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Abstrael--Recently developed methods for qualitative 
reasoning may fill an important gap in the modeling and 
control toolkit. Qualitative reasoning methods provide 
greater expressive power for states of incomplete knowledge 
than differential or difference equations, and thus make it 
possible to build models without incorporating assumptions 
of linearity or specific values for incompletely known 
constants. Even with incomplete knowledge, there is enough 
information in a qualitative description to support qualitative 
simulation, predicting the possible behaviors of an 
incompletely described system. We survey results from 
several approaches to qualitative reasoning, and provide a 
detailed example of the application of these methods to a 
simple problem. The mathematical validity of qualitative 
simulation is also assessed. Initial results have been 
encouraging, and steps are now being taken to develop 
additional mathematical power, hierarchical decomposition 
methods, and incremental quantitative constraints, to make 
qualitative reasoning into a formal reasoning method useful 
on realistic problems. 

1. INTRODUCTION 
THE OOAL of artificial intelligence research is to 
develop symbolic computational methods for 
representing knowledge and processes of 
inference. 

One of the fruits of AI research is the 
rule-based expert system. The MYCIN system 
(Shortliffe, 1976), applied to the problem of 
diagnosis, is the best and clearest early example 
of this method. 
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1.1. The need for model-based reasoning 
While the rule-based approach yielded im- 

pressive results, further experience and analysis 
showed that there were serious limitations to an 
inference method based on empirical associ- 
ations between observable findings and diagnostic 
hypotheses. Within the rule-based approach, it is 
difficult to reason about interactions between 
diseases, or idiosyncratic responses to change. 
New methods were proposed for incorporating 
causal relations as well as empirical associations 
(Patil et al., 1981; Pople, 1982). 

This line of investigation produced various 
approaches to model-based diagnosis, using an 
interplay between an empirical association-based 
reasoner which proposes hypotheses, and a 
model-based reasoner which elaborates and 
evaluates them (Patil et al., 1981; Simmons and 
Davis, 1987). 

Empirical studies of causal reasoning by 
expert physicians showed that one important 
representation for the model of a mechanism 
consisted of qualitative descriptions of con- 
tinuous variables, their directions of change, and 
the constraints among them (Kuipers and 
Kassirer, 1984). 

This observation supported a convergence 
between research on model-based diagnosis and 
research on qualitative reasoning about physical 
systems (de Kleer, 1977; de Kleer and Brown, 
1984; Forbus, 1984; Kuipers, 1984). The 
model-based reasoner has the task of taking a 
qualitative description of the mechanism and its 
current state, and producing a qualitative 
description of its possible behaviors. 

Current AI research in model-based reasoning 
is attempting to develop the framework sketched 
in Fig. 1, extending the power of qualitative 
model-based reasoning methods, and developing 
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associations Observations Hypotheses 

I match 

qualitative reasoning Predictions Fault Models 
FIG. 1. Model-based reasoning in a generate-and-test cycle 

for diagnostic problem-solving. 

the appropriate, style of interaction between the 
two reasoning methods. Although this frame- 
work is defined for the problem of diagnosis, the 
problems of monitoring and control are closely 
related. We may informally paraphrase the 
problems of monitoring and control in terms of 
diagnosis and prediction, as follows. 

• Monitoring: "What is really going on, given 
what I observe?" 

• Control: "What should I do next?"---* 
"What will happen if I do X?" 

In this overview, I will concentrate on the 
problem of qualitative model-based reasoning, 
and particularly on the problem of prediction. I 
will attempt to show the relations between the 
different major approaches to this problem, and 
how they address the concerns of the systems 
modeling community. I will conclude by 
discussing current research directions and pro- 
gress toward application to realistic systems. 

1.2. The need for incomplete knowledge 
How, then, can we represent models of 

mechanisms capable of providing useful predic- 
tions about possible behaviors? We are faced 
with several conflicting requirements. 

(1) The model should express what we know 
about a mechanism. 

(2) The model should not require assumptions 
beyond what we know. 

(3) It must be mathematically and computa- 
tionally feasible to derive predictions. 

(4) It should be possible to match predictions 
against observations. 

There is a spectrum of current approaches to 
building models, with advantages and disadvan- 
tages to each point on the spectrum. Qualitative 
reasoning fills a gap in this spectrum between 
some of the more traditional methods. 

• Numerical simulation of difference 
equations. 

• Analytical solution of differential equations. 
• (Gap.) 
• Influence diagrams. 

Numerical difference equations are precise 
and computationally tractable. They require us 

to specify computable functions relating the 
variables in the equations, which frequently 
involves using linear approximations to unknown 
or non-linear functions, and providing numerical 
values for incompletely known constants. These 
functional relations and constant values amount 
to additional assumptions beyond what we 
know. A numerical prediction never matches the 
observed values precisely, but there is an 
enormous literature of methods for describing 
and quantifying the match between prediction 
and data. 

Differential equations have many of the same 
strengths, and in addition make it possible to 
withhold commitment on the numerical values of 
constants. However, functions relating variables 
must be specified explicitly, even where they are 
not known with confidence. The most serious 
problem with this representation is that many 
differential equations cannot be solved analyti- 
cally at all, especially if some of the functional 
relations are nonlinear. 

Influence diagrams (signed directed graphs) 
are used to describe how the direction of certain 
changes influence the direction of change of 
other variables. Their strength is in representing 
a state of partial knowledge during model 
creation. An influence diagram specifies the 
relevant variables and the relevant functional 
relations, without making any commitment to 
their precise form. Sophisticated methods exist 
for assessing the stability or instability of 
complex feedback systems expressed as influence 
diagrams (Puccia and Levins, 1985). In case the 
system is stable, the effects of perturbations can 
be predicted, within a quasi-static equilibrium 
assumption. 

1.3. The need for qualitative reasoning 
Qualitative reasoning methods provide an 

intermediate point on this spectrum. They 
provide more expressive power for states of 
incomplete knowledge than differential or 
difference equations, by means of a low- 
resolution quantity space representation for 
values, and classes of monotonic functions for 
functional relations. They provide more inferen- 
tial power than influence diagrams by applying 
limit analysis to changing variables, and by 
having a mathematically precise semantics as an 
abstraction of differential equations. Matching 
and prediction are both facilitated because the 
landmarks of the quantity space are defined by 
semantically important points where important 
changes take place. 

Several distinct approaches to qualitative 
reasoning have developed, and the relations 
among them are not always clear. 
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• de Kleer and Brown, "A qualitative physics 
based on confluences" (de Kleer and Brown, 
1984). 

Johan de Kleer first explored the properties of 
qualitative representations of mechanisms. His 
method using confluences assumes that the 
mechanism is always in, or very near, a state of 
equilibrium. 

• Forbus, "Qualitative process theory" (For- 
bus, 1984). 

Qualitative process theory is a model-building 
methodology, which recognizes the elements of a 
model from a physical description of a system, 
then applies a closed-world assumption to create 
the appropriate set of constraints. 

• Kuipers, "Qualitative simulation" (Kuipers, 
1984, 1986). 

Qualitative simulation starts with a set of 
qualitative constraints and an initial state, and 
predicts the set of possible futures for the 
system. This approach has a precise mathemati- 
cal semantics as an abstraction of differential 
equations. 

In the following sections of this paper, we will 
present the concepts of qualitative reasoning, 
and clarify the relations among the different 
approaches through a simple example. Finally, 
we will discuss the mathematical strengths and 
limitations of this approach, and briefly sketch 
current research directions. 

2. CONCEPTS OF QUALITATIVE SIMULATION 
In order to introduce the concepts of 

qualitative simulation, we will go through an 
elementary modeling exercise, illustrating how 
qualitative modeling differs from previous 
methods. 

We can explore these concepts by looking at 
the U-tube: a simple, two-tank fluid flow system. 
The structure of the U-tube is simple and clear, 
and its behavior is easily deduced. Nonetheless, 
there is enough complexity to motivate the 
different features of qualitative simulation 
systems, and we will use the U-tube as a model 
for more complex systems. In particular, the 
U-tube is a simple analog for flow between two 
physiological compartments. 

The U-tube consists of two tanks (named A 
and B) connected by a flow channel (Fig. 2). We 
assume that the momentum of water flowing 
through the channel is not a significant factor. 

2.1. The qualitative structure of  the U-tube 
Each tank holds a certain amount of water, 

which produces a certain pressure at the bottom. 

t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  J 

FIG. 2. The U-tube is a simple example of a two- 
compartment system. 

Since the U-tube is a system which may change 
over time, these magnitudes are continuous 
real-valued functions of time: amtA(t), amtB(t), 
pressureA(t), and pressureB(t). 

Reasoning qualitatively, and not knowing the 
exact properties of each tank, we know that the 
pressure increases with the amount of water in 
the tank, but we do not know the exact 
relationship. We express this state of incomplete 
knowledge by saying that there is some 
unspecified monotonically increasing function 
relating amount to pressure 

pressure = M+(amount). (1) 

The term M + refers to an unspecified member of 
the class of monotonically increasing functions. 

We also have incomplete, qualitative knowl- 
edge about the values taken on by the 
parameters amtA and pressureA at any given 
time. Instead of specifying numerical values in 
the real number line, the value of a parameter is 
described qualitatively in terms of its quantity 
space. Each quantity space is defined by an 
ordered set of landmark values. The quantity 
spaces for amtA and pressureA are 

amtA 0. • • A M A X .  • • oo 
pressureA 0 . . . . . . . . . . . .  ~ " 

The landmarks -o0, 0, and ~ have known 
properties and may be used in any quantity 
space. Other landmarks are symbols the 
meanings of which are specific to the particular 
quantity space, and are defined only by their 
relations with other landmarks. Thus, the 
landmark AMAX, representing the maximum 
capacity of tank A, is somewhere in the interval 
(0, 0o), but otherwise unspecified. Since amtA 
and pressureA are necessarily non-negative, the 
low bounds of the quantity spaces are both 0, 
and negative values cannot even be described. 
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In the case of the U-tube,  we have additional 
knowledge about the M ÷ function relating amtA 
and pressureA. We know that it passes through 
the origin: there is a correspondence between 
amtA = 0 and pressureA = 0. (Following normal 
mathematical usage, we will write the cor- 
respondence between 0 and 0 as (0, 0).) We also 
assert that the relation pressureA = M+(amtA)  
has a correspondence at (~, ~),  which has the 
effect of excluding a horizontal or vertical 
asymptote. 

There is a similar (but not necessarily 
identical) monotonically increasing function 
relating amtB to pressureB, so we can write 

pressureB = M+(amtB).  (2) 

This illustrates that M ÷ is not the name of a 
function, but the name of a class of functions. 

The pressure difference between the two tanks 
is another important continuous function 

p A B  = pressureA - pressureB. (3) 

The flow between A and B is a monotonic  
function of the pressure difference, with 
corresponding values (0, 0) and (o% ~) 

flowAB = M + ( p A B ) .  (4) 

Finally, we observe that flowAB represents 
the rate of change of amtB and the inverse of the 
rate of change of amtA 

d 
flowAB = ~ amtB (5) 

d 
flowAB = - ~ amtA. (6) 

These qualitative constraints (equations (1)-  
(6)), along with their corresponding values and 
the quantity spaces of their parameters ,  describe 
the qualitative structure of the U-tube system. 
Figure 3 shows a graphical form of this set of 
constraints. Since some of our computations 

later on will involve propagation of information 
across constraints, a graphical notation helps 
clarify the information flow. 

The quantity spaces for the parameters  of this 
system are 

amtA 0 • • • A M A X  • • • 
pressureA 0 .  • • 
amtB 0 .  • • BMA X  • • • oo 
pressureB 0 .  • • 
p A B  - ~ .  • • 0 .  • • 
flowAB - ~  • • • 0 .  • • ~. 

As will be discussed below, the quantity 
spaces define a descriptive " language" repre- 
senting the set of qualitative distinctions that can 
be expressed by this model,  at least at its initial 
state. 

The constraints and corresponding values are: 

corresponding 
values 

(0, 0), (~, ~) 
(0, 0), (®, ~) 

constraints 
pressureA = M+(amtA) 
pressureB = M+(amtB) 
pressureA - pressureB = pAB 
flowAB = M*(pAB) (0, 0), (o% ~) 

d 
flowAB = ~ amtB 

d 
flowAB = - ~  amtB. 

We will also consider that these constraints 
might be written as a qualitative differential 
equation (QDE)  

d 
- -  amtB = f ( g ( a m t A )  - h (amtB) ) , f ,  g, h e M ÷ 
dt 

by collapsing the constraint equations together.  
Since f, g, and h are unknown monotonic 
functions, and may well be nonlinear, this 
equation is intractable analytically. Later,  we 
will discuss how a set of constraints like this can 
be derived from a physical description of a 
mechanism. 

arntA 

pressureA 

I G _  7 
pAB 

amtB 

pressuneB 

I 

FIG. 3. U-Tube constraints. 

3. QUALITATIVE KNOWLEDGE OF STATE 
Like our structural knowledge-- the  qualitative 

constraints and quantity spaces--we have in- 
complete knowledge of the state of  the U-tube at 
any given moment.  Its state is described by the 
qualitative values of the parameters:  amtA,  
amtB, pressureA, pressureB, p A B ,  and flowAB. 

3.1. Qualitative state is dynamic 
As the system changes with time, we will need 

to describe the sequences of qualitative states 
that it may pass through. Suppose that I am 
filling tank A until it overflows, ignoring tank B. 
The sequence of qualitative magnitudes of the 
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parameter amtA will be 

amtA(t): 0-* (0, AMAX)-*  AMAX 

meaning that after the time that amtA(t) = 0 and 
until amtA(t )=  AMAX the value of amtA(t) is 
somewhere in the open interval (0, AMAX). 
This is not the whole story, however. 

In order to predict a behavior like that of 
amtA, we will need to determine the transitions 
from one qualitative state to another. In addition 
to qualitative magnitude in the quantity space, 
we need to know the direction of change of each 
parameter. Thus, for each parameter, we 
describe its qualitative state in terms of its 
magnitude (in the quantity space), and its 
direction of change: increasing, decreasing, or 
steady. According to the sign of the derivative of 
a parameter at a particular instant, we describe 
the direction of change as inc, dec, or std. 

Thus, the qualitative state of amtA in the 
midst of filling has two components--magnitude 
and direction of change--and is written 
((0, AMAX), inc) .  When we need to refer to 
the direction of change alone, we will write, e.g. 
qdir(amtA)=inc.  When tank A is filled to 
overflowing, the behavior of amtA over time can 
be described as 

amtA(t): (0, inc)--* ((0, AMAX),inc)--~ 
(AMAX, inc). 

We can capture the same description of the 
behavior of an individual parameter with a 
qualitative graph, in which the landmark values 
in the quantity space are arranged on the vertical 
axis, and the distinguished time points along the 
horizontal axis (cf. Fig. 5). Qualitative values are 
plotted at, or midway between, landmark points, 
and the symbol plotted (T, ~, E)) represents the 
direction of change. 

But before we can predict behavior, we must 
define an initial state. 

five magnitude and direction of change for each 
parameter. 

4.1. Propagating to the complete initial state 
G i v e n  the initially specified information, we 

~ propagate locally across constraints to 
determine more about the qualitative state (Fig. 
4). Here we are able to propagate to determine 
the initial state of the U-tube completely. 

(1) Because of the corresponding value at 
(0, 0) 

amtB = 0 ~ pressured = 0. 

(2) Because of corresponding values at (0, 0) 
and (0% o0), we can conclude that 

amtA = AMAX ~ pressureA = (0, oo). 

Because of the absence of landmarks, this is the 
best description for the value of pressureA 
expressible in its quantity space. 

(3) An addition (or subtraction) constraint 
has an implicit set of corresponding values at 
(0, 0, 0), so 
pressureA = (0, oo) A pressureB= 0 

p A B =  (0, oo). 

(4) The corresponding value at (0, 0) of the 
constraint flowAB = M+(pAB)  then gives us 

p A B =  (0, ~)::)> flowAB = (0, oo). 

(5) The derivative constraints can now deter- 
mine the directions of change of amtA and amtB 

flowAB = (0, oo) ::> qdir(amtA) = dec 

A qdir(amtB) = inc. 

(6) The directions of change propagate 
through monotonic functions 

qdir(amtA) = dec ~ qdir(pressureA) = dec 
qdir(amtB) = inc ~ qdir(pressureB) = inc. 

4. PREDICTING BEHAVIOR FROM 
INITIAL CONDITIONS 

A qualitative simulation problem specifies a 
structure in terms of parameters, their quantity 
spaces, and their constraints with corresponding 
values. Then an initial state is given, and we 
want to know the possible behaviors. 

Suppose we start with tank A full and tank B 
empty. We thus begin with the following 
information: 

amtA = (AMAX, ?) ] 
t=to~ amtB=(0,?). 

I 
In order to simulate the system, we need a 

complete qualitative state description: a qualita- 

• 
J, aratB • 0 t 

FIG. 4. Propagation through the constraint model. 
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(7) Directions of change also propagate 
through the addition constraint 

qdir(pressureA) = dec ^ qdir(pressureB) = inc 

qdir(pAB) = dec. 

(8) The last propagation completes the state 

qdir(pAB) = dec :::), qdir(flowAB) = dec. 

The final result of this propagation is a 
complete, qualitative, description of the state of 
the U-tube at the initial instant, to. 

t = t 0 ~  

amtA = (AMAX,  dec) 
pressureA = ((0, oo), dec) 
amtB = (0, inc) 
pressureB = (0, inc) 
p A B  = ((0, ~), dec) 
flowAB = ((0, ~),  dec).  

Although these inferences propagate around a 
network of constraints, they do not correspond 
to changes taking place over time. They derive 
mathematical consequences of certain observa- 
tions about a particular instant in time to the rest 
of the state description at that same instant. 

This gives us a complete initial state for 
simulation. The qualitative state description 
shows us that several of the parameters are 
changing. We can predict the evolution of the 
U-tube system over time by looking at the 
nature of the possible qualitative changes. 

4.2. Predicting the next state 
Each parameter changes continuously with 

time, so it is relatively easy to predict the 
successor(s) to a given state. Since at the initial 
instant to, a m t B = 0  and increasing, then in 
the next qualitative state, amtB > 0  and still 
increasing. Similarly with pressureB. The same 
approach handles amtA = (AMAX,  dec).  How- 
ever, pressureA is within an open interval, 
so it would require a finite amount of time to 
reach the boundary of its interval, while amtA or 
amtB can move off a landmark value instan- 
taneously. Thus we get the next state descrip- 
tion, specifying the qualitative values the 
parameters must have over some open time- 
interval following to. The subsequent simulation 
will show what event determines the time-point 
t~ that terminates this interval. 

t e (to, t,) :ff 

amtA = ((0, AMAX),  dec) 
pressureA = ((0, ~),  dec) 
amtB = ((0, BMAX),  inc) 
pressureB = ((0, oo), inc) 
p A B  = ((0, oo), dec) 
f lowAa = ((0, oo), dec).  

Before we continue, there are a few 
technicalities we need to observe. 

• We are actually presuming that not only the 
parameters, but their derivatives, vary con- 
tinuously with time. That is, the parameters of 
the system are continuously differentiable 
functions of time. 

• Although we speak of the "next state", 
since the underlying process we are describing is 
continuous, strictly speaking there is no next 
state. However, the sequence of distinct 
qualitative state descriptions is a discrete 
sequence, so the "next state" of a mechanism 
refers to the next distinct qualitative description 
in that sequence. 

Time is modeled as an alternating sequence of 
time-points and open time-intervals. Our first 
state description represented the qualitative state 
of the U-tube at the initial instant to. The change 
from that point in time puts us into an open 
interval on the time-line, during which the 
qualitative description remains fixed, until we 
reach another distinguished time-point when a 
qualitative change takes place. Thus, the second 
state description applies, not to a single instant 
in time, but to every time t in the interval (to, tO. 
Since several parameters are changing, the 
mechanism is changing during that interval, and 
the description reflects that fact. However, since 
it has not crossed any qualitative boundary, the 
qualitative description of the changing system 
remains constant during (to, tO. 

4.3. Moving to a limit 
The previous qualitative state description 

applied to all time-points in a time-interval, 
t e(to, tO. Now we need to determine the 
qualitative change that defines the time t=t~ 
that terminates this interval. There are several 
kinds of qualitative changes: 

• a parameter that is moving toward a limit 
may reach it; 

• a parameter that is equal to a landmark 
value may move off it; 

• a parameter may change its direction of 
change. 

In this example, all six parameters are moving 
toward various limits, for a theoretical maximum 
of 26= 64 possible combinations of qualitative 
changes. The corresponding values on the 
addition and monotonic function constraints, 
however, greatly reduce this set. In the end, we 
are left with only a single unresolved ambiguity: 
the race between amtB ~ BMAX and 
flowAB--* O. There are no constraints to resolve 
this ambiguity, so our prediction must branch 
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nondeterministically. (Physical intuition confirms 
that these possibilities are reasonable, since we 
do not know the relative sizes of tanks A and B.) 

A non-deterministic prediction simply means 
that the qualitative description of the system 
does not contain enough information to specify 
its future state uniquely. The three possible 
states at tl are given below. 

• amtB and flowAB reach their limits 
together, so the U-tube reaches equilibrium with 
tank B brimming full. 

• flowAB = 0  while a m t B < B M A X ,  so we 
reach an equilibrium state with tank B partially 
filled. (Figure 5(a) shows this behavior.) 

• amtB reaches B M A X  while flowAB > 0, so 
tank B overflows. (The current model of the 
U-tube ceases to apply, so we must make a 
transition to a new model. Figure 5(b) shows a 
transition to a model in which tank B has burst, 

and all the water in the system drains out.)  

This non-deterministic prediction is represented 
as a branching tree of qualitative states: 

to t~ 
~ - ~  (a) tank B stops at top 

(b) partially full 
(c) overflow. 

This type of non-deterministic prediction is an 
important feature of qualitative simulation. A 
specific U-tube is a deterministic mechanism, 
and cannot choose arbitrarily which behavior to 
take. However, our qualitative description is 
incomplete, and does not contain enough 
information to determine which behavior will 
be the real one. There are di~erent physical 
U-tubes, all of which satisfy the same qualitative 
constraints and initial state, which exhibit each 
of the three possible behaviors. 

The set of possible qualitative states at t~ is: 

t tl(a) tl(b) tl(c) 

amtA ((0, A M A X ) ,  std) ((0, A M A X ) ,  std) ((0, A M A X ) ,  dec)  
pressureA ((0, oo), std) ((0, oo), std) ((0, ~),  dec)  
amtB ( B M A X ,  std) ((0, BMAX) ,  std) ( B M A X ,  inc) 
pressurea ((0, o0), std) ((0, oo), std) ((0, oo), inc) 
p A a  (0, std) (0, std) ((0, o0), dec)  
flowAB (0, std) (0, std) ((0, oo), dec)  

One might hope that qualitative simulation 
would give us exactly the set of possible 
behaviors consistent with the partial knowledge 
captured by the qualitative description. In other 
words, every behavior of any real mechanism 
would be predicted, and every predicted 
behavior would be real for some mechanism 
satisfying the constraints. As we have seen, this 
is true for the U-tube.  However ,  the first half of 
this can be guaranteed in gene(al, but not the 
second half. 

4 . 4 .  C r e a t i n g  n e w  l a n d m a r k  v a l u e s  

In the second case (h(b)) described above, the 
U-tube system reaches equilibrium while amtB is 
still in the open interval (0, BMAX) ,  so its 
qualitative state might be described as 

amtB(tl~b)) = ((0, BMAX) ,  std).  

The value of amtB when t = tltb) is a critical 
value of the function amtB(t);  its value when its 
derivative becomes zero. The critical value may 
be sufficiently important that it should be given a 
name so it can be referred to later. It may 
represent an important qualitative distinction that 

will be useful in other contexts. This is exactly 
what we mean by a "landmark value". 

Since amtB(tl(b)) lies strictly between two 
existing landmarks, we can give it a name, e.g. 
B*, and insert it as a new landmark into the 
quantity space for amtB 

amtB: 0 . . . B * . . . B M A X . . . o o .  

Following this strategy for the other par- 
ameters that reach critical values between 
landmarks, we augment the quantity spaces for 
the U-tube system 

amtA 0- • • A* • • • A M A X .  • • oo 
pressureA O . • • P A  * • • • o~ 

amtB 0 .  • • B* • • • B M A X .  • • oo 
pressureB O . • • P B *  • • • oo 

p A B  - ~ .  • . 0 -  • • oo 
flowAB - o o . . .  0 .  • • oo. 

Several constraints can now define new 
corresponding values from the new equilibrium 
state, representing the meaning of these new 
landmarks through their relationships with the 
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Szmcmt¢: U-robe, 
Inidaliz~o~: Tank A full; B empty (S-2735) 
Behavior 2of3:(S-2735 S-2736S-2738). 
Final mxe: (QUI~CEh'T), NIL, NIL. 
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FIG. 5. Two qualitative behaviors of the U-tube: (a) equilibrium with tank B partially full; (b) tank B 
overflows and bursts, losing its contents immediately and allowing the contents of tank A to drain away as 

well. 
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constraints: 

constraints 
pressureA = .M +(amtA) 
pressureB = M+(amtB) 
pressureA - pressureB = pAB 
flowAB = M+(pAB) 

d flowAB = ~ amtB 

d flowAB = - ~ amtB 

The final equilibrium state of the system along 
this branch of the tree can now be described 
more precisely in terms of the new landmarks. 

new corresponding 
values 

(A*, PA*) 
(B*, P~*) 
(PA*, PB*, O) 

t = t1(b) 

amtA = (A*, std) 
pressureA = (PA *, std) 
amtB = ( B*, std) 
pressureB = (PB*, std) 
pAB = (0, std) 
flowAB = (0, std) 

New landmarks and corresponding values 
are only meaningful on their own branch of the 
state tree. For example, the landmark A*, 
representing the amount of water in tank A 
when the U-tube reaches equilibrium, has no 
significance along the branch in which tank B 
overflows. Along that branch, there would be 
some other new landmark for amtA representing 
its value of that parameter when the overflow 
occurred. 

The three paths through the tree of qualitative 
states represent the three possible behaviors of 
the system. Each qualitative graph represents a 
single behavior, so we need three qualitative 
graphs to capture these possibilities. Figure 5 
shows the qualitative behavior on two branches 
of the tree. Figure 5(a) shows the behavior 
where equilibrium is achieved before tank B 
becomes full. Figure 5(b) shows qualitative 
behavior where tank B overflows; in this 
scenario, overflow results in tank B bursting, 
losing its own contents immediately and allowing 
the contents of tank A to drain away as well, 
emptying the system. 

4.5. The QSIM representation and algorithm 
The representation and inference process we 

have discussed here has been embodied in an 
efficient constraint-filtering algorithm called 
QSIM (Kuipers, 1985, 1986), which generates 
the tree of possible behaviors following from a 
given initial state and a QDE. 

QSIM has been applied to a large collection of 
mechanisms from simple physical systems to 

electronic circuits to physiological systems. It is 
the foundation for ongoing research on qualita- 
tive reasoning methods by our group at the 
University of Texas at Austin. 

5. THE Q U A S I - E Q U I L I B R I U M  ASSUMPTION 

In our previous example, we assumed that the 
U-tube began in a state where amtA(to)= 
AMAX and amtB(t0) = 0. But how could it ever 
get into such a state? In commonsense terms, if 
the channel between the tanks is small, and I 
quickly pour a bucket of water into tank A, that 
faster process is complete before the U-tube can 
respond significantly. From the U-tube's point of 
view, it suddenly finds itself in a non-equilibrium 
state and moves toward equilibrium again. Thus, 
we can treat a non-equilibrium initial state as the 
result of a process acting at a much faster 
time-scale than the one we are considering. 

What if the U-tube is driven by a much slower 
process? Then we can make the quasi- 
equilibrium assumption: that the system is 
always in, or infinitely close to, equilibrium. 
Consider the resistor, which moves from one 
equilibrium state to another at electronic speeds. 
Since the process that changes a voltage is likely 
to be much slower than the response of the 
resistor to a perturbation of its equilibrium, we 
can assume that it is always in equilibrium, and 
do inference with Ohm's law, which describes 
the equilibrium states. Frequently, but not 
always, solving the equations can be done by 
local propagation through the constraints. The 
effect of changes to such a system can be 
deduced simply by solving the equilibrium 
equations for the new state. This is essentially 
the inference method used by de Kleer and 
Brown (1984). Puccia and Levins (1985) and 
Iwasaki and Simon (1986) also discuss methods 
for applying quasi-equilibrium reasoning. 

In the U-tube, where we have a non- 
equilibrium model, we can express the quasi- 
equilibrium assumption by asserting that 
f lowAB=0 and by deleting the derivative 
constraints (Fig. 6). 

If we now assert that amtA is positive, we can 
propagate that fact through the remaining 
constraints to deduce (using de Kleer and 
Brown's notation in which [X]o = sign(X)) 

[flowAB]o = 0 ::> [pAB]o = 0 
[amtA]o = + ~ [pressureA]o = + 

[pressureB]o = + 
::> [amtB]o = +. 

We can carry out a similar inference for 
perturbations around an equilibrium state, 
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FIG. 6. The U-tube under the quasi-equilibrium assumption. 

where [X], gives the sign of X relative to the 
equilibrium value X,  

[flowAB], = 0 ~ [pAB],  = 0 
[amtA], = + ~ [pressureA], = + 

[pressureB], = + 
[amtB], = +. 

We can also deduce the results of changing 
values within the quasi-equilibrium assumption, 
as long as the changes are slow with respect to 
the intrinsic time-scale of the mechanism. If 
amtA increases slowly, amtB will increase slowly 
right along with it 

[flowAB], = (0, •)  ~ [pAB],  = (0, E)) 

[amtA], = (+ ,  T) ~ [pressureA], = (+ ,  T) 
[pressurea], = ( +,  T) 
[amtB] ,  = ( + ,  T ). 

Limit analysis still applies, so although 
flowAB = 0  and constant, amtA--*AMAX and 
amtB-~BMAX. As before, there are three 
possible next states, depending on the order in 
which these parameters reach their limits. 

In domains where the quasi-equilibrium 
assumption is realistic, this kind of near- 
equilibrium reasoning is computationally 
efficient and avoids some of the sources of 
ambiguity encountered in the transient states of 
a dynamic simulation. 

6. BUILDING MODELS WITH QUALITATIVE 
PROCESS THEORY 

We have been discussing methods for 
qualitative simulation of a model once it has 
been created. However, a prior question is, 
"How is the model created?" That is, how are 
the elements of a model identified, and how are 
they assembled to create a meaningful and useful 
model? 

Qualitative process theory (Forbus, 1984) 
provides us with a promising initial approach to 
this very difficult problem. There are two 

TABLE 1. THE CONTAINED-LIQUID VIEW AND 
THE FLUID-FLOW PROCESS 

Individual-view Contained-liquid 
Individuals: 

c: a container 
s: a piece-of-liquid 

Preconditions: 
in(s, c) 

Quantity-conditions: 
amt(s) > 0 

Relations: 
pressure(s) ~o .  amt(s) 

Process Fluid-flow(X, Y) 
Individuals: 

X: a contained-liquid 
Y: a contained-liquid 

Preconditions: 
flow-connected(X, Y) 

Quantity-conditions: 
pressure(X) > pressure(Y) 

Relations: 
flow(X, Y) ~o+ pressure(X) 
flow(X, Y) ~o- pressure(Y) 

Influences: 
/+(flow(X, Y). amt(Y)) 
t-(flow(X, Y), amt(X)) 

fundamental types of description in QP theory: 
Individual Views, which represent objects or sets 
of objects viewed in a particular way, and 
Processes, which represent active changes taking 
place. All change is considered to emanate from 
processes. Table 1 gives examples of the 
individual view Contained-liquid and the process 
Fluid-flow involved in building the U-tube model. 

The model building process can be sum- 
marized as follows. 

(1) Each individual view and process checks 
various conditions about the world to determine 
whether it should have one or more active 
instances. 

(2) The active view and process instances are 
grouped into sets of mutually consistent 
elements, called View-process structures. 

(3) Each view or process in a view-process 
structure contributes fragments, called direct or 
indirect influences, to the constraint model. 

(4) The Closed World Assumption is applied 
within each view-process structure. This makes it 
possible to determine the set of all influences, 
direct or indirect, applying to any given quantity, 
so the influences can be translated to constraints. 

(5) The resulting constraint model can then be 
simulated as discussed above. 

The U-tube example might be physically 
described as follows: 

container(A) 
piece-of-water(WA) 
in(WA, A) 
amt(WA) > 0 

container(B) 
piece-of-water(WB) 
in(WB, B) 
amt(WB) > 0. 
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The description of water in a container as a 
"piece of water" is taken from Hayes' (1985) 
ontology for liquids. This allows the water in a 
container to be treated as a single object of 
varying size, even as water flows in or out of the 
container, even if every molecule of water is 
actually replaced. Such an ontology is assumed 
by any macroscopic mass-balance model, but 
must be carefully analyzed and made explicit if 
such models are to be constructed automatically. 

Table 1 shows (simplified) descriptions of the 
individual view for Contained-liquid and the 
process for Fluid-flow. Given the above informa- 
tion, we can activate two instances of Contained- 
liquid, one for each container, and two potential 
instances of Fluid-flow: flow(A, B) and 
flow(B, A). The two process instances are not 
compatible, so there are three possible view- 
process structures, one for each Fluid-flow 
instance, and one where neither flow is active. 

Let us consider the view-process structure that 
corresponds to the scenario we have looked at 
above 

Contained-liquid(A) 
Contained-liquid(B) 
Fluid-flow(A, B). 

This contributes a set of influences to the 
model 

pressure(A) ~e .  amt(A) 
pressure(B) 0co. amt(B) 
flowAB oco÷ pressure(A) 
flowAB °co- pressure(B) 
I+(flowAB, amt(B)) 
I-(flowAB, amt(A)). 

An influence is not the same as a constraint. 
An indirect influence Yo~Q+X asserts that for a 
given direction of change of X, Y will change in 
the same direction, all else being equal. It is only 
with a closed world assumption, after the entire 
view-process structure has been identified, that 
the program can determine whether all else is 
equal or not. 

• Indirect influences (e.g. ~o÷) are translated 
into monotonic function constraints. Since only 
amt(A) influences pressure(A), the direct 
influence pressure(A)~o+amt(A) can be trans- 
lated directly into the monotonic function 
constraint 

pressure(A) = M÷(amt(A)). 

• Since flowAB is positively influenced by 
pressure(A) and negatively influenced by 
pressure(B), the two influences must be 
combined (by default, additively) before being 
translated to constraints 

flowAB = M+(pressure(A)) - M+(pressure(B)). 

• Direct influences are translated into deriva- 
tive constraints, with the same handling of 
multiple influences. Here, however, the two 
directly influenced quantities have only one 
influence each (from the same quantity) 

d 
amt(A) = - flowAB 

d 
amt(B) = +flowAB. 

The result of this is a set of constraints almost 
identical to the U-tube model in Fig. 3 

pressure(A) = M+(amt(A)) 
pressure(B) = M+(amt(B)) 
flowAB = M + (pressure(A)) - M + (pressure(B)) 

d 
amt(A) = - flowAB 

d 
amt(B) = +flowAB. 

Since the Fluid-flow(A, B) process asserts that 
pressure(A) > pressure(B), this system is chang- 
ing dynamically. Qualitative simulation shows 
that it approaches a state where pressure(A)= 
pressure(B). Examination of the view-process 
structure consistent with that state shows that no 
processes are active, so the system is quiescent. 

There remain open problems hidden in this 
sketch of the interface between QP theory as a 
model-builder, and qualitative simulation as a 
model-simulator. Falkenhainer and Forbus 
(1988) describe recent progress on the use of 
Qualitative Process Theory for automatic cre- 
ation of qualitative models, particularly in 
manipulating explicit modeling assumptions. 

7. THE MATHEMATICAL VALIDITY OF 
PREDICTED BEHAVIORS 

The qualitative modeling methods we have 
been discussing are intended to express partial 
knowledge of the kind of systems that would 
traditionally be modeled by differential equa- 
tions. In order to have confidence in our 
methods, we need to determine the validity of 
the predictions made by QSIM or other 
qualitative reasoning systems. The results dis- 
cussed here are presented in detail in Kuipers 
(1986). 

A set of qualitative constraints may be 
regarded as a qualitative differential equation (or 
QDE). A given QDE may be an abstraction of 
one or more ordinary differential equations. In 
particular, where a QDE may assert that 
y =M+(x),  corresponding ODEs would state 
that y=f(x)  for various specific monotonic 
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Physical Actual 
System Behavior 

Differential numerical or analytic solution 
Equation fl : ~ ~ 

Structural qualitative simulation Behavioral 
Description Description 

FIG. 7. Qualitative simulation and differential equations are 
both abstractions of actual behavior. 

functions f. Thus, we can identify an abstraction 
relation (Fig. 7) from the physical world itself, to 
an ODE description of the world, to a more 
abstract QDE description of the same situation. 

Note that in practice, QDEs are not 
constructed by abstracting previously-known 
ODEs. Rather, in modeling a physical situation, 
it may be that not enough is known to construct 
an ODE that is both valid and tractable, so the 
only useful model that can be created is a QDE 
model. Nonetheless, we presume that, known or 
not, and tractable or not, there exists a valid 
ODE model of such a situation, and the 
predictions of that ODE are the gold standard 
against which we evaluate our quantitative 
simulation algorithm, QSIM. 

QSIM takes as input a QDE and a description 
of its state at time to. It then predicts the 
possible behaviors of the QDE as a (possibly 
branching) tree of states. A behavior is a 
sequence of qualitative descriptions of states 

Behavior 
= [state(to), state(t0, tl), state(t1) . . . . .  state(tn)]. 

QSIM predicts a set of possible behaviors, which 
is interpreted as a disjunction 

QSIM: QDE, state(to)---~ or(B1 . . . . .  Bk). 

That is, starting in state(to), QSIM predicts that 
one of the behaviors BI . . . . .  B k will describe 
the actual behavior of the system. 

This inference is sound, but incomplete. 

• Soundness. If the QDE is an abstraction of 
a certain ODE, then every solution to the ODE 
corresponds to some Bi in the QSIM prediction. 
That is, if the QDE is valid, the disjunctive 
prediction is valid. 

• Incompleteness. If QSIM predicts the dis- 
junction or(B1 . . . . .  Bk) from a given QDE, it is 
possible for some disjunct, say Bk, to fail to 
correspond to any solution of any ODE that 
abstracts to the QDE. That is, QSIM fails to 

prove the stronger disjunct, or(B~ . . . . .  Bk_ ~). 
• Corollary. If the QDE is valid, and QSIM 

predicts a single behavior, or(B0,  then B~ is a 
valid description of the behavior of the system. 

Soundness is proved because the QSIM 
algorithm implicitly defines an enormously large 
product space guaranteed to include all valid 
behaviors, and filters out impossible behaviors 
with probably correct filters. Incompleteness is 
proved by exhibiting a QDE such that the 
solutions to all ODEs abstracting to that QDE 
correspond to only one of several predicted 
behaviors. The others are unnecessary disjuncts 
(sometimes called spurious predictions). 

The reason for the spurious predictions that 
have been identified thus far is the local view of 
the qualitative behavior of a system taken by 
qualitative state descriptions and the limit- 
analysis approach to prediction. 

8. SCALING UP TO REALISTIC SYSTEMS 
There are three key steps that are required to 

scale this technology up to handle simulation of 
realistic systems. A very active community of 
researchers around the world, including our 
group at the University of Texas at Austin, are 
working to take these steps. 

(1) More powerful mathematical methods. 
(2) Hierarchical decomposition of complex 

models. 
(3) Incremental application of quantitative 

knowledge. 

8.1. More mathematical power 
More powerful mathematical methods make it 

possible to select more appropriate levels of 
qualitative description, and to filter out addi- 
tional inconsistent predictions. Directions of 
recent work include the following. 

• Methods for changing the level of descrip- 
tion to aggregate large sets of behaviors the 
distinctions of which are real, but not considered 
important, without sacrificing the ability to make 
valid qualitative predictions (Kuipers and Chiu, 
1987). 

• Methods for reasoning with higher-order 
derivatives, including the use of symbolic algebra 
on QDEs, along with the required assumptions 
of smoothness of certain relations (de Kleer and 
Bobrow, 1984; Kuipers and Chiu, 1987). 

• Methods for comparing the energy and 
phase properties of an oscillatory system at 
successive extreme points (Lee et al., 1987). 

• More general application of geometric 
phase space concepts and Lyapunov (generalized 
"energy") functions to a larger class of 
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second-order QDEs (Lee and Kuipers, 1988; 
Struss, 1988). 

• Methods for aggregating and abstracting the 
behavior of a repetitive process (e.g. an 
oscillatory process consuming a finite resource) 
to reason about its limit (Weld, 1986). 

• Methods for qualitative perturbation analy- 
sis showing how a predicted behavior changes 
given some change to the QDE or the initial 
conditions (Weld, 1987). 

• Methods for emulating the qualitative 
reasoning methods of mathematicians and 
engineers investigating dynamical systems 
(Sacks, 1985, 1987a,b). 
8.2. Hierarchical decomposition 

Realistic systems are typically much larger 
than second-order, making them normally 
intractable to qualitative or analytic analysis. 
The best methods for coping with such 
complexity impose a hierarchical structure to 
decompose a large, complex system into a 
collection of simpler systems and their 
interactions. 

We have developed a method called time-scale 
abstraction for decomposing a complex process 
operating on a widely separated time-scale into 
several simple processes, each at its own 
time-scale (Kuipers, 1987, 1988). A given 
process in a time-scale hierarchy can view a 
slower process as constant (or as driving a 
change under the quasi-equilibrium assumption), 
and a faster one as essentially instantaneous. 
The key step is to view the result of the behavior 
of a fast mechanism as implementing a 
monotonic functional constraint (M ÷ or M-)  
from the point of view of the slower mechanism. 

This decomposition method has the potential 
for allowing us to give qualitative predictions of 
the behavior of complex system models by 
decomposing by time-scale, and transforming a 
complex model into a hierarchy of simpler 
models. The more powerful the mathematical 
methods we can apply to the component models, 
the less decomposition is required in the 
hierarchy. An effective method for deriving the 
time-scale abstraction hierarchy from a linear 
model of a nearly-decomposable system has 
recently been developed by Iwasaki and 
Bhandari (1988), building on work by Simon and 
Ando (1961). 

8.3. Incremental quantitative constraints 
Qualitative reasoning methods are applied to 

purely qualitative descriptions of the world, in 
which a value is described purely in terms of its 
ordinal relations with other values. This has 
been a surprisingly fruitful research strategy: 
ordinal relations are a major part of human 

commonsense knowledge about quantities, and 
it is remarkable how many useful conclusions 
can be drawn from such an apparently weak 
description. However, it is clear that humans 
normally do have some useful knowledge about 
quantitative magnitudes, though seldom actual 
numerical values, and that this knowledge plays 
a role in qualitative predictions. 

One approach is to include qualitative order of  
magnitude relations among values. This ap- 
proach has been fruitfully explored by Raiman 
(1986), Dague et al. (1987), and Mavrovouniotis 
and Stephanopoulos (1987). 

We have developed methods for incrementally 
adding quantitative constraints to qualitative 
predictions (Kuipers and Berleant, 1988). A 
QDE includes quantity spaces, the landmarks of 
which are essentially names for values on the 
real number line. We can assert quantitative 
information, if it is known, about the numerical 
value of each of those landmarks, about the 
lengths of intervals between landmarks, and 
about the functional constraints linking 
parameters. 

There are many different representations for 
incompletely known quantities, including inter- 
vals specified by upper and lower bounds, and 
distributions specified by mean and variance. 
Known information is propagated along con- 
straint to provide a more complete quantitative 
description of the elements of the qualitative 
behavior. A particularly desirable outcome is for 
this propagation process to yield a contradiction, 
demonstrating that a particular branch of the 
behavior tree is incompatible with quantitative 
knowledge and can be eliminated. 

Figure 8 shows the result of considering 
quantitative ranges for the landmarks AMAX 
and BMAX which imply that tank B is strictly 
larger than tank A. There are also piecewise 
linear envelopes that constrain the behavior of 
the monotonic function (M ÷) constraints. Two 
of the three qualitatively possible behaviors are 
inconsistent with the quantitative information 
provided, and the remaining behavior is 
annotated with quantitative range information. 

9. CONCLUSION 
This paper provides a tutorial overview of a 

collection of qualitative reasoning methods that 
may fill an important gap in the modeling and 
control toolkit. Qualitative reasoning methods 
provide greater expressive power for states of 
incomplete knowledge than differential or 
difference equations, and thus make it possible 
to build models without incorporating assump- 
tions of linearity or specific values for incom- 
pletely known constants. Even with incomplete 
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FIG. 8. Only one out of three qualitatively possible behaviors of the U-tube is consistent with the given 
incomplete quantitative information• 

knowledge, there is enough information in a 
qualitative description to make meaningful 
prediction feasible. 

Current results with small examples have been 
encouraging, and steps are now being taken 
toward additional mathematical power, hier- 
archical decomposition, and incremental quan- 
titative constraints. Some applications to realistic 
systems have begun to appear in the literature. 
Dague et al. (1987) have applied order-of- 
magnitude reasoning to a model-based trouble- 
shooting expert system for complex analog 
circuits. Dalle Molle et al. (1988b) have 
developed QSIM models for the two-input, 
two-output mixing tank, with and without a 
proportional controller. Dalle Molle et al. 
(1988a) present a QSIM model of a radial-flow 
plasma etcher. 

We believe that qualitative model and 
simulation are becoming valuable formal reason- 
ing methods. 
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