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Chapter 19

Temporal CSPs

Manolis Koubarakis

19.1 Introduction

Reasoning with temporal constraints has been a hot research topic for the last twenty years.
The importance of this topic has been recognized in many areas of Computer Science and
Artificial Intelligence e.g., planning [4], scheduling [23], natural language understanding
[91], knowledge representation [79], spatio-temporal databases and geographical informa-
tion systems [62], constraint databases [89], medical information systems [102], computer-
aided verification [5], multimedia presentations [2] etc.

Temporal reasoning is an area that has greatly benefited by the application of tech-
nigues from constraint programming ever since the early papers by James Allen and others
[3, 107, 31, 108, 34]. The CSP framework introduced in Chapter 2 of this handbook is
immediately applicable for representing and reasoning about temporal information, and
so are the algorithms of Chapters 3, 4 and 8. Temporal CSPs have been proved to be a
robust framework where general CSP results such as the ones surveyed in Chapters 5 and
6 of this handbook could be applied profitably. Moreover, specific results about temporal
CSPs have often provided the motivation for deriving general results about CSPs. Tempo-
ral CSPs have been studied in depth, not only because of intellectual curiosity, but mostly
due to their importance for applications such as planning, scheduling, temporal databases
and others mentioned above. In many cases, the problems studied come straight from the
application front and developed solutions are immediately put into practical use.

In this chapter, we survey work on temporal CSPs starting from the papers that ap-
peared in the early nineties [3, 107, 31, 108, 34] and continue with contributions that have
been published as recently as last year. We have covered all of the influential works, but due
to space, we have sometimes been brief in our presentation. Our presentation is sometimes
historical; we hope this will turn out to be useful for the readers. For more information
on temporal CSPs and temporal reasoning in general, the reader can read the Handbook of
Temporal Reasoning in Artificial Intelligence [41] or the original papers that have appeared
in the literature.
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The rest of this chapter is organized as follows. Section 19.2 introduces some prelimi-
nary concepts of temporal reasoning and temporal CSPs. Section 19.3 introduces the most
influential temporal reasoning formalisms based on constraint networks that have been
proposed in the literature and relevant algorithmic problems. Then, Section 19.4 discusses
efficient constraint satisfaction algorithms for these formalisms. Section 19.5 introduces
the application need for more expressive queries over temporal constraint networks (es-
pecially queries combining temporal and non-temporal information) and surveys various
proposals that address this need. Sections 19.6 and 19.7 introduce the scheme of indefinite
constraint databases that is, up to today, the most comprehensive proposal for querying
hybrid representations consisting of a relational database component and a constraint net-
work component. In the case of temporal CSPs, the constraint network can be used to store
temporal constraints on various temporal objects, and the relational database to store facts
referring to these objects. Finally, Section 19.8 concludes the chapter and points out some
open problems.

19.2 Preliminaries

In this section, we introduce the topic of representing and reasoning about temporal in-
formation, and discuss the representational choices that have been made in the temporal
reasoning literature. We also introduce some basic concepts of CSPs that will subsequently
be used throughout the chapter.

19.2.1 Temporal Representation and Reasoning: Basic Concepts

In everyday life, most people are able to communicate their knowledge and understanding
of temporal phenomena without any major difficulties. However, quite different intuitions
surface as soon as people undertake to construct a formal temporal representation. The
literature distinguishes among three approaches for representing temporal phenomena: the
change-basedpproach (exemplified by situation calculus [74] or event calculus [64]), the
time-basedapproach (exemplified by various temporal logics [106]) or temporal database
models [62]) and their combination [86]. Research on temporal CSPs adopts a time-based
approach to temporal representation and inference. Time is introduced explicitly via an
appropriate set of times (called thime structur¢ and change is manifested when proposi-
tions become true or false at different elements of this set. Once one adopts this approach,
the time structure must be precisely defined. The relevant issues here are:

e What are the elements of the time structuRints, intervalsor both? Research in
temporal CSPs has usually adopted some set of hunib@rgy., the rationals) to be
the set of points and paifs,y) € P? such thatr < y to be the set of intervals.
Conventional time unit systems have also been studied (e.g., see the TUS system of
[70D).

¢ |stimetotally ordered, partially ordered, branchingy cyclic? Research in temporal
CSPs usually assumes time to be totally ordered. There has recently been some inter-
esting work on CSPs for other models of time e.g., partially ordered time, branching
time etc. [16].
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e |stimediscreteor dens@ The issue here is whether there exists a unit of time which
cannot be decomposed. Discrete time is usually considered to be isomorphic to the
integers ). Proponents of dense time have a choice between ratidpagn( reals
(R). Various kinds of temporal CSPs have been studied that deal nicely with all three
cases.

e |s timeboundedor unbounde@® Time is unbounded when for every element of the
time structure there is a “previous” and a “next” element. Temporal CSPs can easily
handle both cases.

Once one adopts an ontology and a structure for time, one usually turns to another,
equally important, consideration: what are the kinds of temporal knowledge that must be
represented? There are many kinds of temporal information that are useful in applications
such as the ones mentioned in Section 19.1:

¢ Definite temporal informatioriWe have definite temporal information when the time
associated with an event or fact is known to be equal tatmolute timei.e., a point
or interval on the time line. In other words, the time associated with an event or
fact is known to full precision in the desired level of granularity. For example, the
sentences “The car was on service throughout March 25th, 1993” and “The car has
gone for service every March 25th for the years 1993-2000" give definite temporal
information with respect to the time line of the Gregorian calendar. Note that the
information in the second sentenceiriodic.

¢ Indefinite or indeterminate temporal informatiowe have indefinite temporal infor-
mation when the time associated with an event or fact is either unknown or has not
been fully specified. The time associated with an event or fact can be under-specified
in various ways [39]:

— The time associated with an event or fact might be specified gaaditative
relationship(different than equality) to some absolute time. As an example,
consider the sentence “John became manafjerMarch, 1993

— The time associated with an event or fact might be specified rgtationship
to the time associated with another event or fact. In this case, the two times
can be related throughgualitative, metric(or quantitativg or mixed tempo-
ral constraint. For example, consider the statements “The explosion occurred
after John left the scene” (qualitative temporal information), “The explosion
occurreds to 10 minutes aftedohn left the scene” (metric temporal informa-
tion), and “The explosion occurrésito 10 minutes aftedohn left the scene
while he was getting into his car” (mixed temporal information).

— The granularity of the system time line does not match the precision to which
the time associated with an event or fact is known. As an example, consider
storing the information “John was hired on January 25, 1993” in a system with
time-stamps in the granularity of a second.

— Dating techniques can be imperfect. All clocks have inherent imprecision.

Temporal CSPs are an expressive framework and they can represent all the above types of
temporal information.
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19.2.2 Background on CSPs

The area of temporal CSPs was initiated by James Allen in his seminal paper [3]. Allen
proposed to represent qualitative temporal knowledge by interval constraint networks. An
interval constraint network(see Figure 19.1) is a directed graph where nodes represents
intervals and edges are labelled with vectors (i.e., disjunctions) of the thirteen binary qual-
itative interval relations presented in [3]. Following [3], many researchers concentrated
on CSPs (or, equivalently, constraint networks) as a means for representing and reasoning
about temporal knowledge. Their proposals are surveyed in Section 19.3 of this chapter.
In this chapter, the equivalent terrf@SP, constraint networindset (conjunction) of
constraintswill be used interchangeably. We now define formally some of the concepts
from the standard CSP literature that we will use in this chapter. Wdaséz;) to refer
to the domain of variable;.

Definition 19.1. LetC be a set of constraints in variables, . . ., x,,. Thesolution sebf
C, denoted by50l(C), is the following relation:

{(v1,...,0,) € dom(x1)%x---xdom(x,): foreveryce C, (vy,...,v,) satisfiesc}.
Each member afol(C) is called asolutionof C.

Definition 19.2. A set of constraints is calledonsistentor satisfiableif and only if its
solution set is non-empty.

We now define the standard conceptg-obnsistency, strongconsistency and global
consistency (or decomposability).

Let C be a set of constraints in variables, . . . , x,,. For anyi such thatl < i < n,
C(z1,...,z;) will denote the set of constraints @i involving only variablesry, . . . , z;.

Definition 19.3. LetC be a set of constraints in variables, ..., z, andl <i <n. Cis
calledi-consistentff for everyi — 1 distinct variablese, ..., z;_1, every valuation, =
{x1 < v1,...,mi—1 < v;_1} suchthat; € dom(z1),...,v;—1 € dom(x;_1) andu sat-
isfies the constraint€’(z1, ..., z;_1), and every variable;; different fromz1, ..., x;_1,
there exists a value; € dom(x;) such thatu can be extended to a valuatiad =
u U {z; < v;} which satisfies the constraints(z,...,z;_1,2;). C is called strong
i-consistenif it is j-consistent for every, 1 < j <. C is calledglobally consistenbr
decomposabléf it is i-consistent for every, 1 < i < n.

We now define the standard concept of minimal set of constraints. Minimal sets of
constraints are especially important in temporal CSPs because they make explicit all im-
plied binary constraints (e.g., the strictest constraints between the endpoints of an interval
or the constraints capturing the strictest qualitative relation between two points etc.). In a
constraint network representation of binary constraints, the concept of minimal constraint
set is equivalent to the conceptmfnimal network

Definition 19.4. A set of constraint§’ will be calledminimal if any instantiation of two
variables, which satisfies the constraints involving these variables only, can be extended to
a solution ofC'.
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In temporal CSPs, the variables are used to represent time elements (points or inter-
vals), the domains are time structures (usudlly) or R for time points, and the set of
intervals ovetZ, Q or R for time intervals), and the constraints represent temporal relation-
ships. Section 19.3 presents various temporal CSP frameworks with appropriate choices
for variables, domains and temporal constraints.

The following reasoning problems have been traditionally associated with CSPs:

e Deciding whether a set of constraints is consistent.

Finding a solution or all the solutions of a consistent constraint set.

Computing the minimal set of constraints equivalent to a given one.

Determining if a set of constraints isconsistent, strong-consistent or globally
consistent.

The above reasoning problems have also been the main focus of algorithms for temporal
CSPs proposed in the literature. These algorithms are surveyed in Section 19.4 of this
chapter.

19.3 Constraint-Based Formalisms for Reasoning About Time

In this section we initiate our survey of temporal representation and reasoning formalisms
based on constraint networks. We distinguish the proposed formalisms depending on the
kind of temporal information they allow: qualitative, metric or mixed temporal informa-
tion.

19.3.1 Qualitative Temporal Reasoning

As we already said earlier, the first important paper that proposed to represent qualitative
temporal information by CSPs was [3] by James Allen. In [3], Allen introduced a formal-
ism for reasoning about intervals in time. Amtervali is a pair(i~, i) wherei~ andi™
areendpointson the real line and~ < i* holds. Allen’s formalism is based on thirteen
mutually exclusivebinary relationswhich can capture all the possible ways two intervals
can be related. Thesgomicrelations are

before, meets, overlaps, during, starts, finishes, equals

and their inverses:quals is its own inverse). Figure 19.2 defines these relations in terms of
endpoint constraints, and gives a shorthand notation and pictorial representation for them.
Allen’s formalism has received a lot of attention and has been the formalism of choice
for representing qualitative interval information. Whenever the interval information to
be represented is indefinite, a disjunction of some of the thirteen atomic relations can be
used to represent what is known. There 2irésuch disjunctions representing qualitative
relations between two intervals. Each one of these relations will be denoted by the set of
its constituent basic relations e.gb, bi, d, m}. Theemptyrelation will be denoted by,
and theuniversalrelation will be denoted by. The set of al2!? relations expressible in
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breakfast

{0,07,s,s%d,d%ff" =)

Figure 19.1: ArZ A network

Allen’s formalism will be denoted b .A. The operations of intersection), complement
(-—1) and compositiond) can be defined of.A as follows:

(Vo,y)(zr "ty yra)

Vz,y)(z (rnr)y < (xry A zr'y))
(Vz,y)(z (ror )y e (F2)(xrz A 27" y))

The setZ. A equipped with these operations forms an algebra [82], calleishtbeval alge-
bra.

Example 19.5. Let us consider the following text [103]:

Fred was reading the paper while eating his breakfast. He put the paper down
and drank the last of his coffee. After breakfast, he went for a walk.

If we usebreak fast, paper, walk andcof fee to stand for appropriate time intervals, the
information included in the above sentences is captured hy.theetwork of Figure 19.1.

In [3], Allen presented a constraint propagation algorithmZgr networks based on
path consistency which runs (n?) time wheren is the number of intervals in the net-
work. When constraints are propagated, some temporal knowledge that has been implicit
before is made explicit. Later on, Vilain and Kautz showed that Allen’s constraint propaga-
tion algorithm is not complete because deciding the consistency of a%et cbnstraints
is an NP-complete problem and so is computing the minimal network [107].

In the same paper, Vilain and Kautz introduced goént algebra.A which allows
one to relate two time points using the binary qualitative relatians> and= and their
disjunctive combinations (see Figure 19.2). [107] also identifiecbthietisable subclass
PZA of ZA which consists of all elements @tA that can be expressed as a conjunction
of binary constraints using only elements/afl.
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Basic Symbol | Pictorial Endpoint
Relation Representation Constraints
i before j b iiiiiiii <, <jT,
Jafteri bt i |t <t <t
i meets j m iiiiiiiii iT<jT,i <jT,
J met-by i m”! il it =47, <j*
i overlaps j 0 iiiiiiiii iT<jiT, i <jT,
j overlapped-byi | o' Jijijiiiiii it >, i <Gt
i during j d iiiiiiii >, <gT,
J includes i d* T it >t <Gt
i starts j s iiiiiiii iT=5,i <jT,
J started-by i s—U | i it >t <Gt
1 finishes j f iiiifiiiiii i >j 1 <t
j Fimishedbyi | 7T | jifi | it >, it =g
i equals j = iiiiiiiiiiii i =4 ,1 <jt,
i it it =gt
Basic Symbol | Pictorial Point
Relation Representation | Constraints
pbeforei b p p<i
iafterp b T iiiiiiiii
p starts 1 S p =1
1 started-by p 571 iiiiiiiii
p during i d p T <p<it
i includes p d=1! iiiiiii
pafteri a p T <p
ibeforep a~ ! iiiiiiiii
Basic Symbol | Pictorial
Relation Representation
pbeforeq < p
qafterp > q
p equals q = p
q
pafterq > q
qbeforep < p

Figure 19.2: Interval-to-interval, point-to-interval and point-to-point relations
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In [107], Vilain and Kautz claimed that Allen’s constraint propagation algorithm com-
putes the minimal network faP.4. Subsequently, van Beek pointed out that this result is
true only for the subset d? 4 which does not include thdisequalityrelation#; this is the
convex point algebra’P.4 [101, 108, 104]. The same result is true for domtinuous end-
point subclas€£7 A of 7.4 which consists of all elements @fA that can be expressed as
a conjunction of binary constraints using only elemeni§7f4 [101, 108, 104]. Van Beek
also pointed out that enforcing strong 4-consistency iPdod or P.A network results in
an equivalent minimal network [101, 108, 104]. However, enforcing strong 4-consistency
does not result in global consistency for these networks. As shown by Koubarakis in
[57], strong 5-consistency is necessary and sufficient for achieving global consistency in
PTA andPA. Van Beek has also presented two efficient algorithmsHgr and PZ.A
networks: anO(n?) algorithm for consistency checking and finding a solution, and an
O(max mn?, n3) for computing the minimal network [103]. The parametdrere is again
the number of nodes in the network, whileis the number of edges labelled with

The work by Vilain, Kautz and van Beek [108] motivated the search for new subclasses
of ZA that are tractable. The most widely studied subclass discovered so farGsdhe
Horn subclasg+ introduced by Nebel andiBckert in [82].H consists of all relations €
A which satisfy the following condition. If andj are intervals; r j can be equivalently
expressed as a conjunction of Ord-Horn constraints on the endpointndfj. An Ord-

Horn constraintis a disjunctiond; Vv - - - V d,, where at most one of th&'s is an inequality
of the formz < y, the rest of thel;’s are disequations of the form+ y, andz andy are
variables ranging over the real numbers.

It is interesting to notice thel{, the most expressive tractable subclasg.dfamong
the ones introduced above, consists of 868 relations i.e., it covers more than 1Q%of
is maximali.e., it cannot be extended without losing tractability [82].

Recently, Krokhin, Jeavons and Jonsson showed that therexaotly 18 maximal
tractable subclasses ®#4; reasoning in any subset 64 not included in these subclasses
is NP-complete [65]. This is an importadichotomyresult: it classifies all subproblems
of an NP-complete problem as either tractable or NP-complete. It is important to point
out that this result is proved analytically while previous work had resorted to systematic
computerized analysis (see e.g., [38]).

Koubarakis [59] has demonstrated that, in general, there is no low level of local con-
sistency that can achieve global consistenc§{oonstraints. Earlier, Bessie, Isli and
Ligozat [12] had presented some subclasse®{dbr which path consistency achieves
global consistency.

Gerevini [42] consider$ A and’H and studiesncrementalalgorithms for checking
consistency, maintaining a solution and maintaining the minimal network. The algorithms
of [42] improve the static algorithms for these problems by a factar(ef) or O(n?) when
a sequence aP(n?) operations (assertions or relaxations of constraints) are processed. In
related work, Delgrande and Gupta [36] consider the problem of updating chaihsof
< relations.

In [75], Meiri defines thequalitative algebraQ.4, an expressive formalism for qual-
itative temporal reasoning on points and intervals.QHA, one is able to express binary
constraints of the forma; r; o; vV --- V o; 1, 0; Whereo;, o; are points or intervals and
T1,...,T) are:

e interval-to-interval relations frord.A
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e point-to-point relations fronP.A

e point-to-intervalor interval-to-pointrelations [109]. These five, mutually exclusive
relations and their inverses can hold between a point and an interval. They are shown
pictorially in Figure 19.2.

[75] presents several results @4 and its subclasses including how to combine it with
metric information (see Section 19.3.3 below). Recently, [50] presented a dichotomy the-
orem which gives @ompleteclassification of all subclasses ¥4 as either tractable or
NP-complete.

The expressive power of the qualitative temporal reasoning algebras defined in this
section can be summarized as follows (the symbahould be read as “contains” or “is
less expressive than”) :

CPACPAC QA and CEIACPIACHCIAC QA

19.3.2 Metric Temporal Reasoning

Dechter, Meiri and Pearl studied metric temporal information udisginctive binary dif-
ference PBD) constraintd of the form

ay <z —2; <bV---Va, <y —x; < by

wherez;, z-; are real variables representing time pointsand . ., a,, b1, . .., b, are real
numbers [34]. To deal with these constraints, [34] introduP&D networkswhere nodes
represent variables and arcs represent binary constraints.

Example 19.6. Let us consider the following text [34]:

John goes to work either by car (30-40 minutes) or by bus (at least 60 min-
utes). Fred goes to work either by car (20-30 minutes) or in a car pool (40-50
minutes). Today John left home between 7:10 and 7:20, and Fred arrived at
work between 8:00 and 8:10. We also know that John arrived at work about
10-20 minutes after Fred left home.

Letzy be a special time point (real variable) denoting the “beginning of time” (7:00 in
our case). Lety, zq, z3, x4 be real variables such that, , x| is the interval corresponding
to John's travel to work, anfts, z4] is the interval corresponding to Fred's travel to work.
The left part of Figure 19.3 showsI2BD network capturing the temporal relations in the
above text.

Deciding consistency dP5D networks is NP-complete [34]. An important tractable
subcase occurs when all constraints hasimgledisjuncti.e., they are of the form< z;—
x; < b. We will call these constraints simphjinary difference D) constraints For the
class ofBD constraints, deciding consistency and at the same time computing the minimal

1n this section, we deviate from the usual terminology of the literature and name classes of metric temporal
constraints by referring to what relationships they can express (e.g., difference, disjunctions etc.). In this way,
we avoid using names formed with adjectives such as simple, complex etc. that do not say much about the
expressivity of the particular constraint class they are used to name.
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C{ [30,40], [60, infty]}

{[10,20]}

{10,201}

{[60,70]} {[20,30], [40, 50]}

Figure 19.3: ADBD network (left) and a distance graph for a part of it (right)

network can be done i®(n?) time (wheren is the number of variables) by running any
all-pairs shortest-paths algorithm (e.g., Floyd-Warshall [29]) on an equivalent weighted,
directed graph representation of the constraints callediidtance grapt34]. The right

part of Figure 19.3 shows the distance graph equivalent tdsfeconstraint network
obtained from thé®BD constraint network on the left part of the figure after dropping the
interval [60, in fty] from the edg€z 1, 25) and[20, 30] from the edgé€xs, z4).

For the class oBD constraints, computing the shortest-paths among all pairs of nodes
in the distance graph is equivalent to enforcing path consistency in the original network.
Notice also that path consistency is necessary and sufficient for achieving global consis-
tency for the class oBD constraints [34]. Deciding consistency only can alternatively be
achieved by a single-source shortest-paths algorithm (e.g., Bellman-Ford [2Z9]).ifi)
time wheren is the number of nodes and the number of edges in the distance graph.
Alternatively, one can use @irectional path consistencgigorithm on the given network
which runs inO(nW*(d)?) time whereW*(d) is the maximum number of parents that a
node possesses in the resulting network [34].

The framework of difference constraints of [34] has been influential in much future
work in this area. For example, Koubarakis [57] and, independently, Gerevini and Christani
[43] have introduced the classloihary difference constraints with disequatiqi®D7) by
extending the class @D constraints to include disequations of the farm y # r (r is
a real constant). Deciding consistencyd®” can be checked it(n?) time by trivially
modifying any all-pairs shortest path algorithm used for the clas§Tfconstraints so
that it reports inconsistencies resulting from any disequatieny # r and any (implied)
equality of the formz — y = . Computing the minimal network fd8D7 constraints can
be done inO(max mn?,n?) wheren is the number of variables and is the number of
disequations [57, 43]. [57] has also shown that strong 5-consistency is the necessary and
sufficient condition for achieving global consistency in the casB®f constraints. Re-
cently, [63] extended this result to the classioft two-variable per inequality/disequation
(UTV PI#) constraints. In addition to terms of the form- y, this class allows terms of
the forma + y and the same comparison operator$as”.

Extensions to the framework of [33] also explored more practical directions. For ex-
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ample, [13] has shown how to extend this framework so thaltiple time granularities
are supported.

A related but more expressive class of temporal constraints which has also been studied
widely in the literature is the class afary disjunctive difference constraints. Amnary
disjunctive differenceNDD) constraintis a formula of the form

a1§$1—y1Sbl\/"'\/anﬁ%—ynﬁbn

wherexy,y1,. . ., Ty, Yy, are real variables representing time pointsend. . , a,, b1, ..., b,
are real numbers [97, 6, 96].

Example 19.7. The following are examples ¢¥ DD constraints:
x1—-y1 <2, 11 —y1 <5 V-2<1x3—y2 <2V3—y3 <4,

0§x4—y4\/2§:c5§5

Disjunctive constraints with disjuncts having different pairs of variables cannot be ex-
pressed in th®BD constraints framework of [34].

Example 19.8.Let I, J be intervals]—, J~ their beginning points anfi*, J* their end-
ing points. The following\"DD constraints express the fact that intervaland .J have
duration between 5 and 10 minutes and they cannot overlap.

5<IT—I17<10, 5<JF—J <10, IT—J <0vJT —I"<0

Example 19.9. Let I and.J be intervals corresponding to the execution of operati@ns
andO;. Oy andO; will be executed on a machine that can handle only one operation at
a time and has a set up time of 2 minutes. Let.J~ be the beginning points dfand.J
andI ™, J* their ending points.

The following is an appropriate constraint on the scheduling of operatigrandO ;:

ItT—J <-—2vJt—-I-<-2

Deciding the consistency of a set &fDD constraints is also NP-completBoolean
combinations of binary differencéBC5D) constraintshave also been studied recently
[98].

The quest for tractability of metric temporal CSPs received a big push forward when
Koubarakis [59] and Jonsson anédkstdm [49] independently introduced the class of
Horn-disjunctive linear constraints. Wnear constraint(£ZN) is a formula of the form
(>, aix;) 0 r whereay, ..., a,, r are rational constantsy, ..., z,, are variables ané is
<or<. We freely use>, > and= as well. AHorn-disjunctive linear {DL) constraintis
a disjunctiond; Vv - - - vV d,, where eaclhi; is a weak linear inequality or a linear disequation,
and the number of inequalities amodtg . . ., d,, does not exceed one.

Example 19.10. The following are examples ¢ DL constraints:

31+ x5 — 324 <10, 1 423+ 25 £ 7,

5
3.’E1+(E5—4(£3S7V2$1+3$2—4$37£4\/1'2+1'3+1'5#57

4r1 4+ 23 #£3Vbro —3x5+ x4 # 6
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Deciding the consistency of a set&fD.L constraints can be done in PTIME [56, 59,
49]. The main intuition behind this result is that disequations can be dealt with indepen-
dently from one another for the purposes of consistency checking.

There are currently no relevant maximality results regarding the tractabilityZof
constraints. [16] give two such maximal tractable subclasses of the class of disjunctions of
P A relations.

[15] demonstrates how to implement efficiently consistency checkin@{fby. con-
straints when disjuncts are constrained to be of the foym «; < a orz; — z; # a.

The properties of the class fD L constraints have partly motivated Cohen et al. [27]
to study questions of tractability for constraints that are obtain&isamctions of simpler
constraintswith certain useful properties (e.g., independence, guaranteed satisfaction etc.).
The importance of such results is that they are obtained abatract CSP framewor&nd
turn out to be useful for many kinds of specific CSPs e.g., temporal, spatial, etc. For some
of the results in this area, the reader should see [26, 17] and Chapter 6 of this handbook
Recently, Kumar [68] pioneered the userahdomizedalgorithms for temporal CSPs.
[68] initially presents a randomized algorithm f8fD constraints. Then, the intuitions
derived from this class are used to develop a strongly-polynomial deterministic algorithm,
and a simple randomized algorithm for a restricted clas§"®fD constraints, denoted by
RNDD, which includes the following three types of constraints:

lij <zi—y; <y, a1 <xy <byV---Va, <x; <by, [; <z <y Vi <y <y

The expressive power of the metric temporal CSPs defined in this section can be sum-
marized as follows:

LIN c HDL, BD c BD” c DBD Cc NDD C BCBD, BD? c HDL,

and BD Cc RNDD Cc NDD

19.3.3 Qualitative and Metric Temporal Reasoning Combined

Meiri [75] has combined the expressive power of the qualitative alg@btand theDBD
constraint framework of [34] to come up with a framework of binary mixed temporal con-
straint networks where nodes are points or intervals and constraints are qualitative from
QA or quantitative fromDBD. Independently, Kautz and Ladkin [53] have proposed a
very similar framework that combines qualitative constraints from the interval al@efbra

and theBD constraints of [34].

Example 19.11. Let us consider the following text [75]:

John and Fred work for a company that has local and main offices in Los

Angeles. They usually work at the local office, in which case it takes John less
than 20 minutes and Fred 15-20 minutes to get to work. Twice a week, John
works at the main office, in which case his commute to work takes at least 60
minutes. Today John left home between 7:00-7:05 a.m. and Fred arrived at
work 7:50-7:55 a.m. We also know that Fred and John met at a traffic light on

their way to work.



Manolis Koubarakis 13

Figure 19.4: A network with qualitative and metric temporal constraints

Let 2y be the real variable denoting the “beginning of time” (7:00 again). JLet
[x1, 22] be the time interval corresponding to John’s travel to work, &nd [z3, 24] be the
time interval corresponding to Fred’s travel to work wherexs, x3, x4 are real variables
representing the interval endpoints. Figure 19.4 shows a constraint network capturing the
temporal relations in the above text.

More recently, Krokhin et al. presented another framework that combines qualitative
and metric temporal reasoning [66]. In this case, the objects of interest are intervals and
gualitative information is expressedZid. In addition, metric temporal information on in-
terval endpoints can be expressed usitiDL constraints. The important result of [66] is
a dichotomy theorem that settles the standard tractability question for the proposed frame-
work by completely characterizing all subproblems that are tractable; all the remaining
ones are shown to be NP-complete. Since the framework of [66] subsumes the framework
of [53], the tractability question for this framework has also been settled. The exact char-
acterization of all tractable classes of the framework of [75] remains an open problem.

Qualitative reasoning abodurations has also been considered in [80] and other pa-
pers and a formalism callggbint-durationnetworks has been defined. Point-duration
networks start fromP.A networks and enrich them with binary comparisons of the times
elapsed between pairs of points (i.e., durations of intervals). The comparison of these du-
rations is also done using the relationsffl. Similarly, Pujari et al. [84] have defined
a similar framework called N'DU for reasoning about intervals usiffgd and interval
durations using? A. It is not clear up to now, how far one can go with these two duration
frameworks since, as pointed out in [10], the framework is not closed under the compo-
sition operation. Recently, Renz and Ligozat [88] discussed this issue in a general CSP
context and differentiated between composition as defined in Section 19.3 XA ftand
most other frameworks studied here) amehkcomposition. In general, the frameworks of
[80, 84] are not as well developed currently as the rest of the frameworks surveyed in this
chapter so we will not deal with them any further in this chapter.
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19.4 Efficient Algorithms for Temporal CSPs

In the previous section, we have surveyed work on temporal CSPs, complexity results and
algorithms for deciding consistency, computing the minimal network and enforcing global
consistency. In typical temporal reasoning applications (e.g., planning and scheduling) the
databases of temporal constraints to be handled are very largsechiasbility of temporal
reasoning algorithms becomes important. Unfortunately, the algorithms of Section 19.3
arenot scalable. Even for the case of tractable temporal reasoning formalisms such as
P A, typical algorithms [103] requir®(n?) space and(maxmn?,n3) time to answer
queries. Researchers in temporal reasoning quickly recognized this problem and imple-
mented efficient reasoners for various formalisms described in Section 19.3. This is the
work that we survey in this section.

19.4.1 Efficient Algorithms for Qualitative Temporal CSPs

The work on efficient algorithms for qualitative temporal constraints can be distinguished
into two categories: scalable algorithms for constraint classes with PTIME reasoning prob-
lems (especiallyP.A) and backtracking or local search algorithms for classes with NP-
complete reasoning problems (especidll{).

Efficient Algorithms for P.A

Len Schubert, Alfonso Gerevini and colleagues implemented and experimentally evaluated
the temporal reasoners TimeGraph | and Il for handling constraints expresBet [#4].

The main idea in TimeGraph Il, which is the most advanced version, is to represent sets of
P.A constraints by directed labelled graphs, partition these graphshaios(i.e., linearly
ordered points) where constant time reasoning is possible, andnsgagraphto reason

about points belonging to different chains. TimeGraph Il also handles binary disjunctions
of PA constraints using an intelligent backtracking algorithm [44]. TimeGraph | and Il
have been used in various planning and natural language understanding projects e.g., [91].

The work of [45] has also addressed scalability 7o networks using an approach
which also relies heavily on an underlying directed graph structure. In thisspzesening
treesare the basic data structure where efficient reasoning with respect4ortiation is
performed. The algorithms of [45] are incomplete fayl since they cannot handle cases
involving the relation# [44]. The work of [45] has been extended with metric constraints
and has been utilized in the temporal reasoner of the IxTeT temporal planner [69].

[37] further extend the ideas of TimeGraph Il by relying series-parallel graphs
(instead of chains) as their basic efficient data structure. [37] provides new intuitions re-
garding the techniques of TimeGraph Il, and shows experimentally what improvements are
possible wherseries-parallel graph®ecome the basic data structure.

Efficient Algorithms for Z.A

Ladkin and Reinfeld [72] were the first to implement and evaluate experimentally back-
tracking algorithms for solvin@ A constraints. The backtracking algorithm of [72] has

the following characteristics: a preprocessing step based on path consistency, instantiation
of disjunctions by any set &f A relations for which path consistency is complete, chrono-
logical backtracking, and forward checking using path consistency. [105] improves [72]
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with a more efficient version of path consistency and heuristics for dynamic variable order-
ing. [81] shows that performance improvements can be obtained if we use thé{dass
instantiating disjunctions in the backtracking algorithm of [72]. [72] and [81] also studied
the phase transition of the problem of solvihigl constraints.

[99] shows how to solvé& A consistency checking problems using local search. In[99],

a givenZ A problem withm interval variables is first translated into an equivalent (with re-
spect to satisfiability) problem where the endpoints of the intervals are constrained to range
over the integerg, ..., 2m. Then, this problem is solved using the discrete Langrangian
method.

Let us now turn our attention to efficient algorithms for metric temporal CSPs. Here
attention has been focused B®, DBD and N'DD constraints. FoBD constraints, the
emphasis has been on improving existing polynomial time algorithms as well as devising
incremental versions of such algorithms that are important in applications (e.g., planning
or scheduling). Since the reasoning problems for claB4&® and N"DD have exponen-
tial complexity, the emphasis there has been on backtracking algorithms and local search
algorithms with influences from CSP and SAT solvers.

19.4.2 Efficient algorithms for BD and DBD constraints

[21] and [22] has considered incremental algorithms for networg®@tonstraints. The

idea in these algorithms is that when a new constraint is added or retracted, a constraint
propagation algorithm is not run from scratch, but only some processaad to the in-
sertion or deletion takes place. [21] concentrates on incremental arc-consistency algo-
rithms for BD constraints while [22] presents an incremental version of the well-known
Bellman-Ford algorithm for the single-source shortest-paths problem [29]. Similarly, [24]
has presented an incremental version of the directional path consistency algorithm of [33].

Recently, Xu and Choueiry [111] presented an efficient algorithm for deciding the con-
sistency of 3D constraints. This algorithm essentially improves the partial path consis-
tency algorithm of [14] (which operates on a triangulated constraint graph) and applies it
to the case oBBD constraints. [111] demonstrates experimentally that this algorithm im-
proves on many of its competitors that have appeared in the literature [34] in the case of
large and sparse constraint graphs.

[92, 32] consider checking the consistencyldfD constraints using backtracking al-
gorithms that operate on the equivalemta-CSKi.e., the CSP with variables correspond-
ing to disjunctions and values corresponding® disjuncts) and utilize local consistency
algorithm like path consistency for preprocessing and forward checking. [92] points out
that enforcing path consistency in networksIdBD constraints can result in the creation
of an exponential number of intervals. Then, it develops alternative local processing algo-
rithms that compute looser constraints than path consistency but do so in polynomial time.
Finally, [92] demonstrates that significant savings are achieved when these local process-
ing algorithms are combined with backtracking to check the consistency of SEX8Df
constraints.

Xu and Choueiry [110] show alternative ways to improve on chronological backtrack-
ing algorithms forDBD constraints [92, 32]. Their techniques include utilizing the algo-
rithm of [111] to check the consistency of the set&® constraints considered at each
node of the search tree, exploiting the constraint topology, having good variable-ordering
heuristics, and reducing the domains with a special form of arc consistency [25]. More re-
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cently, [95] have also investigated using the incremental all-pairs-shortest-path algorithm
of [22] instead of [111] at each node of the search tree.

TMM (Time Map Manager) is another important temporal reasoning system with sup-
port for BD constraints [31]. The main contribution of TMM st its CSP features but
rather its querying facilities, its good support temporal persistencandcausality and
its sophisticated indexing algorithms for handling large databases of temporal propositions
[30]. TMM will be again discussed in Section 19.5.

19.4.3 Efficient algorithms for DD constraints and extensions

The papers [97, 6, 100, 83, 98, 7] have tackled the problem of checking the consistency
of sets of VDD constraints efficiently. As it is explained nicely in [7], all these works
propose algorithms that consist of the following basic steps:

e Generation step:Generate all possible sets B constraints that satisfy the dis-
junctions.

e Consistency checking ste@heck consistency of these sets.

The papers [97, 100, 83] do the generation step by solving a meta-CSP with variables
corresponding to disjunctions and values correspondiiiftalisjuncts. The papers [6, 98,

7] do the generation step by solving the corresponding propositional satisfiability problem
(whereBD disjuncts are represented by propositional variables). The consistency checking
step in both cases is carried out using various incremental algorithn&faronstraints

e.g., incremental directional path consistency [24] or incremental full path consistency
[77].

Stergiou and Koubarakis [97] were the first to discuss various backtracking algorithms
(chronological backtracking, backjumping and forward checking with backjumping) and
related heuristics faN"DD constraints. [97] presents theoretical results that characterize
these algorithms in terms of number of search tree nodes visited and consistency checks
performed by extending [54] where backtracking algorithms for binary CSPs are com-
pared (VDD constraints are-ary). [97] also evaluate the performance of their algorithms
experimentally using randomly generated hard problems.

Armando et al. [6] subsequently showed how to improve the results of [97] by an
algorithm, called TSAT, which is built on top of a SAT solver that implements the Davis-
Putnam procedure efficiently. The SAT solver produces the sefifofonstraints to be
checked for consistency. In addition, TSAT has a preprocessing step that produces a more
accurate SAT encoding than the obvious one, and a constraint propagation step as in the
forward checking algorithm of [97].

[83] presents CSPi, an extension of the forward checking algorithm of [97] with a
semantic branching step and a heuristic method for reducing the number of forward checks
performed. The semantic branching step, which is available for free in SAT methods such
as [6], is as follows. If the current valuation (set®®D disjuncts){ci, cs, ..., ¢;} cannot
be extended by another disjungt,; so that we reach a satisfying valuation, then CSPi
adds—¢; to the current valuation and proceeds to choose another literal froth+he)-th
disjunction. [83] shows that CSPi improves on [97] and is competitive with TSAT.

[100] adopts the CSP framework of [97] and improves it by introducing no-good
recording as well as the other pruning techniques introduced by earlier literature (a differ-
ent form of the backjumping used in [97], semantic branching as used in [83] and removal
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of subsumed variables as used in [83]). The resulting system, called Epilitis, is shown to
dominate all earlier algorithms [97, 6, 83].

[98] was the earliest paper to deal with decidif@BD constraints. The approach of
[98] is to transform a give#BCBD formula ¢ into a propositional logic formula and then
use the SAT solver Chaff [78] to decide it. The transformation involves essentially the
following two steps:

e Introduce a new propositional variable for edgP constraint inp, and transforng
into a new propositional logic formuld'.

e Conjoin to ¢’ a new propositional logic formula that encodes transitive relations
among variables derived from the origiraD constraints.

Finally, [7] presents the system TSAT++ which is able to deal with Boolean combina-
tions of difference constraints using a SAT-based approach (in particular, the SIMO solver
[46]) and a powerful combination of preprocessing, constraint propagation, branching and
intelligent backtracking techniques. [7] demonstrates that TSAT++ is more efficient than
the systems of [97, 6, 100, 83, 98] presented above, but also MathSAT [8] which is able to
deal with Boolean combinations of linear constraints. The performance analysis of [7] is
based on randomly generated hard problems and instances of real-world applications.

Recently, Schwartz and Pollack studied incremental algorithma&/fB constraints
[93]. They consider three update operations (tightening the boun@®f eonstraint, add
aBD constraint or add alV"DD constraint) and present incremental algorithms to handle
these updates using techniques from dynamic CSPs such as no-good recording and oracles.

Finally, [76] shows how to solvé/DD constraints using local search. Contrary to
earlier complete algorithms using a meta-CSP approach [97, 100, 83], the algorithm of
[76] searches over the space defined by the original CSP using an algorithm which derives
from GSAT [94] and Tabu search [47].

19.5 More Expressive Queries for Temporal CSPs

When constraint networks are used to represent temporal information (see Section 19.3),
their nodes represent the times when certain facts are true, or when certain events take
place, or when events start or end. By labeling nodes with appropriate natural language
expressions (e.gbreak fast or walk in Example 19.5) and arcs by temporal relations,
temporal constraint networks can be queried in useful ways. The typical query targeted by
most of the algorithms discussed in Sections 19.3 and 19.4 is: “What is the strictest tempo-
ral relationship between intervals (or points)and B?”. This query is typically answered

by consulting the minimal network corresponding to the given temporal constraints.

Van Beek [102] was the first to consider more expressive queries for databases with
temporal constraints. In [102], a database is a s@t4fconstraints among appropriately
named interval constants (representewgnty. The first class of queries considered by
[102] is modal(possibility or certainty) queries. Aertainty (resp. possibility) querg a
formula of the form

OP ¢(eq1,...,en)?
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whereOP is O (resp.¢), and¢ is a Boolean combination @f.A constraints that use event
constantsy, ..., e,. As an example, consider the query “Is it possible that euerit
happened after evebteak fast?”.

The second class of queries considered by [102] is aggregation queriaggfagation
queryis of the form

XT1yee oyt 1 EEN--ANxy € EANOP ¢(21,...,20)

whereF is the set of all events in the databaéd? is the modal operatog or [, and¢
is a Boolean combination @f.A constraints that use variables, . . . , z,,. As an example,
consider the query “What are the known events that come after exerit fast?”.

The temporal reasoning systdraTER [18, 28] is another proposal for querying tem-
poral CSPs in sophisticated waysaTER allows users to define symbolic time points and
time intervals and assert temporal constraints relating them with other symbolic objects, or
time constants representing conventiceties, timeanddurations LATER offers a prac-
tical temporal reasoning framework that includes vocabulary for expressing many useful
qualitative and metric temporal constraints. Only certain kinds of disjunctive relations are
allowed so that the expressive powenofTER does not become greater than the expres-
sive power ofBD constraints [19]. The complete setloATER functions and predicates
can be found in [18].

The following types of queries are supported b TER [18]:

1. Queriesxtracting temporal informatiofe.g., when, how long, duration and relation
queries).

2. Modal queries as in [102].

3. Hypothetical queriesThese queries allow one to query the database using queries
of types 1 and 2 under the assumption that certain additional temporal constraints
hold.

Although [102] and_ATER offer expressive languages for querying databases of tem-
poral constraints, queries combiningn-temporalas well as temporal information (e.g.,
“Whois certainly having breakfast before taking a walk?”) cannot be asked in these sys-
tems, even though the knowledge required to answer them might have been available in the
first place. This problem arises because temporal CSPs do not have the required expressive
power for representing all kinds of knowledge needed in a real application.

This situation has been understood by temporal reasoning researchers, and application-
oriented systems where temporal reasoners wembinedwith general-purpose data and
knowledge representation frameworks have been proposed (and in most cases implemented).
These proposals include EPILAGShocket, TMM [31], Telos [79], and the relational
temporal constraint databases of [55] and [20]. EPILOG and Shocker use the temporal
reasoners Timegraph | and Il, Telos uses a subclagsipff MM usesBD constraints, the
proposal of [55] useSD constraints and the system of [20] usesT ER.

In the rest of this chapter, we study theheme of indefinite constraint databapes-
posed by Koubarakis [58, 63], as the formalism that unifies the proposals of [102, 55,

2 Seehttp://www.cs.rochester.edu/research/epilog/ .
3 Seehttp://www.cs.rochester.edu/research/cisd/projects/kr-tools/
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18, 20]. This formalism is @acheméecause it can be instantiated with various kinds of
constraints defined by a first-order language (e.g., temporal, spatial etc. [63]). When the
constraints chosen are temporal, the resulting formalism can be used to represent temporal
constraints on various temporal objects, and the relational database can be used to store
facts referring to these objects.

Sections 19.6 and 19.7 show that in order to be able to answer queries in this scheme,
we must be prepared to go from temporal CSP&rst-order theories of temporal con-
straintsas studied in [71, 58]. We identifyariable elimination(and its logical analogue
guantifier eliminatiof as the main technical tool needed by the proposed framework. We
then show that query evaluation in the proposed formalism can be viewed as quantifier
elimination in a first-order language of temporal constraints.

The indefinite constraint database scheme has been presented in the past as a constraint-
based extension of the relational data model [58] or as a constraint-based extension of an
equivalent subset of first-order logic [63]. We follow the second approach in this chapter
using material directly from [63].

19.6 First-Order Temporal Constraint Languages

We start by introducing some concepts useful for the developments in forthcoming sec-
tions. We will deal with many-sorted first-order languages [40]. For each first-order lan-
guage”L, we will define a structuréM ;. that will give theintended interpretatiorf for-

mulas ofL (this is called thentended structuréor £). The theoryI'h(M,) (i.e., the set

of sentences of that are true inM ) will also be considered. Finally, for each language

L a special class of formulas callédconstraintswill be defined.

Ladkin [71] and Koubarakis [58, 63] have defined various first-order temporal con-
straint languages where the atomic formulas come from the temporal CSP frameworks
defined in Section 19.3. As an example, we define below the first-order langbalgdst
andLIN that are based on the classesPfod, ZA andLZN constraints respectivefy.

19.6.1 The language$’ A and I A

The languagé’ A is a simple first-order language that we can use for talking about points in
time. The logical symbols aP A include: parentheses, a countably infinite set of variables,
the equality symbok and the standard sentential connectives. There is only one non-
logical symbol: the predicate symbal

The intended structurd1p 4 has the set of rational numbeg as its domain, and
interprets predicate symbet as the relationship “less than” over the rational numbers.
We will freely use other defined predicates likeand-#. We defineP A-constraintsto be
exactly the constraints of the claBsA.

In a similar way, we can define the first-order languégewvhich has as atomic formu-
las the interval constraints expressible in the cladgsee [60, 61] for a precise definition).

4 We use the calligraphic type style to write classes of constraints and italic type style to write the corre-
sponding first-order language.
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19.6.2 The languagd.I N

The languagd. I N is the first order language of linear constraints. The logical symbols of
LIN include: parentheses, a countably infinite set of variables, the equality sysrdral

the standard sentential connectives. The non-logical symbdlg &finclude: a countably
infinite set of constants (one for each rational numeral), the binary function syrmlzoid

* (the symbok can only be applied to a variable and a constant) and the binary predicate
symbol<.

The intended structurd1 ;v has the set of rational numbe@sas its domainM
assigns to each constant symbol an elemef,db function symbok- the addition oper-
ation for rational numbers, to function symbothe multiplication operation for rational
numbers, and to predicate symbolthe relation “less than” ove®. We defineLIN-
constraintsto be the constraints of the claggN.

19.6.3 Quantifier and Variable Elimination

In this section we define the operations of quantifier and variable elimination. Quantifier
elimination is an operation from mathematical logic [40]. Variable elimination is an alge-
braic operation [90]. As we will see below, quantifier elimination algorithms utilize vari-
able elimination algorithms as subroutines. In the scheme of indefinite constraint databases
to be introduced in Section 19.7, the operation of quantifier elimination is very useful be-
cause it can be used for query evaluation. [35] discuss variable elimination and related
concepts for arbitrary CSPs.

Definition 19.12. Let T'h be a theory in some first-order language 7'h admits elim-
ination of quantifierdff for every formulag there is a disjunctiory’ of conjunctions of
L-constraints such thaf'h = ¢ = ¢/'.

This definition is stronger than the traditional one whetfés simply required to be
guantifier-free [40]. We requiré’ to be in the above form because we do not want to deal
with negations ofZ-constraints.

Let Th be a theory in some first order languageand lety be a formula. IfT'h
admits elimination of quantifiers, then a quantifier-free formgfl@quivalent tap can be
computed in the following standard way [40]:

1. Compute the prenex normal forf@1z1) - - - (QumTm)¥(x1, ..., ) Of @.

2. If @, is3thenletd, v - - -V 0, be a disjunction equivalent t(z1, . . ., z,,,) where
the#;,’s are conjunctions of-constraints. Therliminate variabler,,, from eachy;
to computd); using avariable eliminatiorelgorithm for£-constraints. The resulting
expression ig} v --- Vv 6;.

If Q.. isVthenletd, V- --V0 be adisjunction equivalent tey)(z1, . . ., z,,) where
thed;,’s are conjunctions of-constraints. Theeliminate variabler,,, from eachy;
to compute); as above. The resulting expressiomi{®, v - -- v ;).

3. Repeat step 2 to eliminate all remaining quantifiers and obtain the required quantifier-
free formula.
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Step 2 of the above algorithm assumes the existence of a variable elimination algo-
rithm for conjunctions (or, equivalentlgetd of £-constraints. The operation of variable
elimination can be defined as follows.

Definition 19.13. The operation ofvariable eliminationtakes as input a sef’ of £-
constraints with set of variableX and a subset” of X, and returns a new set of con-
straints C” such thatSol(C”") = IIx\y (Sol(C)) wherell is the standard operation of
projection of a relation on a subsét of its set of columns.

For the class of.I N-constraints defined above variable elimination can be performed
using Fourier’s algorithm. Fourier’s algorithm can be summarized as follows [90]. Any
weak linear inequality involving a variablecan be written in the forme < r, orz > ry
i.e., it gives an upper or a lower bound onThus if we are given two linear inequalities,
one of the forme < r,, and the other of the form > r;, we can eliminate: and obtain the
inequalityr; < r,. Obviously,r; < r, is a logical consequence of the given inequalities.
In addition, any solution of; < r,, can be extended to a solution of the given inequalities
(simply by choosing forr any value between the values ofandr,). Following this
observation, Fourier’s elimination algorithm forms all pairs< », andz > r;, eliminates
x and returns the resulting constraints. The generalization of this algorithm to strict linear
inequalities is obvious.

Example 19.14. et us consider the following set @fI N-constraints:
3 < @1, T5 < x1, T1 — T2 <2, 14 <15
The elimination of variable:; using Fourier’s algorithm results in the following new set:
T3 —To < 2, x5 — T2 < 2, x4 < 5.
The following theorem will be useful below. The result 8 and/ A are due to [71].

Theorem 19.15. The theoriesl’ h(Mpa), Th(M;a) andTh(M ;) admit quantifier
elimination.

The presentation of preliminary concepts is now complete. We can therefore proceed
to define the scheme of indefinite constraint databases.

19.7 The Scheme of Indefinite Constraint Databases

In this section, we present the scheme of indefinite constraint databases originally proposed
in [58]. We follow the spirit of the original proposal but use first-order logic instead of
relational database theory.

We assume the existence of a many-sorted first-order langlaggh a fixed intended
structureM . Let us also assume th@th(M ) admits quantifier eliminatioriSection
19.6.3 has defined this concept precisely). For the purposes of this seCtoam be a
language likeP A, I A and LI N that can be used to talk about temporal objects (i.e., points
or intervals).

Let us now consider, as an example, the information contained in the following two
sentences:
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Mary took a walk in the park. After walking around for a while, she met Fred
and started talking to him.

The information in the above sentences is about activities (e.g., walking, talking), con-
straints on the times of their occurrence (e.g., after) and, finally, other information about
real-world entities (e.g., names of persons). Temporal CSPs as discussed in Section 19.3
can be used to represent such information.

In the scheme of indefinite constraint databases (and in similar formalisms like [31, 18])
information like the above is represented by utilizing a first-order temporal language like
LIN and extending it to represent non-temporal information. Let us now show how to
do this formally in an abstract setting by considering an arbitrary many-sorted first-order
language’ with the properties discussed above.

19.7.1 FromLto LUEQand (LUEQ)*

Let £Q be a fixed first-order language with only equality (=) and a countably infinite
set of constant symbols. The intended structie o for £Q interprets= as equality
and constants as “themselveg’Q is a very simple language which can only be used to
represent knowledge about things that are or are not edgu@tconstraintsor equality
constraintsare formulas of the form: = v or z # v wherez is a variable, and is a
variable or a constant.

We now consider the languageu £Q. The set of sorts for2 U £Q will contain the
special sorD (for terms of£ Q) and all the sorts of. The intended structure fat U £Q
is Mrugg = Mg UMeg.

The following lemma is straightforward.

Lemma 19.16. If theory Th(M ) admits quantifier elimination then the same holds for
Th(MﬁuEQ).

Finally, we define a new first-order languageU £Q)* by augmentingC U £Q with
a countably infinite set aflatabase predicate symbals, p-, . . . of various arities. These
predicate symbols can be used to represent information about our application domain. The
arguments of these predicates will be constants and variables constrained by formulas of
L U EQ. The indefinite constraint databases and queries defined below are formulas of
(LUEQ)*.

In the following example and all the examples of subsequent sections, we aSdome
be the languag& N defined in Section 19.6. The languaieN UE Q is now multi-sorted
with sortsD (for the constants of Q) and Q (for the rational constants df/ V).

Example 19.17.Let walk be a ternary database predicate symbol with arguments of sort
D, Q and Q respectively. The following is a formula of the languagel N U £Q)*
capturing the fact that somebody took a walk during some unknown interval of time:

(EI/D)(Etl/Q)(E'tQ/Q)(tl < tQ A U)alk(l’, t17 tg))

19.7.2 Databases And Queries

In this section, the symbols, y, 7;, 7;, etc. will denote vectors of variables whitewill
stand for a vector of Skolem constants. In addition, the symBoénd 7; will denote
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vectors of sorts of. Similarly, the symboD will denote a vector with all its components
being the sorD.

Indefinite constraint databases and queries are special formulds.of Q)* and are
defined as follows [63].

Definition 19.18. Anindefinite constraint databagea formulaDB(w) of (L U £Q)* of
the following form:

m l;
/\(VLEZ/Z_))(W_Z/’Z_Z)(\/ Localj (%, ti, @) = pi(Z;,t;)) N ConstraintStore(w)

i=1 j=1
where

e Local;(z;,t;,w) is a conjunction of£-constraints in variable$; and Skolem con-
stantsw, and£ Q-constraints in variables;.

e ConstraintStore(w) is a conjunction ofZ-constraints in Skolem constarts

The second component of the above formula defining a databasmistaint store
This store is a conjunction af-constraints i.e., a CSR. is a vector ofSkolem constants
denoting time entities (e.g., points and intervals) about whbialy partial knowledges
available. This partial knowledge has been coded in the constraint store as a CSP using the
language’.

The first component of the database formula is a set of equivalenogdetely defining
the database predicatgs This is an instance of the well-known technique of predicate
completion in first-order databases [85].

These equivalences may refer to the Skolem constants of the constraint store. In tempo-
ral reasoning applications, the constraint store will contain the temporal constraints usually
captured by a CSP, while the predicapesvill encode, in a flexible way, the events or facts
usually associated with the variables of this CSP.

For a given databask B the first conjunct of the database formula will be denoted by
EventsAndFacts(DB), and the second one l8yonstraintStore(DB). For clarity, we
will sometimes write sets of conjuncts instead of conjunctions. In other words, a database
D B can be seen as the following pair of sets of formulas:

(EventsAndFacts(DB), ConstraintStore(DB)).

We will feel free to use whichever definition of database fits our needs in the rest of this
section.

The new machinery in the indefinite constraint database scheme (in comparison with
relational or Prolog databases) is the Skolem constafigémts AndFacts(DB) and the
constraint store which is used to represent “all we know” about these Skolem constants.
Essentially this proposal is a combination of constraint databases (without indefinite infor-
mation) as defined in [52], and the marked null values proposal of [48, 1]. Similar ideas
can also be found in the first-order databases of [85].

Let us now give some examples of indefinite constraint databases. The constraint lan-
guage used i€ IN but the constraints are simpler than full linear: rational order con-
straints, difference constraints and bounds on variables.
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Example 19.19. The following is an indefinite constraint database which formalises the
information in the paragraph considered at the beginning of this section.

({ (V2/D) (V0. 12/ Q)((x = Mary Aty = wn Aty = wn) = walk(z, 11,15)),
(Vz/D)(Vy/D)(Vts, t4/ Q)
((x=Mary ANy = Fred ANts = w3 ANty = wq) = talk(z,y,t3,t1)) },
{wl < w2, W1 <ws, wg < wg, W3 <w4})

This database contains information about the events: andtalk in which Mary and
Fred participate. The temporal information expressed by order constraints is indefinite
since we do not know the exact constraint between Skolem constaatsdw;,.

Example 19.20. Let us consider the following planning database used by a medical labo-
ratory for keeping track of patient appointments for the year 2006.

({ (Vo,y/D)(Vt1,t2/Q)
(((x = Smith Ny = Cheml ANty = wy Aty = we)V
(x = Smith Ny = Chem2 A t1 = w3 A tg = wy)V
(x = Smith Ay = Radiation Aty = ws Nty = wg)) = treatment(z,y,t1,1t2)) },
{w1 >0, w >0, wg >0, wg >0, ws >0, wg >0,
wr=w1+ 1, wy=w3s+1, wg=ws+ 2, wo <91, w3 >91, wy <182,
w3 — W2 2607 Wy — Wy 220, We §213})

Since we usd.I N, the set of rational® is our time line. The year 2006 is assumed
to start at time) and every intervali, i + 1) represents a day (fare Z andi > 0). Time
intervals will be represented by their endpoints. They will always be assumed to be of the
form [B, E) whereB and E are the endpoints.

The above database represents the following information:

1. There are three scheduled appointments for treatment of patient Smith. This is rep-
resented by three conjuncts in the disjunction defining the extension of predicate
treatment.

2. Chemotherapy appointments must be scheduled for a single day. Radiation appoint-
ments must be scheduled for two consecutive days. This information is represented
by constraints, = wy + 1, wy = w3 + 1, andwg = ws + 2.

3. The first chemotherapy appointment for Smith should take place in the first three
months of 2006 (i.e., days 0-91). This information is represented by the constraints
w1 >0 andw2 < 91.

4. The second chemotherapy appointment for Smith should take place in the second
three months of 2006 (i.e., days 92-182). This information is represented by con-
straintsws > 91 andw, < 182.

5. The first chemotherapy appointment for Smith must precede the second by at least
two months (60 days). This information is represented by constrgintw, > 60.

6. The radiation appointment for Smith should follow the second chemotherapy ap-
pointment by at least 20 days. Also, it should take place before the end of July
(i.e., day 213). This information is represented by constraigts- w, > 20 and
we < 213.
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Let us now define queries. The concept of query defined here is more expressive than
the query languages for temporal CSPs discussed in Section 19.5 above, and it is similar
to the concept of query in TMM [31].

Definition 19.21. A first order modal quergver an indefinite constraint database is an
expression of the form/D, /7 : OP ¢(z,t) whereOP is the modal operatog) or [,
and¢ is a formula of(£ U £Q)*. The constraints in formula are only £-constraints and

£ Q-constraints.

Modal queries will be distinguished in certainty querigy &nd possibility queries))
asin[102].

Example 19.22. The following query refers to the database of Example 19.19 and asks
“Who was the person who possibly had a conversation with Fred during this person’s walk
in the park?”:

/D O(Ftr,ta,ts, b4/ Q) (walk(z,t1,ta) Atalk(x, Fred,ts,ty) Nty < ts Aty <o)

Let us observe that each query can only hame modal operator which should be
placed in front of a formula of £ U £ Q)*. Thus we do not have a full-fledged modal query
language. Such a query language can be interesting in a formal framework dealing with
indefinite information, but we will not consider this issue further in this chapter.

We now define the concept of an answer to a query.

Definition 19.23. Let ¢ be the querys/D,t/T : (O¢(Z,t) over an indefinite constraint
databaseD B. The answer tq is a pair (answer(z,t), §) such that

1. answer(z,t) is a formula of the form

k
\/ Local;(z,t)

j=1

whereLocal ;(Z, t) is a conjunction of-constraints in variablesand€ Q-constraints
in variablesz.

2. LetV be a variable assignment for variablesandt. If there exists a modelf of
DB which agrees withM » g o on the interpretation of the symbols 6fJ £Q, and
M satisfiesp(z, ) underV thenV satisfiesunswer(z,t) and vice versa.

We have chosen the notatignnswer(z,t), 0) to signify thatan answer is also a
databasewhich consists of a single predicate defined by the formulaver(z, ) and the
empty constraint store. In other words, no Skolem constant (i.e., no uncertainty) is present
in the answer to a modal query. Although our databases may contain uncertainty, we know
for sure what is possible and what is certain.

Example 19.24. The answer to the query of Example 19.22is= Mary, ().

The definition of answer in the case of certainty queries is the same as Definition 19.23
with the second condition changed to:
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2. Let M be any model oD B which agrees withM ¢ o 0On the interpretation of the
symbols off U £Q. LetV be a variable assignment for variablesand¢. If M
satisfiesp(z, t) underV thenV satisfiesinswer(z,t) and vice versa.

Definition 19.25. A query is callectlosedor yes/naif it does not have any free variables.
Queries with free variables are callaxpen

Example 19.26. The query of Example 19.22 is open. The following is its corresponding
closed query:

: Q(Hm/D)(Eltl, to, ts, t4/Q) (walk(m, t1, tg) A talk‘(l‘, Fred, ts, t4) Nt <tas Nty < tg)

By convention, when a query is closed, its answer can be dithet, () (which means
yes) or (false, ) (which meansio).

Example 19.27. The answer to the query of Example 19.26tisue, 0) i.e., yes.

Example 19.28. Let us consider the database of Example 19.20 and the query “Find all
appointments for patients that can possibly start at the 92th day of 2006”. This query can
be expressed as follows:

{x,y/D: (31, ta/Q)(treatment(x,y,t1,t2) At1 =92) }

The answer to this query is the following:

( (z = Smith Ay = Chem?2) V (x = Smith Ay = Radiation), §))

19.7.3 Query Evaluation is Quantifier Elimination

Query evaluation over indefinite constraint databases can be viewed as quantifier elimina-
tion in the theoryI'h(Mueg). Th(Mcueg) admits quantifier elimination. This is a
consequence of the assumption tha{.M ) admits quantifier elimination (see beginning

of this section) and the fact th@t:(M o) admits quantifier elimination (proved in [52]).

The following theorem is essentially from [58] and [63].

Theorem 19.29. Let DB be the indefinite constraint database

m l;
/\ (¥z:/D)(VE;/T:)(\/ Local;(;,t;, @) = pi(:.£;)) A ConstraintStore(w)
i=1 j=1

and g be the query/D,z/T : O¢(y, z). The answer ta; is (answer(y, z), () where
answer(y, z) is a disjunction of conjunctions &Q-constraints in variableg; and £-
constraints in variableg obtained by eliminating quantifiers from the following formula
of LUEQ:

(3w/T")(ConstraintStore(w) A (Y, Z,©))

In this formula the vector of Skolem constanthas been substituted by a vector of appro-
priately quantified variables with the same narfi# {s a vector of sorts of). (7, z,©)
is obtained fromp(y, z) by substituting every atomic formula with database predigate
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by an equivalent disjunction of conjunctions®fonstraints. This equivalent disjunction
is obtained by consulting the definition

I
\/ Localj (@i, t;, @) = pi(Z;, ;)
j=1
of predicatep; in the databasé) B.

If ¢ is a certainty query theanswer (g, z) is obtained by eliminating quantifiers from
the formula

(Vo /T")(ConstraintStore(®) = (7, z,®))
whereConstraintStore(w) andi) (g, z, ) are defined as above.

Example 19.30. Using the above theorem, the query of Example 19.22 can be answered
by eliminating quantifiers from the formula:

(Elwl,WQ,W3,W4/Q)
(w1 <wos ANw) < w3z Nwg < wa Awg < wga\
(3t1,t2,t3,t4/Q)((x =MaryANt1 =wy Ata = wg)/\
(szary/\tgzwg/\t4=w4)/\t1<t3/\t4<t2)

The result of this elimination is the formula= Mary.

Koubarakis and Skiadopoulos [58, 63] have studied the complexity of query answering
in the scheme of indefinite constraint databases for various temporal and spatial constraint
languagesC. Their results precisely outline the frontier between tractable and possibly
intractable query answering problem. [63] shows that if one wants to be able to answer
modal queries in PTIME, it is no longer sufficient to have a constraint class ).,
with PTIME reasoning problems (e.g., consistency checkinggf@rcan be done i) (n?3)
time); further conditions should be imposed on queries and databases.

19.8 Conclusions

We have surveyed work on temporal CSPs starting from early papers such as [3, 107, 31,
108, 34] and continuing with influential contributions that have been published as recently
as last year. There are certain topics of work in temporal CSPs that we did not cover due
to limited space. These include:

e Temporal CSPs for non-totally-ordered time e.g., partially ordered time, branching
time etc. [16].

e Representingeriodictemporal information by constraints [51].
e Non-convexntervals and their CSPs [9].

e Soft constraint®r preferencesin temporal CSPs [67].

e Overconstrainedemporal CSPs [73].

e Connections wittspatial CSPs [87].
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We expect research on temporal CSPs to continue healthily in the years to come due to
their importance in applications. In our opinion, the following topics are likely to be in the
front line of future developments:

o New algorithmic techniques for temporal constraint solving e.g., randomized algo-
rithms [68] or local search [76, 11].

e Theory and algorithms for combining temporal CSPs and optimization concepts [67,
73].

e Theory and algorithms for quantified formulas with temporal constraints [71, 58,
63].

e Tractability results for the classes where this question has not been answered com-
pletely e.g., [75].

e Integration with spatial CSPs to deal with spatio-temporal scenarios [62].

Acknowledgements

I would like to thank Peter van Beek, Kostas Stergiou, Spiros Skiadopoulos, Peter Jonsson
and Berthe Choueiry for comments on various versions of this chapter.

19.9 Bibliography

[1] S. Abiteboul, P. Kanellakis, and G. Grahne. On the Representation and Querying of
Sets of Possible WorldS heoretical Computer Science8(1):159-187, 1991.

[2] S. Adali, L. Console, M. L. Sapino, M. Schenone, and P. Terenziani. Represent-
ing and reasoning with temporal constraints in multimedia presentatiofl$MB,
pages 3-12, 2000.

[3] J.Allen. Maintaining Knowledge about Temporal Interval@mmunications of the
ACM, 26(11):832-843, November 1983.

[4] J. Allen, H. Kautz, and R. Pelavin, editorsReasoning About Plans Morgan-
Kaufmann, 1991.

[5] R.Alur. Timed automata. ICAV, pages 8-22, 1999.

[6] A.Armando, C. Castellini, and E. Giunchiglia. SAT-based procedures for temporal
reasoning. IrECP, pages 97-108, 1999.

[71 A. Armando, C. Castellini, E. Giunchiglia, and M. Maratea. A SAT-based decision
procedure for the Boolean combination of difference constraintSAIR 2004.

[8] G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebastiani. A SAT
based approach for solving formulas over Boolean and linear mathematical propo-
sitions. INCADE, pages 195-210, 2002.

[9] P. Balbiani, J.-F. Condotta, and G. Ligozat. Reasoning about generalized intervals:
Horn representability and tractability. THME, pages 23—-30, 2000.

[10] P. Balbiani, J.-F. Condotta, and G. Ligozat. On the consistency problem for the
INDU calculus. InTIME, pages 203—-211, 2003.

[11] M. Beaumont, J. Thornton, A. Sattar, and M. J. Maher. Solving over-constrained
temporal reasoning problems using local searctiPRICAI, pages 134-143, 2004.



[12]
[13]
[14]
[15]
[16]
[17]
[18]

[19]

[20]

[21]
[22]
[23]

[24]

[25]
[26]
[27]

[28]

[29]
[30]
[31]

[32]
[33]

Manolis Koubarakis 29

C. Bessere, A. Isli, and G. Ligozat. Global consistency in Interval Algebra net-
works: Tractable subclasses. EECAI pages 3—7, 1996.

C. Bettini, X. S. Wang, and S. Jajodia. Solving multi-granularity temporal constraint
networks.Artificial Intelligence 140(1/2):107-152, 2002.

C. Bliek and D. Sam-Haroud. Path consistency on triangulated constraint graphs.
In IJCAI, pages 456-461, 1999.

M. Broxvall. A method for metric temporal reasoning. AAAI/IAAI, pages 513—
518, 2002.

M. Broxvall and P. Jonsson. Point algebras for temporal reasoning: Algorithms and
complexity. Artificial Intelligence 149(2):179-220, 2003.

M. Broxvall, P. Jonsson, and J. Renz. Disjunctions, independence, refinements.
Artificial Intelligence 140(1/2):153-173, 2002.

V. Brusoni, L. Console, B. Pernici, and P. Terenziani. LaTeR: an efficient, general
purpose manager of temporal informati6BEE Expert 12(4):56—64, August 1997.

V. Brusoni, L. Console, and P. Terenziani. On the computational complexity of
guerying bounds on differences constraimstificial Intelligence 74(2):367-379,
1995.

V. Brusoni, L. Console, P. Terenziani, and B. Pernici. Qualitative and Quantitative
Temporal Constraints and Relational Databases: Theory, Architecture, and Appli-
cations. IEEE Transactions on Knowledge and Data Engineerih():948—-968,
1999.

R. Cervoni, A. Cesta, and A. Oddi. Managing dynamic temporal constraint net-
works. InAIPS pages 13-18, 1994.

A. Cesta and A. Oddi. Gaining efficiency and flexibility in the simple temporal
problem. InTIME, 1996.

A. Cesta, A. Oddi, and S. F. Smith. A constraint-based method for project schedul-
ing with time windows.Journal of Heuristics8(1):109-136, 2002.

N. Chleq. Efficient algorithms for networks of quantitative temporal constraints. In
Proceedings of CONSTRAINTS; §&ages 40-45, Melbourne Beach, Florida, USA,
April 1995.

B. Y. Choueiry and L. Xu. An efficient consistency algorithm for the temporal
constraint satisfaction problem\l Communicationsl7(4):213—-221, 2004.

D. Cohen, P. Jeavons, P. Jonsson, and M. Koubarakis. Building tractable disjunctive
constraintsJournal of the ACM47(5):826-853, 2000.

D. A. Cohen, P. Jeavons, and M. Koubarakis. Tractable disjunctive constraints. In
CP, pages 478-490, 1997.

L. Console and P. Terenziani. Efficient processing of queries and assertions about
qualitative and quantitative temporal constrain@omputational Intelligencel5
(4):442-465, 1999.

T. Cormen, C. Leiserson, and R. Riveshtroduction to Algorithms MIT Press,
1990.

T. Dean. Using temporal hierarchies to efficiently maintain large temporal
databaseslournal of the ACM36(4):687—-718, 1989.

T. Dean and D. McDermott. Temporal Data Base Managemartificial Intelli-
gence 32(1):1-55, 1987.

R. Dechter.Constraint ProcessingMorgan Kaufmann, 2003.

R. Dechter, I. Meiri, and J. Pearl. Temporal Constraint NetworksKRn pages



30

[34]
[35]
[36]
[37)

[38]

[39]

[40]
[41]

[42]

[43]

[44]
[45]
[46]

[47]
[48]

[49]
[50]
[51]
[52]
(53]
[54]
[55]

[56]

19. Temporal CSPs

83-93, 1989.

R. Dechter, I. Meiri, and J. Pearl. Temporal Constraint NetwoAsficial Intelli-
gence 49(1-3):61-95, 1991.

R. Dechter and P. van Beek. Local and global relational consisteftogoretical
Computer Sciencd 73(1):283-308, 1997.

J. P. Delgrande and A. Gupta. Updatirgr, <-chains. Information Processing
Letters 82(5):261-268, 2002.

J. P. Delgrande, A. Gupta, and T. V. Allen. A comparison of point-based approaches
to qualitative temporal reasoningrtificial Intelligence 131(1-2):135-170, 2001.

T. Drakengren and P. Jonsson. A complete classification of tractability in allen’s
algebra relative to subsets of basic relatiodstificial Intelligence 106(2):205—
219, 1998.

C. Dyreson and R. Snodgrass. Valid-time IndeterminacyCIDE, pages 335-343,
1993.

H. Enderton.A Mathematical Introduction to LogicAcademic Press, 1972.

M. Fisher, D. Gabbay, and L. Vila, editorddandbook of Temporal Reasoning in
Artificial Intelligence Elsevier, 2005.

A. Gerevini. Incremental qualitative temporal reasoning: Algorithms for the Point
Algebra and the ORD-Horn clasautificial Intelligence 166(1-2):37-80, 2005.

A. Gerevini and M. Cristani. Reasoning with Inequations in Temporal Constraint
Networks. Technical report, IRST - Instituto per la Ricerca Scientifica e Tecno-
logica, Povo TN, Italy, 1995. A shorter version appears in the Proceedings of the
Workshop on Spatial and Temporal Reasoning, IJCAI-95.

A. Gerevini and L. Schubert. Efficient Algorithms for Qualitative Reasoning about
Time. Artificial Intelligence 74:207-248, 1995.

M. Ghallab and M. Alaoui. Managing Efficiently Temporal Relations through In-
dexed Spanning Trees. IBCAI, pages 1297-1303, 1989.

E. Giunchiglia, M. Maratea, and A. Tacchella. Look-ahead vs. look-back techniques
in a modern SAT solver. IBAT, 2003.

F. Glover and M. LagunaTabu SearchDordrecht, 1997.

T. Imielinski and W. Lipski. Incomplete Information in Relational Databadesir-

nal of ACM 31(4):761-791, 1984.

P. Jonsson and C @kstbm. A unifying approach to temporal constraint reasoning.
Artificial Intelligence 102:143-155, 1998.

P. Jonsson and A. A. Krokhin. Complexity classification in qualitative temporal
constraint reasoningArtificial Intelligence 160(1-2):35-51, 2004.

F. Kabanza, J.-M. Stevenne, and P. Wolper. Handling Infinite Temporal Datia-

nal of Computer and System Sciendgl1):3-17, 1995.

P. Kanellakis, G. Kuper, and P. Revesz. Constraint Query Languagesnal of
Computer and System Sciencet:26-52, 1995.

H. Kautz and P. Ladkin. Integrating Metric and Qualitative Temporal Reasoning. In
AAAIl, pages 241-246, 1991.

G. Kondrak and P. van Beek. A theoretical evaluation of selected backtracking
algorithms.Artificial Intelligence 89(1-2):365-387, 1997.

M. Koubarakis. Database Models for Infinite and Indefinite Temporal Information.
Information Systemd.9(2):141-173, March 1994.

M. Koubarakis. Tractable Disjunctions of Linear Constraints.C® pages 297—



[57]

[58]

[59]

[60]

[61]

[62]

[63]
[64]

[65]

[66]
[67]
[68]
[69]
[70]
[71]
[72]
[73]

[74]

[75]

Manolis Koubarakis 31

307, Boston, MA, August 1996.

M. Koubarakis. From Local to Global Consistency in Temporal Constraint Net-
works. Theoretical Computer Scienckr3:89-112, February 1997.

M. Koubarakis. The Complexity of Query Evaluation in Indefinite Temporal Con-
straint Database3.heoretical Computer SciencEr1:25-60, January 1997. Special
Issue on Uncertainty in Databases and Deductive Systems, Editor: L.V.S. Laksh-
manan.

M. Koubarakis. Tractable disjunctions of linear constraints: basic results and appli-
cations to temporal reasonind@.heoretical Computer Scienc266(1-2):311-339,
2001.

M. Koubarakis. Querying temporal constraint networks: A unifying approagh.

plied Intelligence17(3):297-311, 2002.

M. Koubarakis. Indefinite temporal databases with temporal information: Represen-
tational power and computational complexity. In M. Fisher, D. Gabbay, and L. Vila,
editors,Handbook of Temporal Reasoning in Artificial IntelligenE¢sevier, 2005.

M. Koubarakis, T. K. Sellis, A. U. Frank, S. Grumbach, R. Hit@&g, C. S.
Jensen, N. A. Lorentzos, Y. Manolopoulos, E. Nardelli, B. Pernici, H.-J. Schek,
M. Scholl, B. Theodoulidis, and N. Tryfona, editorSpatio-Temporal Databases:
The CHOROCHRONOS Approaailume 2520 of ecture Notes in Computer Sci-
ence 2003. Springer.

M. Koubarakis and S. Skiadopoulos. Querying Temporal and Spatial Constraint
Networks in PTIME.Atrtificial Intelligence 123(1-2):223-263, 2000.

R. Kowalski and M. Sergot. A Logic-based Calculus of Everitew Generation
Computing 1(4):67-95, 1986.

A. A. Krokhin, P. Jeavons, and P. Jonsson. Reasoning about temporal relations:
The tractable subalgebras of Allen’s interval algebdaurnal of the ACM50(5):
591-640, 2003.

A. A. Krokhin, P. Jeavons, and P. Jonsson. Constraint satisfaction problems on in-
tervals and lengthsSIAM Journal on Discrete Mathematick7(3):453-477, 2004.

T. K. S. Kumar. A polynomial-time algorithm for simple temporal problems with
piecewise constant domain preference function®AAl, pages 67—72, 2004.

T. K. S. Kumar. On the tractability of restricted disjunctive temporal problems. In
ICAPS pages 110-119, 2005.

P. Laborie and M. Ghallab. Planning with sharable resource constraint3CAi,
pages 1643-1649, 1995.

P. Ladkin. Primitives and Units for Time Specification. AlAl, pages 354-359,
1986.

P. Ladkin. Satisfying First-Order Constraints About Time IntervalsAMAAl, pages
512-517, 1988.

P. B. Ladkin and A. Reinefeld. Effective solution of qualitative interval constraint
problems.Artificial Intelligence 57(1):105-124, 1992.

M. H. Liffiton, M. D. Moffitt, M. E. Pollack, and K. A. Sakallah. Identifying con-
flicts in overconstrained temporal problems.JEAI, pages 205-211, 2005.

J. McCarthy and P. J. Hayes. Some Philosophical Problems From the Standpoint of
Artificial Intelligence. In B. Meltzer and D. Mitchie, editor]achine Intelligence
pages 463-502. Edinburg University Press, 1969.

I. Meiri. Combining qualitative and quantitative constraints in temporal reasoning.



32

[76]
[77]
[78]

[79]

[80]
[81]

[82]

[83]
[84]

[85]

[86]
[87]
[88]
[89]

[90]
[91]

[92]

[93]

[94]

[95]

19. Temporal CSPs

Artificial Intelligence 87(1-2):343—-385, 1996.

M. D. Moffitt and M. E. Pollack. Applying local search to disjunctive temporal
problems. INJCAI, pages 242-247, 2005.

R. Mohr and T. C. Henderson. Arc and path consistency revisietficial Intelli-
gence 28(2):225-233, 1986.

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient SAT solver. 11839th Design Automation Conference (DAZQO01.

J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis. Telos: A Language for
Representing Knowledge About Information Syste®&M Transactions on Infor-
mation Systems(4):325-362, October 1990.

I. Navarrete, A. Sattar, R. Wetprasit, and R. MarOn point-duration networks for
temporal reasonindArtificial Intelligence 140(1/2):39-70, 2002.

B. Nebel. Solving hard qualitative temporal reasoning problems: Evaluating the
efficiency of using the ORD-Horn clas€onstraints 1(3):175-190, 1997.

B. Nebel and H.-J. Brckert. Reasoning about temporal relations: A maximal
tractable subclass of Allen’s interval algebrdournal of the ACM42(1):43—66,
January 1995.

A. Oddi and A. Cesta. Incremental forward checking for the disjunctive temporal
problem. INECAI, pages 108-112, 2000.

A. K. Pujari, G. V. Kumari, and A. Sattar. INDU: An interval and duration network.
In Australian Joint Conference on Atrtificial Intelligengeages 291-303, 1999.

R. Reiter. Towards a logical reconstruction of relational database theory. In
M. Brodie, J. Mylopoulos, and J. Schmidt, edito@n Conceptual Modelling:
Perspectives from Atrtificial Intelligence, Databases and Programming Languages
pages 191-233. Springer Verlag, 1984.

R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical SystemiIT Press, 2001.

J. Renz. A Spatial Odyssey of the Interval Algebra: 1. Directed IntervaldQAl,
pages 51-56, 2001.

J. Renz and G. Ligozat. Weak composition for qualitative spatial and temporal
reasoning. IrCP, pages 534-548, 2005.

P. Reveszintroduction to Constraint DatabaseSpringer, 2002.

A. Schrijver, editor.Theory of Integer and Linear Programmin@/iley, 1986.

L. Schubert and C. Hwang. Episodic logic meets Little Red Riding Hood: A
comprehensive, natural representation for language understanding. In L. lwanska
and S. Shapiro, editordyatural Language Processing and Knowledge Represen-
tation: Language for Knowledge and Knowledge for Langugmeges 111-174.
MIT/AAAI Press, 2000.

E. Schwalb and R. Dechter. Processing disjunctions in temporal constraint networks.
Artificial Intelligence 93:29-61, 1997.

P. Schwartz and M. E. Pollack. Two approaches to semi-dynamic disjunctive tem-
poral problems. INCAPS Workshop on Constraint Programming for Planning and
Scheduling2005.

B. Selman, H. J. Levesque, and D. G. Mitchell. A new method for solving hard
satisfiability problems. IRAAAI pages 440446, 1992.

Y. Shi, A. Lal, and B. Y. Choueiry. Evaluating consistency algorithms for temporal
metric constraints. IAAAI pages 970-971, 2004.



Manolis Koubarakis 33

[96] S. Staab. From binary temporal relations to non-binary ones and atiicial
Intelligence 128(1-2):1-29, 2001.

[97] K. Stergiou and M. Koubarakis. Backtracking algorithms for disjunctions of tem-
poral constraintsArtificial Intelligence 120(1):81-117, 2000.

[98] O. Strichman, S. A. Seshia, and R. E. Bryant. Deciding separation formulas with
SAT. InCAV, pages 209-222, 2002.

[99] J. Thornton, M. Beaumont, A. Sattar, and M. J. Maher. A local search approach to
modelling and solving Interval Algebra problem3ournal of Logic and Computa-
tion, 14(1):93-112, 2004.

[100] I. Tsamardinos and M. E. Pollack. Efficient solution techniques for disjunctive tem-
poral reasoning problemartificial Intelligence 151(1-2):43-89, 2003.

[101] P. van Beek. Approximation Algorithms for Temporal ReasoninglJ@AI, pages
1291-1296, 1989.

[102] P. van Beek. Temporal Query Processing with Indefinite Informatiartificial
Intelligence in Medicing3:325-339, 1991.

[103] P. van Beek. Reasoning About Qualitative Temporal Informathtificial Intelli-
gence 58:297-326, 1992.

[104] P. van Beek and R. Cohen. Exact and Approximate Reasoning about Temporal
Relations.Computational Intelligenges:132—-144, 1990.

[105] P.van Beek and D. W. Manchak. The design and experimental analysis of algorithms
for temporal reasoninglournal of Artificial Intelligence Research:1-18, 1996.

[106] J. van BenthemThe Logic of TimeD. Reidel Publishing Company, 1983.

[107] M. Vilain and H. Kautz. Constraint Propagation Algorithms for Temporal Reason-
ing. In AAAI, pages 377-382, 1986.

[108] M. Vilain, H. Kautz, and P. van Beek. Constraint Propagation Algorithms for Tem-
poral Reasoning: A Revised Report. In D. Weld and J. de Kleer, edRealings in
Qualitative Reasoning about Physical Systgpages 373—-381. Morgan Kaufmann,
1989.

[109] M. B. Vilain. A system for reasoning about time. ARAI, pages 197-201, 1982.

[110] L. Xu and B. Y. Choueiry. Improving backtrack search for solving the TCSP. In
CP, pages 754-768, 2003.

[111] L. Xu and B. Y. Choueiry. A new efficient algorithm for solving the simple temporal
problem. InTIME, pages 212—-222, 2003.



Index

absolute time, 3
arc consistency, 15

backjumping

for n-ary disjunctive difference constraints,

16, 17
backtracking

for the pointisable subclass, 8
local, 4
for binary difference constraints with
disequations, 10
for the Ord-Horn subclass, 8
for the point algebra, 8
for the pointisable subclass, 8

for n-ary disjunctive difference constraints, path, 6

16

for disjunctions of point algebra rela-

tions, 14

for binary difference constraints, 10
for the interval algebra, 6
for the Ord-Horn subclass, 8

for disjunctive binary difference con-constraint

straints, 15
for the interval algebra, 14
binary difference constraint, 9-13, 15
binary difference constraints
with disequations, 10

Boolean combination of binary difference

constraints, 11, 17
bounded time, 3
branching time, 2, 27

certainty query, 17-27
composition, 6

weak, 13
consistency

arc, 15

global, 4

for binary difference constraints, 10
for binary difference constraints with

disequations, 10
for the Ord-Horn subclass, 8
for the point algebra, 8
for the pointisable subclass, 8
k-consistency, 4

disequations, 10
for the point algebra, 8

binary difference, 9-13, 15
database, 18-27
indefinite, 18-27
disjunctive binary difference, 9, 15
duration, 13
first-order, 18-27
Horn-disjunctive linear, 11-13
language
first-order, 18-27
n-ary disjunctive difference, 11, 16
network
interval, 4
temporal, 1-28
Ord-Horn, 8
set
minimal, 4, 5
soft, 27
temporal, 1-28
unit two-variable per inequality (dise-
quation), 10

continuous endpoint subclass, 8
convex point algebra, 8

CSP
for binary difference constraints with

spatial, 27
temporal, 1-28

cyclic time, 2



35

database for the point algebra, 8
constraint, 18-27 indefinite
indefinite, 18-27 constraint database, 18-27
decomposability, 4 temporal information, 3

for binary difference constraints, 10 indeterminate temporal information, 3
for binary difference constraints withinterval

disequations, 10 algebra, 6, 14, 19, 21, 23
for the Ord-Horn subclass, 8 constraint
for the point algebra, 8 network, 4
for the pointisable subclass, 8 time, 1-28
definite temporal information, 3
dense time, 3 k-consistency, 4
directional path consistency for binary difference constraints with
for binary difference constraints, 10 disequations, 10
discrete time, 3 for the point algebra, 8
disjunctive binary difference constraint, 9,  for the pointisable subclass, 8
15
distance graph, 10 language
duration constraint, 13 first-order, 18-27
linear constraint, 11, 20, 21
first-order, 18-27 local consistency, 4
constraint, 18-27 for binary difference constraints with
constraint language, 18-27 disequations, 10
language, 18-27 for the Ord-Horn subclass, 8
structure, 18-27 for the point algebra, 8
temporal constraint, 18-27 for the pointisable subclass, 8
theory, 18-27 local search
forward checking for n-ary disjunctive difference constraints,
for n-ary disjunctive difference constraints, 17
16, 17 for the interval algebra, 15

Fourier elimination, 21
maximal tractable class, 8, 9, 12, 13

global consistency, 4 metric
for binary difference constraints, 10 temporal constraint, 9-13
for binary difference constraints with ~ temporal information, 3
disequations, 10 minimal
for the Ord-Horn subclass, 8 constraint set, 4, 5
for the point algebra, 8 network, 4, 17
for the pointisable subclass, 8 for binary difference constraints, 10
for binary difference constraints with
Horn-disjunctive linear constraint, 11-13 disequations, 10
for the continuous endpoint subclass,
incremental algorithm 8
for n-ary disjunctive difference constraints, for the convex point algebra, 8
17 for the interval algebra, 6
for binary difference constraints, 15 for the Ord-Horn subclass, 8

for the Ord-Horn subclass, 8 for the point algebra, 8



36

for the pointisable subclass, 8
mixed
temporal constraint, 12
temporal information, 3
modal query, 17-27

n-ary disjunctive difference constraint, 11
16
network
minimal, 4, 17
for binary difference constraints, 10

INDEX

temporal information, 3
quantifier elimination, 18-27
quantitative

temporal information, 3
query
aggregation, 18
certainty, 17-27
hypothetical, 18
modal, 17-27
possibility, 17-27

for binary difference constraints withreasoning

disequations, 10

temporal, 1-28

for the continuous endpoint subclass,

8
for the convex point algebra, 8
for the interval algebra, 6
for the Ord-Horn subclass, 8
for the point algebra, 8
for the pointisable subclass, 8
point-duration, 13
non-convex time interval, 27

Ord-Horn
constraint, 8
subclass, 8
overconstrained temporal CSP, 27

partially ordered time, 2, 27
path consistency, 6
for binary difference constraints, 10
for the interval algebra, 6
for the Ord-Horn subclass, 8
periodic temporal information, 3, 27
point
algebra, 6, 14, 19, 21
convex, 8
time, 1-28
point-duration network, 13
pointisable subclass, 6
possibility query, 17-27
preference, 27
propositional satisfiability, 16

qualitative
algebra, 8
temporal constraint, 5-9

SAT, 16
SAT solver, 16, 17
for n-ary disjunctive difference constraints,
16
for Boolean combinations of difference
constraints, 17
satisfiability
propositional, 16
series-parallel graph, 14
Skolem constant, 23
soft constraint, 27
spatial CSP, 27
structure
first-order, 18-27

temporal

constraint, 1-28
first-order, 18-27
metric, 9-13
mixed, 12
network, 1-28
gualitative, 5-9

CSP, 1-28
overconstrained, 27

information, 1-28
definite, 3
indefinite, 3
indeterminate, 3
metric, 3
mixed, 3
periodic, 3, 27
qualitative, 3
guantitative, 3



reasoning, 1-28
theory
first-order, 18-27
time, 1-28
absolute, 3
bounded, 3
branching, 2, 27
cyclic, 2
dense, 3
discrete, 3
granularity, 3, 11
interval, 1-28
non-convex, 27
partially ordered, 2, 27
point, 1-28
structure, 2
totally ordered, 2
unbounded, 3
totally ordered time, 2
tractable class
maximal, 8, 9, 12, 13

unbounded time, 3
unit two-variable per inequality (disequation)
constraint, 10

variable elimination, 18-27

weak composition, 13



