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In this paper we study the problem of enforcing global consistency for setsof quantitative temporal constraints over the rational (or real) numbers. Theclass of constraints that we consider includes:{ equalities of the form x� y = r,{ inequalities of the form x� y � r,{ inequations of the form x� y 6= r, and{ disjunctions of inequations of the formx1 � y1 6= r1 _ � � � _ xn � yn 6= rnwhere x; y; x1; y1; : : : ; xn; yn are variables ranging over the rational numbersand r; r1; : : : ; rn are rational constants. For the representation of equalities,inequalities and inequations, we utilize binary temporal constraint networks.Disjunctions of inequations are represented separately.Disjunctions of inequations have been introduced in [Kou92] following the ob-servation that in the process of eliminating variables from a set of temporalconstraints, an inequation can give rise to a disjunction of inequations. 1 Inrelated temporal reasoning research [VK86,vB90a,GS93,GSS93] have consid-ered inequations of the form t1 6= t2 in the context of point algebra (PA)networks. Also, [Mei91a] has studied inequations of the form t 6= r (r a realconstant) in the context of point networks with almost-single-interval domains.In a more general context, researchers in constraint logic programming (orig-inally [LM89] and later [IvH93,Imb93,Imb94]) have studied disjunctions ofarbitrary linear inequations (e.g., 2x1 + 3x2 � 4x3 6= 4 _ x2 + x3 + x5 6= 7).[LM89,IvH93] concentrate on deciding consistency and computing canonicalforms while [Imb93,Imb94] deal mostly with variable elimination. It is inter-esting to notice that the basic algorithm for variable elimination in this casehas been discovered independently in [Kou92] and [Imb93] although [Kou92]has used the result only in the context of temporal constraints.The contributions of this paper can be summarized as follows.(i) We show that strong 5-consistency is necessary and su�cient for achiev-ing global consistency in temporal constraint networks for inequalitiesand inequations (Corollary 3.1). 2 This result (and all subsequent ones)rely heavily on an observation of [LM89,Kou92,Imb93]: (disjunctions of)inequations can be treated independently of one another for the purposesof deciding consistency or performing variable elimination.We give an algorithm which achieves global consistency in O(Hn4)1Elimination of variables is a very important operation in temporal constraintdatabases [Kou94c,Kou94a,Kou94b].2As shown in [DMP91] if only inequalities are considered path consistency is nec-essary and su�cient for achieving global consistency.2



where n is the number of nodes in the network and H is the numberof inequations (Theorems 3.1 and 3.2). The analysis of this algorithmdemonstrates that there are situations where it is impossible to enforceglobal consistency without introducing disjunctions of inequations.A detailed analysis of the global consistency algorithm also gives usan algorithm for computing the minimal temporal constraint network inthis case. The complexity of this algorithm is O(max(Hn2; n3)) (Theorem4.1).(ii) We also consider global consistency of point algebra networks [VK86]. Inthis case strong 5-consistency is also necessary and su�cient for achievingglobal consistency (Theorem 5.2). This result, which answers an openproblem of [vB90a], also follows from [Kou92] but the bounds of thealgorithms given there were not the tightest possible.(iii) Finally we consider global consistency when disjunctions of inequationsare also allowed in the given constraint set. This case is mostly of theoret-ical interest and is presented here for completeness. In this case, strong(2V + 1)-consistency is necessary and su�cient for achieving global con-sistency (Corollary 6.1). The parameter V is the maximum number ofvariables in any disjunction of inequations.Most of the above results come from the author's Ph.D. thesis [Kou94c] or arere�nements of ideas presented there.The paper is organized as follows. The next section presents de�nitions andpreliminaries. Section 3 discusses global consistency of temporal constraintnetworks while Section 4 presents an algorithm for computing the minimalnetwork. Section 5 considers the case of point algebra networks. Section 6considers the case of arbitrary temporal constraints. Finally Section 7 sum-marizes our results. Appendix A contains two long proofs.2 De�nitions and PreliminariesWe consider time to be linear, dense and unbounded. Points will be our onlytime entities. Points are identi�ed with the rational numbers but our resultsstill hold if points are identi�ed with the reals. The set of rational numberswill be denoted by Q.De�nition 2.1 A temporal constraint is a formula t�t0 � r; t�t0 < r; t�t0 =r or t1 � t01 6= r1 _ � � � _ tn � t0n 6= rn where t; t0; t1; � � � ; tn; t01; � � � ; t0n arevariables and r; r1; � � � ; rn are rational constants.The rationale for studying disjunctions of inequations has been given in [Kou92].3



De�nition 2.2 Let C be a set of temporal constraints in variables t1; : : : ; tn.The solution set of C, denoted by Sol(C), is:f(�1; : : : ; �n) : (�1; : : : ; �n) 2 Qn and for every c 2 C; (�1; : : : ; �n) satis�es cgEach member of Sol(C) is called a solution of C. A set of temporal constraintsis called consistent if and only if its solution set is nonempty.If c is a disjunction of inequations then c denotes the complement of c i.e.,the conjunction of equations obtained by negating c. If C is a set of equalitiesin n variables, the solution set of C is an a�ne subset of Qn. If C is a setof inequalities in n variables, the solution set of C is a convex polyhedronin Qn. If C is a set of disjunctions of inequations, the solution set of C isQn nSol(fc : c 2 Cg). The interested reader can �nd background material ona�ne spaces and convex polyhedra in [Sch86].Let C be a set of temporal constraints in variables x1; : : : ; xn which containsonly equations, inequalities and inequations (but not disjunctions of inequa-tions). The temporal constraint network (TCN) associated with C is a labeleddirected graph G = (V;E) where V = f1; : : : ; ng. Node i represents variablexi and edge (i; j) represents the binary constraints involving xi and xj. Asusual unary constraints will be represented as binary constraints with the in-troduction of a special variable x0 = 0. The set of constraints associated witha TCN N will be denoted by Constraints(N).De�nition 2.3 Let I be a set of rational numbers. I will be called an almostconvex interval if it is of the form[l; r1) [ (r1; r2) [ � � � [ (rk�1; rk) [ (rk; u]where l; r1; : : : ; rk�1; rk; u are rational numbers such that l < r1 < � � � < rk�1 <rk < u, and k � 0. An almost convex interval is also allowed to be open fromthe right or left.The k values r1; : : : ; rk will be called the \holes" of interval I. We de�ne afunction holes such that, for each almost convex interval I as above,holes(I) = fr1; : : : ; rkg:Let us assume that the set of constraints cij on xj � xi isfxj � xi � dij; xj � xi � �dji; xj � xi 6= r1ji; : : : ; xj � xi 6= rhjiji g4
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x4 x3[1,4] [-5,-2][1,4] [-5,-2]Fig. 1. A temporal constraint networkwhere �dji < r1ji < � � � < rhjiji < dij. Then the corresponding TCN N will havean edge i! j labeled by the almost-convex intervalNij = [�dji; r1ji) [ (r1ji; r2ji) [ � � � [ (rhji�1ji ; rhjiji ) [ (rhjiji ; dij ]:Example 2.1 The TCN of Figure 1 represents the constraints1 � x2 � x1 � 4; 2 � x2 � x3 � 5; 1 � x4 � x1 � 4;2 � x4 � x3 � 5; x4 � x2 6= 0:Given an interval I, conv(I) will denote the convex hull of I i.e., the minimal(in the set-theoretic sense) convex interval which includes I. Formally,conv([l; r1) [ (r1; r2) [ � � � [ (rk�1; rk) [ (rk; u]) = [l; u]and conv(I) = I if I is convex. If N is a TCN then conv(N) denotes the TCNwhich is obtained from N by substituting each interval Nij by conv(Nij).If N is a TCN then its solution set is Sol(N) = Sol(Constraints(N)). ATCN is called consistent i� its solution set is nonempty. Two TCN are calledequivalent i� their solution sets are equal [DMP91,Mei91b].For the case of TCN, the operations of composition and intersection of almost-convex intervals are de�ned as usual [Mei91b].De�nition 2.4 Let I1; I2 be almost convex intervals. The composition of I1and I2, denoted by I1 
 I2, is de�ned as follows:I1 
 I2 = fz : 9x 2 I1; 9y 2 I2 and x+ y = zg:5



The intersection operation � has the usual set-theoretic semantics.The following proposition is straightforward.Proposition 1 The class of almost-convex intervals over Q is closed undercomposition and intersection.3 Global Consistency of a TCNWe will �rst consider enforcing global consistency in a TCN.Notation 3.1 Let C be a set of constraints in variables x1; : : : ; xn. For anyi such that 1 � i � n, C(x1; : : : ; xi) will denote the set of constraints in Cinvolving only variables x1; : : : ; xi.The following de�nition is from [Dec92].De�nition 3.1 Let C be a set of constraints in variables x1; : : : ; xn and 1 �i � n. C is called i-consistent i� for every i� 1 distinct variables x1; : : : ; xi�1,every valuation u = fx1  x01; : : : ; xi�1  x0i�1g such that u satis�es theconstraints C(x1; : : : ; xi�1) and every variable xi di�erent from x1; : : : ; xi�1,there exists a rational number x0i such that u can be extended to a valuationu0 = u [ fxi  x0i g which satis�es the constraints C(x1; : : : ; xi�1; xi). C iscalled strong i-consistent if it is j-consistent for every j; 1 � j � i. C is calledglobally consistent i� it is i-consistent for every i, 1 � i � n.Let us present some examples illustrating the above de�nitions.Example 3.1 The constraint set C = fx2 � x1 � 5; x1 � x3 � 2; x5 � x4 �1; x4 � x6 � 3g is 1- and 2-consistent but not 3-consistent. For example, thevaluation v = fx2  10; x3  2g satis�es C(x2; x3) = ; but it cannot beextended to a valuation which satis�es C.We can enforce 3-consistency by adding the constraints x2 � x3 � 7 andx5�x6 � 4 to C. The resulting set is 3-consistent and also globally consistent.Example 3.2 The constraint set C = fx2 � x1 = 5; x1 � x4 6= 1g is 1-and 2-consistent but not 3-consistent. For example, the valuation v = fx2  6; x4  0g satis�es C(x2; x4) = ; but it cannot be extended to a valuationwhich satis�es C.We can enforce 3-consistency by adding the constraint x2� x4 6= 6 to C. Theresulting set is 3-consistent and also globally consistent.6



Example 3.3 The constraint set C = fx2 � x1 � 5; x1 � x3 � 2; x2 � x3 �7; x1 � x4 6= 1g is strong 3-consistent but not 4-consistent. For example, thevaluation v = fx2  7; x3  0; x4  1g satis�es C(x2; x3; x4) = fx2 � x3 �7g but it cannot be extended to a valuation which satis�es C.Enforcing 4-consistency amounts to adding the disjunctionx2 � x4 6= 6 _ x3 � x4 6= �1:The resulting set is 4-consistent and also globally consistent.Example 3.4 The constraint set C = fx2 � x1 � 5; x1 � x3 � 2; x2 � x3 �7; x5 � x4 � 1; x4 � x6 � 3; x5 � x6 � 4; x1 � x4 6= 1g is strong 3-consistentbut not 4-consistent. Adding the constraint x2�x4 6= 6 _ x3�x4 6= �1 (as inthe previous example) is not enough. For example, the valuation v = fx5  2; x6 �2; x1 2g satis�es C(x5; x6; x1) = fx5� x6 � 4g but it cannot beextended to a valuation which satis�es C(x5; x6; x1; x4).We can enforce 4-consistency by also adding the constraint x5 � x1 6= 0 _x6 � x1 6= �4 to C. Let the resulting set be C 0. C 0 is strong 4-consistent butnot 5-consistent. For example, the valuation v = fx2  7; x3  0; x5  2; x6  �2g satis�es C(x2; x3; x5; x6) = fx2 � x3 � 7; x5 � x6 � 4g butit cannot be extended to a valuation which satis�es C(x2; x3; x5; x6; x1) (orC(x2; x3; x5; x6; x4)).We can enforce 5-consistency by adding the constraintx2 � x3 6= 7 _ x5 � x6 6= 4 _ x2 � x5 6= 5to C 0. The resulting constraint set is strong 5-consistent and also globallyconsistent.Figure 2 presents algorithm TCN-GConsistency which enforces global con-sistency on its input TCN. TCN-GConsistency takes as input a TCN andreturns an equivalent set of temporal constraints which is globally consis-tent. TCN-GConsistency's output is not a TCN because, as the aboveexamples indicate, enforcing global consistency might result in the introduc-tion of disjunctions of inequations which cannot be represented by a TCN.TCN-GConsistency takes advantage of an observation of [Kou92,Imb93]:inequations can be treated independently of one another for performing vari-able elimination.The algorithmTCN-GConsistency essentially enforces strong 5-consistencyon its input network N . As we will show shortly, this level of local consistencyis enough for achieving global consistency. In step 1, TCN-GConsistency7



Algorithm TCN-GConsistencyInput: A consistent TCN N .Output: A globally consistent set of constraints equivalent to N .Method:1. Step 1: Enforce path consistency on conv(N).2. For k; i; j = 1 to n do3. Nij := Nij � (conv(Nik)
 conv(Nkj))4. EndFor5. Step 2: Enforce global consistency.6. C := ;7. For i; k = 1 to n do8. For g = 1 to hik do9. Step 2.110. For m; l = 1 to n do11. If Nim; Nli are closed from the right then12. C := C [ fxm � xk 6= dim + rgik _ xl � xk 6= �dli + rgikg13. EndIf14. EndFor15. Step 2.216. For m; l; s; t = 1 to n do17. If Nim; Nli; Nks; Ntk are closed from the right then18. C := C [ fxm � xl 6= dim + dli _ xs � xt 6= dks + dtk _xm � xs 6= rgik + dim � dksg19. Endif20. EndFor21. EndFor22. EndFor23. Return Constraints(N) [ CFig. 2. Enforcing global consistencyenforces strong 3-consistency on conv(N). This is achieved by running themodi�ed Floyd-Warshall algorithm of [DMP91] on conv(N). Let N 0 denotethe resulting TCN and A0 = Constraints(N 0). Then conv(N 0) is minimal andglobally consistent [DMP91].In step 2, TCN-GConsistency completes its job. For each rgik 2 holes(Nki)or equivalently for each inequation xi � xk 6= rgik of A = Constraints(N),TCN-GConsistency explores the inequalities ofA involving xi and xk in thefollowing systematic way. Figure 3 illustrates the structure of the subnetworks8
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Step 2.2Fig. 3. The subnetworks examined by step 2 of TCN-GConsistencyof N explored in this step. Edges labeled with 6= denote non-convex intervals.(i) If there are inequalities xm � xi � dim and xi � xl � dli then step 2.1ensures that any valuation v = fxl  x0l ; xm  x0m; xk  x0kg, whichsatis�es A(xl; xm; xk), can be extended to a valuation v0 = v [ fxi  x0igwhich satis�es A(xl; xm; xk; xi). This is achieved with the introduction ofthe inequation constraintxm � xk 6= dim + rgik _ xl � xk 6= �dli + rgik:If there are inequalities xs � xk � dks and xk � xt � dtk then step 2.1also ensures that any valuation v = fxs  x0s; xt  x0t ; xi  x0i g, whichsatis�es A(xs; xt; xi), can be extended to a valuation v0 = v [ fxk  x0kgwhich satis�es A(xs; xt; xi; xk). This is achieved with the introduction ofthe inequation constraintxs � xi 6= dks � rgik _ xt � xi 6= �dtk � rgik:(ii) If there are inequalities xm � xi � dim; xi � xl � dli; xs � xk � dksand xk � xt � dtk then step 2.2 ensures that any valuation v = fxl  x0l ; xm  x0m; xs  x0s; xt  x0tg, which satis�es A(xl; xm; xs; xt), canbe extended to a valuation v0 = v [ fxi  x0i ; xk  x0kg which satis-�es A(xl; xm; xs; xt; xi; xk). This is achieved with the introduction of theinequation constraintxm � xl 6= dim + dli _ xs � xt 6= dks + dtk _ xm � xs 6= rgik + dim � dks:Discussion. It is possible that step 2 of algorithm TCN-GConsistencyintroduces constraints that are not strictly necessary for enforcing global con-sistency. This happens when a generated constraint is equivalent to true or9



when it is implied by another constraint. TCN-GConsistency can also in-troduce disjunctions of inequations that are equivalent to inequations (e.g.,x1 � x5 6= 2 _ x1 � x5 6= 2). We tolerate this ine�ciency because it allow usto present our ideas clearly and minimizes the case analysis in the forthcom-ing proofs. The reader can consult [Kou94c] for an improved but complicatedversion of TCN-GConsistency.The following theorem demonstrates the correctness of algorithmTCN-GConsistency.Its proof, presented in Appendix A, is rather long but easy to follow.Theorem 3.1 The algorithm TCN-GConsistency is correct i.e., it returnsa globally consistent set of constraints equivalent to the input network.Corollary 3.1 Strong 5-consistency is necessary and su�cient for achievingglobal consistency of a TCN.Proof: Example 3.4 shows the necessity of achieving strong 5-consistency. Thesu�ciency follows from the previous theorem; the algorithmTCN-GConsistencyessentially achieves strong 5-consistency. 2The following theorem gives the complexity of TCN-GConsistency.Theorem 3.2 The running time of TCN-GConsistency is O(Hn4) whereH is the number of inequations and n is the number of variables in the inputTCN.Proof: Step 1 takes O(n3) time, step 2.1 takes O(Hn2) time and step 2.2takes O(Hn4) time. 24 Computing Minimal TCNIn this section we present an algorithm for computing the minimal networkequivalent to a given TCN. Minimal networks are important representationsbecause they make explicit all binary constraints implied by a given network.In the words of Montanari, a minimal network M \ ... is perfectly explicit:as far as the pair of variables xi and xj is concerned, the rest of the networkdoes not add any further constraint to the direct constraint Mij" [Mon74].Minimal networks have been studied extensively in temporal reasoning asimportant tools for answering queries concerning given temporal information(see [vB90b,vB92,DMP91], and especially [vB91] for examples). For example,let C be a set of temporal constraints of the form xi � xj � r where xi; xjare variables ranging over the rational (or real) numbers and r is a rational(or real) constant. The minimal network corresponding to C can be computedin O(n3) time and O(n2) space [DMP91]. Then the minimal network can be10



used to answer in constant time all \interesting" queries of the form \Doesxi � xj � r follow from the constraints in C?" (where r is a rational constantand � is � or =).We will also consider a network to be minimal if it makes explicit all \inter-esting" binary constraints. In our case \interesting" binary constraints are allconstraints of the form xi� xj � r where xi; xj are variables ranging over therational numbers, r is a rational constant, and � is �;= or 6=. The followingde�nition will su�ce for our purpose [DMP91,Mei91b].De�nition 4.1 ATCNM is tighter than a TCN N if for every i; j,Mij � Nij.A TCN N is called minimal if there is no tighter network equivalent to it.For our class of constraints the above de�nition of minimality slightly deviatesfrom the standard intuitions behind minimal networks (as stated by Montanari[Mon74]). To see this consider the constraint setC = fx1 � x2; x2 � 5; x2 6= x3g:If we adopt our de�nition, the minimal TCN N for C has N13 = (�1;+1).But C also implies the disjunctive binary constraint x3 6= x1 _ x3 6= 5which cannot be represented by N . Thus if one is interested in answeringqueries involving disjunctive binary constraints then one has to discard theabove de�nition and adopt the one in [Dec92]. In this case a set of constraintswill be called minimal if and only if any instantiation of two variables whichsatis�es the constraints involving these variables, can be extended to a solutionof the full network [Dec92].The minimal network algorithm TCN-Minimal, shown in Figure 4, is es-sentially a by-product of algorithm TCN-GConsistency. As we discussedabove, the constraints in the minimal TCN will be only inequalities and in-equations. Therefore an algorithm for computing the minimal TCN can beconstructed if we start with TCN-GConsistency and omit any part thatgenerates a disjunction of inequations. This can be achieved by a detailedanalysis of Step 2 of TCN-GConsistency. If we want to adopt the secondde�nition of the minimal network and take into account disjunctive binaryconstraints then we have to modify TCN-Minimal accordingly.TCN-Minimal computes the minimal TCN in four steps. In the �rst step,we enforce path-consistency on the convex part conv(N) of the input networkN . Steps 2, 3 and 4 are illustrated in Figure 5. In Step 2, TCN-Minimal per-forms constraint propagation involving equalities from conv(N) and inequa-tions from L. More precisely, for every inequation xi � xj 6= r 2 L and everyequality xk � xi = dki 2 conv(N) Step 2.1 adds inequation xk � xj 6= r + dkito N . Similarly, for every inequation xi � xj 6= r 2 L and every equality11



Algorithm TCN-MinimalInput: A consistent TCN N .Output: A minimal TCN equivalent to N .Method:Step 1: Enforce path consistency on conv(N) (as in Step 1 ofTCN-GConsistency).Step 2:Let L be the list of inequations in N .For every (i; j; r) in L doStep 2.1:For k = 1 to n doIf �dik = dki thenNkj := Nkj � ((�1; r + dki) [ (r + dki;1))EndIfEndForStep 2.2:For k = 1 to n doIf �dkj = djk thenNik := Nik � ((�1; r + djk) [ (r + djk;1))EndIfEndForEndForStep 3:For every (i; k; r) in L doFor m; l = 1 to n doIf Nim; Nli; Nkm; Nlk are closed from the right and m 6= l andr + dim � dkm = 0 and dli + dim = dlk + dkm thenNlm := Nlm � ((�1; dli + dim) [ (dli + dim;1))EndIfEndForEndForStep 4:For every (i; k; r) in L doFor m; t = 1 to n doIf �dmi = dim and �dkt = dtk thenNtm := Ntm � ((�1; dim + dtk + r) [ (dim + dtk + r;1))EndIfEndForEndForReturn N Fig. 4. A minimal TCN algorithm12
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Fig. 5. The networks examined by algorithm TCN-Minimalxj � xk = djk 2 conv(N) Step 2.2 adds inequation xi � xk 6= r + djk to N .In Step 3, TCN-Minimal considers subnetworks of N like the ones consideredby Step 2.2 of TCN-GConsistency (see Figure 3) when l = t and m = s. 3In this case the constraint generated byTCN-GConsistency is equivalent toa binary inequation thus it should be reected in the minimal TCN. This canbe shown as follows. If l = t andm = s then Step 2.2 of TCN-GConsistencyexamines the constraint setfxm � xi � dim; xi � xl � dli; xm � xk � dkm; xk � xl � dlk; xi � xk 6= rgand generates the constraintxm � xl 6= dim + dli _ xm � xl 6= dkm + dlk _ 0 6= r + dim � dkm:If r + dim � dkm = 0 and dim + dli = dkm + dlk then the above constraintbecomes xm � xl 6= dim + dli otherwise it evaluates to true.Finally, in Step 4 TCN-Minimal considers subnetworks of N like the ones3The case where l = s and m = t does not need to be considered because it leadsto disjunctions of inequations that are equivalent to true.13



considered by Step 2.2 of TCN-GConsistency when l = m and t = s. Inthis case the constraint generated by TCN-GConsistency is also equivalentto a binary inequation. This can be shown as follows. If l = m and t = s thenStep 2.2 of TCN-GConsistency considers the constraint setfxm � xi � dim; xi � xm � dmi; xt � xk � dkt; xk � xt � dkt; xi � xk 6= rgand generates the constraint�dim 6= dmi _ �dkt 6= dtk _ xm � xt 6= dim + dtk + r:If �dim = dmi and �dkt = dtk then this constraint becomes xm � xt 6= dim +dtk + r otherwise it evaluates to true.The following lemma summarizes the above discussion.Lemma 4.1 If TCN-GConsistency computes a binary inequation c andN is the output of TCN-Minimal then c 2 Constraints(N).The following theorem shows that the algorithm TCN-Minimal is correctand gives its complexity.Theorem 4.1 The algorithm TCN-Minimal computes the minimal TCNequivalent to its input in O(max(Hn2; n3)) time where H is the number ofinequations and n is the number of variables.Proof: The correctness part follows from the previous lemma. The complexitybound is achieved by either maintaining L explicitly or by having an adjacencylist recording the inequations for every node of N . 2An algorithm with the same complexity has also been discovered indepen-dently by Gerevini and Cristani without prior analysis of the global consis-tency problem [GC95]. A careful comparison of the two algorithms shows thatStep 2 of TCN-Minimal computes 3-path implicit inequations, Step 3 dealswith forbidden subgraphs and Step 4 deals with 4-path implicit inequations(this new terminology comes from [GC95] and the reader is referred there formore details).Independently, Isli has studied a subclass of the class of temporal constraintsthat we consider in this section [Isl94]. Isli does not consider inequations ofthe form x� y 6= r where r 6= 0, and achieves the same complexity bound forcomputing the minimal network. 14



5 Global Consistency of Point Algebra NetworksWe will now turn our attention to an important subset of TCN: the pointalgebra networks introduced in [VKvB89]. A point algebra network (PAN) isa labeled directed graph where nodes represent variables and edges representPA constraints. The labels of the edges are chosen from the set of relationsf<;�; >;�;=; 6=; ?g. The symbol ? is used to label an edge i ! j wheneverthere is no constraint between variables xi and xj.Van Beek and Cohen have studied PAN in detail [vBC90,vB92]. Theorem 4.1and the following results of [vB92] show that the complexity of computing theminimal network does not change when we go from PAN to TCN.Theorem 5.1 The minimal network equivalent to a PAN can be computed inO(max(Hn2; n3)) time where H is the number of edges labeled with 6= and nis the number of nodes.In [vBC90] the minimal network is computed by algorithm AAC. However,in the proof of correctness of AAC (Theorem 4 of [vBC90]), Van Beek andCohen suggest that the algorithm for computing the minimal network of agiven PAN also achieves global consistency. This is not true and has beencorrected in [vB90a]. As the following example demonstrates, the introductionof disjunctions of inequations is necessary for achieving global consistency inthis case. But algorithm AAC of [vBC90] does not introduce such disjunctionsso it cannot achieve global consistency.Example 5.1 For the PAN with constraintsx1 � x2; x2 � x3; x4 � x5; x5 � x6; x2 6= x5AAC will also introduce constraints x1 � x3; x4 � x6. The resulting PANis strong 3-consistent but not globally consistent. This can be demonstratedvia an argument similar to the one for Example 3.4. If we enforce strong5-consistency with the addition of constraints x1 6= x5 _ x3 6= x5; x4 6=x2 _ x6 6= x2 and x1 6= x3 _ x1 6= x4 _ x1 6= x6, then the resulting set isglobally consistent.Global consistency of PAN can be enforced by TCN-GConsistency if PANare represented by their equivalent TCN. The following theorem summarizesthe result of Section 3 as it applies to PAN.Theorem 5.2 Strong 5-consistency is necessary and su�cient for achievingglobal consistency in PAN. Strong 5-consistency can be enforced in O(Hn4)time where H is the number of edges labeled with 6= and n is the number ofnodes. 15



Global consistency of PAN has also been discussed (under the name decompos-ability) in Section 5 of [Kou92] and algorithmDecompose has been proposedfor achieving this task. The algorithm is correct but it adopts a representationwhich is rather inappropriate for the task at hand and leads to a complexitybound which is not the tightest. The results of this section subsume the resultsof Section 5 (only!) of [Kou92].Let us now comment on some observations of Dechter [Dec92] on the problemof enforcing global consistency in PAN. [Dec92] discusses global consistency ingeneral constraint networks with �nite variable domains. The most importantresult of [Dec92] is the following. If N is a constraint network with constraintsof arity r or less and domains of size k or less which is strongly (k(r� 1)+1)-consistent, then N is globally consistent.The above result can be applied to PAN if PAN are rede�ned as \traditional"constraint networks where variables represent relations between two pointsand constraints are de�ned by the transitivity table of [VKvB89]. This repre-sentation yields a constraint network with k = 3 and r = 3. Dechter's resultnow gives us the following. If strong 7-consistency in PAN can be enforcedwith ternary constraints then strong 7-consistency implies global consistency.Dechter uses the aforementioned incorrect assertion of [vBC90] to concludethat strong 7-consistency in the traditional formulation of PAN can be en-forced with ternary constraints. Thus she also concludes that in the traditionalformulation strong 7-consistency implies global consistency [Dec92, page 100].In the light of Theorem 5.2, Dechter's conclusion remains unjusti�ed.6 The General CaseLet us now consider enforcing global consistency when disjunctions of inequa-tions are allowed in the given constraint set.Example 6.1 The constraint setC = fx5 � x1; x1 � x6; x5 � x6; x7 � x3; x3 � x8; x7 � x8; x9 � x2;x2 � x10; x9 � x10; x1 6= y _ x2 6= z _ x3 6= wgis strong 7-consistent but not 8-consistent. For example, the valuationv = fy  0; z  0; w 0; x2  0; x3  0; x5  0; x6  0gsatis�es C(y; z; w; x2; x3; x5; x6) = fx5 � x6g but it cannot be extended to avaluation which satis�es C(y; z; w; x2; x3; x5; x6; x1). We can enforce 8-consistency16



by adding the constraintsx5 6= y _ x6 6= y _ x2 6= z _ x3 6= wx1 6= y _ x9 6= z _ x10 6= z _ x3 6= wx1 6= y _ x2 6= z _ x7 6= w _ x8 6= w.The resulting set is strong 8-consistent but not 9-consistent. We can enforce9-consistency by adding the constraintsx5 6= y _ x6 6= y _ x9 6= z _ x10 6= z _ x3 6= wx1 6= y _ x9 6= z _ x10 6= z _ x7 6= w _ x8 6= wx5 6= y _ x6 6= y _ x2 6= z _ x7 6= w _ x8 6= w.The resulting set is strong 9-consistent but not 10-consistent. We can enforce10-consistency by adding the constraintx5 6= y _ x6 6= y _ x9 6= z _ x10 6= z _ x7 6= w _ x8 6= w:The resulting set is strong 10-consistent and also globally consistent.Figure 6 presents algorithmGConsistencywhich enforces global consistencyon its input constraint set. The reader should have no problem understandingthe details of GConsistency since it is a straightforward generalization ofalgorithm TCN-GConsistency.The following theorem demonstrates the correctness of GConsistency. Theproof is given in Appendix A.Theorem 6.1 The algorithm GConsistency is correct i.e., it returns aglobally consistent set of constraints equivalent to the input one.In essence, algorithm GConsistency achieves strong 2V + 1-consistencywhere V is the maximum number of variables in any disjunction of inequa-tions. Thus we have the following corollary.Corollary 6.1 Let C be a set of temporal constraints. If C is 2V+1-consistent,where V is the maximum number of variables in any disjunction of inequa-tions, then C is globally consistent.The time complexity of GConsistency is exponential in V . However, if Vis �xed then the time complexity of GConsistency is polynomial in thenumber of variables and the number of constraints in C. This has an interestingconsequence for variable elimination due to its relation to global consistency.Corollary 6.2 Let C be a set of temporal constraints such that the number ofvariables in every disjunction of inequations is �xed. Eliminating any number17



Algorithm GConsistencyInput:A set of temporal constraints C = Ci[Cd where Ci is a set of inequalitiesand Cd is a set of disjunctions of inequations.Output: A globally consistent set of constraints equivalent to C.Method:Step 1: Enforce strong 3-consistency on Ci.Let N be the TCN corresponding to Ci.For k; i; j = 1 to n doNij := Nij � (Nik 
Nkj)EndForStep 2: Enforce global consistencyC 0d := ;For each c 2 Cd doFor all subsets fk1; : : : ; kig of the set of variables of c doFor m1; : : : ;mi; l1; : : : ; li = 1 to n doIf Nk1m1 ; : : : ; Nkimi; Nl1k1 ; : : : ; Nliki are closed from the right thenEliminate variables xk1 ; : : : ; xki fromc; xm1 � xk1 = dk1m1; xk1 � xl1 = dl1k1 ; : : : ; xmi � xki = dimi ;xki � xli = dlikito obtain c0C 0d := C 0d [ fc0gEndifEndForEndForEndForReturn Constraints(N) [ Cd [ C 0dFig. 6. Enforcing global consistencyof variables from C can be done in time polynomial in the number of variablesand the number of constraints. In addition, the resulting constraint set hassize polynomial in the same parameters.Proof: Let x1; : : : ; xn be all the variables of C. When V is �xed, the size of theconstraint set generated by algorithm GConsistency is polynomial in thenumber of variables and the number of constraints. If C is globally consistentthen for any i such that 1 � i � n, C(x1; : : : ; xi) is the projection of Sol(C)on fx1; : : : ; xig. Thus we can eliminate variables x1; : : : ; xi from C by runningGConsistency on C and returning C(xi+1; : : : ; xn). This algorithm takestime polynomial in the number of variables and the number of constraints.The above corollary complements Theorem 4.4 of [Kou92] which states thatvariable elimination can result in constraint sets with an exponential number18
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A ProofsProof of Theorem 3.1: Let C 0 denote Constraints(N) [ C. The set C 0is consistent therefore 1-consistency holds trivially. We will show that C 0 is�-consistent for every �; 2 � � � n.Let us take an arbitrary valuation v = fx1  x01; : : : ; x��1  x0��1g such thatC 0(x01; : : : ; x0��1) is satis�able. We will show that for every variable x�, v canbe extended to a valuation v0 = v [ fx�  x0�g such that C 0(x01; : : : ; x0�) issatis�able.If all constraints involving x� and any of x1; : : : ; x��1 are inequalities, our resultis immediate since Constraints(N) is globally consistent. Let us then assumethat C 0(x1; : : : ; x�) contains inequations, and consider C 0(x01; : : : ; x0��1; x�).LetDji denote the number of inequation constraints involving xj�xi in C 0. LetIi be the set of natural numbers j such that xj�xi 6= r _ � or xi�xj 6= r _ �is an inequation constraint in C 0. Then C 0(x01; : : : ; x0��1; x�) can be written asfx0� � d�� �1 x�; x� �2 x0� + d��g [ [�2I�fx� 6= x0� + r1��; : : : ; x� 6= x0� + rD���� g(A.1)where �; �; � 2 f1; : : : ; ��1g and �1;�2 2 f<;�g. Since the rational numbersare dense, there is only one case which would not allow us to �nd a value x0�such that C 0(x01; : : : ; x0��1; x0�) is satis�able. This is the case when �1 is �, �2is � and there exists � 2 I� and � 2 f1; : : : ;D��g such thatx0� � d�� = x0� + d�� = x0� + r���: (A.2)We will show that this case cannot arise.Depending on the form of the inequation constraint c from which inequationx� 6= x0� + r��� was generated, the following cases must be considered. FigureA.1 illustrates the analysis by depicting the subnetworks involved in each case.(i) c is x� � x� 6= r��� 2 Constraints(N) or equivalently r��� 2 holes(N��).In this case, the constraint x� � x� 6= d�� + r��� _ x� � x� 6= r��� � d��is added to C in Step 2.1 of algorithm TCN-GConsistency with g =�;m = �; l = � and k = �. Thenx0� � x0� 6= d�� + r��� _ x0� � x0� 6= r��� � d�� 2 C 0(x01; : : : ; x0��1)thus we have a contradiction. 22
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Fig. A.1. The cases examined in Theorem 3.1(ii) c is added to C in Step 2.1 of TCN-GConsistency. Depending on thevalues of g; l; i;m and k we can consider the following subcases.(a) c is added to C in Step 2.1 of TCN-GConsistency with g = �; l =�; i = �;m = � and k = �. Thus c is x� � x� 6= r��� + d�� _ x� � x� 6=�d�� + r���: The constraints (A.1), (A.2) and c implyx0� � x0� = �d�� + r���; x� � x� = d�� + r��� = d�� + r��� + d�� (A.3)23



Now we have the following subcases:d�� = d�� + d��. Then (A.3) contradicts the constraintx� � x� 6= d�� + r��� _ x� � x� 6= �d�� + r���of C 0(x1; : : : ; x��1) which is introduced in Step 2.1 ofTCN-GConsistencywith g = �; l = �; i = �;m = � and k = �.d�� < d�� + d��. Then x0� � x0� � d�� � d�� + d�� < d�� + d�� + d��:This contradicts x0��x0� = d��+ d�� + d�� which is implied by (A.3).(b) c is added to C in Step 2.1 of TCN-GConsistency with g = �; l =�; i = �;m = � and k = �. Thus c is x� � x� 6= r��� + d�� _ x� � x� 6=�d�� + r���: This case is symmetric to 2(a).(c) c is added to C in Step 2.1 TCN-GConsistency with g = �; l =�; i = �;m = � and k = �. Thus c is x� � x� 6= r��� + d�� _ x� � x� 6=�d��+r��� or equivalently x� 6= x��r����d�� _ x� 6= x�+d���r���: Theconstraints (A.1) and c imply x0��r����d�� = x0�+d���r��� = x0�+r���:These equalities together with (A.2) implyx0� � x0� = d�� + d��; x0� � x0� = d�� + d�� ; x0� � r��� � d�� = x0� � d��:But for g = �; l = �;m = �; i = �; k = �; t = � and s = � theconstraintx� � x� 6= d�� + d�� _ x� � x� 6= d�� + d�� _ x� � x� 6= r��� + d�� � d��is added to C in Step 2.2 of TCN-GConsistency. This constraintalso belongs to C 0(x1; : : : ; x��1) thus we have a contradiction.(iii) c is added to C in Step 2.2 of TCN-GConsistency. Depending on thevalues of g; l; i;m; t; k and s we can consider the following subcases.(a) c is added to C in Step 2.2 of TCN-GConsistency with g = �; l =�; i = �;m = �; t = �; k = � and s = �. Thus c isx� � x� 6= d�� + d�� _ x� � x� 6= d�� + d�� _ x� � x� 6= r��� � d�� + d�� :The constraints (A.1) and c implyx0� + d�� + d�� = x0� + r��� � d�� + d�� = x0� + r���; x0� � x0� = d�� + d��:These equations together with (A.2) implyx0� � x0� = d�� + d�� + d��; x0� � x0� = d�� + d��;x0� � x0� = d�� + r��� � d�� + d�� (A.4)Now we have to consider the following subcases:d�� = d�� + d��. Then (A.4) contradicts the constraintx� � x� 6= d�� + d�� _ x� � x� 6= d�� + d�� _ x� � x� 6= r��� + d�� � d��24



of C 0(x1; : : : ; x��1) which is added to C in Step 2.2 ofTCN-GConsistencywith g = �; l = �; i = �;m = �; t = �; k = � and s = �.d�� < d�� + d��. Thenx0� � x0� � d�� � d�� + d�� < d�� + d�� + d��:This contradicts the �rst equation of (A.4).(b) c is introduced in Step 2.2 of TCN-GConsistency with g = �; l =�; i = �;m = �; t = �; k = � and s = �. Thus c isx� � x� 6= d�� + d�� _ x� � x� 6= d�� + d�� _ x� � x� 6= r��� + d�� � d�� :This case is symmetric to case 3(a).(c) c is introduced in Step 2.2 of TCN-GConsistency with g = �; l =�; i = �;m = �; t = �; k = � and s = �. Thus c isx� � x� 6= d�� + d�� _ x� � x� 6= d�� + d�� _ x� � x� 6= r��� + d�� � d��or x��x� 6= �d���d�� _ x��x� 6= d��+d�� _ x��x� 6= r���+d���d��:The constraints (A.1) and c implyx0� � x0� = d�� + d��; x0� � x0� = r��� + d�� � d��; r��� = �d�� � d��The above equations together with (A.2) implyx0� � x0� = d�� + d��; x0� � x0� = r��� + d�� � d��;x0� � x0� = d�� + d�� + d�� (A.5)Now we have to consider the following cases:d�� = d�� + d��. Then (A.5) contradicts the constraintx� � x� 6= d�� + d�� _ x� � x� 6= d�� + d�� _ x� � x� 6= r��� + d�� � d��of C 0(x1; : : : ; x��1) which is introduced in Step 2.2 of of TCN-GConsistency with g = �; l = �; i = �;m = �; t = �; k = �and s = �.d�� < d�� + d��. Thenx0� � x0� � d�� � d�� + d�� < d�� + d�� + d��which contradicts the last equation of (A.5).(d) c is introduced in Step 2.2 of TCN-GConsistency with g = �; l =�; i = �;m = �; t = �; k = � and s = �. Thus c isx� � x� 6= d�� + d�� _ x� � x� 6= d�� + d�� _ x� � x� 6= r��� + d�� � d��:This case is symmetric to case 3(c). 225



Proof of Theorem 6.1: The proof will have the same structure as the proof oftheorem 3.1. Let C 0 be the set returned byGConsistency. Let us take an ar-bitrary valuation v = fx1  x01; : : : ; x��1  x0��1g such that C 0(x01; : : : ; x0��1)is satis�able. We will show that for every variable x� , v can be extended to avaluation v0 = v [ fx�  x0�g such that C 0(x01; : : : ; x0�) is satis�able.If all constraints involving x� and any of x1; : : : ; x��1 are inequalities, our resultis immediate since Constraints(N) is globally consistent. Let us then assumethat C 0(x1; : : : ; x�) contains inequations, and consider C 0(x01; : : : ; x0��1; x�).LetDji denote the number of inequation constraints involving xj�xi in C 0. LetIi be the set of natural numbers j such that xj�xi 6= r _ � or xi�xj 6= r _ �is an inequation constraint in C 0. Then C 0(x01; : : : ; x0��1; x�) can be written asfx0� � d�� �1 x�; x� �2 x0� + d��g [ [�2I�fx� 6= x0� + r1��; : : : ; x� 6= x0� + rD���� g(A.6)where �; �; � 2 f1; : : : ; ��1g and �1;�2 2 f<;�g. Since the rational numbersare dense, there is only one case which would not allow us to �nd a value x0�such that C 0(x01; : : : ; x0��1; x0�) is satis�able. This is the case when �1 is �, �2is � and there exists � 2 I� and � 2 f1; : : : ;D��g such thatx0� � d�� = x0� + d�� = x0� + r���: (A.7)We will show that this case cannot arise.Depending on the form of the inequation constraint c1 from which inequationx� 6= x0� + r��� was generated, the following cases must be considered.(i) c1 2 Cd. Then c1 can be written asx� � x� 6= r��� _ �where � does not contain x�. When the set f�g is considered by Step 2 ofGConsistency and m1 = �; l1 = �, the variable x� is eliminated fromc1; x� � x� = d��; x� � x� = d��to obtain the following constraint c2:� _ x� � x� 6= d�� + r��� _ x� � x� 6= d�� � r���:We have arrived at a contradiction since c2 2 C 0(x01; : : : ; x0��1) and theequalities A.7 hold. 26



(ii) c1 is added to C 0 in Step 2 of GConsistency. Depending on the valuesof c; i;m1; : : : ;mi; l1; : : : ; li we consider the following subcases.(a) c = c3; i = �;m1 = �1; : : : ;mj = �; : : : ;m� = ��; l1 = �1; : : : ; lj =�; : : : ; l� = ��.Thus c1 is obtained after variables xk1; : : : ; xk� are eliminated fromc3; x�1 � xk1 = dk1�1; xk1 � x�1 = d�1k1 ; : : : ; x� � xkj = dkj�;xkj � x� = d�kj ; : : : ; x�� � xk� = dk���; xk� � x�� = d��k� :Therefore c1 isc3[xk1=x�1 + d�1k1; : : : ; xkj=x� + d�kj ; : : : ; xk�=x�� + d��k�] _x�1 � x�1 6= d�1k1 + dk1�1 _ : : : _ x� � x� 6= d�kj + dkj� _ : : :_ x�� � x�� 6= d��k� + dk���.Let us recall that x� 6= x0�+r��� has been generated by c1. This impliesthat x0�+r��� = x0�+d�kj +dkj� . We can now conclude, using A.7, thatx0� � x0� = d�� + r��� = d�kj + dkj� + d�� (A.8)Now we have to consider the following cases:dkj� = dkj� + d��. Ifc = c3; i = �;m1 = �1; : : : ;mj = �; : : : ;m� = ��; l1 = �1; : : : ; lj = �; : : : ; l� = ��then Step 2 of GConsistency adds the following constraint c4 toCd:c3[xk1=x�1 + d�1k1 ; : : : ; xkj=x� + d�kj ; : : : ; xk�=x�� + d��k�] _x�1 � x�1 6= d�1k1 + dk1�1 _ : : : _ x� � x� 6= d�kj + dkj� _ : : :x�� � x�� 6= d��k� + dk���:The equalities A.8 and the form of c1 and c4 imply that we havearrived at a contradiction.dkj� < dkj� + d��. In this casex0� � x0� � d�� � d�kj + dkj� < d�kj + dkj� + d��:Thus we have a contradiction with A.8.The symmetric cases where � is one of m1; : : : ;mj�1;mj+1; : : : ;m�can be treated similarly.(b) i = �;m1 = �1; : : : ;mj = �; : : : ;m� = ��; l1 = �1; : : : ; lj = �; : : : ; l� =��.This case and the symmetric ones where � is one of l1; : : : ; lj�1; lj+1; : : : ; l�are analogous to (a). 2
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