialequation or QDE. It also presented the clear and e�cient QSIM algorithm.In this retrospective, I describe aspects of the body of work on qualitativesimulation that has developed from there.�This work has taken place in the Qualitative Reasoning Group at the Arti�cial In-telligence Laboratory, The University of Texas at Austin. Research of the QualitativeReasoning Group is supported in part by NSF grants IRI-8905494 and IRI-8904454, byNASA grant NAG 2-507, and by the Texas Advanced Research Program under grant no.003658-175.yComputer Sciences Dept., University of Texas at Austin, Austin TX USA1
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---? ?? ?Figure 1: All models are abstractions of the world. Qualitative modelsare related to ordinary di�erential equations, but are more expressive ofincomplete knowledge.1 BackgroundThree motivating insights led to the development of the QSIM algorithm.First, the design for the QDE representation for qualitative models, pre-sented in the 1984 AIJ paper, had been inspired both by observations ofhuman experts [Kuipers & Kassirer, 1984] and by the language of ordinarydi�erential equations, so it was natural to ask how the mathematical simi-larity could be proved to be a true abstraction relation (Fig. 1).Second, my previous ENV algorithm and its implementation had becomeunwieldy both in theory and in practice, so it was time to redesign thealgorithm and reimplement the simulator. My research assistant at thetime, Christopher Eliot, suggested the approach of proposing transitions and�ltering inconsistent combinations. We were both inspired by David Waltz'compelling animation of his constraint �ltering algorithm in the classic MITAI Lab �lm, \The Eye of the Robot." Rather later, it became clear that theQSIM algorithm was almost a textbook application of Mackworth's node,arc, and path consistency algorithms for constraint satisfaction, but ourinspiration came from the �lm, not the theory.The third insight came from attempting to do a qualitative simulation,by hand, of the simple undamped oscillator: x00 = �M+(x). At the end2



of the �rst complete cycle, the simulation branches three ways according towhether the oscillation was increasing, steady, or decreasing, although onlythe steady case is consistent with this equation. After some confusion, itbecame clear that this apparent bug in the algorithm re
ected a fundamentaland revealing limitation in the mathematics of qualitative simulation.2 Abstraction, Soundness, and IncompletenessOnce the abstraction relations from ODEs to QDEs, and from continuouslydi�erentiable functions to qualitative behaviors, are carefully de�ned1, themathematical results are relatively straight-forward.We can view an ordinary di�erential equation solver as a theorem-proverfor theorems of a special form:DiffEqs ` ODE ^ State(t0)! Beh: (1)A qualitative simulation algorithm can also be viewed as a special-purposetheorem-prover:QSIM ` QDE ^QState(t0)! or(QBeh1; : : :QBehn): (2)The soundness theorem says that when QSIM proves a theorem of form(2), it is true: that is, for any ODE described by the QDE, and State(t0)described by QState(t0), the solution Beh to the ODE is described by oneof the qualitative behaviors, QBeh1; : : :QBehn. The constraint �lteringalgorithm makes the proof very simple: all possible real transitions fromone qualitative state to the next are proposed, and only impossible ones are�ltered out, so all the real ones must remain.The incompleteness theorem says that some qualitative behaviors in thedisjunct may be spurious: that is, not abstracting any real solution to anODE corresponding to the QDE. In the simple oscillator example, the in-creasing and decreasing behaviors are spurious. This situation is properlyconsidered incompleteness, since QSIM has failed to prove the stronger the-orem with fewer disjuncts.1A QDE is a description of a set of ODEs, with two essential abstractions. First, aquantity space is an abstraction of the real number line to an ordered set of landmarkvalues, symbolic names for qualitatively signi�cant values. Second, the arithmetic anddi�erential constraints in the ODE are augmented by a monotonic function constraintdescribing a �xed but unknown function in terms of its direction of change.3



3 Progress in Qualitative SimulationThe constraint �ltering architecture of the QSIM algorithm lends itself tonatural extension with a set of global �lters2 on complete qualitative statesor behaviors. The goal of each �lter is to make certain consequences of thequalitative description explicit, and to detect inconsistencies so the behaviorcan be �ltered out. The creation of a suitable set of global �lters has beenan ongoing and productive line of research.3.1 State-Based Filters� In�nite Values and In�nite Times. The QSIM abstraction is de�nedover the extended number line, so +1 and �1 are represented bylandmark values in each quantity space. There are useful constraintson the possible combinations of �nite and in�nite values, times, andrates of change [Kuipers, 1986].� Higher-Order Derivatives. Certain unconstrained or \chattering" setsof qualitative behaviors can be pruned by deriving and applying ex-pressions for higher-order derivatives of key variables in the QDE[Kuipers & Chiu, 1987; Kuipers, et al, 1991], building on earlier workbyWilliams [1984], and by de Kleer and Bobrow [1984]. The derivationmay require additional assumptions about the behavior of unspeci�edmonotonic functions.� Ignoring Direction of Change. Chattering behaviors can also be col-lapsed into a single description without an additional assumption byignoring certain qualitative features, at the cost of additional possiblespurious behaviors [Kuipers & Chiu, 1987; Kuipers, et al, 1991].3.2 History-Based Filters� Non-Intersection of Trajectories in Qualitative Phase Space. The so-lution to a di�erential equation can be viewed as a trajectory in phasespace. These trajectories cannot intersect themselves or each other at�nite times. Methods for testing for self-intersection, applicable even2These �lters are \global" in the sense that they apply to complete qualitative statedescriptions, not just to individual assignments of values to variables, or tuples of assign-ments. The �lters also vary according to whether their scope is an individual state or anentire behavior. 4



under the qualitative behavior description, were developed indepen-dently by Lee & Kuipers [1988] and by Struss [1988].� Kinetic Energy Theorem. Under very general circumstances, a QDEcan be viewed as representing motion in response to a force, whichin turn can be decomposed into a conservative and a non-conservativecomponent. Then, over any segment of behavior, the change in kineticenergy of the system must be equal to the sum of conservative and non-conservative work. This equation can often be evaluated qualitatively,and eliminates an important source of spurious behaviors [Fouch�e &Kuipers, 1992].3.3 Quantitative ConstraintsMethods for adding quantitative information to qualitative behaviors canbe used both to exploit additional a priori knowledge, and to interpretquantitative observations by unifying them with a qualitative behavior.� Q2: Bounds on Landmarks and Monotonic Functions. A qualitativebehavior predicted by QSIM can serve as a framework for represent-ing quantitative information by annotating landmark values with realintervals and monotonic function constraints with real-valued func-tions serving as bounding envelopes. The quantitative bounds can bepropagated across constraints to derive tighter bounds, or to detect acontradiction and �lter out the behavior [Kuipers & Berleant, 1988,1990].� Q3: Adaptive Discretization. The quantitative precision of the predic-tion from Q2 is drastically limited by the coarse grain-size of the qual-itative behavior. The grain-size can be adaptively re�ned by insertingadditional qualitative states, to converge to a real-valued function asuncertainty goes to zero [Berleant & Kuipers, 1990].3.4 Operating Region TransitionsA given QDE model has a region of applicability. When a behavior is aboutto cross the boundary of that region, simulation stops within the currentregion. If a model exists for the region on the other side of the boundary,a transition is created to a new state de�ned with respect to that model.In QSIM this is done by an explicit transition function that speci�es which5



values are inherited, asserted, or inferred in the new state. The two stateslinked by a region transition are both considered time-points, and refer tothe \same" point in time. This has two di�erent interpretations:� The two regions may have di�erent constraints, but have identicaldescriptions of the state on their shared boundary. Therefore, the twotransition states are alternate descriptions of the same physical statein time.� The transition may represent the two sides of a \discontinuous" change:really a continuous but fast process whose extent is abstracted to zerofor the purposes of the current model [Nishida & Doshita, 1987].This distinction can be illustrated with two models of a bouncing ball(provided as examples with the distributed version of QSIM): one modelsthe bounce as a continuous transition between a gravity model and a springmodel, and the other models the bounce as a discontinuous re
ection of thevelocity when the ball strikes the 
oor.3.5 Time-Scale AbstractionTime-scale abstraction allows us to decompose a model of a complex systeminto a hierarchy of simpler models of the system operating at di�erent time-scales. A process in the midst of a time-scale hierarchy can view slowerprocesses as constant and faster processes as acting instantaneously. Thatis, it can take a quasi-equilibrium view of the faster process, and abstractits behavior to a monotonic function [Kuipers, 1987]. There is much moreto be done in this area, particularly drawing on traditional mathematicalwork on time-scales.4 Open ProblemsThere are many important open problems that naturally arise from the QDErepresentation and the QSIM algorithm. I list three interesting ones.� Qualitative phase portrait analysis: derive the set of all possible qual-itative phase portraits of a given second-order QDE.A phase portrait captures the set of all possible behaviors of a dy-namical system, for all initial states. It thus �lls the same role as6



the \total envisionment", but with a more expressive language forqualitative features. Sacks [1990] and Yip [1991] have demonstratedimportant results in the intelligent control of numerical experiments tomap phase portraits of dynamical systems, given numerically speci�cequations.It is known that the phase portraits of all second-order systems can bedescribed in terms of a simple qualitative language [Hirsch & Smale,1974]. Preliminary experiments suggest that these terms can be in-ferred from intelligently guided qualitative simulation of a QDE model.This project would require automated algebraic analysis of the QDE tosearch for Lyapunov functions and other derived qualitative propertiesof the QDE. The resulting qualitative phase portrait would depend onfewer assumptions and thus have wider applicability than the corre-sponding numerically-based description.� Automatic formulation of numerical problems: use the tree of qualita-tive behaviors to formulate problems for a numerical equation-solver,for example an optimizer.Each predicted qualitative behavior represents a qualitatively equiva-lent set of continuous behaviors. The qualitative behavior descriptioncan be mapped naturally onto a set of equations over landmark valuesand other symbolic terms [Kuipers & Berleant, 1990]. It should bepossible to transform that set of equations into the appropriate formsfor input to a variety of numerical equation-solving algorithms. Forexample, an optimizer could be used to �nd the numerical values forcertain landmarks that optimize the value of some objective function.The set of continuous behaviors corresponding to a single qualitativebehavior provides useful assumptions to the equation-solver. Wherethere are several qualitative behaviors, the numerical solutions foundalong each branch can be combined, in the case of an optimizer bysearching for the maximum value.� Completeness: Is the problem of spurious behaviors a fundamentallimitation of qualitative reasoning, or is the QDE language su�cientlylimited that sound and complete qualitative simulation is possible?On the one hand, recently developed methods are capable of detectingand �ltering out many of the previously-troublesome sources of spu-rious behaviors. On the other hand, algebraic equivalence to zero is7
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