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Chapter 19

Temporal CSPs

Manolis Koubarakis

19.1 Introduction

Reasoning with temporal constraints has been a hot research topic for the last twenty years.
The importance of this topic has been recognized in many areas of Computer Science and
Artificial Intelligence e.g., planning [4], scheduling [23], natural language understanding
[91], knowledge representation [79], spatio-temporal databases and geographical informa-
tion systems [62], constraint databases [89], medical information systems [102], computer-
aided verification [5], multimedia presentations [2] etc.

Temporal reasoning is an area that has greatly benefited by the application of tech-
niques from constraint programming ever since the early papers by James Allen and others
[3, 107, 31, 108, 34]. The CSP framework introduced in Chapter 2 of this handbook is
immediately applicable for representing and reasoning about temporal information, and
so are the algorithms of Chapters 3, 4 and 8. Temporal CSPs have been proved to be a
robust framework where general CSP results such as the ones surveyed in Chapters 5 and
6 of this handbook could be applied profitably. Moreover, specific results about temporal
CSPs have often provided the motivation for deriving general results about CSPs. Tempo-
ral CSPs have been studied in depth, not only because of intellectual curiosity, but mostly
due to their importance for applications such as planning, scheduling, temporal databases
and others mentioned above. In many cases, the problems studied come straight from the
application front and developed solutions are immediately put into practical use.

In this chapter, we survey work on temporal CSPs starting from the papers that ap-
peared in the early nineties [3, 107, 31, 108, 34] and continue with contributions that have
been published as recently as last year. We have covered all of the influential works, but due
to space, we have sometimes been brief in our presentation. Our presentation is sometimes
historical; we hope this will turn out to be useful for the readers. For more information
on temporal CSPs and temporal reasoning in general, the reader can read the Handbook of
Temporal Reasoning in Artificial Intelligence [41] or the original papers that have appeared
in the literature.
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The rest of this chapter is organized as follows. Section 19.2 introduces some prelimi-
nary concepts of temporal reasoning and temporal CSPs. Section 19.3 introduces the most
influential temporal reasoning formalisms based on constraint networks that have been
proposed in the literature and relevant algorithmic problems. Then, Section 19.4 discusses
efficient constraint satisfaction algorithms for these formalisms. Section 19.5 introduces
the application need for more expressive queries over temporal constraint networks (es-
pecially queries combining temporal and non-temporal information) and surveys various
proposals that address this need. Sections 19.6 and 19.7 introduce the scheme of indefinite
constraint databases that is, up to today, the most comprehensive proposal for querying
hybrid representations consisting of a relational database component and a constraint net-
work component. In the case of temporal CSPs, the constraint network can be used to store
temporal constraints on various temporal objects, and the relational database to store facts
referring to these objects. Finally, Section 19.8 concludes the chapter and points out some
open problems.

19.2 Preliminaries

In this section, we introduce the topic of representing and reasoning about temporal in-
formation, and discuss the representational choices that have been made in the temporal
reasoning literature. We also introduce some basic concepts of CSPs that will subsequently
be used throughout the chapter.

19.2.1 Temporal Representation and Reasoning: Basic Concepts

In everyday life, most people are able to communicate their knowledge and understanding
of temporal phenomena without any major difficulties. However, quite different intuitions
surface as soon as people undertake to construct a formal temporal representation. The
literature distinguishes among three approaches for representing temporal phenomena: the
change-basedapproach (exemplified by situation calculus [74] or event calculus [64]), the
time-basedapproach (exemplified by various temporal logics [106]) or temporal database
models [62]) and their combination [86]. Research on temporal CSPs adopts a time-based
approach to temporal representation and inference. Time is introduced explicitly via an
appropriate set of times (called thetime structure) and change is manifested when proposi-
tions become true or false at different elements of this set. Once one adopts this approach,
the time structure must be precisely defined. The relevant issues here are:

• What are the elements of the time structure?Points, intervalsor both? Research in
temporal CSPs has usually adopted some set of numbersP (e.g., the rationals) to be
the set of points and pairs(x, y) ∈ P 2 such thatx < y to be the set of intervals.
Conventional time unit systems have also been studied (e.g., see the TUS system of
[70]).

• Is timetotally ordered, partially ordered, branchingor cyclic? Research in temporal
CSPs usually assumes time to be totally ordered. There has recently been some inter-
esting work on CSPs for other models of time e.g., partially ordered time, branching
time etc. [16].
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• Is timediscreteor dense? The issue here is whether there exists a unit of time which
cannot be decomposed. Discrete time is usually considered to be isomorphic to the
integers (Z). Proponents of dense time have a choice between rationals (Q) and reals
(R). Various kinds of temporal CSPs have been studied that deal nicely with all three
cases.

• Is timeboundedor unbounded? Time is unbounded when for every element of the
time structure there is a “previous” and a “next” element. Temporal CSPs can easily
handle both cases.

Once one adopts an ontology and a structure for time, one usually turns to another,
equally important, consideration: what are the kinds of temporal knowledge that must be
represented? There are many kinds of temporal information that are useful in applications
such as the ones mentioned in Section 19.1:

• Definite temporal information.We have definite temporal information when the time
associated with an event or fact is known to be equal to anabsolute timei.e., a point
or interval on the time line. In other words, the time associated with an event or
fact is known to full precision in the desired level of granularity. For example, the
sentences “The car was on service throughout March 25th, 1993” and “The car has
gone for service every March 25th for the years 1993-2000” give definite temporal
information with respect to the time line of the Gregorian calendar. Note that the
information in the second sentence isperiodic.

• Indefinite or indeterminate temporal information. We have indefinite temporal infor-
mation when the time associated with an event or fact is either unknown or has not
been fully specified. The time associated with an event or fact can be under-specified
in various ways [39]:

– The time associated with an event or fact might be specified via aqualitative
relationship(different than equality) to some absolute time. As an example,
consider the sentence “John became managerafter March, 1993”.

– The time associated with an event or fact might be specified via arelationship
to the time associated with another event or fact. In this case, the two times
can be related through aqualitative, metric(or quantitative) or mixed tempo-
ral constraint. For example, consider the statements “The explosion occurred
after John left the scene” (qualitative temporal information), “The explosion
occurred5 to 10 minutes afterJohn left the scene” (metric temporal informa-
tion), and “The explosion occurred5 to 10 minutes afterJohn left the scene
whilehe was getting into his car” (mixed temporal information).

– The granularity of the system time line does not match the precision to which
the time associated with an event or fact is known. As an example, consider
storing the information “John was hired on January 25, 1993” in a system with
time-stamps in the granularity of a second.

– Dating techniques can be imperfect. All clocks have inherent imprecision.

Temporal CSPs are an expressive framework and they can represent all the above types of
temporal information.
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19.2.2 Background on CSPs

The area of temporal CSPs was initiated by James Allen in his seminal paper [3]. Allen
proposed to represent qualitative temporal knowledge by interval constraint networks. An
interval constraint network(see Figure 19.1) is a directed graph where nodes represents
intervals and edges are labelled with vectors (i.e., disjunctions) of the thirteen binary qual-
itative interval relations presented in [3]. Following [3], many researchers concentrated
on CSPs (or, equivalently, constraint networks) as a means for representing and reasoning
about temporal knowledge. Their proposals are surveyed in Section 19.3 of this chapter.

In this chapter, the equivalent termsCSP, constraint networkandset (conjunction) of
constraintswill be used interchangeably. We now define formally some of the concepts
from the standard CSP literature that we will use in this chapter. We usedom(xi) to refer
to the domain of variablexi.

Definition 19.1. LetC be a set of constraints in variablesx1, . . . , xn. Thesolution setof
C, denoted bySol(C), is the following relation:

{(v1, . . . , vn) ∈ dom(x1)×· · ·×dom(xn) : for every c ∈ C, (v1, . . . , vn) satisfiesc}.

Each member ofSol(C) is called asolutionof C.

Definition 19.2. A set of constraints is calledconsistentor satisfiableif and only if its
solution set is non-empty.

We now define the standard concepts ofi-consistency, strongi-consistency and global
consistency (or decomposability).

Let C be a set of constraints in variablesx1, . . . , xn. For anyi such that1 ≤ i ≤ n,
C(x1, . . . , xi) will denote the set of constraints inC involving onlyvariablesx1, . . . , xi.

Definition 19.3. LetC be a set of constraints in variablesx1, . . . , xn and1 ≤ i ≤ n. C is
called i-consistentiff for everyi − 1 distinct variablesx1, . . . , xi−1, every valuationu =
{x1 ← v1, . . . , xi−1 ← vi−1} such thatv1 ∈ dom(x1), . . . , vi−1 ∈ dom(xi−1) andu sat-
isfies the constraintsC(x1, . . . , xi−1), and every variablexi different fromx1, . . . , xi−1,
there exists a valuevi ∈ dom(xi) such thatu can be extended to a valuationu′ =
u ∪ {xi ← vi} which satisfies the constraintsC(x1, . . . , xi−1, xi). C is called strong
i-consistentif it is j-consistent for everyj, 1 ≤ j ≤ i. C is calledglobally consistentor
decomposableiff it is i-consistent for everyi, 1 ≤ i ≤ n.

We now define the standard concept of minimal set of constraints. Minimal sets of
constraints are especially important in temporal CSPs because they make explicit all im-
plied binary constraints (e.g., the strictest constraints between the endpoints of an interval
or the constraints capturing the strictest qualitative relation between two points etc.). In a
constraint network representation of binary constraints, the concept of minimal constraint
set is equivalent to the concept ofminimal network.

Definition 19.4. A set of constraintsC will be calledminimal if any instantiation of two
variables, which satisfies the constraints involving these variables only, can be extended to
a solution ofC.
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In temporal CSPs, the variables are used to represent time elements (points or inter-
vals), the domains are time structures (usuallyZ,Q or R for time points, and the set of
intervals overZ,Q orR for time intervals), and the constraints represent temporal relation-
ships. Section 19.3 presents various temporal CSP frameworks with appropriate choices
for variables, domains and temporal constraints.

The following reasoning problems have been traditionally associated with CSPs:

• Deciding whether a set of constraints is consistent.

• Finding a solution or all the solutions of a consistent constraint set.

• Computing the minimal set of constraints equivalent to a given one.

• Determining if a set of constraints isi-consistent, strongi-consistent or globally
consistent.

The above reasoning problems have also been the main focus of algorithms for temporal
CSPs proposed in the literature. These algorithms are surveyed in Section 19.4 of this
chapter.

19.3 Constraint-Based Formalisms for Reasoning About Time

In this section we initiate our survey of temporal representation and reasoning formalisms
based on constraint networks. We distinguish the proposed formalisms depending on the
kind of temporal information they allow: qualitative, metric or mixed temporal informa-
tion.

19.3.1 Qualitative Temporal Reasoning

As we already said earlier, the first important paper that proposed to represent qualitative
temporal information by CSPs was [3] by James Allen. In [3], Allen introduced a formal-
ism for reasoning about intervals in time. Aninterval i is a pair(i−, i+) wherei− andi+

areendpointson the real line andi− < i+ holds. Allen’s formalism is based on thirteen
mutually exclusivebinary relationswhich can capture all the possible ways two intervals
can be related. Theseatomicrelations are

before, meets, overlaps, during, starts, finishes, equals

and their inverses (equals is its own inverse). Figure 19.2 defines these relations in terms of
endpoint constraints, and gives a shorthand notation and pictorial representation for them.

Allen’s formalism has received a lot of attention and has been the formalism of choice
for representing qualitative interval information. Whenever the interval information to
be represented is indefinite, a disjunction of some of the thirteen atomic relations can be
used to represent what is known. There are213 such disjunctions representing qualitative
relations between two intervals. Each one of these relations will be denoted by the set of
its constituent basic relations e.g.,{b, bi, d, m}. Theemptyrelation will be denoted by⊥,
and theuniversalrelation will be denoted by>. The set of all213 relations expressible in
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breakfast

paper walk

coffee

{o, s, d}

{d} {b}

 { o, o –1,  s, s -1, d, d -1, f, f -1, =} 

Figure 19.1: AnIA network

Allen’s formalism will be denoted byIA. The operations of intersection (∩), complement
(·−1) and composition (◦) can be defined onIA as follows:

(∀x, y)(x r−1 y ⇔ y r x)

(∀x, y)(x (r ∩ r′) y ⇔ (x r y ∧ x r′ y))

(∀x, y)(x (r ◦ r′) y ⇔ (∃z)(x r z ∧ z r′ y))

The setIA equipped with these operations forms an algebra [82], called theinterval alge-
bra.

Example 19.5. Let us consider the following text [103]:

Fred was reading the paper while eating his breakfast. He put the paper down
and drank the last of his coffee. After breakfast, he went for a walk.

If we usebreakfast, paper, walk andcoffee to stand for appropriate time intervals, the
information included in the above sentences is captured by theIA network of Figure 19.1.

In [3], Allen presented a constraint propagation algorithm forIA networks based on
path consistency which runs inO(n3) time wheren is the number of intervals in the net-
work. When constraints are propagated, some temporal knowledge that has been implicit
before is made explicit. Later on, Vilain and Kautz showed that Allen’s constraint propaga-
tion algorithm is not complete because deciding the consistency of a set ofIA constraints
is an NP-complete problem and so is computing the minimal network [107].

In the same paper, Vilain and Kautz introduced thepoint algebraPA which allows
one to relate two time points using the binary qualitative relations<, > and= and their
disjunctive combinations (see Figure 19.2). [107] also identified thepointisable subclass
PIA of IA which consists of all elements ofIA that can be expressed as a conjunction
of binary constraints using only elements ofPA.
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Basic Symbol Pictorial Endpoint
Relation Representation Constraints

i before j b iiiiiiiii i− < j−, i− < j+,
j after i b−1 jjjjjjjjj i+ < j−, i+ < j+

i meets j m iiiiiiiii i− < j−, i− < j+,
j met-by i m−1 jjjjjjjjjjj i+ = j−, i+ < j+

i overlaps j o iiiiiiiii i− < j−, i− < j+,
j overlapped-by i o−1 jjjjjjjjjjjj i+ > j−, i+ < j+

i during j d iiiiiiiii i− > j−, i− < j+,
j includes i d−1 jjjjjjjjjjjjjjjjjj i+ > j−, i+ < j+

i starts j s iiiiiiiiii i− = j−, i− < j+,
j started-by i s−1 jjjjjjjjjjjjjjjj i+ > j−, i+ < j+

i finishes j f iiiiiiiiiii i− > j−, i− < j+,
j finished-by i f−1 jjjjjjjjjjjjjjjjj i+ > j−, i+ = j+

i equals j = iiiiiiiiiiii i− = j−, i− < j+,
jjjjjjjjjjj i+ > j−, i+ = j+

Basic Symbol Pictorial Point
Relation Representation Constraints

p before i b p p < i−

i after p b−1 iiiiiiiii
p starts i s p p = i−

i started-by p s−1 iiiiiiiii
p during i d p i− < p < i+

i includes p d−1 iiiiiiiii
p after i a p i+ < p
i before p a−1 iiiiiiiii

Basic Symbol Pictorial
Relation Representation

p before q < p
q after p > q
p equals q = p

q
p after q > q
q before p < p

Figure 19.2: Interval-to-interval, point-to-interval and point-to-point relations
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In [107], Vilain and Kautz claimed that Allen’s constraint propagation algorithm com-
putes the minimal network forPA. Subsequently, van Beek pointed out that this result is
true only for the subset ofPA which does not include thedisequalityrelation6=; this is the
convex point algebraCPA [101, 108, 104]. The same result is true for thecontinuous end-
point subclassCEIA of IA which consists of all elements ofIA that can be expressed as
a conjunction of binary constraints using only elements ofCPA [101, 108, 104]. Van Beek
also pointed out that enforcing strong 4-consistency in anPIA or PA network results in
an equivalent minimal network [101, 108, 104]. However, enforcing strong 4-consistency
does not result in global consistency for these networks. As shown by Koubarakis in
[57], strong 5-consistency is necessary and sufficient for achieving global consistency in
PIA andPA. Van Beek has also presented two efficient algorithms forPA andPIA
networks: anO(n2) algorithm for consistency checking and finding a solution, and an
O(max mn2, n3) for computing the minimal network [103]. The parametern here is again
the number of nodes in the network, whilem is the number of edges labelled with6=.

The work by Vilain, Kautz and van Beek [108] motivated the search for new subclasses
of IA that are tractable. The most widely studied subclass discovered so far is theOrd-
Horn subclassH introduced by Nebel and B̈urckert in [82].H consists of all relationsr ∈
A which satisfy the following condition. Ifi andj are intervals,i r j can be equivalently
expressed as a conjunction of Ord-Horn constraints on the endpoints ofi andj. An Ord-
Horn constraintis a disjunctiond1∨ · · ·∨dn where at most one of thedi’s is an inequality
of the formx ≤ y, the rest of thedi’s are disequations of the formx 6= y, andx andy are
variables ranging over the real numbers.

It is interesting to notice thatH, the most expressive tractable subclass ofIA among
the ones introduced above, consists of 868 relations i.e., it covers more than 10% ofA. H
is maximali.e., it cannot be extended without losing tractability [82].

Recently, Krokhin, Jeavons and Jonsson showed that there areexactly18 maximal
tractable subclasses ofIA; reasoning in any subset ofIA not included in these subclasses
is NP-complete [65]. This is an importantdichotomyresult: it classifies all subproblems
of an NP-complete problem as either tractable or NP-complete. It is important to point
out that this result is proved analytically while previous work had resorted to systematic
computerized analysis (see e.g., [38]).

Koubarakis [59] has demonstrated that, in general, there is no low level of local con-
sistency that can achieve global consistency ofH constraints. Earlier, Bessière, Isli and
Ligozat [12] had presented some subclasses ofH for which path consistency achieves
global consistency.

Gerevini [42] considersPA andH and studiesincrementalalgorithms for checking
consistency, maintaining a solution and maintaining the minimal network. The algorithms
of [42] improve the static algorithms for these problems by a factor ofO(n) orO(n2) when
a sequence ofO(n2) operations (assertions or relaxations of constraints) are processed. In
related work, Delgrande and Gupta [36] consider the problem of updating chains of≤ or
< relations.

In [75], Meiri defines thequalitative algebraQA, an expressive formalism for qual-
itative temporal reasoning on points and intervals. InQA, one is able to express binary
constraints of the formoi r1 oj ∨ · · · ∨ oi rk oj whereoi, oj are points or intervals and
r1, . . . , rk are:

• interval-to-interval relations fromIA
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• point-to-point relations fromPA
• point-to-intervalor interval-to-pointrelations [109]. These five, mutually exclusive

relations and their inverses can hold between a point and an interval. They are shown
pictorially in Figure 19.2.

[75] presents several results onQA and its subclasses including how to combine it with
metric information (see Section 19.3.3 below). Recently, [50] presented a dichotomy the-
orem which gives acompleteclassification of all subclasses ofQA as either tractable or
NP-complete.

The expressive power of the qualitative temporal reasoning algebras defined in this
section can be summarized as follows (the symbol⊂ should be read as “contains” or “is
less expressive than”) :

CPA ⊂ PA ⊂ QA and CEIA ⊂ PIA ⊂ H ⊂ IA ⊂ QA

19.3.2 Metric Temporal Reasoning

Dechter, Meiri and Pearl studied metric temporal information usingdisjunctive binary dif-
ference (DBD) constraints1 of the form

a1 ≤ xi − xj ≤ b1 ∨ · · · ∨ an ≤ xi − xj ≤ bn

wherexi, xj are real variables representing time points anda1, . . . , an, b1, . . . , bn are real
numbers [34]. To deal with these constraints, [34] introducedDBD networkswhere nodes
represent variables and arcs represent binary constraints.

Example 19.6. Let us consider the following text [34]:

John goes to work either by car (30-40 minutes) or by bus (at least 60 min-
utes). Fred goes to work either by car (20-30 minutes) or in a car pool (40-50
minutes). Today John left home between 7:10 and 7:20, and Fred arrived at
work between 8:00 and 8:10. We also know that John arrived at work about
10-20 minutes after Fred left home.

Let x0 be a special time point (real variable) denoting the “beginning of time” (7:00 in
our case). Letx1, x2, x3, x4 be real variables such that[x1, x2] is the interval corresponding
to John’s travel to work, and[x3, x4] is the interval corresponding to Fred’s travel to work.
The left part of Figure 19.3 shows aDBD network capturing the temporal relations in the
above text.

Deciding consistency ofDBD networks is NP-complete [34]. An important tractable
subcase occurs when all constraints have asingledisjunct i.e., they are of the forma ≤ xi−
xj ≤ b. We will call these constraints simplybinary difference (BD) constraints. For the
class ofBD constraints, deciding consistency and at the same time computing the minimal

1In this section, we deviate from the usual terminology of the literature and name classes of metric temporal
constraints by referring to what relationships they can express (e.g., difference, disjunctions etc.). In this way,
we avoid using names formed with adjectives such as simple, complex etc. that do not say much about the
expressivity of the particular constraint class they are used to name.
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Figure 19.3: ADBD network (left) and a distance graph for a part of it (right)

network can be done inO(n3) time (wheren is the number of variables) by running any
all-pairs shortest-paths algorithm (e.g., Floyd-Warshall [29]) on an equivalent weighted,
directed graph representation of the constraints called thedistance graph[34]. The right
part of Figure 19.3 shows the distance graph equivalent to theBD constraint network
obtained from theDBD constraint network on the left part of the figure after dropping the
interval[60, infty] from the edge(x1, x2) and[20, 30] from the edge(x3, x4).

For the class ofBD constraints, computing the shortest-paths among all pairs of nodes
in the distance graph is equivalent to enforcing path consistency in the original network.
Notice also that path consistency is necessary and sufficient for achieving global consis-
tency for the class ofBD constraints [34]. Deciding consistency only can alternatively be
achieved by a single-source shortest-paths algorithm (e.g., Bellman-Ford [29]) inO(nE)
time wheren is the number of nodes andE the number of edges in the distance graph.
Alternatively, one can use adirectional path consistencyalgorithm on the given network
which runs inO(nW ∗(d)2) time whereW ∗(d) is the maximum number of parents that a
node possesses in the resulting network [34].

The framework of difference constraints of [34] has been influential in much future
work in this area. For example, Koubarakis [57] and, independently, Gerevini and Christani
[43] have introduced the class ofbinary difference constraints with disequations(BD 6=) by
extending the class ofBD constraints to include disequations of the formx − y 6= r (r is
a real constant). Deciding consistency inBD 6= can be checked inO(n3) time by trivially
modifying any all-pairs shortest path algorithm used for the class ofBD constraints so
that it reports inconsistencies resulting from any disequationx− y 6= r and any (implied)
equality of the formx− y = r. Computing the minimal network forBD 6= constraints can
be done inO(max mn2, n3) wheren is the number of variables andm is the number of
disequations [57, 43]. [57] has also shown that strong 5-consistency is the necessary and
sufficient condition for achieving global consistency in the case ofBD 6= constraints. Re-
cently, [63] extended this result to the class ofunit two-variable per inequality/disequation
(UTV PI 6=) constraints. In addition to terms of the formx− y, this class allows terms of
the formx + y and the same comparison operators asBD 6=.

Extensions to the framework of [33] also explored more practical directions. For ex-
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ample, [13] has shown how to extend this framework so thatmultiple time granularities
are supported.

A related but more expressive class of temporal constraints which has also been studied
widely in the literature is the class ofn-ary disjunctive difference constraints. Ann-ary
disjunctive difference (NDD) constraintis a formula of the form

a1 ≤ x1 − y1 ≤ b1 ∨ · · · ∨ an ≤ xn − yn ≤ bn

wherex1, y1, . . . , xn, yn are real variables representing time points anda1, . . . , an, b1, . . . , bn

are real numbers [97, 6, 96].

Example 19.7. The following are examples ofNDD constraints:

x1 − y1 ≤ 2, x1 − y1 ≤ 5 ∨ −2 ≤ x2 − y2 ≤ 2 ∨ x3 − y3 ≤ 4,

0 ≤ x4 − y4 ∨ 2 ≤ x5 ≤ 5

Disjunctive constraints with disjuncts having different pairs of variables cannot be ex-
pressed in theDBD constraints framework of [34].

Example 19.8. Let I, J be intervals,I−, J− their beginning points andI+, J+ their end-
ing points. The followingNDD constraints express the fact that intervalsI andJ have
duration between 5 and 10 minutes and they cannot overlap.

5 ≤ I+ − I− ≤ 10, 5 ≤ J+ − J− ≤ 10, I+ − J− ≤ 0 ∨ J+ − I− ≤ 0

Example 19.9. Let I andJ be intervals corresponding to the execution of operationsOI

andOJ . OI andOJ will be executed on a machine that can handle only one operation at
a time and has a set up time of 2 minutes. LetI−, J− be the beginning points ofI andJ
andI+, J+ their ending points.

The following is an appropriate constraint on the scheduling of operationsOI andOJ :

I+ − J− ≤ −2 ∨ J+ − I− ≤ −2

Deciding the consistency of a set ofNDD constraints is also NP-complete.Boolean
combinations of binary difference (BCBD) constraintshave also been studied recently
[98].

The quest for tractability of metric temporal CSPs received a big push forward when
Koubarakis [59] and Jonsson and Bäckstr̈om [49] independently introduced the class of
Horn-disjunctive linear constraints. Alinear constraint(LIN ) is a formula of the form
(
∑n

i=1 aixi) θ r wherea1, ...,an, r are rational constants,x1, ...,xn are variables andθ is
≤ or <. We freely use≥, > and= as well. AHorn-disjunctive linear (HDL) constraintis
a disjunctiond1∨· · ·∨dn where eachdi is a weak linear inequality or a linear disequation,
and the number of inequalities amongd1, . . . , dn does not exceed one.

Example 19.10.The following are examples ofHDL constraints:

3x1 + x5 − 3x4 ≤ 10, x1 + x3 + x5 6= 7,

3x1 + x5 − 4x3 ≤ 7 ∨ 2x1 + 3x2 − 4x3 6= 4 ∨ x2 + x3 + x5 6= 5
2
,

4x1 + x3 6= 3 ∨ 5x2 − 3x5 + x4 6= 6
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Deciding the consistency of a set ofHDL constraints can be done in PTIME [56, 59,
49]. The main intuition behind this result is that disequations can be dealt with indepen-
dently from one another for the purposes of consistency checking.

There are currently no relevant maximality results regarding the tractability ofHDL
constraints. [16] give two such maximal tractable subclasses of the class of disjunctions of
PA relations.

[15] demonstrates how to implement efficiently consistency checking forHDL con-
straints when disjuncts are constrained to be of the formxi − xj ≤ a or xi − xj 6= a.

The properties of the class ofHDL constraints have partly motivated Cohen et al. [27]
to study questions of tractability for constraints that are obtained asdisjunctions of simpler
constraintswith certain useful properties (e.g., independence, guaranteed satisfaction etc.).
The importance of such results is that they are obtained in anabstract CSP frameworkand
turn out to be useful for many kinds of specific CSPs e.g., temporal, spatial, etc. For some
of the results in this area, the reader should see [26, 17] and Chapter 6 of this handbook

Recently, Kumar [68] pioneered the use ofrandomizedalgorithms for temporal CSPs.
[68] initially presents a randomized algorithm forBD constraints. Then, the intuitions
derived from this class are used to develop a strongly-polynomial deterministic algorithm,
and a simple randomized algorithm for a restricted class ofNDD constraints, denoted by
RNDD, which includes the following three types of constraints:

lij ≤ xi−yj ≤ uij , a1 ≤ xi ≤ b1∨· · ·∨an ≤ xi ≤ bn, li ≤ xi ≤ ui∨ lj ≤ xj ≤ uj

The expressive power of the metric temporal CSPs defined in this section can be sum-
marized as follows:

LIN ⊂ HDL, BD ⊂ BD 6= ⊂ DBD ⊂ NDD ⊂ BCBD, BD 6= ⊂ HDL,

and BD ⊂ RNDD ⊂ NDD

19.3.3 Qualitative and Metric Temporal Reasoning Combined

Meiri [75] has combined the expressive power of the qualitative algebraQA and theDBD
constraint framework of [34] to come up with a framework of binary mixed temporal con-
straint networks where nodes are points or intervals and constraints are qualitative from
QA or quantitative fromDBD. Independently, Kautz and Ladkin [53] have proposed a
very similar framework that combines qualitative constraints from the interval algebraIA
and theBD constraints of [34].

Example 19.11.Let us consider the following text [75]:

John and Fred work for a company that has local and main offices in Los
Angeles. They usually work at the local office, in which case it takes John less
than 20 minutes and Fred 15-20 minutes to get to work. Twice a week, John
works at the main office, in which case his commute to work takes at least 60
minutes. Today John left home between 7:00-7:05 a.m. and Fred arrived at
work 7:50-7:55 a.m. We also know that Fred and John met at a traffic light on
their way to work.
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Figure 19.4: A network with qualitative and metric temporal constraints

Let x0 be the real variable denoting the “beginning of time” (7:00 again). LetJ =
[x1, x2] be the time interval corresponding to John’s travel to work, andF = [x3, x4] be the
time interval corresponding to Fred’s travel to work wherex1, x2, x3, x4 are real variables
representing the interval endpoints. Figure 19.4 shows a constraint network capturing the
temporal relations in the above text.

More recently, Krokhin et al. presented another framework that combines qualitative
and metric temporal reasoning [66]. In this case, the objects of interest are intervals and
qualitative information is expressed inIA. In addition, metric temporal information on in-
terval endpoints can be expressed usingHDL constraints. The important result of [66] is
a dichotomy theorem that settles the standard tractability question for the proposed frame-
work by completely characterizing all subproblems that are tractable; all the remaining
ones are shown to be NP-complete. Since the framework of [66] subsumes the framework
of [53], the tractability question for this framework has also been settled. The exact char-
acterization of all tractable classes of the framework of [75] remains an open problem.

Qualitative reasoning aboutdurations has also been considered in [80] and other pa-
pers and a formalism calledpoint-durationnetworks has been defined. Point-duration
networks start fromPA networks and enrich them with binary comparisons of the times
elapsed between pairs of points (i.e., durations of intervals). The comparison of these du-
rations is also done using the relations ofPA. Similarly, Pujari et al. [84] have defined
a similar framework calledINDU for reasoning about intervals usingIA and interval
durations usingPA. It is not clear up to now, how far one can go with these two duration
frameworks since, as pointed out in [10], the framework is not closed under the compo-
sition operation. Recently, Renz and Ligozat [88] discussed this issue in a general CSP
context and differentiated between composition as defined in Section 19.3.1 forIA (and
most other frameworks studied here) andweakcomposition. In general, the frameworks of
[80, 84] are not as well developed currently as the rest of the frameworks surveyed in this
chapter so we will not deal with them any further in this chapter.
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19.4 Efficient Algorithms for Temporal CSPs

In the previous section, we have surveyed work on temporal CSPs, complexity results and
algorithms for deciding consistency, computing the minimal network and enforcing global
consistency. In typical temporal reasoning applications (e.g., planning and scheduling) the
databases of temporal constraints to be handled are very large thusscalabilityof temporal
reasoning algorithms becomes important. Unfortunately, the algorithms of Section 19.3
arenot scalable. Even for the case of tractable temporal reasoning formalisms such as
PA, typical algorithms [103] requireO(n2) space andO(max mn2, n3) time to answer
queries. Researchers in temporal reasoning quickly recognized this problem and imple-
mented efficient reasoners for various formalisms described in Section 19.3. This is the
work that we survey in this section.

19.4.1 Efficient Algorithms for Qualitative Temporal CSPs

The work on efficient algorithms for qualitative temporal constraints can be distinguished
into two categories: scalable algorithms for constraint classes with PTIME reasoning prob-
lems (especiallyPA) and backtracking or local search algorithms for classes with NP-
complete reasoning problems (especiallyIA).

Efficient Algorithms for PA
Len Schubert, Alfonso Gerevini and colleagues implemented and experimentally evaluated
the temporal reasoners TimeGraph I and II for handling constraints expressed inPA [44].
The main idea in TimeGraph II, which is the most advanced version, is to represent sets of
PA constraints by directed labelled graphs, partition these graphs intochains(i.e., linearly
ordered points) where constant time reasoning is possible, and use ameta-graphto reason
about points belonging to different chains. TimeGraph II also handles binary disjunctions
of PA constraints using an intelligent backtracking algorithm [44]. TimeGraph I and II
have been used in various planning and natural language understanding projects e.g., [91].

The work of [45] has also addressed scalability forPA networks using an approach
which also relies heavily on an underlying directed graph structure. In this case,spanning
treesare the basic data structure where efficient reasoning with respect to the≤ relation is
performed. The algorithms of [45] are incomplete forPA since they cannot handle cases
involving the relation6= [44]. The work of [45] has been extended with metric constraints
and has been utilized in the temporal reasoner of the IxTeT temporal planner [69].

[37] further extend the ideas of TimeGraph II by relying onseries-parallel graphs
(instead of chains) as their basic efficient data structure. [37] provides new intuitions re-
garding the techniques of TimeGraph II, and shows experimentally what improvements are
possible whenseries-parallel graphsbecome the basic data structure.

Efficient Algorithms for IA
Ladkin and Reinfeld [72] were the first to implement and evaluate experimentally back-
tracking algorithms for solvingIA constraints. The backtracking algorithm of [72] has
the following characteristics: a preprocessing step based on path consistency, instantiation
of disjunctions by any set ofIA relations for which path consistency is complete, chrono-
logical backtracking, and forward checking using path consistency. [105] improves [72]
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with a more efficient version of path consistency and heuristics for dynamic variable order-
ing. [81] shows that performance improvements can be obtained if we use the classH for
instantiating disjunctions in the backtracking algorithm of [72]. [72] and [81] also studied
the phase transition of the problem of solvingIA constraints.

[99] shows how to solveIA consistency checking problems using local search. In [99],
a givenIA problem withm interval variables is first translated into an equivalent (with re-
spect to satisfiability) problem where the endpoints of the intervals are constrained to range
over the integers1, . . . , 2m. Then, this problem is solved using the discrete Langrangian
method.

Let us now turn our attention to efficient algorithms for metric temporal CSPs. Here
attention has been focused onBD, DBD andNDD constraints. ForBD constraints, the
emphasis has been on improving existing polynomial time algorithms as well as devising
incremental versions of such algorithms that are important in applications (e.g., planning
or scheduling). Since the reasoning problems for classesDBD andNDD have exponen-
tial complexity, the emphasis there has been on backtracking algorithms and local search
algorithms with influences from CSP and SAT solvers.

19.4.2 Efficient algorithms forBD andDBD constraints

[21] and [22] has considered incremental algorithms for networks ofBD constraints. The
idea in these algorithms is that when a new constraint is added or retracted, a constraint
propagation algorithm is not run from scratch, but only some processinglocal to the in-
sertion or deletion takes place. [21] concentrates on incremental arc-consistency algo-
rithms forBD constraints while [22] presents an incremental version of the well-known
Bellman-Ford algorithm for the single-source shortest-paths problem [29]. Similarly, [24]
has presented an incremental version of the directional path consistency algorithm of [33].

Recently, Xu and Choueiry [111] presented an efficient algorithm for deciding the con-
sistency ofBD constraints. This algorithm essentially improves the partial path consis-
tency algorithm of [14] (which operates on a triangulated constraint graph) and applies it
to the case ofBD constraints. [111] demonstrates experimentally that this algorithm im-
proves on many of its competitors that have appeared in the literature [34] in the case of
large and sparse constraint graphs.

[92, 32] consider checking the consistency ofDBD constraints using backtracking al-
gorithms that operate on the equivalentmeta-CSP(i.e., the CSP with variables correspond-
ing to disjunctions and values corresponding toBD disjuncts) and utilize local consistency
algorithm like path consistency for preprocessing and forward checking. [92] points out
that enforcing path consistency in networks ofDBD constraints can result in the creation
of an exponential number of intervals. Then, it develops alternative local processing algo-
rithms that compute looser constraints than path consistency but do so in polynomial time.
Finally, [92] demonstrates that significant savings are achieved when these local process-
ing algorithms are combined with backtracking to check the consistency of sets ofDBD
constraints.

Xu and Choueiry [110] show alternative ways to improve on chronological backtrack-
ing algorithms forDBD constraints [92, 32]. Their techniques include utilizing the algo-
rithm of [111] to check the consistency of the set ofBD constraints considered at each
node of the search tree, exploiting the constraint topology, having good variable-ordering
heuristics, and reducing the domains with a special form of arc consistency [25]. More re-
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cently, [95] have also investigated using the incremental all-pairs-shortest-path algorithm
of [22] instead of [111] at each node of the search tree.

TMM (Time Map Manager) is another important temporal reasoning system with sup-
port forBD constraints [31]. The main contribution of TMM isnot its CSP features but
rather its querying facilities, its good support fortemporal persistenceandcausality, and
its sophisticated indexing algorithms for handling large databases of temporal propositions
[30]. TMM will be again discussed in Section 19.5.

19.4.3 Efficient algorithms forNDD constraints and extensions

The papers [97, 6, 100, 83, 98, 7] have tackled the problem of checking the consistency
of sets ofNDD constraints efficiently. As it is explained nicely in [7], all these works
propose algorithms that consist of the following basic steps:

• Generation step:Generate all possible sets ofBD constraints that satisfy the dis-
junctions.

• Consistency checking step:Check consistency of these sets.

The papers [97, 100, 83] do the generation step by solving a meta-CSP with variables
corresponding to disjunctions and values corresponding toBD disjuncts. The papers [6, 98,
7] do the generation step by solving the corresponding propositional satisfiability problem
(whereBD disjuncts are represented by propositional variables). The consistency checking
step in both cases is carried out using various incremental algorithms forBD constraints
e.g., incremental directional path consistency [24] or incremental full path consistency
[77].

Stergiou and Koubarakis [97] were the first to discuss various backtracking algorithms
(chronological backtracking, backjumping and forward checking with backjumping) and
related heuristics forNDD constraints. [97] presents theoretical results that characterize
these algorithms in terms of number of search tree nodes visited and consistency checks
performed by extending [54] where backtracking algorithms for binary CSPs are com-
pared (NDD constraints aren-ary). [97] also evaluate the performance of their algorithms
experimentally using randomly generated hard problems.

Armando et al. [6] subsequently showed how to improve the results of [97] by an
algorithm, called TSAT, which is built on top of a SAT solver that implements the Davis-
Putnam procedure efficiently. The SAT solver produces the sets ofBD constraints to be
checked for consistency. In addition, TSAT has a preprocessing step that produces a more
accurate SAT encoding than the obvious one, and a constraint propagation step as in the
forward checking algorithm of [97].

[83] presents CSPi, an extension of the forward checking algorithm of [97] with a
semantic branching step and a heuristic method for reducing the number of forward checks
performed. The semantic branching step, which is available for free in SAT methods such
as [6], is as follows. If the current valuation (set ofBD disjuncts){c1, c2, . . . , ci} cannot
be extended by another disjunctci+1 so that we reach a satisfying valuation, then CSPi
adds¬ci to the current valuation and proceeds to choose another literal from the(i + 1)-th
disjunction. [83] shows that CSPi improves on [97] and is competitive with TSAT.

[100] adopts the CSP framework of [97] and improves it by introducing no-good
recording as well as the other pruning techniques introduced by earlier literature (a differ-
ent form of the backjumping used in [97], semantic branching as used in [83] and removal
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of subsumed variables as used in [83]). The resulting system, called Epilitis, is shown to
dominate all earlier algorithms [97, 6, 83].

[98] was the earliest paper to deal with decidingBCBD constraints. The approach of
[98] is to transform a givenBCBD formulaφ into a propositional logic formula and then
use the SAT solver Chaff [78] to decide it. The transformation involves essentially the
following two steps:

• Introduce a new propositional variable for eachBD constraint inφ, and transformφ
into a new propositional logic formulaφ′.

• Conjoin to φ′ a new propositional logic formula that encodes transitive relations
among variables derived from the originalBD constraints.

Finally, [7] presents the system TSAT++ which is able to deal with Boolean combina-
tions of difference constraints using a SAT-based approach (in particular, the SIMO solver
[46]) and a powerful combination of preprocessing, constraint propagation, branching and
intelligent backtracking techniques. [7] demonstrates that TSAT++ is more efficient than
the systems of [97, 6, 100, 83, 98] presented above, but also MathSAT [8] which is able to
deal with Boolean combinations of linear constraints. The performance analysis of [7] is
based on randomly generated hard problems and instances of real-world applications.

Recently, Schwartz and Pollack studied incremental algorithms forNDD constraints
[93]. They consider three update operations (tightening the bound of aBD constraint, add
aBD constraint or add anNDD constraint) and present incremental algorithms to handle
these updates using techniques from dynamic CSPs such as no-good recording and oracles.

Finally, [76] shows how to solveNDD constraints using local search. Contrary to
earlier complete algorithms using a meta-CSP approach [97, 100, 83], the algorithm of
[76] searches over the space defined by the original CSP using an algorithm which derives
from GSAT [94] and Tabu search [47].

19.5 More Expressive Queries for Temporal CSPs

When constraint networks are used to represent temporal information (see Section 19.3),
their nodes represent the times when certain facts are true, or when certain events take
place, or when events start or end. By labeling nodes with appropriate natural language
expressions (e.g.,breakfast or walk in Example 19.5) and arcs by temporal relations,
temporal constraint networks can be queried in useful ways. The typical query targeted by
most of the algorithms discussed in Sections 19.3 and 19.4 is: “What is the strictest tempo-
ral relationship between intervals (or points)A andB?”. This query is typically answered
by consulting the minimal network corresponding to the given temporal constraints.

Van Beek [102] was the first to consider more expressive queries for databases with
temporal constraints. In [102], a database is a set ofIA constraints among appropriately
named interval constants (representingevents). The first class of queries considered by
[102] is modal(possibility or certainty) queries. Acertainty (resp. possibility) queryis a
formula of the form

OP φ(e1, . . . , en)?
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whereOP is ¤ (resp.♦), andφ is a Boolean combination ofIA constraints that use event
constantse1, . . . , en. As an example, consider the query “Is it possible that eventwalk
happened after eventbreakfast?”.

The second class of queries considered by [102] is aggregation queries. Anaggregation
queryis of the form

x1, . . . , xn : x1 ∈ E ∧ · · · ∧ xn ∈ E ∧OP φ(x1, . . . , xn)

whereE is the set of all events in the database,OP is the modal operator♦ or ¤, andφ
is a Boolean combination ofIA constraints that use variablesx1, . . . , xn. As an example,
consider the query “What are the known events that come after eventbreakfast?”.

The temporal reasoning systemLATER [18, 28] is another proposal for querying tem-
poral CSPs in sophisticated ways.LATER allows users to define symbolic time points and
time intervals and assert temporal constraints relating them with other symbolic objects, or
time constants representing conventionaldates, timesanddurations. LATER offers a prac-
tical temporal reasoning framework that includes vocabulary for expressing many useful
qualitative and metric temporal constraints. Only certain kinds of disjunctive relations are
allowed so that the expressive power ofLATER does not become greater than the expres-
sive power ofBD constraints [19]. The complete set ofLATER functions and predicates
can be found in [18].

The following types of queries are supported byLATER [18]:

1. Queriesextracting temporal information(e.g., when, how long, duration and relation
queries).

2. Modal queries as in [102].

3. Hypothetical queries.These queries allow one to query the database using queries
of types 1 and 2 under the assumption that certain additional temporal constraints
hold.

Although [102] andLATER offer expressive languages for querying databases of tem-
poral constraints, queries combiningnon-temporalas well as temporal information (e.g.,
“Who is certainly having breakfast before taking a walk?”) cannot be asked in these sys-
tems, even though the knowledge required to answer them might have been available in the
first place. This problem arises because temporal CSPs do not have the required expressive
power for representing all kinds of knowledge needed in a real application.

This situation has been understood by temporal reasoning researchers, and application-
oriented systems where temporal reasoners werecombinedwith general-purpose data and
knowledge representation frameworks have been proposed (and in most cases implemented).
These proposals include EPILOG2, Shocker3, TMM [31], Telos [79], and the relational
temporal constraint databases of [55] and [20]. EPILOG and Shocker use the temporal
reasoners Timegraph I and II, Telos uses a subclass ofIA, TMM usesBD constraints, the
proposal of [55] usesBD constraints and the system of [20] usesLATER.

In the rest of this chapter, we study thescheme of indefinite constraint databasespro-
posed by Koubarakis [58, 63], as the formalism that unifies the proposals of [102, 55,

2 Seehttp://www.cs.rochester.edu/research/epilog/ .
3 Seehttp://www.cs.rochester.edu/research/cisd/projects/kr-tools/ .
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18, 20]. This formalism is aschemebecause it can be instantiated with various kinds of
constraints defined by a first-order language (e.g., temporal, spatial etc. [63]). When the
constraints chosen are temporal, the resulting formalism can be used to represent temporal
constraints on various temporal objects, and the relational database can be used to store
facts referring to these objects.

Sections 19.6 and 19.7 show that in order to be able to answer queries in this scheme,
we must be prepared to go from temporal CSPs tofirst-order theories of temporal con-
straintsas studied in [71, 58]. We identifyvariable elimination(and its logical analogue
quantifier elimination) as the main technical tool needed by the proposed framework. We
then show that query evaluation in the proposed formalism can be viewed as quantifier
elimination in a first-order language of temporal constraints.

The indefinite constraint database scheme has been presented in the past as a constraint-
based extension of the relational data model [58] or as a constraint-based extension of an
equivalent subset of first-order logic [63]. We follow the second approach in this chapter
using material directly from [63].

19.6 First-Order Temporal Constraint Languages

We start by introducing some concepts useful for the developments in forthcoming sec-
tions. We will deal with many-sorted first-order languages [40]. For each first-order lan-
guageL, we will define a structureML that will give theintended interpretationof for-
mulas ofL (this is called theintended structurefor L). The theoryTh(ML) (i.e., the set
of sentences ofL that are true inML) will also be considered. Finally, for each language
L a special class of formulas calledL-constraintswill be defined.

Ladkin [71] and Koubarakis [58, 63] have defined various first-order temporal con-
straint languages where the atomic formulas come from the temporal CSP frameworks
defined in Section 19.3. As an example, we define below the first-order languagesPA, IA
andLIN that are based on the classes ofPA, IA andLIN constraints respectively.4

19.6.1 The languagesPA and IA

The languagePA is a simple first-order language that we can use for talking about points in
time. The logical symbols ofPA include: parentheses, a countably infinite set of variables,
the equality symbol= and the standard sentential connectives. There is only one non-
logical symbol: the predicate symbol<.

The intended structureMPA has the set of rational numbersQ as its domain, and
interprets predicate symbol< as the relationship “less than” over the rational numbers.
We will freely use other defined predicates like≤ and 6=. We definePA-constraintsto be
exactly the constraints of the classPA.

In a similar way, we can define the first-order languageIA which has as atomic formu-
las the interval constraints expressible in the classIA (see [60, 61] for a precise definition).

4 We use the calligraphic type style to write classes of constraints and italic type style to write the corre-
sponding first-order language.
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19.6.2 The languageLIN

The languageLIN is the first order language of linear constraints. The logical symbols of
LIN include: parentheses, a countably infinite set of variables, the equality symbol= and
the standard sentential connectives. The non-logical symbols ofLIN include: a countably
infinite set of constants (one for each rational numeral), the binary function symbols+ and
∗ (the symbol∗ can only be applied to a variable and a constant) and the binary predicate
symbol<.

The intended structureMLIN has the set of rational numbersQ as its domain.MLIN

assigns to each constant symbol an element ofQ, to function symbol+ the addition oper-
ation for rational numbers, to function symbol∗ the multiplication operation for rational
numbers, and to predicate symbol< the relation “less than” overQ. We defineLIN -
constraintsto be the constraints of the classLIN .

19.6.3 Quantifier and Variable Elimination

In this section we define the operations of quantifier and variable elimination. Quantifier
elimination is an operation from mathematical logic [40]. Variable elimination is an alge-
braic operation [90]. As we will see below, quantifier elimination algorithms utilize vari-
able elimination algorithms as subroutines. In the scheme of indefinite constraint databases
to be introduced in Section 19.7, the operation of quantifier elimination is very useful be-
cause it can be used for query evaluation. [35] discuss variable elimination and related
concepts for arbitrary CSPs.

Definition 19.12. Let Th be a theory in some first-order languageL. Th admits elim-
ination of quantifiersiff for every formulaφ there is a disjunctionφ′ of conjunctions of
L-constraints such thatTh |= φ ≡ φ′.

This definition is stronger than the traditional one whereφ′ is simply required to be
quantifier-free [40]. We requireφ′ to be in the above form because we do not want to deal
with negations ofL-constraints.

Let Th be a theory in some first order languageL, and letφ be a formula. IfTh
admits elimination of quantifiers, then a quantifier-free formulaφ′ equivalent toφ can be
computed in the following standard way [40]:

1. Compute the prenex normal form(Q1x1) · · · (Qmxm)ψ(x1, . . . , xm) of φ.

2. If Qm is ∃ then letθ1 ∨ · · · ∨ θk be a disjunction equivalent toψ(x1, . . . , xm) where
theθi’s are conjunctions ofL-constraints. Theneliminate variablexm from eachθi

to computeθ′i using avariable eliminationalgorithm forL-constraints. The resulting
expression isθ′1 ∨ · · · ∨ θ′k.

If Qm is∀ then letθ1∨· · ·∨θk be a disjunction equivalent to¬ψ(x1, . . . , xm) where
theθi’s are conjunctions ofL-constraints. Theneliminate variablexm from eachθi

to computeθ′i as above. The resulting expression is¬(θ′i ∨ · · · ∨ θ′k).

3. Repeat step 2 to eliminate all remaining quantifiers and obtain the required quantifier-
free formula.
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Step 2 of the above algorithm assumes the existence of a variable elimination algo-
rithm for conjunctions (or, equivalently,sets) of L-constraints. The operation of variable
elimination can be defined as follows.

Definition 19.13. The operation ofvariable eliminationtakes as input a setC of L-
constraints with set of variablesX and a subsetY of X, and returns a new set of con-
straintsC ′ such thatSol(C ′) = ΠX\Y (Sol(C)) whereΠZ is the standard operation of
projection of a relation on a subsetZ of its set of columns.

For the class ofLIN -constraints defined above variable elimination can be performed
using Fourier’s algorithm. Fourier’s algorithm can be summarized as follows [90]. Any
weak linear inequality involving a variablex can be written in the formx ≤ ru or x ≥ rl

i.e., it gives an upper or a lower bound onx. Thus if we are given two linear inequalities,
one of the formx ≤ ru and the other of the formx ≥ rl, we can eliminatex and obtain the
inequalityrl ≤ ru. Obviously,rl ≤ ru is a logical consequence of the given inequalities.
In addition, any solution ofrl ≤ ru can be extended to a solution of the given inequalities
(simply by choosing forx any value between the values ofrl and ru). Following this
observation, Fourier’s elimination algorithm forms all pairsx ≤ ru andx ≥ rl, eliminates
x and returns the resulting constraints. The generalization of this algorithm to strict linear
inequalities is obvious.

Example 19.14.Let us consider the following set ofLIN -constraints:

x3 ≤ x1, x5 < x1, x1 − x2 ≤ 2, x4 ≤ x5

The elimination of variablex1 using Fourier’s algorithm results in the following new set:

x3 − x2 ≤ 2, x5 − x2 < 2, x4 ≤ x5.

The following theorem will be useful below. The result forPA andIA are due to [71].

Theorem 19.15. The theoriesTh(MPA), Th(MIA) andTh(MLIN ) admit quantifier
elimination.

The presentation of preliminary concepts is now complete. We can therefore proceed
to define the scheme of indefinite constraint databases.

19.7 The Scheme of Indefinite Constraint Databases

In this section, we present the scheme of indefinite constraint databases originally proposed
in [58]. We follow the spirit of the original proposal but use first-order logic instead of
relational database theory.

We assume the existence of a many-sorted first-order languageL with a fixed intended
structureML. Let us also assume thatTh(ML) admits quantifier elimination(Section
19.6.3 has defined this concept precisely). For the purposes of this section,L can be a
language likePA, IA andLIN that can be used to talk about temporal objects (i.e., points
or intervals).

Let us now consider, as an example, the information contained in the following two
sentences:
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Mary took a walk in the park. After walking around for a while, she met Fred
and started talking to him.

The information in the above sentences is about activities (e.g., walking, talking), con-
straints on the times of their occurrence (e.g., after) and, finally, other information about
real-world entities (e.g., names of persons). Temporal CSPs as discussed in Section 19.3
can be used to represent such information.

In the scheme of indefinite constraint databases (and in similar formalisms like [31, 18])
information like the above is represented by utilizing a first-order temporal language like
LIN and extending it to represent non-temporal information. Let us now show how to
do this formally in an abstract setting by considering an arbitrary many-sorted first-order
languageL with the properties discussed above.

19.7.1 FromL to L ∪ EQ and (L ∪ EQ)∗

Let EQ be a fixed first-order language with only equality (=) and a countably infinite
set of constant symbols. The intended structureMEQ for EQ interprets= as equality
and constants as “themselves”.EQ is a very simple language which can only be used to
represent knowledge about things that are or are not equal.EQ-constraintsor equality
constraintsare formulas of the formx = v or x 6= v wherex is a variable, andv is a
variable or a constant.

We now consider the languageL ∪ EQ. The set of sorts forL ∪ EQ will contain the
special sortD (for terms ofEQ) and all the sorts ofL. The intended structure forL ∪ EQ
isML∪EQ = ML ∪MEQ.

The following lemma is straightforward.

Lemma 19.16. If theoryTh(ML) admits quantifier elimination then the same holds for
Th(ML∪EQ).

Finally, we define a new first-order language(L ∪ EQ)∗ by augmentingL ∪ EQ with
a countably infinite set ofdatabase predicate symbolsp1, p2, . . . of various arities. These
predicate symbols can be used to represent information about our application domain. The
arguments of these predicates will be constants and variables constrained by formulas of
L ∪ EQ. The indefinite constraint databases and queries defined below are formulas of
(L ∪ EQ)∗.

In the following example and all the examples of subsequent sections, we assumeL to
be the languageLIN defined in Section 19.6. The languageLIN∪EQ is now multi-sorted
with sortsD (for the constants ofEQ) andQ (for the rational constants ofLIN ).

Example 19.17.Let walk be a ternary database predicate symbol with arguments of sort
D, Q andQ respectively. The following is a formula of the language(LIN ∪ EQ)∗

capturing the fact that somebody took a walk during some unknown interval of time:

(∃x/D)(∃t1/Q)(∃t2/Q)(t1 < t2 ∧ walk(x, t1, t2))

19.7.2 Databases And Queries

In this section, the symbols̄x, ȳ, x̄i, ȳi, etc. will denote vectors of variables whilēω will
stand for a vector of Skolem constants. In addition, the symbolsT̄ and T̄i will denote
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vectors of sorts ofL. Similarly, the symbolD̄ will denote a vector with all its components
being the sortD.

Indefinite constraint databases and queries are special formulas of(L ∪ EQ)∗ and are
defined as follows [63].

Definition 19.18. An indefinite constraint databaseis a formulaDB(ω̄) of (L ∪ EQ)∗ of
the following form:

m∧

i=1

(∀x̄i/D̄)(∀t̄i/T̄i)(
li∨

j=1

Localj(x̄i, t̄i, ω̄) ≡ pi(x̄i, t̄i)) ∧ ConstraintStore(ω̄)

where

• Localj(x̄i, t̄i, ω̄) is a conjunction ofL-constraints in variables̄ti and Skolem con-
stantsω̄, andEQ-constraints in variables̄xi.

• ConstraintStore(ω̄) is a conjunction ofL-constraints in Skolem constantsω̄.

The second component of the above formula defining a database is aconstraint store.
This store is a conjunction ofL-constraints i.e., a CSP.̄ω is a vector ofSkolem constants
denoting time entities (e.g., points and intervals) about whichonly partial knowledgeis
available. This partial knowledge has been coded in the constraint store as a CSP using the
languageL.

The first component of the database formula is a set of equivalencescompletely defining
the database predicatespi. This is an instance of the well-known technique of predicate
completion in first-order databases [85].

These equivalences may refer to the Skolem constants of the constraint store. In tempo-
ral reasoning applications, the constraint store will contain the temporal constraints usually
captured by a CSP, while the predicatespi will encode, in a flexible way, the events or facts
usually associated with the variables of this CSP.

For a given databaseDB the first conjunct of the database formula will be denoted by
EventsAndFacts(DB), and the second one byConstraintStore(DB). For clarity, we
will sometimes write sets of conjuncts instead of conjunctions. In other words, a database
DB can be seen as the following pair of sets of formulas:

(EventsAndFacts(DB), ConstraintStore(DB)).

We will feel free to use whichever definition of database fits our needs in the rest of this
section.

The new machinery in the indefinite constraint database scheme (in comparison with
relational or Prolog databases) is the Skolem constants inEventsAndFacts(DB) and the
constraint store which is used to represent “all we know” about these Skolem constants.
Essentially this proposal is a combination of constraint databases (without indefinite infor-
mation) as defined in [52], and the marked null values proposal of [48, 1]. Similar ideas
can also be found in the first-order databases of [85].

Let us now give some examples of indefinite constraint databases. The constraint lan-
guage used isLIN but the constraints are simpler than full linear: rational order con-
straints, difference constraints and bounds on variables.
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Example 19.19. The following is an indefinite constraint database which formalises the
information in the paragraph considered at the beginning of this section.

( { (∀x/D)(∀t1, t2/Q)((x = Mary ∧ t1 = ω1 ∧ t2 = ω2) ≡ walk(x, t1, t2)),
(∀x/D)(∀y/D)(∀t3, t4/Q)

((x = Mary ∧ y = Fred ∧ t3 = ω3 ∧ t4 = ω4) ≡ talk(x, y, t3, t4)) },
{ ω1 < ω2, ω1 < ω3, ω3 < ω2, ω3 < ω4 } )

This database contains information about the eventswalk and talk in which Mary and
Fred participate. The temporal information expressed by order constraints is indefinite
since we do not know the exact constraint between Skolem constantsω2 andω4.

Example 19.20.Let us consider the following planning database used by a medical labo-
ratory for keeping track of patient appointments for the year 2006.

( { (∀x, y/D)(∀t1, t2/Q)
(((x = Smith ∧ y = Chem1 ∧ t1 = ω1 ∧ t2 = ω2)∨
(x = Smith ∧ y = Chem2 ∧ t1 = ω3 ∧ t2 = ω4)∨

(x = Smith ∧ y = Radiation ∧ t1 = ω5 ∧ t2 = ω6)) ≡ treatment(x, y, t1, t2)) },
{ ω1 ≥ 0, ω2 ≥ 0, ω3 ≥ 0, ω4 ≥ 0, ω5 ≥ 0, ω6 ≥ 0,

ω2 = ω1 + 1, ω4 = ω3 + 1, ω6 = ω5 + 2, ω2 ≤ 91, ω3 ≥ 91, ω4 ≤ 182,
ω3 − ω2 ≥ 60, ω5 − ω4 ≥ 20, ω6 ≤ 213 } )

Since we useLIN , the set of rationalsQ is our time line. The year 2006 is assumed
to start at time0 and every interval[i, i + 1) represents a day (fori ∈ Z andi ≥ 0). Time
intervals will be represented by their endpoints. They will always be assumed to be of the
form [B, E) whereB andE are the endpoints.

The above database represents the following information:

1. There are three scheduled appointments for treatment of patient Smith. This is rep-
resented by three conjuncts in the disjunction defining the extension of predicate
treatment.

2. Chemotherapy appointments must be scheduled for a single day. Radiation appoint-
ments must be scheduled for two consecutive days. This information is represented
by constraintsω2 = ω1 + 1, ω4 = ω3 + 1, andω6 = ω5 + 2.

3. The first chemotherapy appointment for Smith should take place in the first three
months of 2006 (i.e., days 0-91). This information is represented by the constraints
ω1 ≥ 0 andω2 ≤ 91.

4. The second chemotherapy appointment for Smith should take place in the second
three months of 2006 (i.e., days 92-182). This information is represented by con-
straintsω3 ≥ 91 andω4 ≤ 182.

5. The first chemotherapy appointment for Smith must precede the second by at least
two months (60 days). This information is represented by constraintω3 − ω2 ≥ 60.

6. The radiation appointment for Smith should follow the second chemotherapy ap-
pointment by at least 20 days. Also, it should take place before the end of July
(i.e., day 213). This information is represented by constraintsω5 − ω4 ≥ 20 and
ω6 ≤ 213.
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Let us now define queries. The concept of query defined here is more expressive than
the query languages for temporal CSPs discussed in Section 19.5 above, and it is similar
to the concept of query in TMM [31].

Definition 19.21. A first order modal queryover an indefinite constraint database is an
expression of the form̄x/D̄, t̄/T̄ : OP φ(x̄, t̄) whereOP is the modal operator♦ or ¤,
andφ is a formula of(L∪ EQ)∗. The constraints in formulaφ are onlyL-constraints and
EQ-constraints.

Modal queries will be distinguished in certainty queries (¤) and possibility queries (♦)
as in [102].

Example 19.22. The following query refers to the database of Example 19.19 and asks
“Who was the person who possibly had a conversation with Fred during this person’s walk
in the park?”:

x/D : ♦(∃t1, t2, t3, t4/Q) (walk(x, t1, t2) ∧ talk(x, Fred, t3, t4) ∧ t1 < t3 ∧ t4 < t2)

Let us observe that each query can only haveone modal operator which should be
placed in front of a formula of(L∪EQ)∗. Thus we do not have a full-fledged modal query
language. Such a query language can be interesting in a formal framework dealing with
indefinite information, but we will not consider this issue further in this chapter.

We now define the concept of an answer to a query.

Definition 19.23. Let q be the querȳx/D̄, t̄/T̄ : ♦φ(x̄, t̄) over an indefinite constraint
databaseDB. The answer toq is a pair (answer(x̄, t̄), ∅) such that

1. answer(x̄, t̄) is a formula of the form

k∨

j=1

Localj(x̄, t̄)

whereLocalj(x̄, t̄) is a conjunction ofL-constraints in variables̄t andEQ-constraints
in variablesx̄.

2. Let V be a variable assignment for variablesx̄ and t̄. If there exists a modelM of
DB which agrees withML∪EQ on the interpretation of the symbols ofL∪EQ, and
M satisfiesφ(x̄, t̄) underV thenV satisfiesanswer(x̄, t̄) and vice versa.

We have chosen the notation(answer(x̄, t̄), ∅) to signify thatan answer is also a
databasewhich consists of a single predicate defined by the formulaanswer(x̄, t̄) and the
empty constraint store. In other words, no Skolem constant (i.e., no uncertainty) is present
in the answer to a modal query. Although our databases may contain uncertainty, we know
for sure what is possible and what is certain.

Example 19.24.The answer to the query of Example 19.22 is(x = Mary, ∅).
The definition of answer in the case of certainty queries is the same as Definition 19.23

with the second condition changed to:
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2. LetM be any model ofDB which agrees withML∪EQ on the interpretation of the
symbols ofL ∪ EQ. Let V be a variable assignment for variables̄x and t̄. If M
satisfiesφ(x̄, t̄) underV thenV satisfiesanswer(x̄, t̄) and vice versa.

Definition 19.25. A query is calledclosedor yes/noif it does not have any free variables.
Queries with free variables are calledopen.

Example 19.26.The query of Example 19.22 is open. The following is its corresponding
closed query:

: ♦(∃x/D)(∃t1, t2, t3, t4/Q) (walk(x, t1, t2)∧ talk(x, Fred, t3, t4)∧ t1 < t3∧ t4 < t2)

By convention, when a query is closed, its answer can be either(true, ∅) (which means
yes) or (false, ∅) (which meansno).

Example 19.27.The answer to the query of Example 19.26 is(true, ∅) i.e., yes.

Example 19.28. Let us consider the database of Example 19.20 and the query “Find all
appointments for patients that can possibly start at the 92th day of 2006”. This query can
be expressed as follows:

{ x, y/D : ♦(∃t1, t2/Q)(treatment(x, y, t1, t2) ∧ t1 = 92) }
The answer to this query is the following:

( (x = Smith ∧ y = Chem2) ∨ (x = Smith ∧ y = Radiation), ∅ )

19.7.3 Query Evaluation is Quantifier Elimination

Query evaluation over indefinite constraint databases can be viewed as quantifier elimina-
tion in the theoryTh(ML∪EQ). Th(ML∪EQ) admits quantifier elimination. This is a
consequence of the assumption thatTh(ML) admits quantifier elimination (see beginning
of this section) and the fact thatTh(MEQ) admits quantifier elimination (proved in [52]).
The following theorem is essentially from [58] and [63].

Theorem 19.29.LetDB be the indefinite constraint database

m∧

i=1

(∀x̄i/D̄)(∀t̄i/T̄i)(
li∨

j=1

Localj(x̄i, t̄i, ω̄) ≡ pi(x̄i, t̄i)) ∧ ConstraintStore(ω̄)

and q be the querȳy/D̄, z̄/T̄ : ♦φ(ȳ, z̄). The answer toq is (answer(ȳ, z̄), ∅) where
answer(ȳ, z̄) is a disjunction of conjunctions ofEQ-constraints in variables̄y andL-
constraints in variables̄z obtained by eliminating quantifiers from the following formula
ofL ∪ EQ:

(∃ω̄/T̄ ′)(ConstraintStore(ω̄) ∧ ψ(ȳ, z̄, ω̄))

In this formula the vector of Skolem constantsω̄ has been substituted by a vector of appro-
priately quantified variables with the same name (D̄′ is a vector of sorts ofL). ψ(ȳ, z̄, ω̄)
is obtained fromφ(ȳ, z̄) by substituting every atomic formula with database predicatepi
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by an equivalent disjunction of conjunctions ofL-constraints. This equivalent disjunction
is obtained by consulting the definition

li∨

j=1

Localj(x̄i, t̄i, ω̄) ≡ pi(x̄i, t̄i)

of predicatepi in the databaseDB.
If q is a certainty query thenanswer(ȳ, z̄) is obtained by eliminating quantifiers from

the formula

(∀ω̄/T̄ ′)(ConstraintStore(ω̄) =⇒ ψ(ȳ, z̄, ω̄))

whereConstraintStore(ω̄) andψ(ȳ, z̄, ω̄) are defined as above.

Example 19.30.Using the above theorem, the query of Example 19.22 can be answered
by eliminating quantifiers from the formula:

(∃ω1, ω2, ω3, ω4/Q)
(ω1 < ω2 ∧ ω1 < ω3 ∧ ω3 < ω2 ∧ ω3 < ω4∧

(∃t1, t2, t3, t4/Q)((x = Mary ∧ t1 = ω1 ∧ t2 = ω2)∧
(x = Mary ∧ t3 = ω3 ∧ t4 = ω4) ∧ t1 < t3 ∧ t4 < t2)

The result of this elimination is the formulax = Mary.

Koubarakis and Skiadopoulos [58, 63] have studied the complexity of query answering
in the scheme of indefinite constraint databases for various temporal and spatial constraint
languagesL. Their results precisely outline the frontier between tractable and possibly
intractable query answering problem. [63] shows that if one wants to be able to answer
modal queries in PTIME, it is no longer sufficient to have a constraint class (e.g.,BD)
with PTIME reasoning problems (e.g., consistency checking forBD can be done inO(n3)
time); further conditions should be imposed on queries and databases.

19.8 Conclusions

We have surveyed work on temporal CSPs starting from early papers such as [3, 107, 31,
108, 34] and continuing with influential contributions that have been published as recently
as last year. There are certain topics of work in temporal CSPs that we did not cover due
to limited space. These include:

• Temporal CSPs for non-totally-ordered time e.g., partially ordered time, branching
time etc. [16].

• Representingperiodictemporal information by constraints [51].

• Non-convexintervals and their CSPs [9].

• Soft constraintsor preferencesin temporal CSPs [67].

• Overconstrainedtemporal CSPs [73].

• Connections withspatialCSPs [87].
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We expect research on temporal CSPs to continue healthily in the years to come due to
their importance in applications. In our opinion, the following topics are likely to be in the
front line of future developments:

• New algorithmic techniques for temporal constraint solving e.g., randomized algo-
rithms [68] or local search [76, 11].

• Theory and algorithms for combining temporal CSPs and optimization concepts [67,
73].

• Theory and algorithms for quantified formulas with temporal constraints [71, 58,
63].

• Tractability results for the classes where this question has not been answered com-
pletely e.g., [75].

• Integration with spatial CSPs to deal with spatio-temporal scenarios [62].
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