From Local to Global Consistency in Temporal

Constraint Networks *

Manolis Koubarakis

Dept. of Computation
UMIST
P.O. Box 88
Manchester M60 10D
UK.

manolis@sna.co.umist.ac.uk

Abstract

We study the problem of global consistency for several classes of quantitative
temporal constraints which include inequalities, inequations and disjunctions of in-
equations. In all cases that we consider we identify the level of local consistency
that is necessary and sufficient for achieving global consistency and present an al-
gorithm which achieves this level. As a byproduct of our analysis, we also develop
an interesting minimal network algorithm.

1 Introduction

One of the most important notions found in the constraint satisfaction lit-
erature is global consistency [Fre78]. In a globally consistent constraint set
all interesting constraints are explicitly represented and the projection of the
solution set on any subset of the variables can be computed by simply col-
lecting the constraints involving these variables. An important consequence of
this property is that a solution can be found by backtrack-free search [Fre82].
Enforcing global consistency can take an exponential amount of time in the
worst case [Fre78,C0090]. As a result it is very important to identify cases
in which local consistency, which presumably can be enforced in polynomial
time, implies global consistency [Dec92].

*Invited submission to the special issue of Theoretical Computer Science dedi-
cated to the 1st International Conference on Principles and Practice of Constraint
Programming (CP95), Editors: U. Montanari and F. Rossi. Forthcoming.

In this paper we study the problem of enforcing global consistency for sets
of quantitative temporal constraints over the rational (or real) numbers. The
class of constraints that we consider includes:

equalities of the form o —y = r,
inequalities of the form x —y <r,
inequations of the form = — y # r, and

— disjunctions of inequations of the form

Ty FEr VoV T =y E

where ,y,21,y1,...,2,, Y, are variables ranging over the rational numbers
and r,rq,...,r, are rational constants. For the representation of equalities,
inequalities and inequations, we utilize binary temporal constraint networks.
Disjunctions of inequations are represented separately.

Disjunctions of inequations have been introduced in [Kou92] following the ob-
servation that in the process of eliminating variables from a set of temporal
constraints, an inequation can give rise to a disjunction of inequations.® In
related temporal reasoning research [VK86,vB90a,GS93,GSS93] have consid-
ered inequations of the form #; # t; in the context of point algebra (PA)
networks. Also, [Mei9la] has studied inequations of the form ¢ # r (r a real
constant) in the context of point networks with almost-single-interval domains.
In a more general context, researchers in constraint logic programming (orig-
inally [LM89] and later [IvH93,Imb93,Imb94]) have studied disjunctions of
arbitrary linear inequations (e.g., 2xy + 3ae —4das #4 V xy + a3+ a5 £ 7).
[LM89.1vH93] concentrate on deciding consistency and computing canonical
forms while [Imb93,Imb94] deal mostly with variable elimination. It is inter-
esting to notice that the basic algorithm for variable elimination in this case
has been discovered independently in [Kou92] and [Imb93] although [Kou92]

has used the result only in the context of temporal constraints.
The contributions of this paper can be summarized as follows.

(i) We show that strong 5-consistency is necessary and sufficient for achiev-
ing global consistency in temporal constraint networks for inequalities
and inequations (Corollary 3.1).? This result (and all subsequent ones)
rely heavily on an observation of [LM89,Kou92,Imb93]: (disjunctions of)
inequations can be treated independently of one another for the purposes
of deciding consistency or performing variable elimination.

We give an algorithm which achieves global consistency in O(Hn*)

! Elimination of variables is a very important operation in temporal constraint
databases [Kou94c,Kou94a,Kou94b].

2 As shown in [DMP91] if only inequalities are considered path consistency is nec-
essary and suflicient for achieving global consistency.

where n is the number of nodes in the network and H is the number
of inequations (Theorems 3.1 and 3.2). The analysis of this algorithm
demonstrates that there are situations where it is impossible to enforce
global consistency without introducing disjunctions of inequations.

A detailed analysis of the global consistency algorithm also gives us
an algorithm for computing the minimal temporal constraint network in
this case. The complexity of this algorithm is O(max(Hn?*, n?)) (Theorem
4.1).

(ii) We also consider global consistency of point algebra networks [VK86]. In
this case strong 5-consistency is also necessary and sufficient for achieving
global consistency (Theorem 5.2). This result, which answers an open
problem of [vB90a], also follows from [Kou92] but the bounds of the
algorithms given there were not the tightest possible.

(iii) Finally we consider global consistency when disjunctions of inequations
are also allowed in the given constraint set. This case is mostly of theoret-
ical interest and is presented here for completeness. In this case, strong
(2V + 1)-consistency is necessary and sufficient for achieving global con-
sistency (Corollary 6.1). The parameter V' is the maximum number of
variables in any disjunction of inequations.

Most of the above results come from the author’s Ph.D. thesis [Kou94c] or are
refinements of ideas presented there.

The paper is organized as follows. The next section presents definitions and
preliminaries. Section 3 discusses global consistency of temporal constraint
networks while Section 4 presents an algorithm for computing the minimal
network. Section 5 considers the case of point algebra networks. Section 6
considers the case of arbitrary temporal constraints. Finally Section 7 sum-
marizes our results. Appendix A contains two long proofs.

2 Definitions and Preliminaries

We consider time to be linear, dense and unbounded. Points will be our only
time entities. Points are identified with the rational numbers but our results
still hold if points are identified with the reals. The set of rational numbers
will be denoted by Q.

Definition 2.1 A temporal constraintis a formulat—t' < r, t—t' <r, t—t' =
rorty—1, #r vV -+ V t, =1t # r, where t,t' t1,--- 1.,], - 1 are

variables and r,ry,---,r, are rational constants.

The rationale for studying disjunctions of inequations has been given in [Kou92].

Definition 2.2 Let C be a set of temporal constraints in variables ¢q,...,%,.

The solution set of C', denoted by Sol(C), is:

{(r1,...y70): (71,...,7) € Q" and for every ¢ € C, (74,...,7,) satisfies ¢}

Each member of Sol(C') is called a solution of C'. A set of temporal constraints
is called consistent if and only if its solution set is nonempty.

If ¢ is a disjunction of inequations then ¢ denotes the complement of ¢ i.e.,
the conjunction of equations obtained by negating c. If (' is a set of equalities
in n variables, the solution set of (' is an affine subset of Q". If ' is a set
of inequalities in n variables, the solution set of (' is a convex polyhedron
in Q" It € is a set of disjunctions of inequations, the solution set of (' is
Q" \ Sol({¢: ¢ € C}). The interested reader can find background material on
affine spaces and convex polyhedra in [Sch86].

Let C' be a set of temporal constraints in variables x4,...,x, which contains
only equations, inequalities and inequations (but not disjunctions of inequa-
tions). The temporal constraint network (TCN) associated with ' is a labeled
directed graph G = (V, E) where V = {1,...,n}. Node 7 represents variable
x; and edge (1,7) represents the binary constraints involving x; and z;. As
usual unary constraints will be represented as binary constraints with the in-
troduction of a special variable g = 0. The set of constraints associated with

a TCN N will be denoted by Constraints(N).

Definition 2.3 Let [be a set of rational numbers. [will be called an almost
convex interval if it is of the form

[Lr) U (r,ra) Uee U (rg—g, r) U (rg, ul

where [, rq,...,7k_1, 7, u are rational numbers such that [< ry < --- <rp_1 <
rrp < u, and k> 0. An almost convex interval is also allowed to be open from
the right or left.

The k values rq,...,r; will be called the “holes” of interval I. We define a
function holes such that, for each almost convex interval I as above,

holes(I) = {ry,...,ri}.

Let us assume that the set of constraints ¢;; on z; — x; is

1 hyi
{w; —vi < dij, vj — i 2 —dji, vy —wiF v, vy —w F ity

Fig. 1. A temporal constraint network

where —d;; <7}, <--- < rfj’ < d;j. Then the corresponding TCN N will have
an edge ¢ — j labeled by the almost-convex interval

Ny = [—dﬁ,rl U (rl r? Ju--- U (rh”_l rh”) U (rh” dijl.

71 jir ' g 71 P 7t

Example 2.1 The TCN of Figure 1 represents the constraints

I<ay—a; <4, 2< 2 —23<5, 1 <ay—ay <4,
2§$4—$3§5, $4—$27£0.

Given an interval I, conv([) will denote the convex hull of I i.e., the minimal
(in the set-theoretic sense) convex interval which includes /. Formally,

conv([l,r) U (ry,ra) U=+ U (rp—1,) U (re,u]) = [1, u]
and conv(l) = [if [is convex. If N is a TCN then conv(N) denotes the TCN
which is obtained from N by substituting each interval N;; by conv(N;).

If N is a TCN then its solution set is Sol(N) = Sol(Constraints(N)). A
TCN is called consistent iff its solution set is nonempty. Two TCN are called
equivalent iff their solution sets are equal [DMP91,Mei91b).

For the case of TCN, the operations of composition and intersection of almost-
convex intervals are defined as usual [Mei9lb].

Definition 2.4 Let Iy, I, be almost convex intervals. The composition of I,
and [, denoted by I ® I3, is defined as follows:

LolL={z: dee€l, Jye L and z +y = z}.

The intersection operation @ has the usual set-theoretic semantics.
The following proposition is straightforward.

Proposition 1 The class of almost-convex intervals over Q is closed under
composition and intersection.

3 Global Consistency of a TCN

We will first consider enforcing global consistency in a TCN.

Notation 3.1 Let C' be a set of constraints in variables x4,...,z,. For any
i such that 1 <7 < n, C(x1,...,2;) will denote the set of constraints in C
involving only variables x4,..., z;.

The following definition is from [Dec92].

Definition 3.1 Let (' be a set of constraints in variables xy,...,x, and 1 <
t < n. C is called i-consistent iff for every ¢ — 1 distinct variables xy, ..., x;_1,
every valuation v = {ay « 2%,..., 2,y « 2%} such that u satisfies the
constraints C'(x1,...,2,-1) and every variable z; different from zq,..., 2,1,
there exists a rational number z? such that u can be extended to a valuation
u' = uwU{x; «— 2} which satisfies the constraints C'(xy,...,2;_1,2;). C is
called strong i-consistent if it is j-consistent for every 5, 1 < j <. (' is called
globally consistent iff it is 2-consistent for every 7, 1 < < n.

Let us present some examples illustrating the above definitions.

Example 3.1 The constraint set C' = {x3 — 21 <5, 7 — a3 <2, x5 — a4 <
1, @4 — x¢ < 3} is 1- and 2-consistent but not 3-consistent. For example, the
valuation v = {xy « 10, x5 « 2} satisfies C'(z2,23) = (but it cannot be
extended to a valuation which satisfies (.

We can enforce 3-consistency by adding the constraints zo — x5 < 7 and
r5—x¢ < 4 to C. The resulting set is 3-consistent and also globally consistent.

Example 3.2 The constraint set ' = {@3 — 27 = 5, 27 — a4 # 1} is 1-
and 2-consistent but not 3-consistent. For example, the valuation v = {x; «
6, x4 « 0} satisfies C(x2,24) = 0 but it cannot be extended to a valuation

which satisfies C.

We can enforce 3-consistency by adding the constraint x9 — x4 # 6 to C'. The
resulting set is 3-consistent and also globally consistent.

Example 3.3 The constraint set C' = {zy3 — 21 <5, 7 — a3 <2, 23 — a3 <
7, 1 — a4 # 1} is strong 3-consistent but not 4-consistent. For example, the
valuation v = {ay « 7, 23 « 0, x4 « 1} satisfies C' (g, 25, 24) = {22 — 23 <
7} but it cannot be extended to a valuation which satisfies C'.

Enforcing 4-consistency amounts to adding the disjunction

$2—$47£6 vV $3—$47£—1.

The resulting set is 4-consistent and also globally consistent.

Example 3.4 The constraint set C' = {z3 — 21 <5, 27 — a3 <2, 23 — a3 <
T, w5 —a4 <1, xg— w6 <3, w5 — a6 < 4, 11 — x4 # 1} is strong 3-consistent
but not 4-consistent. Adding the constraint xs — x4 # 6 V x3—x4 # —1 (asin
the previous example) is not enough. For example, the valuation v = {5 «
2, wg «— —2, x1 « 2} satisfies C'(x5, 26, 21) = {25 — 26 < 4} but it cannot be
extended to a valuation which satisfies C' (x5, ¢, 21, 24).

We can enforce 4-consistency by also adding the constraint x5 — xy # 0 V
re — 11 # —4 to C. Let the resulting set be C’. C’ is strong 4-consistent but
not 5-consistent. For example, the valuation v = {xy « 7, a3 « 0, a5 «
2, wg «— —2} satisfies C(xq, 23, 05,26) = {23 — w3 < 7, w5 — a6 < 4} but
it cannot be extended to a valuation which satisfies C'(xq, 23, x5, ¢, x1) (or
C(xa, 3,25, Te, Tq)).

We can enforce 5-consistency by adding the constraint

$2—$37£7 vV $5—$67£4 vV $2—$57£5

to (. The resulting constraint set is strong 5-consistent and also globally
consistent.

Figure 2 presents algorithm TCN-GCONSISTENCY which enforces global con-
sistency on its input TCN. TCN-GCONSISTENCY takes as input a TCN and
returns an equivalent set of temporal constraints which is globally consis-
tent. TCN-GCONSISTENCY’s output is not a TCN because, as the above
examples indicate, enforcing global consistency might result in the introduc-
tion of disjunctions of inequations which cannot be represented by a TCN.
TCN-GCONSISTENCY takes advantage of an observation of [Kou92,Imbh93]:
inequations can be treated independently of one another for performing vari-
able elimination.

The algorithm TCN-GCONSISTENCY essentially enforces strong 5-consistency
on its input network N. As we will show shortly, this level of local consistency
is enough for achieving global consistency. In step 1, TCN-GCONSISTENCY

Algorithm TCN-GCONSISTENCY
Input: A consistent TCN N.
Output: A globally consistent set of constraints equivalent to V.

Method:

1. Step 1: Enforce path consistency on conv(N).

2. Fork,2,7 =1 ton do

3. Nij:= N;j & (conv(Ni) @ conv(Ng;))

4. EndFor

5. Step 2: Enforce global consistency.

6. C :=10

7. Fori,k =1 ton do

8. Forg=1to hy do

9. Step 2.1

10. For m,l=11ton do

11. If Ni, Ni; are closed from the right then

12. C:=CU{xp —ar Zdim+r, V o—ap#—dy+71)}

13. EndIf

14. EndFor

15. Step 2.2

16. Form,l,s,t=1ton do

17. If Nip, Niiy Nis, Ny are closed from the right then

18. C:ZCU{J}m—l’[%dim—I-dh’\/l‘s—l't%dks—l-dtk\/
T — &5 F 15+ diy — dis }

19. Endif

20. EndFor

21. EndFor

22. EndFor

23. Return Constraints(N)U C

Fig. 2. Enforcing global consistency

enforces strong 3-consistency on conv(N). This is achieved by running the
modified Floyd-Warshall algorithm of [DMP91] on conv(N). Let N’ denote
the resulting TCN and A’ = Constraints(N'). Then conv(N') is minimal and
globally consistent [DMP91].

In step 2, TCN-GCONSISTENCY completes its job. For each r¥, € holes(Ny;)
or equivalently for each inequation z; — xp # 1, of A = Constraints(N),
TCN-GCONSISTENCY explores the inequalities of A involving x; and xj in the
following systematic way. Figure 3 illustrates the structure of the subnetworks

Ty

Ty > T, > T
Tt > T > T
T
Step 2.1 Step 2.1
Ty > T > LUm
Ty > T » Ls

Step 2.2

Fig. 3. The subnetworks examined by step 2 of TCN-GCONSISTENCY
of N explored in this step. Edges labeled with # denote non-convex intervals.

(i) If there are inequalities z,, — ; < d;p, and @; — 1 < dj; then step 2.1

ensures that any valuation v = {&; « 2¥,2,, «

0 xp «— a2}, which
satisfies A(z, ¥, 21), can be extended to a valuation v’ = v U {z; « 2}
which satisfies A(x, @, 2, ;). This is achieved with the introduction of

the inequation constraint
Ty — T F dipy + 75, V 1) — 2 F —dyi + 77,

If there are inequalities x, — xp < dis and x, — x; < dy then step 2.1
also ensures that any valuation v = {&, « 2% 2, « 2% x; « 2%}, which
satisfies A(xs, x¢, ;), can be extended to a valuation v/ = v U {z} « a9}
which satisfies A(xs, x4, ¥;, 25). This is achieved with the introduction of
the inequation constraint

g g
Ty — T Fdps — 1 NV oy —xp #F —dy — 1.

(ii) If there are inequalities x,, — v; < diy, ¥ — @1 < dpyy x5 — 2 < dps
and x; — x; < dy, then step 2.2 ensures that any valuation v = {x; «
), v, — 20,1, — 2%, — 20}, which satisfies A(x;, 2,25, 7,), can
be extended to a valuation v = v U {z; « 2% 2 « 20} which satis-
fies A(xy, @, s, T4y iy 21). This is achieved with the introduction of the

inequation constraint

T — &) F diy +dyy Vv —xy F dps +diy Voxg — x5 F 1l + digy — dis.

Discussion. It is possible that step 2 of algorithm TCN-GCONSISTENCY
introduces constraints that are not strictly necessary for enforcing global con-
sistency. This happens when a generated constraint is equivalent to true or

when it is implied by another constraint. TCN-GCONSISTENCY can also in-
troduce disjunctions of inequations that are equivalent to inequations (e.g.,
1 — x5 #2 V w1 — a5 # 2). We tolerate this inefficiency because it allow us
to present our ideas clearly and minimizes the case analysis in the forthcom-
ing proofs. The reader can consult [Kou94¢] for an improved but complicated
version of TCN-GCONSISTENCY.

The following theorem demonstrates the correctness of algorithm TCN-GCONSISTENCY.
Its proof, presented in Appendix A, is rather long but easy to follow.

Theorem 3.1 The algorithm TCN-GCONSISTENCY is correct i.e., it returns
a globally consistent set of constraints equivalent to the input network.

Corollary 3.1 Strong 5-consistency is necessary and sufficient for achieving
global consistency of a TCN.

Proof: Example 3.4 shows the necessity of achieving strong 5-consistency. The
sufficiency follows from the previous theorem; the algorithm TCN-GCONSISTENCY
essentially achieves strong 5-consistency. O

The following theorem gives the complexity of TCN-GCONSISTENCY.

Theorem 3.2 The running time of TCN-GCONSISTENCY is O(Hn*) where
H is the number of inequations and n is the number of variables in the input

TCN.

Proof: Step 1 takes O(n?) time, step 2.1 takes O(Hn?) time and step 2.2
takes O(Hn') time. Om

4 Computing Minimal TCN

In this section we present an algorithm for computing the minimal network
equivalent to a given TCN. Minimal networks are important representations
because they make explicit all binary constraints implied by a given network.
In the words of Montanari, a minimal network M “ ... is perfectly explicit:
as far as the pair of variables z; and z; is concerned, the rest of the network
does not add any further constraint to the direct constraint M;;” [Mon74].
Minimal networks have been studied extensively in temporal reasoning as
important tools for answering queries concerning given temporal information
(see [vB90b,vB92,DMPI1], and especially [vB9I1] for examples). For example,
let C' be a set of temporal constraints of the form z; — 2; < r where z;, z;
are variables ranging over the rational (or real) numbers and r is a rational
(or real) constant. The minimal network corresponding to C' can be computed
in O(n®) time and O(n?) space [DMP91]. Then the minimal network can be

10

used to answer in constant time all “interesting” queries of the form “Does
x; — x; ~ r follow from the constraints in C'?” (where r is a rational constant
and ~ is < or =).

We will also consider a network to be minimal if it makes explicit all “inter-
esting” binary constraints. In our case “interesting” binary constraints are all
constraints of the form x; — 2; ~ r where z;, x; are variables ranging over the
rational numbers, r is a rational constant, and ~ is <, = or #. The following

definition will suffice for our purpose [DMP91,Mei91b].

Definition 4.1 A TCN M is tighter than a TCN N if for every ¢, 5, M;; C N;;.
A TCN N is called minimal if there is no tighter network equivalent to it.

For our class of constraints the above definition of minimality slightly deviates
from the standard intuitions behind minimal networks (as stated by Montanari
[Mon74]). To see this consider the constraint set

C: {1’1 Sl’z, L9 §5, L9 %1’3}

If we adopt our definition, the minimal TCN N for €' has Ny = (—o0, 4+00).
But €' also implies the disjunctive binary constraint xs # =1 V x3 # 5
which cannot be represented by N. Thus if one is interested in answering
queries involving disjunctive binary constraints then one has to discard the
above definition and adopt the one in [Dec92]. In this case a set of constraints
will be called minimal if and only if any instantiation of two variables which
satisfies the constraints involving these variables, can be extended to a solution

of the full network [Dec92].

The minimal network algorithm TCN-MINIMAL, shown in Figure 4, is es-
sentially a by-product of algorithm TCN-GCONSISTENCY. As we discussed
above, the constraints in the minimal TCN will be only inequalities and in-
equations. Therefore an algorithm for computing the minimal TCN can be
constructed if we start with TCN-GCONSISTENCY and omit any part that
generates a disjunction of inequations. This can be achieved by a detailed
analysis of Step 2 of TCN-GCONSISTENCY. If we want to adopt the second
definition of the minimal network and take into account disjunctive binary
constraints then we have to modity TCN-MINIMAL accordingly.

TCN-MINIMAL computes the minimal TCN in four steps. In the first step,
we enforce path-consistency on the convex part conv(N) of the input network
N. Steps 2, 3 and 4 are illustrated in Figure 5. In Step 2, TCN-MINIMAL per-
forms constraint propagation involving equalities from conv(N) and inequa-
tions from L. More precisely, for every inequation z; — x; # r € L and every
equality x5 — @; = dy; € conv(N) Step 2.1 adds inequation x — x; # r + dj;
to N. Similarly, for every inequation z; — x; # r € L and every equality

11

Algorithm TCN-MINIMAL

Input: A consistent TCN N.

QOutput: A minimal TCN equivalent to V.

Method:

Step 1: Enforce path consistency on conv(N) (as in Step 1 of
TCN-GCONSISTENCY).

Step 2:
Let L be the list of inequations in N.
For every (i,7,7) in L do
Step 2.1:
For k=1 ton do
If —d;. = dj; then
Nyj = Nij @ ((—00, 7 + dii) U (1 + dii, 00))
EndIf
EndFor

Step 2.2:
For k=1 ton do
If _dkj = ajk then
Nik = Nzk D ((—OO, r 4+ d]k) U (T + d]‘k, OO))
EndIf
EndFor
EndFor

Step 3:
For every (i, k,r) in L do
For m,l=11ton do
If Nipy Niiy Ngp, Nige are closed from the right and m # [and
r 4 dip, — dip, = 0 and dy; + diy, = dig, + diyn, then
Nip = Nip & ((—o0, diy + di) U (dii + diy, 00))
EndlIf
EndFor

EndFor

Step 4:
For every (i, k,r) in L do
For m,t =1 ton do
It —d,; = diy, and —dy = dy then
Ny i = Ny & ((—00, dipy + dygp + 1) U (diyy, + digp + 17, 00))
EndIf
EndFor
EndFor

Return N

Fig. 4. A minimal TCN algorithm
12

Tk T; T x;

Ly 7é T 7£

Tpl— xy

Step 3 Step 4

Fig. 5. The networks examined by algorithm TCN-MINIMAL
xj —xp = djp € conv(N) Step 2.2 adds inequation x; — x # r + dj; to N.

In Step 3, TCN-MINIMAL considers subnetworks of N like the ones considered
by Step 2.2 of TCN-GCONSISTENCY (see Figure 3) when [= ¢ and m = s.°
In this case the constraint generated by TCN-GCONSISTENCY is equivalent to
a binary inequation thus it should be reflected in the minimal TCN. This can
be shown as follows. If | = ¢ and m = s then Step 2.2 of TCN-GCONSISTENCY
examines the constraint set

{tm — v < dipmy, i — 21 < dpjy T — 0 < digmy, 5 — 21 < digyy, ¥ —) 1}

and generates the constraint

T — 2 F dipy + diy NV 2 — 21 F oy +dipy VOO0 F 7 4 diy — die.
If r+diy, — din, = 0 and d;, + di; = diy, + dip; then the above constraint
becomes x,, — x; # d;;, + dj; otherwise it evaluates to true.

Finally, in Step 4 TCN-MINIMAL considers subnetworks of N like the ones

3 The case where [= s and m = t does not need to be considered because it leads
to disjunctions of inequations that are equivalent to true.

13

considered by Step 2.2 of TCN-GCONSISTENCY when [= m and £ = s. In
this case the constraint generated by TCN-GCONSISTENCY is also equivalent
to a binary inequation. This can be shown as follows. If [= m and ¢t = s then
Step 2.2 of TCN-GCONSISTENCY considers the constraint set

{tm — v <dimmy, i — @ < dppiy v0— 2 < dpey, 2 — 24 < diy, v, — 2 1}

and generates the constraint

—dipy # i NV —dpt F dip NV x4y — 2 F digy + dig 7

If —d;,, = d,i and —dy; = dy then this constraint becomes x,, — x; # d;y, +
di, + 7 otherwise it evaluates to true.

The following lemma summarizes the above discussion.

Lemma 4.1 [f TCN-GCONSISTENCY computes a binary inequation ¢ and
N is the output of TCN-MINIMAL then ¢ € Constraints(N).

The following theorem shows that the algorithm TCN-MINIMAL is correct
and gives its complexity.

Theorem 4.1 The algorithm TCN-MINIMAL computes the minimal TCN
equivalent to its input in O(max(Hn? n®)) time where H is the number of
inequations and n is the number of variables.

Proof: The correctness part follows from the previous lemma. The complexity
bound is achieved by either maintaining L explicitly or by having an adjacency
list recording the inequations for every node of N. ON

An algorithm with the same complexity has also been discovered indepen-
dently by Gerevini and Cristani without prior analysis of the global consis-
tency problem [GC95]. A careful comparison of the two algorithms shows that
Step 2 of TCN-MINIMAL computes 3-path implicit inequations, Step 3 deals
with forbidden subgraphs and Step 4 deals with 4-path implicit inequations
(this new terminology comes from [GC95] and the reader is referred there for
more details).

Independently, Isli has studied a subclass of the class of temporal constraints
that we consider in this section [Is194]. Isli does not consider inequations of
the form x — y # r where r # 0, and achieves the same complexity bound for
computing the minimal network.

14

5 Global Consistency of Point Algebra Networks

We will now turn our attention to an important subset of TCN: the point
algebra networks introduced in [VKvB89]. A point algebra network (PAN) is
a labeled directed graph where nodes represent variables and edges represent
PA constraints. The labels of the edges are chosen from the set of relations
{<,<,>,>,=,#,7}. The symbol 7 is used to label an edge ¢ — j whenever
there is no constraint between variables z; and z;.

Van Beek and Cohen have studied PAN in detail [vBC90,vB92]. Theorem 4.1
and the following results of [vB92] show that the complexity of computing the
minimal network does not change when we go from PAN to TCN.

Theorem 5.1 The minimal network equivalent to a PAN can be computed in
O(max(Hn?,n?)) time where H is the number of edges labeled with # and n
is the number of nodes.

In [vBC90] the minimal network is computed by algorithm AAC. However,
in the proof of correctness of AAC (Theorem 4 of [vBC90]), Van Beek and
Cohen suggest that the algorithm for computing the minimal network of a
given PAN also achieves global consistency. This is not true and has been
corrected in [vB90a]. As the following example demonstrates, the introduction
of disjunctions of inequations is necessary for achieving global consistency in
this case. But algorithm AAC of [vBC90] does not introduce such disjunctions
so it cannot achieve global consistency.

Example 5.1 For the PAN with constraints

11 <@y, g a3, 4 < w5, 5 < Tg, Ty F Ts

AAC will also introduce constraints x; < z3, 24 < x¢. The resulting PAN
is strong 3-consistent but not globally consistent. This can be demonstrated
via an argument similar to the one for Example 3.4. If we enforce strong
5-consistency with the addition of constraints z; # x5 V a3 # x5, 24 #
re V ¢ # x9 and ¥ # x3 V 21 # x4 V 21 # T, then the resulting set is
globally consistent.

Global consistency of PAN can be enforced by TCN-GCONSISTENCY if PAN
are represented by their equivalent TCN. The following theorem summarizes
the result of Section 3 as it applies to PAN.

Theorem 5.2 Strong 5-consistency is necessary and sufficient for achieving
global consistency in PAN. Strong 5-consistency can be enforced in O(Hn")
time where H is the number of edges labeled with # and n is the number of
nodes.

15

Global consistency of PAN has also been discussed (under the name decompos-
ability) in Section 5 of [Kou92] and algorithm DECOMPOSE has been proposed
for achieving this task. The algorithm is correct but it adopts a representation
which is rather inappropriate for the task at hand and leads to a complexity
bound which is not the tightest. The results of this section subsume the results
of Section 5 (only!) of [Kou92].

Let us now comment on some observations of Dechter [Dec92] on the problem
of enforcing global consistency in PAN. [Dec92] discusses global consistency in
general constraint networks with finite variable domains. The most important
result of [Dec92] is the following. If N is a constraint network with constraints
of arity r or less and domains of size k or less which is strongly (k(r —1)4 1)-
consistent, then N is globally consistent.

The above result can be applied to PAN if PAN are redefined as “traditional”
constraint networks where variables represent relations between two points
and constraints are defined by the transitivity table of [VKvB89]. This repre-
sentation yields a constraint network with & = 3 and r = 3. Dechter’s result
now gives us the following. If strong 7-consistency in PAN can be enforced
with ternary constraints then strong 7-consistency implies global consistency.
Dechter uses the aforementioned incorrect assertion of [vBC90] to conclude
that strong T-consistency in the traditional formulation of PAN can be en-
forced with ternary constraints. Thus she also concludes that in the traditional
formulation strong 7-consistency implies global consistency [Dec92, page 100].
In the light of Theorem 5.2, Dechter’s conclusion remains unjustified.

6 The General Case

Let us now consider enforcing global consistency when disjunctions of inequa-
tions are allowed in the given constraint set.

Example 6.1 The constraint set

C={rs < a1, 21 <, x5 < w6, 27 < 23, 23 < ¥, 7 < Ty, To < Ty,
Ty < Tyg, To < Tyg, Ty F Y V 3 F 2 V 23 F w}

is strong 7-consistent but not 8-consistent. For example, the valuation

v={y—0, 20, w0, 290, 230, 25— 0, 26— 0}

satisfies C(y, z,w, x9, ¥3, x5, 26) = {25 < 26} but it cannot be extended to a
valuation which satisfies C'(y, z, w, x2, x5, x5, ¥, 1). We can enforce 8-consistency

16

by adding the constraints

s FYy V gty V asFzV rzFw
r1FY V x9Fz V x90F 2z V 23 F w
T FYy VayFzVarFw V oasg#w.

The resulting set is strong 8-consistent but not 9-consistent. We can enforce
9-consistency by adding the constraints

r5FyYy V agFty V axegFEz V xpFEz V rzFw
r1FY NV x9gFz NV xpFz VaerFw V rsFtw
s FYy V agFy V raFzV arFw V orsF£ w.

The resulting set is strong 9-consistent but not 10-consistent. We can enforce
10-consistency by adding the constraint

r5FYy NV agty VagFtzV xpw#tz VarFtw V oag#w.

The resulting set is strong 10-consistent and also globally consistent.

Figure 6 presents algorithm GCONSISTENCY which enforces global consistency
on its input constraint set. The reader should have no problem understanding
the details of GCONSISTENCY since it is a straightforward generalization of
algorithm TCN-GCONSISTENCY.

The following theorem demonstrates the correctness of GCONSISTENCY. The
proof is given in Appendix A.

Theorem 6.1 The algorithm GCONSISTENCY s correct i.e., it returns a
globally consistent set of constraints equivalent to the input one.

In essence, algorithm GCONSISTENCY achieves strong 2V + 1-consistency
where V' is the maximum number of variables in any disjunction of inequa-
tions. Thus we have the following corollary.

Corollary 6.1 Let C be a set of temporal constraints. If C' is 2V +1-consistent,
where V' is the mazimum number of variables in any disjunction of inequa-
tions, then C is globally consistent.

The time complexity of GCONSISTENCY is exponential in V. However, if V
is fized then the time complexity of GCONSISTENCY is polynomial in the
number of variables and the number of constraints in C'. This has an interesting
consequence for variable elimination due to its relation to global consistency.

Corollary 6.2 Let C be a set of temporal constraints such that the number of
variables in every disjunction of inequations is fired. Eliminating any number

17

Algorithm GCONSISTENCY

Input: A set of temporal constraints C' = C;UC; where () is a set of inequalities
and Cy is a set of disjunctions of inequations.

Output: A globally consistent set of constraints equivalent to C.

Method:
Step 1: Enforce strong 3-consistency on Cf.
Let N be the TCN corresponding to (.
For k,i,j =1ton do

Niji= Ny @ (Nig @ Nij)
EndFor

Step 2: Enforce global consistency
Ch=10
For each ¢ € Cy do
For all subsets {kq,...,k;} of the set of variables of ¢ do

For mq,...,m;,l1,....[; =1 ton do
f Niymyseoos Nigmys Nijky s« - - Vg, are closed from the right then
Eliminate variables xy,, ...,z from
C, Ty — Ty = dk1m17 Tk — Ty = dhkm s Tmy T Tk = dimm
T, — X1, = dig,

to obtain ¢
Ch=Chu{d}
Endif
EndFor
EndFor
EndFor

Return Constraints(N)U Cy U C)

Fig. 6. Enforcing global consistency

of vartables from C can be done in time polynomial in the number of variables
and the number of constraints. In addition, the resulting constraint set has
size polynomial in the same parameters.

Proof: Let x4,...,x, be all the variables of C'. When V is fixed, the size of the
constraint set generated by algorithm GCONSISTENCY is polynomial in the
number of variables and the number of constraints. If C' is globally consistent
then for any ¢ such that 1 < ¢ < n, C(xq,...,x;) is the projection of Sol(C')
on {x1,...,2;}. Thus we can eliminate variables x1, ..., z; from C by running
GCONSISTENCY on C' and returning C(a;41,...,2,). This algorithm takes
time polynomial in the number of variables and the number of constraints. ®

The above corollary complements Theorem 4.4 of [Kou92] which states that
variable elimination can result in constraint sets with an exponential number

18

of disjunctions of inequations.

7 Conclusions

We discussed the problem of enforcing global consistency in sets of quantitative
temporal constraints which include inequalities, inequations and disjunctions
of inequations. In future research it would be interesting to consider directional
consistency algorithms for this class of temporal constraints [DP88]. It would
also be interesting to combine our results with the results of [Mei91b] in order
to identify classes of qualitative and quantitative point/interval constraints
where global consistency is tractable.

8 Acknowledgements

I would like to thank Peter van Beek, Rina Dechter, Amar Isli, the reviewers
of CP95 and the reviewers of this paper for interesting comments. [would also
like to thank Alfonso Gerevini for pointing out to me that an earlier version
of Lemma 4.1 had been stated inaccurately.

References

[Co090] M.C. Cooper. An optimal k-consistency algorithm. Artificial
Intelligence, 41(1):89-95, 1990.

[Dec92] R. Dechter. From local to global consistency. Artificial Intelligence,
55:87-107, 1992.

[DMP91] R. Dechter, I. Meiri, and J. Pearl. Temporal Constraint Networks.
Artificial Intelligence,49(1-3):61-95,1991. Special Volume on Knowledge
Representation.

[DP88] R. Dechter and J. Pearl. Network-Based Heuristics for Constraint
Satisfaction Problems. Artificial Intelligence, 34(1):1-38, 1988.

[Fre78] E. Freuder. Synthesizing Constraint Expressions. Communications of
ACM, 21(11):958-966, November 1978.

[Fre82] E. Freuder. A Sufficient Condition For Backtrack-Free Search. Journal
of ACM, 29(1):24-32, 1982.

[GCI5] A. Gerevini and M. Cristani. Reasoning with Inequations in Temporal
Constraint Networks. Technical report, IRST - Instituto per la Ricerca

19

Scientifica e Tecnologica, Povo TN, Italy, 1995. A shorter version appears
in the Proceedings of the Workshop on Spatial and Temporal Reasoning,
1JCAT-95.

[GS93] A. Gerevini and L. Schubert. FEfficient Temporal Reasoning Through
Timegraphs. In Proceedings of IJCAI-93, pages 648-654, 1993.

[GSS93] A. Gerevini, L. Schubert, and S. Schaeffer. Temporal Reasoning in
Timegraph I-1I. SIGART Bulletin, 4(3):21-25, 1993.

[Imb93] J.-L. Imbert. Variable Elimination for Generalized Linear Constraints. In

Proceedings of the 10th International Conference on Logic Programming,
1993.

[Imb94] J.-L. Imbert. Redundancy, Variable Elimination and Linear
Disequations. In Proceedings of the International Symposium on Logic
Programming, pages 139-153, 1994.

[Is194] A.Isli. Constraint-Based Temporal Reasoning: a Tractable Point Algebra
Combining Qualitative, Metric and Holed Constraints. Technical Report
94-06, LIPN-CNRS URA 1507, Inst. Galilée, Université Paris-Nord, 1994.

[IvH93] J.-L. Imbert and P. van Hentenryck. On the Handling of Disequations
in CLP over Linear Rational Arithmetic. In F. Benhamou
and A. Colmerauer, editors, Constraint Logic Programming: Selected
Research, Logic Programming Series, pages 49-71. MIT Press, 1993.

[Kou92] M. Koubarakis. Dense Time and Temporal Constraints with #. In
Principles of Knowledge Representation and Reasoning: Proceedings
of the Third International Conference (KR’92), pages 24-35. Morgan
Kaufmann, San Mateo, CA, October 1992.

[Kou94a] M. Koubarakis. Complexity Results for First-Order Theories of Temporal
Constraints. In Principles of Knowledge Representation and Reasoning:
Proceedings of the Fourth International Conference (KR’94), pages 379—
390. Morgan Kaufmann, San Francisco, CA, May 1994.

[Kou94b] M. Koubarakis. Foundations of Indefinite Constraint Databases. In
A. Borning, editor, Proceedings of the 2nd International Workshop on the
Principles and Practice of Constraint Programming (PPCP’94), volume
874 of Lecture Notes in Computer Science, pages 266-280. Springer
Verlag, 1994.

[Kou94c] M. Koubarakis. Foundations of Temporal Constraint Databases. PhD
thesis, Computer
Science Division, Dept. of Electrical and Computer Engineering, National
Technical University of Athens, February 1994. Available electronically
from http://www.co.umist.ac.uk/ manolis/MK/M-Koubarakis.html.

[LMB89] Jean-Louis Lassez and Ken McAloon. A Canonical Form for Generalized
Linear Constraints. Technical Report RC15004 (#67009), IBM Research
Division, T.J. Watson Research Center, 1989.

20

[Mei91a] I. Meiri. Combining Qualitative and Quantitative Constraints in
Temporal Reasoning. Technical Report R-160, Cognitive Systems
Laboratory, University of California, Los Angeles, 1991.

[Mei91b] I. Meiri. Combining Qualitative and Quantitative Constraints in
Temporal Reasoning. In Proceedings of AAAI-91, pages 260-267, 1991.

[Mon74] U. Montanari. Networks of Constraints: Fundamental Properties and

Applications to Picture Processing. Information Sciences, 7:95-132,
1974.

[Sch86] A. Schrijver, editor. Theory of Integer and Linear Programming. Wiley,
1986.

[vB90a] Peter van Beek. Exact and Approximate Reasoning About Qualitative
Temporal Relations. Technical Report TR 90-29, Department of
Computing Science, University of Alberta, August 1990.

[VBI0b] Peter van Beek. Reasoning About Qualitative Temporal Information. In
Proceedings of AAAI-90, pages 728-734, 1990.

[vBI1] Peter van Beek. Temporal Query Processing with Indefinite Information.
Artificial Intelligence in Medicine, 3:325-339, 1991.

[VB92] Peter van Beek. Reasoning About Qualitative Temporal Information.
Artificial Intelligence, 58:297-326, 1992.

[vVBCO0] Peter van Beek and Robin Cohen. Exact and Approximate Reasoning
about Temporal Relations. Computational Intelligence, 6:132-144, 1990.

[VK86] Marc Vilain and Henry Kautz. Constraint Propagation Algorithms for
Temporal Reasoning. In Proceedings of AAAI-86, pages 377382, 1986.

[VKvB89] Marc Vilain, Henry Kautz, and Peter van Beek. Constraint Propagation
Algorithms for Temporal Reasoning: A Revised Report. In D.S. Weld
and J. de Kleer, editors, Readings in Qualitative Reasoning about Physical
Systems, pages 373-381. Morgan Kaufmann, 1989.

21

A Proofs

Proof of Theorem 3.1: Let ' denote Constraints(N) U C. The set C’
is consistent therefore 1-consistency holds trivially. We will show that C’ is
v-consistent for every v, 2 < v < n.

Let us take an arbitrary valuation v = {zy « 29,... 2,y « 2%_,} such that
C'(29,...,22_,) is satisfiable. We will show that for every variable x,, v can
be extended to a valuation v’ = v U {x, « 2%} such that C'(29,...,29) is
satisfiable.

It all constraints involving x, and any of x4, ..., z,_1 are inequalities, our result
is immediate since Constraints(N) is globally consistent. Let us then assume

that C'(xy,...,x,) contains inequations, and consider C'(29,...,2%_, z,).

Let D;; denote the number of inequation constraints involving @;—x; in C’. Let

I; be the set of natural numbers j such that 2;—x; #r V gora;—z; #r V ¢
is an inequation constraint in C’. Then C'(z9,...,2%_,,z,) can be written as

{:1;2 —dy, <1 7y, T, <925 +dy, U U {z, # :1;2 + rlllg, ce Ty :1;2 + r?"c}(A.l)
CGID

where p, A, (€ {1,...,v—1} and <4, <3 € {<, <}. Since the rational numbers
are dense, there is only one case which would not allow us to find a value x?
such that C'(z9,...,29_,, 22) is satisfiable. This is the case when < is <, <,

is < and there exists p € [, and n € {1,...,D,,} such that

20 —d,, =23 +dy, = :1;2 +), (A.2)

I

We will show that this case cannot arise.

Depending on the form of the inequation constraint ¢ from which inequation
x, # x) + 1], was generated, the following cases must be considered. Figure
A.1 illustrates the analysis by depicting the subnetworks involved in each case.

(i) cis @, —x, # 1], € Constraints(N) or equivalently r] € holes(N,,).
In this case, the constraint =, —x, # d,, + 7], V ¥y —z, #71] —dy\,
is added to C in Step 2.1 of algorithm TCN-GCONSISTENCY with ¢ =
n,m = pu,l =X and k = p. Then

:1;2 — :1;2 #d,, + r, V l’g — a0 + r, — dy € Cl(l'(l), .. .,:1;3_1)

P

thus we have a contradiction.

22

T -7, -2, Te -, - T, - T,
#
Tp Ty T
Case 1 Case 2(a)
Y > X, > T, > T¢ T¢ > X, > T,
4 #
x, z, T - I, T,
Case 2(b) Case 2(c)
z, -, -z, - Ly To -z, 25 T
#
. T . .
Lo > X > X3 Ty > T¢ > T, > Ty
Case 3(a) Case 3(b)
T -7, -, - 1, z, Ty -, > 1
#
Zy Ty > T¢ > X3 T\ > T, > T¢ > T,
Case 3(c) Case 3(d)

Fig. A.1. The cases examined in Theorem 3.1

(ii) cis added to C' in Step 2.1 of TCN-GCONSISTENCY. Depending on the
values of ¢.l,2,m and k we can consider the following subcases.
(a) cis added to C in Step 2.1 of TCN-GCONSISTENCY with ¢ = n,l =
(i=ym=vand k=p Thuscisz, —x, #r]) +d, V v —x,#
—dg, 4 1, The constraints (A.1), (A.2) and ¢ imply

0

Te — :1;2 =—d¢,+r1),, vy—x,=dy+r), =dy +r] +d, (A.3)

23

Now we have the following subcases:
d, =d, +d,,. Then (A.3) contradicts the constraint

xu_xp%dbu+r?p N xf_xp%_dfb—l_r?p

of C'(x1,...,2,-1) which is introduced in Step 2.1 of TCN-GCONSISTENCY
with g =n,l=¢0=¢,m = p and k = p.

d, <d, +d,. Then :1;2 — :chJ <dey < de, +dy, < de, +d,, +dy,.

This contradicts :1;2 — :chJ =d¢, +d,, + d,, which is implied by (A.3).

(b) cis added to C in Step 2.1 of TCN-GCONSISTENCY with ¢ = n,[=
vii=utm=¢and k=p. Thus cisxg —x, #r] +de V v, -2, #
—d,, +r}. This case is symmetric to 2(a).

(c¢) ¢is added to C in Step 2.1 TCN-GCONSISTENCY with ¢ = ,] =
Eii=tm=pand k=v. Thuscisz, —x, #7], +d,, V x¢ — 2, #
—dg,+77, or equivalently x, # x,—r" —d,, V x, # v¢+de,—r",. The
constraints (A.1) and ¢ imply :1;2 —rl —d, = :chJ +dg, — 1! = :1;2 +r] .

These equalities together with (A.2) imply
S—xgzd&—l—dw, :z:ﬁ—xgzdw—l—dw, [—d, :xﬁ—dw.

P v

X

But for ¢ = n,l = &m = p,e = o,k = vt = X and s = p the
constraint

r,—xeFdptdey Vry—axFd,+dy Va,—x,Fr), +d,—d,

is added to C' in Step 2.2 of TCN-GCONSISTENCY. This constraint
also belongs to C'(x1,...,x,-1) thus we have a contradiction.

(iii) ¢ is added to C' in Step 2.2 of TCN-GCONSISTENCY. Depending on the

values of ¢,l,2,m,t, k and s we can consider the following subcases.
(a) cis added to C in Step 2.2 of TCN-GCONSISTENCY with ¢ = n,[=
pot=tm=v,t=cak=¢and s = . Thus cis

J}U—J}p%dw—l-dm vV l’g—l’a%dgg—l-dag vV :1;1,—:1;57&7“7£—d55—|—dw.
The constraints (A.1) and ¢ imply

:1;2 +d,+d, = :1;% —I—TZ —deg+d,, = :1;2 —I-TZP, :1;% — l’g =deg+ doe.
These equations together with (A.2) imply

X

— 1}2 = dw —|— dpb —|— dl,u, l’% — l’g = dgg —|— dag,

0

—Tp= duu + TZ — dgg + dw (A4)

0
o
0
Ty

Now we have to consider the following subcases:
d, =d,+d,,. Then (A.4) contradicts the constraint

Ty —Tp Fdptdp V ug— a0 Fdggtdag V oau— a5 F 1+ diy — dep

24

of C'(x1,...,2,-1) which is added to C in Step 2.2 of TCN-GCONSISTENCY
withg=n,l=pi=t,m=p,t=a,k=¢ and s = 3.
d, <d,+d,,. Then

1’2 - 1’2 S dpu S dpL —I' dap, < dpL —I' dw —I' duu-

This contradicts the first equation of (A.4).
(b) ¢ is introduced in Step 2.2 of TCN-GCONSISTENCY with g =n,[=
a,t=t,m=f,t=p k=¢and s =v. Thus ¢ is

l’g—l’a%dbg—l-dm vV J}U—J}p%dgy—l-dpg vV l’g—l’y%rg—l-dbg—dgy.

This case is symmetric to case 3(a).
(¢) cis introduced in Step 2.2 of TCN-GCONSISTENCY with ¢ = n,[=
vii=t,m=p,t=ak=¢and s = 3. Thus ¢ is

o=y Fdp+dy V oag— a0 F degtdag Voa, — a5 £ 1+ d, —dep

orz,—x,# —d,—d, V 15—x4 F deptdae V x,—15 F rz7£—|—dw—dgg.
The constraints (A.1) and ¢ imply

:1;% — l’g = deg + dae, :1;2 — :1;% = 7“175 +d,, — deg, er =—d, —d,
The above equations together with (A.2) imply

vy —xg =deg + dog,) — =1 +d, — deg,
0 0

x,—ay=dy +d,+d, (A.5)

Now we have to consider the following cases:
dy, = dy, + d,,. Then (A.5) contradicts the constraint

ry—axFd,+dy Vowg—aa Fdggtdag Vox,—apF g +d, —deg
of C'(x1,...,2,-1) which is introduced in Step 2.2 of of TCN-
GCONSISTENCY with ¢ = 5.l = A\t = ¢,m = p,t = a,k = ¢

and s = [3.
dy, < dy, +d,,. Then

20 —af <dy, <dy+d, <dy+d+d,

which contradicts the last equation of (A.5).
(d) ¢ is introduced in Step 2.2 of TCN-GCONSISTENCY with g =n,[=
a,t=t,m=p,t=v,k=¢and s = p. Thus cis

l’g—l’a%dbg—l-dm vV l’p—l’y%dgp—l-dl,g vV l’g—l’p%rg—l-dbg—dgp.

This case is symmetric to case 3(c). O

25

Proof of Theorem 6.1: The proof will have the same structure as the proof of
theorem 3.1. Let C” be the set returned by GCONSISTENCY. Let us take an ar-
bitrary valuation v = {@y « 2¥,..., 2,1 < 2%_,} such that C'(29,...,2%_))
is satisfiable. We will show that for every variable z,, v can be extended to a
valuation v/ = v U {x, « 2%} such that C’(29,...,2%) is satisfiable.

It all constraints involving x, and any of x4, ..., z,_1 are inequalities, our result
is immediate since Constraints(N) is globally consistent. Let us then assume
that C'(xy,...,x,) contains inequations, and consider C'(29,...,2%_, z,).

Let Dj; denote the number of inequation constraints involving «;—a; in C". Let
I; be the set of natural numbers j such that 2;—x; #r V gora;—z; #r V ¢
is an inequation constraint in C’. Then C'(z9,...,2%_,,z,) can be written as

{af —doy <120, vy <22+ d U U {as #al+re,. . u £ al+ r?"c}(A.G)
CGID

where p, A, (€ {1,...,v—1} and <4, <3 € {<, <}. Since the rational numbers

are dense, there is only one case which would not allow us to find a value z°

such that C'(z9,...,29_,, 22) is satisfiable. This is the case when < is <, <,

» V=1 %y

is < and there exists p € [, and n € {1,...,D,,} such that

20 —d,, =23 +dy, = :1;2 +7r), (A7)

I

We will show that this case cannot arise.

Depending on the form of the inequation constraint ¢; from which inequation
x, # &) +)], was generated, the following cases must be considered.

(i) &1 € Cy. Then ¢; can be written as
Ly — Tp 7£ er N 5

where ¢ does not contain x,. When the set {r} is considered by Step 2 of
GCONSISTENCY and my = p, [= A, the variable z, is eliminated from

a, Ty — Ty = duua Ty — T = d/\y
to obtain the following constraint ¢;:
5 v :I:M—:I;p#dw—l—rzp Vox, —) #dw—rzy.

We have arrived at a contradiction since ¢; € C'(,...,2%_,) and the
equalities A.7 hold.

26

(ii) ¢1 is added to C" in Step 2 of GCONSISTENCY. Depending on the values
of e,e,mq,...,m; lq,...,1; we consider the following subcases.

(a) c =c3yt = t,my = Pryeeoymy =v,o..,m, = 0, 1L =aq,...,0; =
Pyl = ay.
Thus ¢ is obtained after variables g, , ..., zy, are eliminated from
C3, Tp, — Thy = dk1ﬁ17 Tpy — Loy = da1k17 ceey Ty — Ty = dk]l,,
Ly — Tp = dpkjv s X, T X, = dl@ﬁm LT, — Lo, = doszL

Therefore ¢; is

cslp [Toy + daskys ooy Thy [T+ dpryy o Tk, [0, ok, V

Tpy — Loy 7£d0é1k1 +dk1ﬁ1 V...V J}U—J}p%dpk] ‘|‘ko1/ VoL

vV T, — La, 7£ doszL + dkLﬁL-
Let us recall that x, # 2 +7]] has been generated by ¢;. This implies
that :1;2—|—er = :1;2 —I—dpk] —I—dkjl,. We can now conclude, using A.7, that

0

xu - xg = dl’# —I_ er = dpkj —I' dkjy —I' duu (AS)

Now we have to consider the following cases:

dijp = dyy +dy. 1F
c=cgt=t,my=0,....omi=p,....m =0, L=a,....[,=p,...

then Step 2 of GCONSISTENCY adds the following constraint ¢4 to
Cdi
sl [Toy + daskys oo Try [T F dprys Tk, [20, o] V
Tpy — Loy 7£d0é1k1 +dk1ﬁ1 V...V J}M—l’p%dl)kﬂ —I-Clk]M VoL,
Tp, — Lo, 7£ doszL + dkﬁu
The equalities A.8 and the form of ¢; and ¢4 imply that we have
arrived at a contradiction.
dy, . < dy;, + d,,. In this case

1’2 - 1’2 S dpu S dpkj + dkju < dpkj + dkjy + duu-

Thus we have a contradiction with A.8.
The symmetric cases where v is one of mq,...,m;_1,mjtp1,..., M,
can be treated similarly.
(b) e=¢,my=p1,...omj=p,...om =0, h=a1,.... 0, =v,....1], =
Q.
This case and the symmetricones where visoneof Iy, ..., [;_1,lj41,...,1,
are analogous to (a). O

27

