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Abstract

In recent years, numerous new backtracking algorithms have been proposed. The
algorithms are usually evaluated by empirical testing. This method, however, has
its limitations. Our thesis adopts a different, purely theoretical approach, which is
based on characterizations of the sets of search tree nodes visited by the backtrack-
ing algorithms. A new notion of inconsistency between instantiations and variables
is introduced, a useful tool for describing such well-known concepts as backtrack,
backjump, and domain annihilation. The characterizations enable us to: (&) prove
the correctness of the algorithms, and (b) partially order the algorithims according to
two standard performance measures: the number of visited nodes, and the number
of performed consistency checks. Among other results, we prove, for the first time,
the correctness of Backjumping and Conflict-Dirccted Backjumping, and show that
Forward Checking never visits more nodes than Backjumping. Our approach leads
us also to propose a modification to two hybrid backtracking algorithms, Backmark-
ing with Backjumping (BMJ) and Backmarking with Conflict-Directed Backjumping
(BM-CBJ), so that they always perform less consistency checks than the original
algorithms.
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Chapter 1

Introduction

Constraint-based reasoning is a simple, yet powerful paradigim in which many interest.-
ing problems can be formulated. A constraint network is defined by a set of variables,
a domain of values for cach variable, and a set of constraints between the variables.
The area of constraint-based reasoning has received alot of attention recently, and
numerous methods for dealing with constraint networks have been developed. The
applications of constraint networks include graph coloring. scene labelling, natural
language parsing, and temporal reasoning.

Constraint networks can be solved using Lacktracking search. The generie back-
tracking algorithm was first described more than a century ago, and since then has
been re-discovered many times [2]. In recent years, numerons new backtracking al-
gorithms have been proposed. The basic ones include Backjumping [7], Conflict-
Directed Backjumping [18], Graph-Based Backjumping [1]. Backimarking (6], and
Forward Checking [10]. Several hybrid algorithms, which combine two or more basic
algorithims, have also been developed [18. 19].

A question arises as to which of the known backtracking algorithms is the best
one. There is no straightforward answer. FFirst, the performance of backtracking algo.
rithms depends heavily on the problem being solved. Often, it is possible to construct
examples of constraint networks on which an apparently very efficient algorithmn is
outperformed by the most basic chronological backtracking. Second, it is not obvious
what measure should be employed for the purpose of comparison. Run time is not,
a very reliable measure because it depends on hardware and iinplementation, and
so cannot be casily reproduced. Besides, the cost of performing consistency chiecks
(checks which verify that the current instantiations of two variables satisfy the con-
straints) cannot be determined in abstraction from a conerete problem. The number
of consistency checks seems to be a more legitimate measure of the officiency of a
backtracking algorithm, although it neglects the ~overhead” costs incurred by main-
taining sophisticated data structures. Another standard mcasnre is the number of
nodes in the backtrack tree generated by an algorithing,

Prosser, in his landmark technical report! [17]. presents nine backtracking algo-

't has also appeared recently as a journal articlo (20].

]
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rithims in a uniform notation. thus facilitating their comparison. Prosser performed a
series of experiments to evaluate the algorithins against each other. Table 1.1 shows
how often one algorithm performed less cousistency checks than another over 430
instances of the zebra problem, a well-known benchmarking problem. The entries
containing zeros are especially interesting because they may indicate that one algo-
rithm is always better than another. However, such a hypothesis can never be verified
solely by experimentation: the relationship has to be proven thceoretically. In fact,
in the following chapters. it will be shown that some of the zero entries indicate a
general rule, whereas other do not.

BT | BJ | CBJ| BM | BMJ|BM-CBJ| FC | FC-BJ | FC-CBJ
BT - 0 0 0o 0 0 0 0 0
B.J 450 | - 0 132 0 0 0 0 0
Bl 450 | 150 - 370 230 0 130 35 5
BM 450 | 318 ] 80 - 31 3 13 3 2
BN 450 [ 450 § 170 | 119 - 17 29 7 3
BM-CBJ | 450 | 450 | 450 | 142 | 433 - 2386 117 35
FC 450 | 150 § 320 | 137 | 2] 163 - 0 0
FC-BJ 1450 ) 450 | 415 | 145 | 443 333 433 - o
FC-CBJ 450 [ 450 | 115 | M8 | 447 415 440 388 -

Table 1.1: How often one algorithim bettered another [17].

In this work we adopt a purely theoretical approach. We analyze several back-
tracking algorithms with the purpose of discovering general rules that determine their
hehaviour. A new notion of inconsistency between instantiations and variables is in-
troduced, a useful tool for describing such well-known concepts as backtrack, back-
jump. and domain annthilation. For every algorithm we attempt to formulate the
necessary and sufficient conditions for a scarch tree node to be visited by the algo-
rithm. Sometimes both conditions are the same, which gives us a complete charac-
terization of the set of visited nodes. More often we have to make do with a partial
characterization. which leaves out a “grey zone™ of nodes that may or may not be
visited by the algorithm.

The characterizing conditions enable us to: (a) prove the correctness of the algo-
rithms. and (b) construct partial orders (or hicrarchics) of the algorithms according
to standard performance measures. Among other results. we prove. for the first time,
the correctness of Backjumping and Conflict-Directed Backjumping, and show that
Forward Checking never visits more nodes than Backjumping.

The proofs are independent of the implementation method. We do not prove
the correctness of every backtracking algorithm discussed in this work, but rather
present a methodology which can be applied to any backtracking algorithm. All proofs
presented here arve original. We hope that. apart from demonstrating correctness, our

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13V



new approach will provide a deeper understanding of how the algorithms work. Such
insight may result in less time spent on the implementation and debugging of the
algorithms.

Hierarchies may be useful to anyone who is faced with a choice of a backtracking
algorithm. With so many backtracking algorithms around. it is difficult to implement
and test all of them. The hierarchies make the sclection of the right algorithm easier
once it has been established what one's priorities are. For example, someone may
be interested solely in reducing the number of consistency checks. while for someone
else the complexity of the code may be the main factor. We present two hierarchies;
one orders the algorithms according to the number of visited nodes, and the other
according to the number of performed consistency checks.

The need for hierarchies has been recognized before. Nudel [16] gives a ranking
of some backtracking algorithms based on the average-case performance reported by
Haralick [10]. Prosser [17] orders nine backtracking algorithms according to their
average-case performance on 150 instances of the zebra problem.  However, such
an approach is open to the criticism that the test problems are not representative
of the problems that arise in practice’. Even a theorctical average-case analysis is
possible only if one makes simplifying assumptions about the distribution of problems.
In contrast. our hierarchics are valid for all instances of all constraint satisfaction
problems.

In the conclusion of his paper which presented the new hybrid backtracking algo-
rithms, Prosser posed the followir.g question [17]:

It was predicted that the BN hvbrids. BN and BM-CBJ, could per-
form worse than BN because the advantages of backmarking may be lost,
when jumping back. xperimental evidence snpported this. Therefore, a
challenge remains. Iow can the backmarking behaviour be protected?

In this work we answer the question by meodifving the two BM hybrids, Backmark-
ing with Backjumping (BMJ), and Backmarking with Conflict-Directed Backjumping
(BM-CBJ), so that they always perform less consisteney checks than the correspond-
ing basic algorithms. It is immportant that hybrid algorithms have this property in
order to offset the disadvantages of a more complex code and higher overhead costs.

The thesis is organized as follows. Chapter 2 contains the necessary definitions
and the descriptions of the backtracking algorithins. Chapter 3 shows our methodol-
ogy applied to four basic backtracking algorithms. Chapter 4 extends the approach
to other backtracking algorithins. Chapter 5 presents some experimental results.
Chapter 6 provides suggestions for future work and a summary.

2Prosser acknowledges this in [17): “ft is naive to say that one of the algorithms is the ‘champion’.
The algorithms have been tested on one problem, the ZEBRA. 1t might be the case that the relative
performance of these algorithms will change when applied 1o a different problem.”
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Chapter 2
Background

This chapter contains the necessary definitions and the descriptions of the backtrack-
ing algorithms. In the first section. a new notion of inconsistency between instanti-
ations and variables is introduced. The basic concepts of the constraint satisfaction
paradigm are also included. In the second section, backtracking algorithms are iden-
tified by presenting the C-language code adapted from a CSP function library [12].

2.1 Definitions
We begin with some basic concepts of the constraint satisfaction paradigm.

Definition 1 A binary constraint network//3] consists of a set of n variables
{a1, ... x0}; their respective value domains, Dy, ..., D,; and a set of binary con-
straints. A binary constraint or rclation. Rij, between vaviables z; and z;, is any
subset of the product of their domains' (that is, Ry € D; x D;). We denote an
assignment of values to a subsel of variables by a luple of ordered pairs, where each
ordered pair (x,1) assigns the valuc t to the variable x. A tuple is consistent if it
satisfies all constraints on the variables conlained in the tuple. A (full) solution of
the network is a consistent tuple containing all variables. A partial solution of the
network is a consistent tuple conlaining somce variables. For simplicity, we usually

abbreviate ((x1, Xy)..oo o (@, X0)) to (X, ... X)),

In this work we introduce a new notion of consistency between a tuple of instan-
tiations and a set of variables. This notion is fundamental to virtually all proofs
presented in this work.

Definition 2 4 tuple ((w:.Xi)), ..., (xi,. X)) is consistent with a set of variables
{rise v 2} if there cxist instantiations X, ,..., X, of the variables zj,...,z;j,
respectively, such that the tuple ((ry, Ni)oo oo (in s Xi ) (s Xjy ) s e e oy (250, X50)) 38

"Throughout the thesis we assume that all domain values satisfy the corresponding unary

constraints.
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consistent. A tuple is consistent with a variable if it is consistent with a onc-clement
set containing this variable. Instcad of writing “is consistent with™, we somelimes
use the symbol .

The notion of consistency between a tuple aud a set of variables can also he
expressed by the following formula:

((-l'in-\'h)s"'9(‘1.1'.‘!‘\-1'-‘)) A (SU {'J}) =
€ Dyt (252 Xiy ooy (i i) (0 1)) A S, (2.1)

where S is a set of variables.
By applying the above formula 12 times? we obtain:

c A {.‘I',,...,.’l‘,,} =
€D . 3, €D, (it (i t)) AN B, (2.2)

where € is the empty tuple. Informally, the equation states that a network of n
variables is consistent if and only if there exists a solution to the network.

Example 1. The n-queens problemis how to place i queens on anxn chess hoard
so that no two queens attack each other. There are several possible representations
of this problem as a constraint network (sce [15]). The one we use identifies board
columns with variables, and rows with domain values. Thus, variable 2 represents
the iz-th column, and its domain D; contains n values representing cach row. The
constraint between variables a; and &; can be expressed as R, = {(X;, X;) 1 (Xi #
X)) A (i =31 # 1.Xi = XD} Figure 2.1 shows two instances of the 4-queens problem.
The shaded squares denote the posi” s which are excluded from consideration by
the already placed queens. The instance on the left depicts tuple ((&y,4), (2, 2)),
which is a partial solution. The tuple is itsell consistent and it is consistent with
the set of variables {ay,xy, w4} and all its subsets, including the empty set. It is
inconsistent with all sets of variables that include oy, W is consistent with variables
Ty, @2, and x4, but not with variable x3. The instance on the right depicts tuple
((z1,2), (22,4), (23, 1), (x4, 3)), or simply (2,1,1,3), which is a {ull solution. The tuple
is consistent with all scts of variables. Since the network has a solution, the empty
tuple ¢ is also consistent with all sets of variables.

The idea of a backtracking algorithin is to extend partial solutions. At every stage
of backtracking scarch, there is some currcnt partial solution which the algorithm
attempts to extend to a full solution. Fach variable occurring in the current partial
solution is said to be instantialed to some value from its domain. In this work we
assume the static order of instantiation, in which variables are added to the current
partial solution according to the predefined order of instantiation: xy,...,c,. It is
convenient to divide all variables into three sets:

>Throughout the thesis we use 1 to denote the number of variables in the network.
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Figure 2.1: A partial and a full solution to the 4-queens problem.

o past variables - those which have already been instantiated,
o currcnl variable - that which is being instantiated,
o fulurc variables - those which are to be instantiated.

A dead-cnd is the situation when all values of the current variable are rejected by
a backtracking algorithm when it tries to extend a partial solution. In such a case,
some instantiated variables become wninstantiated; that is, they are removed from the
current partial solution. This process is called backiracking. 1f only the most recently
instantiated variable becomes uninstantiated then it is chronological backtracking or
backstepping.  Otherwise, it is backjumping. A backiracking algorithm terminates
when all possible assignments have been tested or a certain number of solutions have
been found.

Since we make extensive use of tree terminology, a few definitions are in order (see
[1]). A trecis a directed graph with no cycles satisfying the following properties:

1. Fhere is exactly one node, called the rool, which no edges enter.
2. Every node except the root has exactly one entering edge.
3. There is a path from the root to cach node.

If there is an edge from node v to node w then v is called the parent of w, and w
is a child of v. If there is a path from v to w then v is an ancestor of w and w is a
descendant of v. Furthermore, if © # w then v is a proper ancestor of w, and w is a
proper descendant of v. A node with no proper descendants is called a leaf. A node
o and all its descendants are called a subtree. The node v is called the root of that
subtree. The level of a node v in a tree is the length of the path from the root to v.

A backtrack search may be scen as a scarch tree traversal. In this approach we
identify tuples (assignments of values to variables) with nodes: the empty tuple € is
the root of the tree, the first level nodes are I-tuples (representing an assignment of
a value to variable ry), the second level nodes are 2-tuples, and so on. The levels
closer to the root are called lower levels, and the levels farther from the root are
called higher levels. Similarly, the variables corresponding to these levels are called
lower and higher. The nodes which represent consistent tuples are called consistent
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nodes. The nodes which represent inconsistent tuples are called inconsistent nodes.
We say that a backtracking algorithm visits a node if at some stage of the algorithim’s
execution the instantiations of the current variable and the past variables form the
tuple identified with this node. The nodes visited by a backtracking algorithm form
a subset of the set of all nodes belonging to the scarch tree. We call this subset,
together with the connecting edges, the backtrack tree generated by a backtracking
algorithm. Backtracking itself can be seen as retreatiag to lower (closer to the root)
levels of the search tree. Whenever some variables are uninstantiated and ap is sel as
the new current variable, we say that the algorithm backtracks to level h.

Example 2. The confused n-queens problem, described in [14], is how to place
n queens on a n X n chess board, one queen per column, so that all queens do
attack each other. Similarly to the regular n-queens problem, variable z; represents
the -th column, and its domain 1); contains n values representing cach row. The
constraint between variables a; and ; can be expressed as It = {(X;, X;) : (X =
X)v(li—=jl = 1Xi—X;])}. Figure 2.2 shows the search tree for the confused 3-queens
problem. Horizontal dashed lines represent levels of the search tree, which correspond
to variables. White dots denote consistent nodes. Black dots denote inconsistent,
nodes. The circled consistent nodes at the last level of the tree arve the solution
nodes. Nodes are labelled according to the tuples they represent, but parentheses
and commas have been omitted for clarity; ior instance, node ‘23° represents tuple
(2,3). All nodes except the six nodes marked with
the generic backtracking algorithm (BT).

x" belong to the backtrack tree of

root

XXX XXX

Figure 2.2: An example of a scarch tree.
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We consider two backtracking algorithms to be equivalent if on every constraint
network they generate the same backtrack tree and perform the same consistency

checks.

2.2 Backtracking Algorithms

In this section we present six basic backtracking algorithims and four of Prosser’s hy-
brid backtracking algorithms. We identify the algorithms by including the C language
source code from a CSP library [12]. We chose to include the C code rather than
pscudocode because the C language syntax is widely known and unambiguous. The
code can be actually compiled and run, given suitable header files. The names of the
algorithms are the same as in [17]. These versions of the algorithms are designed to
find the first solution only.

It must be stressed that the algorithms may be implemented in many different
ways. It is important, however, that all implementations of the same algorithm
generate the same backtrack tree and perform the same consistency checks.

2.2.1 Functions and Data Structures
The following variables, constants and routines are used:
e N is a constant that denotes the number of variables.

e K is a constant that denotes the domain size (for simplicity it is assumed that
all domains have the same size).

o current is a variable that contains the number of the current variable.

e v is a one-dimensional array of size N that contains the current instantiations
of the variables.

e The main function of every algorithm returns the number of the variable which
is selected as the backtracking point (in some cases the return value is not used).

e Function consistent(current) returns 1 if the current instantiation is consistent
with past instantiations (or, in the case of forward checking algorithms, future
variables), and 0 otherwise.

o Function check(i,j) returns 1 if the consistency check between v[Z] and v[j] suc-
ceeds, and 0 otherwise.

o Procedure solution() processes the solution stored in the v array (if only one
solution is sought, it also terminates the algorithm).

o Procedure merge(S;,S;) merges two sets: S 1= S, U Ss.

o Procedure cmpty(S) emptics a set: S 1= 0.
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o Procedure add(r,S) adds an clement to a set: S8 := SU {xr}.
e Procedure delcte(x,S) deletes an element from a set 8 := 8 — {«}.
e Function maz(S) returns the maximal element of set S,

The search is started by invoking the main function with the first variable as the
parameter.

2.2.2 Chronological Backtracking (BT)

Chronological Backtracking (BT) [9, 2] is the generie backtracking algorithm. This is
the starting point for all modifications that result in more sophisticated backtracking
algorithms. The main advantage of BT is its simplicity. It always backtracks chrono-
logically to the most recently instantiated variable. While BT is more efficient than
the naive “generate and test™ approach, there is still much room for improvement.

int consistent(current)
int current;
int i;

for (1 = 1; 1 < current; i++)
if (check(current,i) == 0)
return(0);
return(1);

int BT(current)
int current;

{ .
int 1i;
if (current > N) {
solution();
return(N); }
for (1 = 0; 1 < K; i++) {
vicurrent] = 1i;
if (consistent(current))
BT(current + 1); }
) return(current-1);

In terms of the backtrack tree the algorithim can be described as follows. When
an i-level node is visited, consistency checks are performed hetween the instantiation
of the current variable and all carlier instantiations along the corresponding branch
of the tree, starting from level 1. If all checks succeed, the branch is extended by
instantiating the next variable 2,4, to cach of the values in its domain. Otherwise
the branch is abandoned, and the next domain value is tried. If there are no more
values to be tried for the current variable, BT backtracks to level ¢ — 1. A solution is
recorded every time when all consistency checks sueceed at an n-level node,
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BT often generates subtrees that are identical to previcusly explored subtrees by
instantiating variables that play no role in the current inconsistency. Such behaviour
is called thrashing [11]. Other backtracking algorithms attempt to minimize thrashing.

2.2.3 Backjumping (BJ)

Backjumping (B.J) [7] i sinular to BT, except that it behaves more efficiently when no
consistent instantiation can be found for the current variable (a dead-end). Instead
of backstepping to the preceding variable, BJ backjumps to the highest variable that
conflicted with the current variable.

int consistent(current)
int current;

int i;

for (1 = 1; i < current; i++)
if (check(current,i) == 0) {
max_check{current] = max(max_check[current],i);
return(0); }
max_check[current] = current - 1;
return(l);

int BJ(current)
int current;

{
int i, jump;
if (current > N) {
solution();
return(N); }
max_check[current] = 0;
for (1 = 0; i < K; i++) {
vicurrent] = i;
if (consistent(current)) {
jump = BJ(current + 1);
if (jump != current)
return(jump); } }
) return(max_check[current]);

The consistency checks between the instantiation of the current variable and the
instantiations of the past variables are performed according to the original order
of instantiations (ry,xy,...). The checking stops as soon as one consistency check
fails. The entry max_checki] stores the number of the highest variable that was
checked against the current instantiation of w;. This value is used for determining the
backtracking point at the end of the main function.

The main problem with BJ is that it backjumps only from dead-ends. All other
backtracks are chronological, so there is still a lot of thrashing. On the plus side, the
overhead costs are small in BJ.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10



2.2.4 Conflict-Directed Backjumping (CBJ)

Conflict-Directed Backjumping (CBJ) [18] has cven more sophisticated backjumping
behaviour than BJ. Every variable has its own conflict set that contains the past
variables which failed consistency checks with its current instantiation. Every time a
consistency check fails between the instantiation X; of the current variable and some
past instantiation X, the variable ry is added to the conflict set of x;. When there
are no more values to be tried for the current variable w;, CBJ backtracks to the
highest variable x; in the conflict set of &;. At the same time, the conflict set of r; is
absorbed by the conflict set of ay, so that no information about conflicts is lost.

int consistent(current)
int current;

int i;
for (i = 1; i < current; i++)
if (check(current,i) == 0) {
add(i,conf_set[current]);

return(0); }
return(1);

int CBJ(current)
int current;

{
int h, i, jump;
if (current > N) {
solution();
return(N); }
empty(conf_set[current]);
for (i = 0; 1 < K; i++) {
vicurrent] = i;
if (consistent(current)) {
jump = CBJ(current + 1);
if (jump != current)
return(jump); } }
h = max(conf_set[current]);
merge(conf_set[h], conf_set[current]);
) return(h);

The code of CBJ is similar to BJ. Instead of the simple array maz_check we have
an array of sets conf_scl. At a dead-end, mar_cheek{i] corresponds to the maximal
element of conf_sctfi].

CBJ has an ability to perform “multiple backjumps,” that is, after the initial
backjump from a dead-end it can continue backjumping across conflicts, which may
potentially result in significant savings. This comes at a price, however, because the
cost of maintaining additional data structures is higher than in BlJ.
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2.2.5 Graph-Based Backjumping (GBJ)

Graph-Based Backjumping (GBJ) [4] similarly attempts to backtrack more than one
level if possible. It utilizes knowledge about the constraint graph to backtrack to the
highest variable connected ? to the current one.

int consistent (current)
int current;

int i;

for (i = 1; 1 < current; i++) {
if (check(current,i) == 0)
return(0); }
return(1);

int GBJ(current)
int current;

{
int h, i, jump;
if (current > N) {
solution();
return(N); }
for (1 = 0; 1 < K; i++) {
v[current] = i;
1f (consistent(current)) {
jump = GBJ(current + 1);
if (jump '= current)
return(jump); } }
merge(P,parents(current));
h = max(P);
delete(h, P);
) return(h);

Function consistent() is the same as in BT, There are no additional operations
during consistency checking. Function parents(i) returns the PARENTS set of z;
— the set of variables connected to @ that precede it in the instantiation order.
For example, in the constraint network shown in Figure 4.10: PARENTS[z,] = 0,
PARENTS[2y] = 0, PARENTS[w3) = {&). @2}, PARENTS[24]) = {23}. P is a global
set variable (initially empty) which contains variables that may have caused the in-
consistency.

GBJ is significantly better than BT only if the constraint graph is sparse. If the
constraint graph is fully connected, GBJ generates the same backtrack tree as BT.
The overhead costs are smaller than in (BJ because the PARENTS sets need only

be computed once, before the scarch begins.

¥Two variables are connected if there is a nontrivial constraint between them.
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2.2.6 Backmarking (BM)

Backmarking (BM) [6] imposes a marking scheme on the Chronological Backtracking
algorithm in order to eliminate some redundant consistency checks. The scheme is
based on the following two obscrvations [LI1]: (a) Il at the most recent node where a
given instantiation was checked the instantiation failed against some past instantiation
that has not yet changed, then it will fail against it again. Therefore, all consistency
checks involving it may be avoided (type-A\ savings). (h) If, at the most recent
node where a given instantiation was checked. the instantiation succeeded against
all past instantiations that have not yet changed, then it will succeed against them
again. Therefore we need to check the instantiation only against the more recent past
instantiations which have changed (type-B savings).

int consistent(current)
int current;

int i, oldmbl;

0ldmbl = mbl([current];

if (mclcurrent] [v[current]] < oldmbl)
return(0);

for (i = oldmbl; i < current; i++) {
mcl[current] [v(current]] = 1;
if (check(current,i) == 0)

return(0); }
return(1);

int BM(current)
int current;

{
int h, 1i;
if (current > N) {
solution();
return(N); }
for (i = 0; 1 < K; i++) {
v{current] = i;
if (consistent(current))
BM(current + 1); 7}
h = current - 1;
mbl [current] = h;
for (i = h+1l; i <= N; i++)
mbl[i] = min(mbl[i],h);
) return(h) ;

The marking scheme is implemented using two arvays: bl (minimum backup
level) of size n, and mel (maximum checking level) of size o< . The entry mbljz]
contains the number of the lowest variable whose instantiation has changed since the
variable 2; was last instantiated with a new value. The entry mel[i][7] contains the
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number of the highest varviable that was checked against the j-th value in the domain
of the variable x;. All entries in both variables are initially set to 1. The behaviour
of BM will be analyzed in detail in Section 4.1.

BM visits exactly the same nodes as BT, with all the thrashing involved. However,
at some nodes it may perform no consistency checks at all.

2.2.7 Forward Checking (FC)

So far, all described algorithms perform the consistency checks backward, that is,
between the current variable and the past variables. For this reason we call them
the backward checking algorithims. In contrast, Forward Checking (I°C) [10] performs
consistency checks forward, that is, between the current variable and the future vari-
ables. When an i-level node is visited. the domains of the future variables are filtered
in such a way that all values inconsistent with the current instantiation are removed.
If none of the future domains is annihilated, the branch is extended by instantiating
the next variable a4, to cach of the values in its filtered domain. Otherwise, the
branch is abandoned, the effects of forward checking are undone, and the next value
is tried. If there is no more values to tried for the current variable, FC backs up to
the level 7 — 10 A solution is recorded every time an n-level node is reached.

void restore(i)
int 1;
{

int j, a;

for (j = i+1; j <= N; j++)
if (checking(i][j]) {
checking[i][j] = 0;
for (a = 0; a < K; a++)
if (domains[jl([a] == i)
domains([j][a] = 0; }

int consistent (current)
int current;

int j, a;
int old = 0, del = 0;

for (j = current + 1; j <= N; j++) {
for (a = 0; a < K; a++)
if (domains[jJ[al == 0) {
old++;
vijl = a;
if (check(current,j) == 0) {
domains(j] [a] = current;
del++; } }
if (del)
checking[current] [j] = 1;
if (old - del == 0)
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return(j); }
return(0);

int FC(current)
int current;

int i, fail;

if (current > N) {
solution();
return(N); }
for (1 = 0; 1 < K; i++) {
if (domains([current][i])
continue;
vlcurrent] = i;
fail = consistent(current);
if (fail == 0)
FC(current + 1);
restore(current); }
return(current-1);

I'C uses two global arrays. The integer arvay domains is of size N x K. If
domainsli}{j] = t and { > 0. it means that the j th value has been removed from the
domain of variable &; because of the current instantiation of the variable o, If § = 0,
the value is still in the domain. The Lhoolean avvay chocking is of size N x N. The
entry checkingl[i][j] is set il the carrent instantiation of variable o, canses removal of
some value from the domain of future variable «,. Otherwise, it is cleared. All entries
in both arrays are initially set to 0.

Forward consistency checking is handled by two routines. Function consistent(i)
returns the number of the variable which hias been annibilated during forward check-
ing. If no variable has heen annihilated. the function veturns 0. Procedire restore(i)
undoes the changes caused by the instantiation of .,

FCis very cfficient hecause of its ability to discover inconsistencies carly. The size
of the backtrack tree is thus greatly reduced. However, sinee it consults all variables
in the network after every unew instantiation, °C sometimes performs consisteney
checks that are avoided by the backward checking algorithims.

2.2.8 Backmarking Hybrids

Backmarking and Backjumping (BNJ), and Backmarking and Conflict-Directed Back-
Jjumping (BM-CBJ) [17] incorporate backjumping within the Backmarking algorithimn.
Both algorithms ave similar to BN The difference lies in using additional data struc-
tures for backjumping: mac_cheek in BNLI and confosct in BN-CRBJ. The code of
both algorithms is presented side by side in ovrder to emphasize their similarity. Only
the lines marked by *#" are different. The dines marked by “=" ave identical.
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int consistent(z)
int z;
{

int i, oldmbl;

oldmbl = mbl(z];
if (mcllz][v[z]] < oldmbl) {

return(0J; }
for (i = oldmbl; i < z; i++) {
mcl(z][v(2]] = i;
if (check(z,i) == 0) {
max_check([z] =
max{max_check([z],i);
return(0); } }
fiax _check([z] = z - 1;

}

int BMJ(2)
int z;
{

int h, i, jump;

if (2 > N) {
solution(};
return(¥); }
max_check{z] = 0;
for (i = 0; i < K; i++) {
viz] = 1;
if (consistent(z)) {
jump = BMJ{z + 1);
if (jump '= z)
return(jump); } }
h = max_check[z];

mbl(z] = h;

for (i = h+l; 1 <= N; i++)
1E1fi] = min(mbl[i],h);

return(h);

It is straightforward to create other

nt consistent(z)
nt z;

1
[¥N

[}
A e

= int i, olmbl;

oldmbl = mbl[z];

= if (mell2][v[z]] < oldmbl) {

] add(mcl{z][vi{z]],conf_set[2]);

= return(0); }

= for (i = oldmbl; i < z; i++) {

= mcllz] [v(2]] = i;

= if (check(z,i) == 0) {

8 add(i,conf_set[z]);

8

= rezurn(0); } 2

#

= return(l);

= 3}

# int BM_C23(z2)

= int z;

= {

= int h, I, jump;

= if (2> W |

= sclution();

= return(N); }

# empty(conf_setr[z]);

= for (i = 0; i < K; i++) {
vizl = i;

= if (consistent(z)) {

= jump = BM_CBJ(z + 1);

z if (jump '= 2)

= return(jump); } }

# h = max{conf_set[z]);

8 merge(cenf_set[h],conf_set[z]);

= mb1(z] = h;

= for (1 = h+1; 1 <= N; i++)
b1li] = min(e 7 7i] ,h);

= return(h);

= }

hybrids: BN-GRB.J. which combines BM and

GBJLand FC-GBJL which combines FC and GBJ. We will not. however. discuss GBJ
hybiids in this work. becanse they are neither conceptually simple nor more efficient

than the alveady known backtracking aleorithms.
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2.2.9 Forward Checking Hybrids

Forward Checking and Backjumping (FC-BJ} and Forward Checking and Conflict-
Directed Backjumping (FC "B 117] incorporate backjumping within the Forward
Checking algorithm. In conrast with FC. which always backtracks chronologically,
the FC hybrids record the information about the variables that caused the current
inconsistency. Later. this information is used to determine the backtracking point.

int FC_BJ(2)
int z;
{

int k, i, j, jump, fail;

if (z > N) {
soluticn();
return(¥);
max_check[z] 0;
for (i = 0; i < K; i++) {
if (domains([z][i])
continue;
v[z] = i;
fail = consistent(z);
if (fail == 0) {
max_check([z] = z-1;
jump = FC_BJ(z + 1);
if (jump != 2)
return{jump); }
restore(z);
if (fail)
for (j = 1; j € z; j++)
if (checkinglj](fail])
max_check[z] =
max(max_check({z],jJ;}
h = max_check[z];
for (j = 1; j < z; j++)
if (checking(jl(z])
h = max(h,j);

}

for (i = 2; i >=h; i--)
restore(i);
return(h);

i

n %= i

1] H

h o = it

I &% & ® (I 1 = & & it U L[]

int FC_CBJ(z)
int z;
{

int h, i, j, jump, fail;

if (z > N) {
solution();
return(N); }
empty(conf_set[i]));
for (i = 0; 1 < K; i++) {
if (domains[z][i])
continue;
viz} = i;
fail = consistent(z);
if (fail == 0) {

jump = FC_CBJ(z + 1);
if (jump '= 2)
return(jump); }
restore(z);
if (fail)
for (j = 1; j < 2z; j++)
if (checkinglj](faill)
add(j,conf_set[2]); }

for (j = 1; j < z; j++)
if (checking(jl(z1)
add{j,conf_set[z]);
h = max(conf_set[z]);
merge(conf_set[h],conf_set(z]);
for (i = 2z; i >= h; i--)
restore(i);
return(h);

3

In addition to the data structures inherited from FO. the FC hybrids use the data
structures of the backward checking algorithons. FC-BJ employs the array mazr_check
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of BJ, whercas FC-CBJ uses conf_sct of CIJ. Functions consistent(i) and restore(i)
are identical to those in FC.

The FC hybrids attempt to combine the advantages of forward checking and back-
Jumping. However, the resulting algorithms are complex and hard to understand in
detail,
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Chapter 3

Four Basic Algorithms

In this chapter we formally analyze the hehaviour and prove the correctness of four
well-known backtracking algorithms: Chronological Backtiracking (B'1), Backjump-
ing (BJ), Conflict-Directed Backjumping (CBJ). and Forward Checking (1FC). The
chapter is organized as follows. Section 3.1 shows how the algorithms work on a
nontrivial example. Section 3.2 defines backjumps in terms of inconsistency hetween
variables and instantiations. Scction 3.3 points out the modifications which have
to be introduced in order for the algorithims to find all solutions. Section 3.4 con-
tains the fundamental basic theorems deseribing the hehaviour of the backtracking
algorithms. Section 3.5 presents the hierarchy with respect to the number of visited
nodes. Section 3.6 contains correctness proofs.

3.1 A Few Insights

Let us start by presenting an example which illustrates the differences hetween these
four algorithms.

Example 3. Figure 3.3 shows a fragment of the backtrack tree generated by BT
for the 6-queens problem. White dots denote consistent nodes. Black dots denote
inconsistent nodes. The dark-shaded part of the tree denotes two nodes which are
skipped by BJ. The light-shaded part denotes nodes which are skipped by CBJ. The
numbered cousistent nodes are the nodes visited by FFC. Dashed arrows represent,
backjumps. The left one is performed Ly CBJ, and the right one is performed by
BJ. Chronological backtracks are not represented. The hoard in the upper right
corner depicts the placing of queens corresponding to node 253 in the backtrack tree.
Capital Q’s on the board represent queens which have already been placed on the
board. The shaded squares represent positions which have heen excluded due to the
already placed queens. The numbers inside the excluded squares indicate the earliest
placed queen responsible for their exclusion; 1.2.3 correspond to the first, second, and
third queen respectively.

The search performed by BT on the subtree rooted at node 253 is uneventful.

19
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Figure 3.3: A fragment of the BT backtrack tree for the 6-queens problem.

livery consistent node is fully expanded. Two dead-ends are encountered, and a total
of 31 nodes are visited.

BJ manages to skip two nodes in the subtree. The algorithm dotects a dead-end
at variable wg when it tries to expand node 23364, 1t then backtracks to the highest
variable in conflict with wg. in this case vy, We could say that BJ discovers that the
tuple (2,5,3.6), which is composed ol instantiations in conflict with ag, is inconsistent
with variable wg. "To see this, notice that if we place a queen in column 4 row 6, every
square in column 6 is attacked by the queens placed in the first four columns. Indeed,
there is no point in trying out the remaining values for a5 because that variable plays
no role in the inconsistency. Nodes 25365 and 25366 may be safely skipped.

Note that backtracking to level 7 does not mean that the next visited node will be
on the level . Tn our example, BJ alter backjumping from node 253646 to level 4 finds
that there are no more values to be tried for variable ay: therefore, it chronologically
backtracks to g and visits node 251,

("BJ achieves considerable savings as it skips seventeen nodes in the subtree.
The algorithm reaches a dead-end when expanding node 25314, At this moment the
conflict set of wy is {1,2,3,5} because the instantiations of these four variables prevent
a consistent instantiation of variable #;. To see this, notice that after the fourth and
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the fifth queen are placed, column 6 of the chess board contains numbers 1,2, 3, and
5 as the reasons for the unavailability of the squares. CBJ backtracks to the highest
variable in the conflict set, which is ws. No nodes are skipped at this point. The
conflict set of x¢ is absorbed by the conflict set of w5, which is now {1,2,3}. After
trying the two remaining values of @5, CBJ backjumps to @y skipping the rest of the
subtree. In terms of consistency, we could say that the algorithm discovered that
tuple (2,5,3) is inconsistent with the set of variables {as. 06}, A look at the board in
Figure 3.3 convinces us that indeed such a placement of queens cannot be extended
to a full solution. It is impossible to fill columns 5 and 6 simply because the two
available squares are in the same row. Note that (2.5.3) is consistent with either ag
or rg taken separately.

Figure 3.5 shows a detailed trace of C3J on a larger subtree rooted at node 25.
The four columns in the lower part of Figure 3.5 correspond to the subtree shown
in Figure 3.3. Straight solid arrows represent node expansion. The squares marked
with *x” are the ones that are not expanded by C('BJ hecause of the backjump from g
to ws. Dashed arvow represent backtracks, hut this time both chronological and non-
chronological backtracks arce shown. The conflict sets, which arve passed backwards,
are shown along the backtracks (the values of  should be ignored for the time being).
The reader may want to read the previous paragraph again, this time with Figure 3.5
in front of him. A good starting point is the dead-end in the lower right corner of the
figure, which corresponds to nodes 253111253 146.

I'C, in contrast with the backward checking algorithims, visits only consistent
nodes, in this case 253, 2531, 25311, and 2536. T'he board in Figure 3.3 can he
interpreted in the context of this algorithm as follows. ‘T'he shaded numbered squares
correspond to the values filtered from domains of variables by forward checking. The
squares that are left empty as the scarch progresses correspond to the nodes visited
by FC.

Due to the filtering scheme, I'CY detects an inconsistency between the current
partial solution and some future variable without ever reaching that variable, but it
is unable to discover an inconsistency with a sl of vaviables. In our example, the
algorithm finds that both 23311 and 2536 are inconsistent with g, However, it does
not discover that node 253 is inconsistent with {5, 0q}. That is why node 2536 is
visited by [FC even though it is skipped by the hackward checking CRU.

3.2 Backjump Lemmas

Let us now formalize the intuition about backjumps in the form of two lemmas. The
lemmas will later enable us to prove theorems about the backtrack trees of BJ and
CB.J.

In both lemmas we use C; to denote a tuple composed of instantiations of selected
past variables. This is the only time in this thesis when we use tuples which are
not composed of consecutive instantiations and so cannot be identified with search
tree nodes. Figure 3.0 shows one such tuple in the regular G-queens problem. Tuple
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((x2,5),(z4,6), (x5,3)) is inconsistent with variable 6. All nodes that contain this
tuple, e.g. ((ry, 1), (22,5), (25, 2), (rq,6), (rs,3)), are also inconsistent with zg.

Ci

1 e

2 i P

3 e Qf‘-‘:.
’

4 7 S
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s tog-—trZl--
6 ~aet--

1 2 3 4 §5 6

Figure 3.4: A tuple composed of non-consecutive instantiations in the 6-queens prob-

lem.

Lemma 1 If I3J backtvacks to variable .« from « dcad-end at variable z; then
(Xy...., X)) is inconsistent with x;.

Proof. A dead-end happens when all values of the current variable are rejected by
BJ. For cach rejected value we can name the past variable responsible for the rejection:
it is the variable against which the particular consistency check failed. These variables
are said to be in conflict with the current variable. After no consistent instantiation
can be found for ;. BJ chooses as the point of backtrack the variable z;, which is the
highest variable in conflict with &, Let ¢ denote the tuple composed of instantiations
of all variables which arve in conflict with w;. Clearly. (’; is inconsistent with z;. As
C'i consists of instantiations of past variables only, it is a subtuple of (X7, ... , Xiz1).
Morcover, since X, is the instantiation of the highest variable in Cy, C; is a subtuple
of (Xy,...,.Xs). Therefore, (Xy,..., X)) is also inconsistent with 2;. O

In order to prove the next lemma, we need the notion of backtrack depth. Infor-
mally, the depth of a backtrack is the distance, measured in backtracks, from the
backtrack destination to the “farthest”™ dead-end. The definition is recursive:

L. A backtrack [rom variable «; to variable &y is of depth 1 if it is performed
directly from a dead-end at .

2. A backtrack from varviable @, to variable &y, is of depth d > 2, if all backtracks
performed fo variable @; are of depth less than , and at least one of them is of
depth d — 1.

Figure 3.5 contains six backtracks. Three of them are performed from dead-ends, and

so they are of depth d = 1. The other three backtracks are of depth d > 1 because

they are performed from variables which are the destinations of other backtracks.
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Figure 3.5: CBJ's backtracking behaviour on the subtree rooted at node 25.

Lemma 2 is given under the assumption that CBJ terminates after finding the
first solution. Later, we change this assumption to a weaker one,

Lemma 2 [If CB3J backivacks from variable c; lo varviable oy then C;ois inconsistent
with S, where C; is the tuple composcd of instantiations of the variables in the conflict
set of x;, and S is a subsel of {w;, ... 0.} conlauining v, .

Proof. The variable x,, which is the highest variable in the conflict set of z;, is
chosen by CRBJ as the point of backtrack from ;. The conflict set of x; is the union

NMore precisely, S is the set of variables that contributed their conflict scts to the conflict set of
z;, but we will not use this fact in the thesis.
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of the set of all past variables in conflict with x; and all conflict sets inherited from
variables higher than ;.

The proof proceeds by induction on the depth of backtrack. For the basis, consider
a backtrack of depth 1, that is, one performed from a dead-end. Since no conflict sets
are inherited from higher variables, the conflict set of x; contains only variables in
conflict with ;. Clearly, C; is inconsistent with the set S = {z;}. Note that in this
case the behaviour of CBJ is identical to that of BJ.

Now, assume the inductive hypothesis is true for all backtracks of depth less than
d and consider a backtrack of depth d. Let Cf denote the tuple produced by extending
Ci with some instantiation £ € ;. C! may be consistent or not?. If C! is consistent,
there must have been a backtrack of depth less than d from some variable z! to
variable z;. I'rom the inductive hypothesis we know that the tuple composed of the
instantiations of the variables in the conflict set of 2! is inconsistent with some set S*.
Since the conflict set of x; contains all the elements of the conflict set of 2!, except
ai, (1 is also inconsistent with S*. If, on the other hand, C! is inconsistent itself, it
is also inconsistent with any set of variables. so take S = . Therefore, for every
instantiation u € D;, C'! is inconsistent with the set comprising all S* sets, namely
Uien, S*- This in turn implies that (7 is iconsistent® with the set § = {a;}UU,ep, S
O

3.3 Finding All Solutions

Faced with a constraint satisfaction problem we can ask several different questions

about it:
o Is there a solution?
o llow many solutions arc there?
e What is the solution?
e What are all solutions?

Nudel [16] distinguishes four variations of the consistent labelling problem, which
correspond to the four above questions respectively:

e C'onsistent Labelling Decision Problem (CLDP)
e Consistent Labelling Enumeration Problem (CLIEP)

o Consistent Labelling Searchi Problem (CLSP)

*For example, take the backtrack from oy to ry in Figure 3.5. Cq = {(21,2),(x2,5),(z3,1)).
If we take ¢ = (r4,0), we get C) = ((01.2),(29,5), (3. 1), (r4,6)), which is consistent itself, but
inconsistent with 8* = {rs, rg}. If we take { = (24,5), we get € = ((24,2), (22, 5), (z3, 1), (z4,5)),
which is inconsistent itself, and so also inconsistent with §.

*In our example, S = {r}UBUAUDU {a5} UDBU {5, 06)) = {a4,25,26}.
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e Consistent Labelling Generation Problem (CLGI?)

The last variant is the most general since it comprises all others. In this work, we
are interested mainly in algorithims which find all solutions. However, backtracking
algorithms are usually designed to stop after finding the first solution, and have to
be modified in order to solve CLGP. A simple change to the termination condition
is sufficient for some algorithms (e.g.. BT, B.J, FC), but in the case of CBJ and its
hybrids further modifications are necessary.

Example 4. The confused n-queens problem, described in [11], is how to place n
queens on a n xn chess board, one queen per colummn, so that every queen attacks every
other queen. Suppose we change the solution() function of CLSP versions so that it
does not terminate the algorithm, and then use BJ and CRBJ to solve the confused
3-queens problem. BJ correctly generates all solutions; C'BJ, however, misses three
of nine solutions. IFigure 3.6 shows one of the solutions detected by hoth algorithms,
namely (2,1,2). At this moment. the conflict set of a3 contains only one variable, @y,
which causes CBJ to backtrack directly to . ‘T'wo subsequent solutions, (2,2,2) and
(2,3,2), are thus pruned out.

Figure 3.6: A fragment of backtrack tree for the confused 3-queens problem.

The problem here is that the conflict sets of CI3J are meant to indicate which
instantiations are responsible for some previously discovered inconsistency. However,
after a solution is found, conflict scts cannot always he interpreted in this way. It is
the search for other solutions, rather than an inconsistency, that forees the algorithm
to backtrack.

We nced to differentiate between these two canses of CRBJ backtracks: (1) de-
tecting an inconsistency, and (2) scarching for other solutions.  In the latter case
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the backtrack must be always chronological, that is, to the immediately preceding
variable (otherwise we risk pruning out some of the solutions).

Although it is possible to make CBJ find all solutions without adding new data
structures, we decided to adopt the following approach for its conceptual clarity. The
modified CBJ employs a one-dimensional boolean array of size n, called ¢bf (chrono-
logical backtrack flag). When set, an array entry signals that the corresponding
conflict set no longer has the intended meaning. Every time a new variable is chosen
for instantiation, the corresponding cbf entry is set to zero. After every discovered
solution, all entries in the ¢bf array are set to one. ¢bf is used when there are no
remaining values to be tried for the current variable. Il the corresponding cbf entry
is set, the backtracking point is the variable immediately preceding the current one
in the instantiation order. Otherwise, the highest variable in the conflict set of the
current variable is chosen.

Lemma 2 as formulated in the previous chapter does not hold for every backtrack
in the modified CRBJ. Indeed, the definition of backtrack depth does not apply to
backtracks caused by scarching for other solutions. However, if we restrict ourselves
to the backtracks performed when the corresponding ¢bf entry is zero, the lemma
and the proof are still valid. Since the backtracks performed when the cbf flag is set
are always chronological and do not involve node skipping, the lemma holds for all
backjumps performed by CBJ. Therefore, we can be sure that whenever nodes are
skipped by backjumps, it is because of some previously detected inconsistency. We
use this fact in the proofs of the theorems presented in the following section.

Not every backtracking algorithim has to be modified in this way to find all solu-
tions. BT and IF'C! never backjump. 13 does backjuimps. but only from dead-ends, and
there is no dead-end when a solntion is found. In the case of these three algorithms
we need only to change the termination condition to obtain CLGP versions.

3.4 Fundamental Theorems

We now present several theorems which describe the behaviour of four basic back-
tracking algorithms: BT, BJ, CBJ, and I'C. It is assumed that all constraints are
binary, the order of instantiations is fixed and static, and the order of performing
consistency checks within the node follows the order of instantiations. We deal first
with the more general problem of finding all solutions. "Then, we point out which of
the results are valid when only one solution is sought.

3.4.1 Characterizing Conditions for BT, BJ, and CBJ

The following three conditions are helpful in characterizing nodes in the search tree:
(1) A nodc’s parent is consistent,
(2) A node’s parent is consistent with all variable s,

(3) A node’s parcnt is consistent with all scts of variables.
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Note that Conditions 2 and 3 are not equivalent. Condition 2 states that for every
individual variable, there exists an instantiation whicli is consistent with a certain
tuple. Condition 3 states that in addition all instantiations of the individual vari-
ables must be consistent with one another. A tuple that satisfies Condition 3 is in
fact a part of a full solution. If there is no solution to the network then no tuples
satisfy Condition 3. Naturally, Condition 3 implies Condition 2, which in turn implies
Condition 1. Interestingly, we can use the three conditions to specify the sufficient
conditions for nodes to be visited by the three backward checking algorithms. The
following theorems formalize this observation.

Theorem 1 B7' visits a node if ils parent is consiston!.

Proof. Suppose that node (X, ..., X;_y) is consistent, and its child p = (X4, ..., X})
is not visited by B'T. Take the highest j. j <7 — 1, such that node p = (X,..., X))
is visited by BT. Node p/ is a proper ancestor ol node p and is consistent hecause
(Xi,...,Xj) is a subtuple (not necessarily proper) of tuple (Ny...., X;_;). When
BT visits pf, all consistency checks between N, and previous instantiations succeed,
The branch is extended by instantiating the next variable @,y to cach of the values
in its domain, including X; 4. The node (Xy...... N, .\ 4) is thus visited by BT a
contradiction. O

Theorem 2 3.J visils « nodec if ils parenl is consistent with all variables.

Proof. Suppose that node (Ny...., N,y) is consistent with all variables, and its
child p = (Xy,.....X;) is not visited by BJ. Take the highest j, j < @ — 1, such
that node p' = (Xy,..., X;) is visited by BJ. Node p/ is a proper ancestor of node p
and is consistent with all variables hecause (X, .., X)) is a subtuple (not necessarily
proper) of tuple (X, ..., X,_;). When BJis at node p/, all consistency checks between
X and previous instantiations succeed. The only reason for not instantiating the
next variable ;4 to X4y can be a backjump from some variable @y, to some variable
4, where ¢ < j and h > ;j + 2. But if this is the case. Lemma 1 implies that
(Xi,...,X,) is inconsistent. with . which contradicts the initial assmmption that
node (Xp,.....N;21) iIs consistent with all variables. O

Theorem 3 CB.J visits a node (f ils parcnl is consistond with all sels of variables,

Proof. Suppose that node (Xy, ..., Ni2;) is consistent with all sets of variables,
and its child p = (X, ..., X;) is not visited by CBJ. Take the highest j, 5 <i—1, such
that node p/ = (Xy,..., .X;) is visited by CBJ. Node 3/ is a proper ancestor of node
p and is consistent with all sets of variables because (X, ..., X)) is a subtuple (not
necessarily proper) of tuple (X;...... Nisi). When CIBJ s ot node 3/, all consistency
checks between X, and previous instantiations succceed. The only reason for not
instantiating the next variable a4, to X, 4 can be a bhackjump from some variable
zy to some variable x,, where ¢ < jand I > j + 2. From Lennna 2 we know that the
tuple composed of instantiations of the variables in the conflict set of &), is inconsistent
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with some set of variables. Since the conflict set of ), is a subset of {zy,...,2,} and
g < i, this contradicts the initial assumption that (X', ..., X;_;) is consistent with
all sets of variables. O

The above theorems allow us to identify only the nodes which are necessarily
visited by the algorithms.  However, these are not «ll nodes that the algorithms
visit. For example, in Figure 3.3 BJ visits the node 25364 even though it’s parent
is inconsistent with wg. This happens because backward checking algorithms “look
backward” when they search for a solution. Unlike IFC, they have to actually “hit”
an inconsistency in order to discover it. We would like to be able to specify a class
of nodes which are guaranteed not to be visited by algorithms. In other words, we
would like to have not only the sufficient, but also the necessary condition for a node
to be visited. Ideally, the sufficient and the necessary conditions should be the same.

The following three theorems formalize a trivial observation that the backward
checking algorithms expand only consistent nodes. Since all three algorithms BT,
BJ, and CB.J perform consistency checking in the same way, there is no need for more

than one proof.
Theorem 4 371" visits a node only if its parcnl is consistend.

Proof. Suppose that in the search tree there exists a node p = (Xy,..., X;) which
is visited by B'I", and at the same time its parent (X.. ... X,_;) is inconsistent. Take
the highest j, j < /=1, such that node (Xq,. ... X,_;) is consistent. It is guaranteed to
exist because all first level nodes are consistent by the assumption that the constraint
network is already node consistent. Node p' = (X,..... X;) is a proper ancestor of
node p; and so p'is also visited. When B visits /. a consistency check fails between
X, and a previons instantiation, thus causing the branch to be abandoned. Therefore,
no descendants of p" arve visited by BT, a contradiction. O

Theorem 5 13.) visits a node only if its parcnt is consistent.
Proof. The same as for Theorem 1. O
Theorem 6 ('f3.) visits a node only if ils parent is consistent.

Proof. The same as for Theorem 1. O

3.4.2 Characterizing Conditions for FC
For (! we can give a more precise characterization of the set of visited nodes. The
condition used in the following theorem is referred to as Condition 4.

(1) A node is consistent and its parcut is consistent with all variables.

Note that the condition consist of two conjuncts, the second of which is identical to
Condition 2. Therelore, Condition - implies Condition 2. It does not, however, imply

Condition 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28



29

Theorem 7 F'C visits a node if it is consistent and ils parent is consistent with all
variables.

Proof. Supposc that node (XNy...... \_1) s consistent with all variables, and
its child p = (Xy,.... X)) is consistent, but not visited by (. Take the highest
Jo 7 < i = 1. such that node p' = (X).....X,) is visited by IFC, but its child
(Xiy. o0y X5, X)) s not visited by 1'CL Node p/ is a proper ancestor of node p and
Is consistent with all variables because (Xy,.....N,) is a subtuple (not necessarily
proper) of tuple (Xy...., X;_y). When FC visits node pf, none of the domains of
the future variables is annihilated. The branch is therefore extended by instantiat-
ing the next variable x4 to cach of the values in its filtered domain. Since tuple
(X1,...,X)) Is consistent, its subtuple (X, ... .. X', 41) is also consistent, so the filtered
domain of x4y must still contain X4, Node (N N, N4 ) is thus visited by
IFC, a contradiction. O

The necessary condition for a node to he visited by 1F'Cs identical to the sufficient,
condition.

Theorem 8 [°(' visils a node only if il is consistent and its pavent is consistent with
all variables.

Proof. \We prove the second conjunct first. Suppose that (0 visits node p =

(Xi1,. .., X)) although its parent (N, .. ... X, 1) is inconsistent with some variable.
Take the highest joj <@ = 1, such that node (N ... N, —1) is consistent with all
variables. Node p' = (X1....,.X,) is a proper ancestor ol node py so pf is also visited

by FC. When FC s at node p/L consisteney chieeking annihilates the domain of some
variable, thus causing the branch to he abandoned. Therefore, no descendants of pf
arc visited by O, a contradiction.

Now, suppose that FC visits node p = (... ... \,) although pois inconsistent.
Take the lowest &, 4 < 7 — 1, such that instantiation N, is inconsistent with instantia-
tion X;. When I°Cis at node (XN, . ... \'). the value N, is removed from the domain

of the variable & and cannot he reinstated belfore the instantiation of g is changed.

Therefore. p canmot be visited by FCLa contradiction, 0

3.4.3 Summary of Conditions

Figure 3.7 summarizes the results of this section. The numbers denote that a node
satisfies a given condition. The names of algorithims denote that a node is visited
by a given algorithm. The arrows represent implications, and are annotated by the
numbers of the corresponding theorems. For examiple, Theorem 7, which says that a
node is visited by FFCf it satisfies Condition 1 is represented by the arrow from ‘4
to ‘I°C.

There is a significant difference between the algorithms that use chronological
backtracking and the algorithims that nse hackjuinping., B and FC are completely
characterized: that is. for cvery node we can decide whether it is visited by the
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algorithm without having to generate the whole backirack tree. In the case of BJ and
CRJ. however. there is a <ot of noles for ‘.""‘-‘r“x we are nable 1o tell xf theyv belong to
the algorithm’s search tree or not. T

this purpose. It 1= an opens guestion o

Th7 Th. 2 Th.§
GO < @ >0 = GD =

For CLSP wersions vorne solntion ~onehs L otie monin i "‘e*r‘m‘)::‘;s 4. 5. 6. and 8

are sUll valid., sinee in the tespective pronts we o Lot e the assumption that the
search is continued until a. possiis Hu. ever, the proofs of the -

theorems i 120 3, and T are ot & node s avs e‘-Yended
to rach value in the «,Im:;ai:; Tris s true oniv i the search i1s

not interrupted antil all possibiitios are cxia-redl Tretelore, the i
valid for CLSP onlv if we restrict onrselves o the searcl, iree nodes preceding (in the

i
preorder traversal: the last node visired Loz hak

3.5 Hierarchy

which include
g the z:rows
18its ll no.des
i . Note
being

It turns out that the nodes visites 0o

one another. Let us loox a

leading from algorithm A 1o algorn
that 4 visits, This observation d

L . JUNTE & I PR
that these corollarios are valid
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Ylmf The coroilar: Vostates that ST A il I8 visites ) BJ thern it is also visited b_\
BT. From Theorer 5 we Ri - that all noves visitedd 50 BJ have parents which are
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consistent. Theorem 1 guarantees that all such nodes are visited by BT. Therefore,
if a node is visited by BJ. it iz also visited by BT, Z

Corollary 2 BT rizits ail nodes tht (B visits,
Proof. From Theorem 6 we know that a!l nodes visited by CBJ have parents which are
consistent. Theorem 1 guarantees that all ~uch '-n?u- are visited by BT. Therefore.

if a node 1s visited by CBJ. it s al-o visited by BT

Corollary 3 BT visits all nodes that FO visits

Proof. Fro'n Tx.cuux S we kiow that all nodes visited by FC have parents which are

1 "

conszistent with all s and s the parents are themselves consistent ). Theorem )

2
)

18
g siich nodes are visited by B Therefores i a node 1s visited by
FCUit s aiso visined Lo BT Z
crelationship between Bl and FC
shins have Leen often empirically

Poaratae
IRERNY

Corollary 4 BJ rsors wli vodes shur JO as

Proof. From T‘ HeOTeT vt o FOC Lave parents which are
consistent with ail variables. Theorenn o~ that all <uch nodes are visited

bv BJ. Therefore. if a node v visived by i visited by B2
The reiation<i.ip Letween B and CRB)L &
: s fron Section 320 The proof is rather technical

not lmplied by the theorems, can

- - 1. - . .. . -‘ . .. Fa v
&lS0 DE DroOVenn ising The 1O e

yeled e

g of the ress of the thesis.

3 s
i

Theorem 9 B.J i<t~ il saides tiogr CI] -oe

Proof. Suppose that in the search tree of OB there i~ o node poat level bowhich s
not visited by BJ I giive 3.8, led

performed Ly B from sonme node g ar level §ovo level g < Bl Recall thar 8 performs

Tie ol teasnn o0 sxipping pcan be a backjump
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From Lemma 1 we have:
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Figure 3.8: A hypothetical situation when CIJ visits a node not visited by BJ.

IFrom Lemima 2 we have:

-~ Ly Zi) A S)

where § C {x,,...,2.}.
IFrom the properties of trees we have:

w=(Xy,....X,) = (Yi...., Y,) = (Z1.....Z,).
o= (Y1, .. Y = (Zyen . Z).

Therefore, also

and

= ((Zhsooo s Zy) A ).
Let us denote the highest variable in .S by max(S). What is the relationship
between xy and maa(S)?
o Il x> mar(S), BJ would never reach @y after visiting node v because it would

hit a dead-end at max(S) first.

o Il vy < mawx(S), CBJ would never reach max(S) after visiting node u because
it. would hit a dead-end at ay fivst.

o Il &x = max(S), CBJ would not visit node p because from @y it would jump
back dirvectly to level g.
Thus, we arrive at a contradiction. O

The above four corollaries and one theorem enable us to construct a partial order
of backtracking algorithms with respect to the number of visited nodes. Figure 3.9
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shows the hierarchy for the four basic algorithms analyzed so far. BT generates the
biggest backtrack tree, which contains all nodes that the other algorithms visit on
the same problem. BJ visits more nodes than ("BJ or FC. The order would be lincar
if there was a relationship between FC and CIJ, but this not the case. Figure 3.3
provides a counterexample: some nodes visited by CIJ are not visited by FC, and
vice versa.

BT

BJ

FC CBJ

Figure 3.9: The hierarchy with respect to the number of visited nodes.

3.6 Correctness

It is surprisingly diflicult to find the correctuess proofs of most backtracking algo-
rithms. BT and IFC, being conceptually simple. probably do not require rigorous
proofs. It is not immediately clear, however, that BJ and CBJ are correct.

Ginsberg [8] presents five algorithms using a new notation. Ginsherg’s Algorithn
2.5, which is referred to as depth-first scarch, is most probably equivalent to BT, It is
not clear, however, if Algorithm 3.3, which Ginsberg calls Backjumping, is equivalent,
to BJ or CBJ, or is a completely new algorithm. Two propositions are of interest to
us:

Proposition 2.7 [3] Algorithm 2.5 is cquivalcut to depth-first scarch and
therefore complete.

Proposition 3.4 [8] Baclkjumping is complete and always cepands fewer
nodes than docs depth-first scarch.

The completeness proofs are difficult to follow. That Backjumping always expands
fewer nodes than depth-first search is not proven. It should be noted that it is not
difficult to find problems on which BJ and CBJ expand the same number of nodes as
BT.

Prosser in [20] mentions there exists an informal correctness proof of CBJ by
Tsang. As it has never been published, nothing more can he said about it.
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The correctness of the four basic algorithms is almost imimediate from the theorems
given in Section 3.4. For cach algorithm we prove that it is sound (finds only solutions)
and complete (finds all solutions). That all the algorithms terminate is clear.

Corollary 5 7T is correct.

Proof (soundness). A solution is claimed by BT if all consistency checks succeed
at an n-level node. It means that (X, ..., .X,) is visited and Vi < n : X; is consistent
with X,. Theorem 4 implies that its parent (X, ..., X, 1) is consistent. Therefore,
(X1,...,X,) is consistent.

Proof (complelencss). Suppose that some n-level node (Xy, ..., X,) in the search
tree is consistent. Then, its parent (Xy,..., X, 1) is consistent as well. From The-
orem | we know that (Xy,...,X,) is visited by BT. Since all consistency checks
between X, and previous instantiations must succeed, a solution is claimed by BT.
O

Corollary 6 3] is correel.

Proof (soundncss). The same as the proof of the sovndness of BT, except that we
use Theorem 5.

Proof (complctencss). Suppose that some n-level node (Xy,..., X,,) in the search
tree is consistent. Then, its parent (Xy,...,.X,_,) is consistent as well, and it is also
consistent with ... Therefore, (Xy,..., X, -;) is consistent with all variables. From
Theorem 2 we know that (Xy,...,.X,) is visited by B.J. Since all consistency checks
bhetween X, and previous instantiations must succeed, a ~olution is claimed by BJ. O

Corollary 7 ('I3.J is corrcet.

Proof (soundness). ‘The same as the proof of the soundness of BT, except that we
use Theorem 6.

Proof (completeness). Suppose that some n-level node (X, ..., .X,) in the search
tree is consistent. Then, its parent (X, ..., X, _;) is consistent as well, and it is also
consistent with the set {,}. Therefore, (X, ..., X,_) is consistent with all sets of
variables. Irom Theorem 3 we know that (X,...,.X,) is visited by CBJ. Since all

consistency checks between X, and previous instantiations must succeed, a solution
is claimed by CBJ. O

Corollary 8 1°C" is corrcel.

Proof (soundness). A solution is claimed by I°'C if an n-level node p = (X3,..., X,)
is reached. Since Theorem 8 guarantees that a node visited by FC is consistent, p
must be consistent.,

Proof (complcteness). Suppose that some n-level node (Xy,..., X,) in the search
tree is consistent. Then, its parent (X...., X,_;) is consistent as well, and it is also
consistent with {w,}. Therefore, (Xy..... X,_1) is consistent with all variables. From
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Theorem 7 we know that (\X,.....X,) is visited by I'CC. Since this is a n-level node,
a solution is claimed by FC. O

The above theorems prove the correctness of the CLGP versions of the algorithms.
For BT, BJ, and FC, the correctness of the standard CLSP versions is obvious: if an
algorithm is guaranteed to correctly find all solutions then it also correctly finds the
first solution. It is only a little bit more complicated for CBJ because the standard
CLSP version of the algorithm does not use ¢bf array. However, since none of the cbf
entries is set before finding the first solution. the additional array does not influence
the behaviour of the CLGP version in this phase of the search. Therefore, we can
conclude that the standard CLSP version of (‘B.J is also correct.
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Chapter 4
The Six Remaining Algorithms

In this chapter we analyze somewhat less formally the six remaining backtracking
algorithms described in chapter 2. No theorems or proofs are given. All our claims
are conjectures based on empirical tests and a careful analysis of the algorithms.

In the first three sections we discuss three groups of algorithms:
o Backmarking and its hybrids.

o Graph-Based Backjumping.

o [orward Checking hybrids.

In the last section we present the final hierarchies of all backtracking algorithms

analyzed in this thesis.

4.1 Backmarking and its Hybrids

One thing that Backmarking (BM), Backmarking and Backjumping (BMJ), and Back-
marking and Conflict-Directed Backjumping (BM-C'BJ) have in common is that they
use a backmarking scheme. A backmarking scheme does not have any influence on
the backtrack tree generated by a backtracking algorithm but usually results in a
dramatic reduction in the number of consistencey checks.  In this section, we first
thoroughly analyze the behaviour of the backmarking algorithms on a small example,
and then propose a modification to BN,

4.1.1 The Problem With BMJ

BMJ is a synthesis of BM and BJ: the hybrid, liowever, does not retain all the power
of cach base algorithi in terms of consistency checks. Prosser [17] observed that on
some instances of the zebra problem BAL performs more consistency checks than
BM. BMJ is also worse than BAI on the benchimark 8-queens problem. The purpose
of the following example is to explain why it happens.

36
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<a >
ac

{a,b,¢}

Figure 1.10: The constraint network of Fxample 5.

Example 5. Consider the constraint network of four variables represented by the
graph in Figure 1.10. The domains of the variables are given inside the nodes, and
the constraints between variables arve specified by the allowed pairs along the arrows.
The search is performed in the natural order, It is casy to verify that there is only
one solution to the network.

Figure 4.11 shows the backtrack tree generated by BT BT visits 11 nodes, and
performs 17 consistency checks, an improvement over the naive “generate and test”
approach which involves 23 nodes.

root
0 —————————
1 _________
2 — w— ———
10
3 abc
4 abca

Figure 4.11: The backtrack tree generated by Bl on the constraint network of Fx-
ample 5.

Let 7 be the number of consistency checks that BT perforims at a given node. If
the node is inconsistent, » is the number of the lowest variable whose instantiation is
inconsistent with the instantiation of the current variable o If the node is consistent,
all checks succeed, and so r =7 — 1. We will use r to compute the consistency checks
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savings achieved by the backmarking algorithms.

We already know from the previous chapter that the set of nodes visited by Bl is a
subset of the set of nodes visited by I3T. In this siall example BJ manages to perform
only one backjump, which is represented in Figure 4.11 by the dashed arrow. When
node 5 is visited, the entry mar_clhrck{4] is sct to 2 because variable x4 is inconsistent
with the instantiation (a2, «). By jumping back to a3, I3J skips one node and saves
two consistency chiecks. Tollowing a general rule, at every other node BJ performs
the same number of checks as BT

In the case of BM the opposite is true. BM visits exactly the same nodes as BT
hut at some of them performs less consistency checks. In our example BM behaves
like BT when it explores the subtree rooted at node 2 (the left subtree). However,
during the scarch, information about consistency checks is accumulated in its data
structures mbl and mecl. This information is utilized when BM visits the subtree
rooted at node 7 (the right subtree). "The contents of the arrays just before BM
visits node 7 are shown in Figure 1.12. For the expository purposes, the arrays are

transposed.
mbl {1 [1]2]2 mcl 1111112 a
Xy X X3 X4 1 2 b
c

Xy X2 X3 Xg
Figure 4.12: Arrays 1l and el of BM before node 7 is visited.

Let us denote by jimcl| and [mbl] respectively the values of the mel and mbl entries
that are consulted when a given node is visited. 1l [mel} is smaller than |mbl|, no
consistency checks are performed by BM (type-A savings as described in section 2.2.6).
This is because the instantiation which causes the node to be inconsistent has not
been changed since the mel entry was tast updated. The number of saved checks
is thus cqual to » = |mcl]. I [mel| is greater than or equal to |mbl|, only those
instantiations which have changed are checked (type-13 savings). The instantiations
of variables lower than |mbl| are guaranteed to succeed, and so the number of saved
checks is equal to [mbl| —1. Therefore, the savings made at each node can be given
by a simple formula: min(|mel[,Jmbl] —=1).

BMJ attempts to combine node skipping with consistency check saving. Its back-
track tree is always the same as the backtrack tree of BJ. In our example, it saves
two checks when it backjumps over node 6, but on the right subtree it performs three
checks more than BM. On the whole network BMJ performs more checks than BM.

To sce why this happens, consider node 9. which corresponds to the tuple
((r1. @), (2, 0). (3. b)), The instantiation of &y has not changed since the consistency
check between instantiations (ay,a) and (3. b) was performed at node 4. According
to the definition, mbl[3] should contain the number of the lowest variable whose in-
stantiation has changed since the variable ry was last instantiated with a new value,
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in this case 2. Yet, the value of mb{[3] is 1 (sce Figure 1.13), and so the same check
is performed again.

mbl | 1[1]1]2 md [ [1[:1[2]a
X; X2 X3 X4 1 2 b
c

X; X2 X3 Xgq
Figure 4.13: Arrays mbl and mel of BMJ before node T is visited.

The value is of mbl[3] is not entirely incorrect however, as can be seen at node 10,
which corresponds to tuple ((wy,a), (2, 0), (rs.¢)). BN and BMJ behave differently
at this node. I3M “knows” that instantiation (s, ¢) is consistent with instantiation
(z1,a), because it performed the consistency cheek at node 6. BMU, however, skipped
node 6, and so has to perform this consistency check now.

A careful analysis of the example leads us to the conclusion that the mbl array,
which was originally designed for a backstepping algorithing is no longer adequate
for a backjumping algorithm. BM always tests all values of the current variable for
consistency. That is why a single entry for all values is sufficient. In BM.J, however,
it often happens that only some values of the current instantiation are tested; the
other values are skipped by a backjump. A separate entry for cach value is necessary
to preserve all collected consistency inlormation.

4.1.2 BMIJ2 — A Modified BMJ

The modified BM.J, which we call BMJ2, solves the problem by making mbl a two-
dimensional rather than a once-dimensional array. T'he new 10bl array is of size n x m,
where n is the number of variables, and m is the size of the largest domain. This
is a reasonable space requirement bhecause BMJ already uses one nx e array; each
mel entry has now a corresponding mbl eutry. The wmbl[i][j] entry stores the number
of the lowest variable whose instantiation has changed since the variable o; was last
instantiated with the j-th value. The entry is set to | in the beginning, and then to
7 every time the current instantiation (. ;) is being tested for consistency with past
instantiations. When the algorithm backtracks, the entries are updated in a similar
way as in BNLJ. The BMJ2 code is presented below along with the code of BMU.
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int consistent(z) int consistent(z)
int 2; = int z;
{ {

int i, olmbl;

int i, oldmbl;

oldmbl = mbl(z][v[z];
mbl[z] [v[z]] = z;
if (mcl[2]([v(z2]] < oldmbl) if (mcllz][v[2]] < oldmbl)

return(0); return(0);
for (i = oldmbl; i < z; i++) { = for (i = oldmbl; i < z; i++) {

oldmbl = mbl{z];

H = =

mecllz] [v(2]] = i; = mcl(z](v([2]] = i;
if (check(z,i) == 0) { = if (check(z,i) == 0) {
max_check([z] = = max_check[z] =

max(max_check({z],1i);
return(0); } }

max(max_check([2],1);
return(0); } }

max_check(z] = z - 1; = max_check[z] =2z - 1;
return(1); = return{1};
} = }
int BMJ(z) # int BMJ2(z2)
int z; = int z;
{ = {
int h, i, jump; # int h, i, j, jump;
if (z > M) { = if (z > N) {
solution(); = solution();
return(N); } = return(N); }
max_check(z] = O; = max_check[z] = 0;);
for (i = 0; i < K; i++) { = for (i = 0; i < K; i++) {
viz] = i; = vliz] = i;
if (consistent(z)) { = if (consistent(z)) {
jump = BMJI(z + 1); = jump = BM_CBJ(z + 1);
if (jump !'= 2) = if (jump != 2z)
return(jump); } } = return(jump); } }
h = max_check[z]; = h = max_check[z];
mbl(z] = h; #
for (i = h+l; i <= N; i++) = for (i = h+1l; i <= N; i++)
# for (j = 0; j < K; j++)
mbl{i] = min(mbl[i],h); # mbl[i][j] = min(mbl[i][j],h);

return(h); return(h);

3

Let us now analyze the behaviour of the modified algorithm on our example.
The mel array (Figure 1.11) looks exactly as in the case of BMJ, but mbl is now
2-dimensional. After the left subtree is visited. mbl[3, «] and mbl[3, b} are set to 2, but
mbl[3, ], which corresponds to the skipped node 6. remains unchanged at 1. Savings

are then made at nodes 8, 9 and 1.

[
[
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mbl {1 |1]|2]|2]|¢ md [ [1]1]2]a
112 b 1]2 b
: c

Xy X2 X3 X4 Xy X2 X3 X4

Figure 4.11: Arrays mbl and mel of BNJ2 before node 7 is visited.

Table 4.2 contains a node-by-node comparison of all algorithms discussed in this
section. The only node at which BM.J2 performs more consistency checks than any
other algorithm is node 10. However, note that the extra check ((1a3¢)) is performed
by BM earlicr, at node G.

| [node ] BT | BJ [ BN [BNJ | BALI2]

I | a 0 ] 0 0 0
2 | aa | | ] ] |
3| aaa 1 ] 1 | ]
4 | aab 2 2 2 2 2
5 | aaba 2 2 2 2 2
6 | aac 2 - 2 - -
71 ab ] ] | ] ]
S| aba | ] 0 | 0
9 | abb 2 2 | 2 I
10 | abe 2 2 | 2 2
11 ] abca 3 3 2 2 2
[ ] [ w7 [ [ 7 2]

Table 4.2: Number of consistency checks performed at cach node by various back-
tracking algorithims.

An analogous modification of BN-CBJ produces BN-C102: bl should he made
a 2-dimensional array, and maintained in the same way as in BNL2.

4.2 GBJ

In Graph-Based Backjumping (GBJ) the backtrack tree is determined by the
topology of the constraint network. In contrast with BBJ and C1.J, the actual con-
straints have no influence on the bhacktracking behavionr of this algorithm. GBJ
always backtracks to the most recent variable connected to the current variable in
the constraint network. The topological information is computed once at the start of
algorithm and stored in the PARENTS sets. one set for cach variable. This approach
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results in siall overliead costs, bhut considerable saviugs are achieved only if the con-
straint network is sparse. For a fully connected network, such as in the n-queens
problem, GI3.J generates the same backtrack tree as B,

The behaviour of G is similar to the behaviour of CBJ. The main difference is
that the static PARENTS sets are used instead of the dynamic conflict sets. Since the
existence of a nontrivial constraint between two variables does not imply a conflict
between their instantiations, we may expect GBJ to perform shorter backjumps and
consequently visit more nodes than CI3.J.

In order to make GRBJ find all solutions, the same modification as in the case
of CBJ must be made. A one-dimensional array should be employed to differentiate
between backtracking from an inconsistency, and backtracking after finding a solution
(sce Chapter 3.3).

The backjumping behaviour of GBJ may be described by a lemma analogous to
Lemma 2. The only differcnce in the lemima and its proof would be to use PARENTS
sets instead of conflict sets.

In order to partially characterize the set of nodes visited by GB.J, the backjumping
lemma may be used to formulate two theorems, analogous to Theorems 3 and 6. The
first one, analogous to Theorem 3, states that GIJ visits a node if its parent is
consistent with all sets of variables. 'I'he second one. analogous to Theorem 6, states
that GBJ visits a node only if its parent is consistent.,

Note that proving such two theorems about any static-order backtracking algo-
rithm amounts to proving its correctness. T'he first theorem states that all nodes
that lie on the paths between root and solutions are visited, which guarantees that
no solution is omitted. The second theorem states that only consistent nodes are
expanded, which that guarantees the solutions c¢laimed by the algorithm are consis-
tent. The two theorems constitute the minimal characterization of the set of nodes
visited by a backtracking algorithm. The characterization is strong enough, however,
to prove the algorithm’s correctness (see the proof of Theorem 7).

In the hicrarchies, GBJ may probably be placed bhetween BT and CBJ. It is clear
that BT visits all nodes that GBJ visits. Also, the similarity between PARENTS sets
and conflict sets and experimental results suggest that G13J visits all nodes that CBJ
visits. However, since we have not been able to prove it, this proposition remains a
conjecture. BT GBJ. and CBJ perform the same number of consistency checks at
cach visited nodes therefore, their ordering with respect to the number of consistency

cheeks is the same as their ordering with respect to nodes.

4.3 FC Hybrids
Two I'C hybrids have not yet been discussed. In this section, we briefly state our
results informally in points,

1. A similar modification as in the case of C3.J must be made to FC-CBJ in order

to make it find all solutions.
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2. FC-CB.J visits a node only il it is consistent and its parent is consistent with
all variables (this is the same necessary condition as for FCY).

3. FC-CB.J visits a node if it is consistent and its parent is consistent with all sets
of variables (this is the same suflicient condition as for CRBJ).

4. FC-CBJ is correct (implied by Point 2 and 3).
5. FC visits all nodes that FC-CJ visits (implied by Poiut 2).

6. At any visited node FC-CBJ performs the same number of consistency chechs
as FC.

-1

FC-C'BJ performs no more consisteney checks than FC (follows from Points 5
and 6).

All the above observations except the first one apply to FC-BJ as well. Also,
we conjecture that FC-CBJ always skips more nodes that FCBJand consequently
performs less consisteney checks,

4.4 Hierarchies

We can now expand the hicrarchy given in the Chapter 3 (Figure 3.9) to include the
backtracking algorithms studied in this chapter.

We have noted that imposing a marking scheme on a backtracking algorithm
does not change the set of nodes which are visited. A marking scheme causes an
algorithm to avoid some of the redundant consisteney checks, but it has no influence
on the algorithm’s scarch tree. Therefore, the sets of nodes expanded by the following
algorithms are identical:

e BT and BM
o I3J and BMJ (BNLI2)
o CBJ and BM-CBJ (BMN-(C'13)2)

The final hierarchy, which includes the observations made in the previous two
sections, is preseuted in Figure 1150 The hard dinks represent formally proven or
obvious relationships. The soft links represent conjectures which are suggested by
analyses and experimental results.

The second hierarchy seems to be even more important becanse the mimber of
consistency checks is a measure that hetter reflects the actnal ra times,

Let us define a relation <. (partial order) between hacktracking algorithins.

Definition 3 A <.. B if and only if « backiracking algorithu A performs no more
consistency checks than a backtracking algorithm B when finding all solutions of any
constraint salisfaction nctwork.
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14
BT = BM

BJ = BMJ = BM]J2 GBJ

FC
CBJ = BM-CBJ = BM-CBJ2

~ A‘
L
FC-CRJ
Figure 115 The hierarehy with respeet 1o the ninnhier of visited nodes.

In addition to the relationships discussed in Sections 1.2 and 4.3. the relation

contains the following pairs:

BJ <.. BT I'romm Corollary 1 owe know that Bl vicits all nodes that BJ visits. At
any given node both algorithiis perform the same number of consistency checks.
Therefore, 3J [n'l'f-.)l'n)\ Lio more t'ullﬁiﬂt‘!:('}' checks than BT o the whole net-
work.

CBJ <. BJ Irom Theorem 9 we know thar BJ visits all nodes that CBJ visits.
At any given node Loth aleorithans perforns the same nmmber of consistency
checks, Therefore. OB performns no more consisieney checks than BJ on the

! .

whole network.

BAM <. BT BT and BN ecnerate identic ol hacktrack trees. However. thanks to the
marking schemes @t any given node BM perforins no more consistency checks
than B, Therefore, BN performs no more consistencey chiecks than BT on the

whole network.,

BMJ <.. BJ BJ and BMJ gencrate identical backtrack trees. However. thanks to
the marking scheme, at any diven node BN performs no more consistency
checks than BJD Therefore, BN perforins no more consistencey checks than BJ

on the whole network.
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BM-CBJ <.. CBJ Similar argument as the previous one.

Experiments and analyses suggest also the following conjectures:

e BAJ2 <.. BMJ

¢ BM-CBJ2 <.. BM-CBJ

e BM-CBJ2 <.. BMJ2 <. BM

Figure 4.16 presents the hierarchy of algorithims with respect to the number of
consistency checks. Besides the relationships that are shown explicitly, it is important
to note the ones which are not in the picture. In order to disprove a relationship
between A and B. one needs 1o find at least one constraint satisfaction problem on
which A is better than B.and one on which B is better than A For example, BM
perforis more consistency checks than FOC on the confused 12-queens problem. but
less on the regular 12-queens problem Table 5.3)0 Examples of constraint networks

g | ] !

can be found that disprove all relationships which are not included in the hierarcnies.
Thus. however connterintuitive it miay ~cen FO-CRBJ mav visit more nodes than

GRBJ. and perfornm more consisteney ehecks than BT
BT
\\\ GB
/ B J\ E J FC

CBlJ F(;.BJ

BM]J2 BM-CBJ

N ’
N ’
N z
AN ’
~ s
N ’

BM-CBJ2

Figure 1.16: The hicrarchy with respect 1o the nmmiber of consisteney checks.

FC-CBJ

TProsser {17] gives an exanple of a problen on which B ot performs any algorithim based on

forward checking.
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Chapter 5

Experimental Results

In spite of the strongly theoretical approach adopted in this work, we include a handful
of experimental results. Three well-known benchmark problems and one randomly
generated problem were chosen for the comparison of ten backtracking algorithms
(the CLGP versions).

As benchmark problems. we used the regnlar 12-queens problem, the confused
40-queens problem. and the zebra problem. The queens problems have already been
described in previous chapters. We adopted the same, normal ordering as given in
LExamples 1, 2, and 3. The zebra problem has 25 variables with domains of size 5. We
used the problem formulation and the ordering defined by Dechter in [4]. This variant
of the zebra problem has one solution. T'he results on the benchmark problems may
be reproduced in order to verifly the equivalence of other implementations of the same
hacktracking algorithms.

The random problem was generated using a function from the CSP code li-
brary [12]. The generator has two parameters: the probability of a nontrivial con-
straint hetween two variables, which was set at p = 0.12. and the probability of an
allowable pair in a constraint. which was set at ¢ = 0.22. The problem has 15 variables
with domains of size 10, and has no solution. An cffort was made to sclect the values
of the paramcters p and ¢ so that they are close to the boundary that separates the
overconstrained (no solution) networks from the underconstrained (many solutions)
networks (as described in [3]). The resulting problem is computationally hard.

The results in Tables 5.3 and 5.1 show that the relative performance of the al-
gorithims varies dramatically on different problems. On the regular queens, BM and
FC perform well, but the additional backjumping ability does not improve their per-
formance significantly. This is because the density of constraints is high (every two
variables are connected). and so long backjumps are rare. On the confused queens,
there is very little difference between the worst and the best results in terms of con-
sistency checks. The smallest backtrack trees are generated by FC and its hybrids.
The problem is rather casy; therefore, it does not require sophisticated techniques.
The performance of the algorithms on the zebra problem depends heavily on the vari-
able ordering (for an excellent statistical analysis sce [17]). On this instance of the
problem, BM and its hybrids ave the best. In the case of the hard random problem,

16
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REG Q CONF Q ZIBRA RANDOM
BT 15,:396.914 181,300 32,635 | 792,670,770
B3 38,511,567 131,129 30930 | 178,238,158
CRBJ 36.890,689 151,129 15331 101,368
GRJ 45,396,911 181,300 31.331 2,385,869
BM 5,221,512 115,640 7.300 41,971,390
BMJ 5,309,310 123,698 7.201 13,609,324
BML2 5,003,276 114557 7.002 113,326,594
BM-C1J 5,300,272 123,693 D101 49,415
BM-CB.J2 4.938.324 BRI 95,139 31,444
I°C 59586141 OR.696 11.060 GITLLLS
FC-B. H.923.788 958,696 S8G6 250.013
IFC-CI3.) 5.915.759 98.696 NAR6G 10,821

Table 5.3: Number of consistency checks perlormed by varions backtracking algo-

rithms on certain constraint satisfaction problems,

REG Q CONI" Q ZIBRA RANDOM
BT 10,163,363 127880 JoAS 1 202,166,510
3.) 3.515.890 93,902 249490 38,566,291
CBJ 8.176.526 093,902 1.673 23,450
GRB.J 10.10:3,863 127880 3.296 536,545
BM 10,103,368 127,380 JUISS | 202.166,510
3AL) 3,515,390 93.902 2.990 38,566,291
BALL2 3.5:15,890 093,902 2.990 38.566,291
BAL-CBJ 3.176.520 498,902 1,673 23,450
BM-CR.J2 8.176,520 98.902 1.673 23,450
I°C G11.971 1756 51l 32,742
IFC-B. 629.851 1756 307 10,492
FC-CB.J 627,997 1.756 307 911

Table 5.4:

Number of nodes visited by various backtracking algorithims on certain

constraint satisfaction problems.
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the difference between the algorithms that use multiple backjumps and the other al-
gorithms is stark. The best results are produced by the hybrids that combine CBJ
with BM or I°C..

In summary, the empirical results confirm our theoretical findings. The relative
performance of the algorithms varies significantly; on some problems the hybrid al-
gorithms are much better than the basic algorithms, whereas on other problems the
differences are negligible. However, the rankings of the algorithms always agree with
the partial orders we give in Chapter 4. As for the modified hybrids, on all four
problems BM-CRB.J2 is the best of the nine backward chiecking algorithms, and BMJ2
is better than either BM or BJ.
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Chapter 6

Conclusions

In this chapter we provide some suggestions for future work, and a summary.

6.1 Future Work

1. The characterizing conditions lor all algorithms except B and 1°C do not cover
all nodes in their backtrack trees. Ideally, we would like the suflicient and
the necessary conditions to he the same. Since backtracking algorithms are
deterministic, it scems that it should bhe possible to describe precisely their
backtrack trees.

2. There cxist mauy other backtracking algorithims which have not been treated
in this thesis such as algorithms with variable ordering, and algorithims that
combine consistency enforcing techniques with bhacktracking.  Our approach
could he applied to all those algorithis.

3. Even though thereis no absolute relationship hetween many pairs of algorithims,
it may be possible to specify conditions under which such a relationship exists.
For instance, one could try to specify formally the set of networks on which FC
is always better than BT.

4. The conjectures concerning G and 1°C hybrids are yet to be proven formally.

6.2 Summary

We presented a theoretical analysis of several backtracking algorithims. Such well-
known concepts as backtrack, hackjuinp. and domain annililation were described
in terms of inconsistency between instantiations and variables. This enabled us to
formulate general theorems which fully or partially describe sets of nodes visited
by the algorithms. The theorems were then used to prove the correctness of the
algorithms and to construct a hicrarchy of algoritlhins with respeet to the number of
visited nodes. Next, we constructed a hierarchy of algorithins with respect to the

19
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number of consistency checks, which is a better performance measure than number
of nodes. The gaps in the resulting hierarchy prompted us to modify existing hybrid
algorithms so that they are superior to the corresponding basic algorithms in every
case. The empirical tests showed one of the modified algorithms to be better (in
terms of consistency checks) than all six backward checking algorithms described by

Prosser in [17].
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