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AbstractThe problem of achieving small total state space for triangulated belief graphs (networks)is considered. It is an NP-complete problem to �nd a triangulation with minimum statespace.Our interest in this topic originates from the �eld of knowledge engineering where theapplied knowledge representation scheme is provided by the notion of causal probabilisticnetworks (belief networks); CPNs for short. The application of a generalised evidencepropagation scheme in CPNs requires triangularity (chordality) of the actual network.The paper includes a survey and evaluation of existing triangulation algorithms mostof which are found to be highly ine�ective w.r.t. the applied e�ciency measure. Simpleheuristic methods are presented and found to produce high-quality triangulations. More-over, we introduce a method by which any non-minimal triangulation may be turned intoa minimal one.Furthermore, we present a stochastic algorithm based on a technique known as simu-lated annealing by which the optimal solution to NP-complete problems may be foundwith probability arbitrarily close to 1.Key words. graph triangulation, graph algorithms, causal probabilistic networks, beliefnetworks, NP-complete problems, simulated annealing.
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Chapter 1Introduction1.1 BackgroundThe notion of triangulated (chordal, decomposable, : : : ) graphs applies to problem solv-ing within as widely di�erent areas as solution of sparse symmetric systems of linearequations, pedigree analysis, and evidence propagation in belief graphs. Our interest ingraph triangulation originates from the latter of these areas. The actual evidence prop-agation technique was discovered by Lauritzen & Spiegelhalter (1988). This techniqueis general in the sense that if the belief graph is triangulated no additional dependencyrelations will ever be needed in order to ensure correctness during propagation of newevidence. The present paper deals with the problem of achieving approximate optimaltriangulations of (undirected) graphs. In the context of belief graphs the notion of opti-mality relates to the sum total of the state space sizes of the cliques of the triangulatedgraph. This optimality task has been proved to be NP-complete (Arnborg, Corneil &Proskurowski 1987).The basic technique applied to triangulate a graph G is to add the extra edges Tproduced by eliminating the vertices of G one by one. (A vertex v is eliminated byadding edges such that the vertices adjacent to v are pairwise adjacent and by subsequentdeletion of v and its incident edges.) This technique is not guaranteed to produce minimaltriangulations neither in terms of number of edges nor in terms of the size of the statespace when the vertices are selected at random. Furthermore, in average these quantitiesare typically far above those of a minimum triangulation.Triangulating graphs using the elimination technique is essentially a problem of es-tablishing a sequential ordering of the vertices specifying the order in which they shouldbe eliminated. Hence the term elimination ordering (or sequence) refers to such an order-ing. Several algorithms have been suggested for establishing elimination orderings whichhave certain desired properties. As the task of establishing an elimination ordering maybe perceived as a sorting problem such algorithms are quite often referred to as sortingalgorithms. Since most of the algorithms apply some sort of search strategy the termsearch algorithms is also frequently used. 2



Chapter 1. Introduction 3In Chapter 2 we consider and evaluate some well-known search algorithms. We alsodevelop a method by which a set R � T of redundant edges in a triangulation T maybe pointed out such that T n R is a minimal triangulation. This method is then appliedto the triangulations produced by one of the conventional search algorithms which doesnot guarantee minimality. However, simple heuristic algorithms turn out to be clearlysuperior to all of the more sophisticated algorithms (at least for the employed test graphs),but no guarantees can be made as to the optimality of these heuristics.In Chapter 3 we approach the sorting problem from the point of view of stochasticoptimisation. That is, the set of all possible elimination orderings is regarded as a searchspace within which we perform a controlled random walk to �nd an ordering of minimumcost. By applying this technique we obtain slightly better triangulations than thoseobtained by the heuristic algorithms.1.2 TerminologyA graph G consisting of a �nite set of vertices V and a set of edges E (vertex pairs fromV) is denoted G = (V;E). Throughout this paper we shall use n = jV j to denote thenumber of vertices and e = jEj to denote the number of edges. Let A be a set of verticesand B be a set of edges. Then G(A) and G(B) denote the subgraphs of G induced byA and B, respectively. V(B) (E(A)) denotes the subset of vertices (edges) induced by B(A). An ordering of V is a bijection # : V $ f1; 2; : : : ; ng. G# = (V;E) is an orderedgraph.1 A graph G is called a belief graph, if a �nite set of elements, called states, isattached to each vertex in G. The base 2 logarithm of the number of states (state size)of a vertex v is denoted w(v) (the weight of v).Two vertices v;w 2 V are adjacent (or neighbours) if fv;wg 2 E. The setadj(v;G) = fw 2 V j fv;wg 2 Egis the vertices adjacent to v in G. The set of vertices monotonely adjacent to v in G isde�ned by madj(v;G) = adj(v;G) \ fw 2 V j #(v) < #(w)gA complete subgraph of G is a set of vertices all of which are pairwise adjacent. A cliqueis a maximal complete subgraph of G. A vertex v 2 V is said to be simplicial if adj(v;G)induce a complete subgraph of G (which then together with v form a clique in G).A vertex v 2 V is said to be eliminated if the adjacency set of v is made a completesubgraph of G = (V;E) and v and its incident edges are removed from G. Let Gi =(Vi; Ei), where i = 1; : : : ; n, denote the ordered graph obtained by eliminating in order1When it appears clearly from the context that a graph is ordered we shall often drop the #-index.



Chapter 1. Introduction 4the vertices #-1(1); : : : ;#-1(i- 1) 2 V from the ordered graph G = (V;E), whereVi = fv 2 V j #(v) > igEi = ffv;wg 2 Ei-1 j v;w 2 Vig[ffv;wg � Vi j v;w 2 madj(u), where #(u) = igE0 = EBy Ci(G) we denote the clique, if any, produced by eliminating vertex #-1(i) in Gi-1.If Ci(G) is a clique it consists of the set f#-1(i)g [ fadj(#-1(i); Gi-1)g.A chain in G = (V;E) is a sequence of distinct vertices <v1; : : : ; vk> such thatfvi; vi+1g 2 E for i = 1; : : : ; k - 1. A cycle is a chain <v1; : : : ; vk> with the excep-tion that v1 = vk and such that k > 3. A chord in a cycle is an edge fvi; vjg such that1 < ji - jj < k- 2 (i.e. fvi; vjg connects the two non-consecutive vertices vi and vj in thecycle). G is triangulated (or chordal) if any cycle of length greater than 3 has a chord.Let G# = (V;E) be an ordered graph. Then Gt denotes the triangulated graphobtained by eliminating the vertices of G in the order de�ned by #. Gt has vertex set Vand edge set E [ T, where the set T of �ll edges is a triangulation of G. A �ll edge f 2 Tis redundant if T n ffg is also a triangulation of G. T is minimal if for any T 0 � T (propercontainment) G 0 = (V;E[ T 0) is not triangulated. T is minimum if for any triangulationT 0 of G, jT j� jT 0j. Ti(G) denotes the �ll edges produced by eliminating vertex #-1(i) inGi-1 and T(G) = n[i=1Ti(G)Note that Gt = (V;E[ T(G)).Let C = fv1; : : : ; vkg represent a clique of a triangulated graph G. The size of C iss(C) = k and the weight (base 2 logarithm of the state size) of C isw(C) = kXi=1 w(vi)The size of G, s(G), is the sum of the sizes of all of its cliques, and the weight of G isw(G) = log2XC 2w(C)For C � V, adj(C;G) = fv j v 2 V n C; v 2 [w2C adj(w;G)gdenotes the set of vertices separating G into components C and V n (C [ adj(C;G)).Throughout this paper we assume that the graphs considered are connected (i.e. foreach pair of distinct vertices v;w there is a chain <v; : : : ;w>). Note that connectivity isinvariant under elimination.



Chapter 2Strategic Search2.1 Well-known Triangulation MethodsRose, Tarjan & Lueker (1976) provided the following useful characterisation of the �lledges produced by the elimination technique.Theorem 1 (Rose et al. (1976)) Let G = (V;E) be an ordered graph. Then fv;wgis an element in T(G) if and only if there is a chain <v; v1; : : : ; vk; w> in G such that#-1(vi) < min(#-1(v);#-1(w)) for all 1 � i � k.Note that for k = 0 (i.e. fv;wg 2 E) the condition is regarded as satis�ed. From thattheorem we may formulate the following corollaries.Corollary 1 Let G = (V;E) be an ordered graph and <v1; : : : ; vk; w> be a chain inG, where #-1(vi) < #-1(w) for all i � k. Then N n fv1; : : : ; vkg � adj(w;Gt), whereN = Sv2fv1;:::;vkg adj(v;G).Proof: Follows directly from Theorem 1. 2Corollary 2 Let G#a = (V;E) and G 0#b = (V;E) be ordered graphs, where #-1a (i+ 1) =#-1b (i+ 1). Then Gi = G 0i for all k � i � n, where 0 � k � n.Proof: Clearly Gi and G 0i consist of the same vertex set, and from Theorem 1 it isequally clear that they also have identical edge sets. 2It appears from Theorem 1 that in order to pro�t by it in establishing an eliminationordering (e.g. to keep the size of T as small as possible) the ordering should be constructedbackwards. The two most well-known ordering algorithms (lexicographic search by Roseet al. (1976) and maximum cardinality search by Tarjan & Yannakakis (1984)) are basedon this principle.The basic idea in the backwards approach is to separate the vertices already orderedin a way such that there is no chains between them of the type described above. The5



Chapter 2. Strategic Search 6maximum cardinality search does that by continuously selecting a vertex (to be orderednext) with the highest number of ordered neighbours. The lexicographic search doessomething similar, but in addition it is guaranteed to produce minimal triangulations(in O(ne) time), whereas the maximum cardinality search is not. Maximum cardinalitysearch has the property of not adding edges to an already triangulated graph and hencemay be used as an e�cient test for graph chordality as it runs in O(n+ e) time.Fujisawa & Orino (1974) have described an extended elimination technique whichdoes not necessarily add �ll edges between all non-adjacent vertices in the adjacencyset of a vertex being eliminated. This extended elimination strategy produces minimaltriangulations no matter which ordering of vertices is employed.By comparing the ordinary elimination technique with theirs it appears that there aretwo distinct cases in which the ordinary technique fails to produce minimal triangulations.The two cases are described below.Let G = (V;E) be a graph and let v 2 V be the vertex to be eliminated next.Case I. fvg [ adj(v;G) = V. If T is a triangulation of G 0 = G n fvg then itis also a triangulation of G. Hence we need not complete adj(v;G) when v iseliminated, it su�ces to just remove v from G.Case II. (See Figure 2.1) adj(v;G) separates G into components fvg, C1; : : : ; Cm,m > 1. If G0 = (adj(v;G); E0);G1 = (C1 [ adj(C1; G); E1);...Gm = (Cm [ adj(Cm; G); Em)are triangulated so is G 00 = (V;E[T), where T = Smi=0 Ei nE is a triangulationof G 0 = Smi=0Gi. Again we need not complete adj(v;G), it su�ces to completeeach adj(Ci; G).Fujisawa & Orino (1974) have proved that by extending ordinary vertex elimination bythe results from these two observations any elimination ordering produces a minimaltriangulation. More precisely they have formulated and proved the following theorems.Theorem 2 (Fujisawa & Orino (1974)) Let v be a vertex of a connected graph G =(V;E) such that fvg [ adj(v;G) = V, and let T be a minimal triangulation of the sectiongraph G n fvg. Then T is a minimal triangulation of G.Theorem 3 (Fujisawa & Orino (1974)) Let v be a vertex of a connected graph G =(V;E) such that fvg [ adj(v;G) � V, and let adj(v;G) be a separator with componentsfvg; C1; : : : ; Cm, m � 1. Furthermore, let F be the set of edges needed to make eachadj(Ci; G) a complete subgraph and let G n fvg. If T is a minimal triangulation of G 0then T [ F is a minimal triangulation of G.



Chapter 2. Strategic Search 7
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Figure 2.1: By eliminating v we need not complete adj(v), it su�ces to complete eachadj(Ci).Based on these theorems they have formulated an O(n(e+ f)) time algorithm for �ndinga minimal triangulation T of a graph G = (V;E), where f = jT j.Both the lexicographic search and the extended elimination algorithms produce min-imal orderings, but such orderings are not necessarily close to a minimum �ll1 ordering.On the other hand a minimum �ll ordering is not necessarily a minimum weight ordering.If, for example, we let the solid circles in Figure 2.2 represent vertices with large relativeweights then only (a) is a minimum weight triangulation, whereas both (a) and (b) areminimum �ll triangulations. However, we claim that a triangulation T1 is very unlikelyto have weight less than a triangulation T2 if jT1j is signi�cantly greater than jT2j. As willbe demonstrated in Section 2.3 this claim seems empirically reasonable.
i��������y yi(a) iy y@@@@ @@@@ i(b) �ll edgesoriginal edgesFigure 2.2: Both of the triangulations (a) and (b) are minimum �ll, but only (a) isminimum weight (solid circles represent vertices with large relative weights).Depending on the problem to be solved by graph triangulation, optimality may bede�ned di�erently. Three typical candidates are� minimum �ll1We shall use the terms minimum �ll, minimum weight, and minimum size triangulations as shortfor triangulations consisting of a minimum number of �ll edges, triangulations producing triangulatedgraphs with minimum weight, and triangulations producing triangulated graphs for which the sum of theclique sizes is minimum, respectively.



Chapter 2. Strategic Search 8� minimum size� minimum weightIn order to meet these optimality criterions using the elimination technique the mostimmediate strategy would be to successively choose the next vertex to be eliminated tobe one which produces as few �ll edges as possible, the smallest clique, or the cliquewith the least weight, respectively. Henceforth we will call the algorithms based uponthese three heuristic rules the minimum �ll, the minimum size, and the minimum weightheuristic, respectively. Rose (1973) described the �rst two of these heuristics under thenames minimum de�ciency and minimum degree algorithms and referred to other papers(e.g. Sato & Tinney (1963) and Tinney & Walker (1967)) in which it is assumed thatthese algorithms produce near optimal orderings.As noted by Rose (1973) the minimum size heuristic is fast (can be implemented torun in O(n+ e 0) time, where e 0 = e+ jT j), but has some disadvantages:� does not, in general, produce a perfect ordering2 if the graph is triangulated� does not, in general, produce minimal triangulations� there exist examples for which the triangulation produced is arbitrarily greater thana minimum (�ll) triangulationHowever, this last feature does not really count as a disadvantage in the context of beliefnetworks as we do not care about the number of �ll edges.The minimum �ll heuristic has the advantage of producing a perfect ordering whenthe graph is triangulated, but has the following disadvantages:� slightly slower than the minimum size heuristic, because the adjacency set of eachvertex must be edge tested� does not, in general, produce minimal triangulationsThe minimum weight heuristic has exactly the same advantages and disadvantages as theminimum size heuristic. Note that if all vertices have equal weights these two heuristicsare identical.As the complexity of �nding a minimum triangulation grows like n! we are not able torun a straightforward exhaustive search, except for very small n. However, by construct-ing an elimination ordering successively and cutting o� when the sum of the weights ofthe cliques produced so far exceeds the current least weight of a complete ordering wemight be able to run an exhaustive search even for graphs of moderate sizes. Usually thiscutting and branching technique is called branch-and-bound. As we are dealing with anNP-complete problem we should not, in general, expect a branch-and-bound algorithm2If G# = (V;E) is an ordered graph then # is a perfect ordering if T(G#) = ;. Any triangulated graphG 0# = (V;E [ T(G#)) has a perfect ordering, since # is a perfect ordering of this graph.



Chapter 2. Strategic Search 9to �nd an optimal ordering within certain acceptable time bounds. That is, the algo-rithm must terminate prematurely when the number of vertices exceeds a certain limitor when the number of permutations cut o� grows too slowly. Of course, the initial or-dering heavily in
uences the success of this algorithm. So a branch-and-bound algorithmshould preferably be cascaded (as the last element) with other faster ordering algorithmsto set-up a \good" initial ordering for it in order to avoid checking too many uselessorderings and in order to minimise the distance to some minimum ordering (assumingthat a low cost ordering is closer to a minimum one than a high cost ordering is).2.2 Minimal Triangulations by Recursive ThinningWhen an elimination ordering has been established and the corresponding triangulation,T, of a graph, G, has been determined it might turn out that there is a subset, T 0 � T,such that T 0 is also a triangulation of G. For the minimum �ll criterion T 0 is, of course,strictly better than T. For the minimum weight criterion T 0 is no worse than T, and mostoften T 0 is signi�cantly better than T. But for the minimum size criterion T is normallybetter than T 0. The fact that T 0 is most often better than T for the minimum weightcriterion will become evident in the following.In order to develop an algorithm to remove redundant �ll edges we �rst characterisea minimal triangulation in the following way.Theorem 4 (Rose et al. (1976)) Let G = (V;E) be a graph and G 0 = (V;E [ T) betriangulated. Then T is minimal if and only if each edge in T is a unique chord of a4-cycle in G 0.An equivalent formulation of Theorem 4 is provided by the following corollary.Corollary 3 Let G = (V;E) be a graph and G 0 = (V;E [ T) be triangulated. ThenT is minimal if and only if for each edge fv;wg 2 T there is a pair of distinct verticesfx; yg � adj(v;G 0) \ adj(w;G 0) such that fx; yg 62 E [ T.Proof: As fv;wg is a chord of a 4-cycle <v; x;w; y; v> in G 0, x and y will both beadjacent to both v and w in G 0. By the uniqueness of the fv;wg chord it follows thatfx; yg 62 E [ T. 2By formulating Theorem 4 that way we easily get the next corollary.Corollary 4 Let T be a triangulation of a graph G = (V;E), let G 0 = (V;E[ T) be thecorresponding triangulated graph, and let fv;wg 2 T. Then T n ffv;wgg is a triangulationof G if and only if the set of vertices N = adj(v;G 0) \ adj(w;G 0) induces a completesubgraph G 0(N) of G 0.Proof: Let us �rst prove that if Tnffv;wgg is a triangulation of G then G 0(N) is complete.By assuming G 0(N) is not complete (e.g. x; y 2 N are non-adjacent) we get the unchorded4-cycle <v; x;w; y; v> which contradicts the de�nition of triangulated graphs.



Chapter 2. Strategic Search 10Secondly we shall prove that completeness of G 0(N) implies that G 0(E[Tn ffv;wgg) istriangulated. Assuming G 0(E[Tnffv;wgg) is not triangulated there must be an unchordedcycle of length 4 in it because if it had length > 4 there would be an unchorded cycle oflength > 3 before fv;wg was removed. As G 0 is triangulated this cycle must include bothv and w and as the cycle has length 4 it must be a <v; x;w; y; v> cycle, where x; y 2 N.But as G 0(N) is complete the cycle has a chord. 2Notice that Theorem 4 and Corollary 3 characterises the �ll edges of a minimal triangula-tion T 0 � T, whereas Corollary 4 characterises the �ll edges in TnT 0. Thus an alternativeproof of Corollary 4 could be based on the results of Corollary 3.The above propositions tell us that the redundant edges of a triangulation are char-acterised by not being unique chords of 4-cycles. Note that this set of edges is identicalto the set feig for which all ei is a proper subset of a unique clique in the graph. To beprecise we formalise this observation as:Lemma 1 Let G = (V;E) be a triangulated graph, let Eu = fe 2 E j e is not a uniquechord of a 4-cycle in Gg, and let C = fCig be the set of cliques in G. Then for all e 2 Euthere is a unique C 2 C such that e � C.Proof: Assume e = fv;wg 2 Eu is a subset of more than one clique. Then there is anunchorded cycle <v; : : : ;w; : : : ; v> of length greater than 3. Thus the graph is no longertriangulated which contradicts the fact that e is redundant. 2As a redundant (�ll) edge, e = fv;wg, can only be subset of a single clique, C, it is nowclear that this clique splits into two new cliques C1 = C n fvg and C2 = C n fwg the sumof weights of which is typically signi�cantly less than the weight of C and in any case noworse than that.A non-minimal triangulation T may become minimal by simply dropping the edges inT that do not ful�l the conditions of Corollary 3. However, it does not su�ce in generalto sweep through the edges just once, which is illustrated by the following example. InFigure 2.3 the vertices b and c have a common pair of non-adjacent neighbours (i.e. fb; cgis a unique chord of the 4-cycle <a; b; c; d; a>) and hence we are not allowed to removeedge fb; cg. The vertices c and d do not have such a pair in common and we may removeedge fc; dg. Examining the reduced graph we now �nd that fb; cg may be removed.
ic��������ia idib �ll edgesoriginal edgesFigure 2.3: A non-minimal triangulation produced by the elimination ordering a; b; c; d.Clearly for a �ll edge which in a previous sweep was found to be a unique chord of a 4-cycle to become redundant, according to Corollary 4, one of the four edges in that 4-cycle



Chapter 2. Strategic Search 11must have been removed. So, assuming it takes k sweeps to minimise a triangulation,for i = 2; : : : ; k it su�ces in sweep i to test the �ll edges which intersect (i.e. share anend-point (vertex)) with an edge removed in sweep i - 1. Depending on the number ofsweeps required this observation may substantially improve the minimisation process.Based on Corollary 4 and the above discussion we may formulate the followingO(c2jT j2) time3 algorithm which removes redundant �ll edges from a non-minimal trian-gulation T.mint (T;G= (V;E[ T); R) (initially R = T)R 0 = fe1 2 T j 9e2 2 R : e1 \ e2 6= ;gT 0 = ffv;wg 2 R 0 j G(adj(v;G) \ adj(w;G)) is completegif T 0 6= ; thenreturn (mint (T n T 0; G = (V;E[ T n T 0); T 0))elsereturn (T)Obviously the number of sweeps required heavily depends on the order in which wearrange the �ll edges and will typically be much less than jT j. The clearest exampleappears in the generalisation of the graph in Figure 2.3 (a string graph4 triangulated bysuccessively eliminating vertices in the middle of the string), where only one �ll edge maybe removed in each sweep if the edges are ordered according to the order in which theyhave been generated, whereas all of them may be removed in just one sweep if they areinvestigated in the reverse order. This gives us the clue of a considerably more e�cientminimisation algorithm. The existence of such an algorithm is veri�ed by the proof ofTheorem 5. However, before presenting this theorem let us have a closer look at therationale leading to it.An immediate idea emerging from the above discussion is: Is one sweep su�cient ingeneral provided that the �ll edges are ordered appropriately? There are two obviousways of ordering the �ll edges of a triangulated graph. The �rst being the order of creation(i.e. corresponding to the elimination ordering) and the second being the reversed of the�rst. As became clear from the string graph example above the �rst ordering strategy isnot applicable, whereas the second could be. Notice that these orderings are not uniquelyde�ned as the �ll edges are created in groups (one group, possibly empty, for each vertexelimination). There seems not to be any obvious way of ordering �ll edges belongingto the same group. So in order for reversed orderings to be minimised in one sweepit is a requirement that each group of edges can be minimised in one sweep no matterhow they are ordered. The example in Figure 2.4 shows that this requirement cannotbe satis�ed. The elimination of vertex a produces three �ll edges (none of which arenecessary as the graph is already triangulated). In order to minimise this group (whichis assumed to be the last group of a series) we �rst apply mint on edge fd; cg and �nd3The constant c expresses the density of the graph and equals the cardinality of the intersection ofthe adjacency sets of the vertices which constitute a �ll edge.4The term string graph denotes a graph which topologically resembles a string of pearls.
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 ���� JJJJJJHHHH �ll edgesoriginal edgesFigure 2.4: The group of �ll edges generated by the elimination of a single vertex cannotbe minimised in one sweep.that it is redundant and we remove it. Then we apply mint on fb; eg and �nd that itcannot be removed. Finally fb; cg is found to be redundant and it is removed. Now fb; egbecomes redundant as well. This shows us that in order to (locally) minimise a groupof �ll edges mint must keep its recursive mode of operation. Furthermore, the examplein Figure 2.3 demonstrates that the groups have to be ordered according to the reverseordering scheme if a single sweep through the sequence of groups should be enough tominimise a triangulation. These were the considerations leading to Theorem 5.Theorem 5 Let G = (V;E) be an ordered graph, T = T(G), and F = fF1; F2; : : : ; Fngwhere Fi = mint(Ti(G); G 0), G 0 = (V;E [ F), and F = Sij=1 Tj(G) [ Snk=i+1 Fk. ThenT 0 = Si Fi is a minimal subset of T.Proof: Let G 0 = (V;E[T) be the initial triangulated graph. First we observe that sinceG 0 is triangulated the removal of a �ll edge that according to Corollary 4 is redundantdoes not introduce unchorded 4-cycles (the resulting graph will still be triangulated).Now, assume we have just �nished the recursive thinning of Ti(G), and that fu; vg 2 Fi.Note that fu; vg was once produced by the elimination of a vertex x and hence is a uniquechord of the 4-cycle <u;w; v; x; u>. We will prove that fu; vg is not redundant in the �naltriangulated graph G 00 = (V;E[ T 0) either. Thus T 0 will be minimal. Let us thereforeassume that fu; vg is in fact redundant in G 00 (which should lead to a contradiction). Aswe do not add new edges during the thinning process the only way in which fu; vg couldhave become redundant is that one or more of the edges in the 4-cycle <u;w; v; x; u>have been removed. Let us consider the case where just one edge, fv; xg say, has beenremoved. According to Theorem 1 there is a chain <v; v1; : : : ; vk; x> from v to x inG (and hence also in G 00) such that all vertices v1; : : : ; vk are eliminated before both vand x. Next, Corollary 1 tells us that fu; v;wg \ Sy2fv1;:::;vkg adj(y;G) = ;. Otherwise,there would be a �ll edge fw; xg (which would make fu; vg redundant) and/or a �ll edgefu; vg which contradicts the fact that the elimination of x produced fu; vg. Thus, there isan unchorded cycle <u;w; v; v1; : : : ; vk; x; u> the length of which is clearly greater than3. Repeating this argument in the cases where two, three or all four edges have beenremoved result in similar conclusions. This completes the proof. 2Based on Theorem 5 we may now formulate a signi�cantly more e�cient minimisationalgorithm, fmint.



Chapter 2. Strategic Search 13fmint (F ; G = (V;E[ T))for i = n downto 1 doR = F [i] nmint (F [i]; G = (V;E[ T))T = T n Rreturn (T)F is an array of length R of sets of �ll edges ordered according to the order of creationwhen applying the elimination procedure.The magnitude of the improved performance achieved by fmint compared to mintdepends on the distribution of the �ll edges over the series of the n groups. The moreequal they are distributed the better performance is achieved. In the worst case (i.e. alledges in the same group) no improvement is obtained. If the edges are equally distributed( jT jjV j edges in each group) fmint runs in O((c jT jjV j)2) time. However, it is the size of thegreatest group that determines the performance of fmint. If the size of the greatestgroup is jT jm , m � 1, fmint runs in O((c jT jm )2) time. So for example even if one fourth ofall �ll edges belongs to the same group, fmint will run 16 times as fast as mint.Letting G = (V;E) be an ordered non-triangulated graph it appears from the abovediscussion that by approaching the graph triangulation problem by means of vertex elim-ination the �ll edges T 00 = Sni=k Ti(G) seem to prevent a proper thinning of the �ll edgesT 0 = Sk-1i=1 Ti(G) before T 00 has been thinned out. An idea emerging naturally from thisobservation is: Is it possible, in general, to obtain minimal triangulations by applyingmint on each group Ti(G) before proceeding to the elimination of vertex #-1(i+ 1)? Incase of an a�rmative answer we have found that the global search necessary to implementa triangulation algorithm based on the results by Fujisawa and Orino can be replacedby a local search. This seems intuitively very unlikely to be the case. The followingexample clearly shows that the question unfortunately must be returned a negative an-swer. Consider the example in Figure 2.5 and assume that vertex v is to be eliminated(cf. Case II above) which will produce a �ll edge fu;wg. Theorem 3 states that fu;wgis necessary if u and w are connected by a path not including v and that it is redun-dant otherwise. Since the problem of determining if such a path exists cannot be solvedlocally our previous results which apply to triangulated graphs are insu�cient when wedeal with non-triangulated graphs.iv����HHHH iu�@iw�@Figure 2.5: Fill edge fu;wg is only necessary if u and w are connected by a path notincluding v.However, note that in the special case where u and w are eliminated last we may



Chapter 2. Strategic Search 14remove fu;wg irrespective of the topology of the rest of the graph as fu;wg will bereproduced if u and w are connected by a path not including v (cf. Theorem 1).2.3 Evaluating the AlgorithmsIn order to assess the virtues and vices of the various triangulation algorithms we wantto perform a series of tests. These tests will be based on two \real world" graphs and ontwo arti�cial ones.The two \real world" graphs, called Medianus-I5 and Medianus-II originate from thedevelopment of the MUNIN6 system (Andreassen, Jensen, Andersen, Falck, Kj�rul�,Woldbye, S�rensen, Rosenfalck & Jensen 1989, Olesen, Kj�rul�, Jensen, Jensen, Falck,Andreassen & Andersen 1989). Medianus-II is a modi�ed version of Medianus-I (seeFigures 2.6-2.7). Both of these graphs have a layered structure, which means that thenumber of �ll edges required should be moderate.

Figure 2.6: The Medianus-I graph.For a graph G = (V;E) to be connected a minimum of n- 1 edges are required. Themaximum number of edges in G is  n2 ! = n2 - n25Bayesian inference network describing relations between disorders, pathophysiological features andmeasurements for the human median nerve.6Knowledge based system for diagnosing diseases and malfunctions in the human neuromuscularsystem.
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Figure 2.7: The Medianus-II graph.



Chapter 2. Strategic Search 16in which case G is complete.The arti�cial graphs consist of a sparse and a dense graph. The notions of sparsityand density are based on the following de�nition.De�nition 1 Let G = (V;E) be a (connected) graph. G is sparse if n - 1 � e �110 �n2-n2 � (i.e. the number of edges is less than or equals one tenth of the maximumnumber of edges). G is dense if e � 14 �n2-n2 �. 2From this de�nition follows that sparse graphs are only de�ned for n � 20, whereas densegraphs are de�ned for all n � 0.We let a computer generate the graphs by �rst making a string graph (to assure thatthe graphs will be connected) and then adding edges at random by visiting the verticesone by one to assure a fairly equal distribution.In the implementation of the algorithms for which the next vertex to be enumeratedis not selected at random, but according to some ranking strategy, ties are solved bypicking one of the equally ranked vertices using a random number generator.For the Medianus graphs the algorithms were ran 400 times, whereas for the arti�cialgraphs (let us call them Sparse and Dense) the number of runs were reduced to 100, butas will become quite clear below the conclusion is not in
uenced by that.The algorithms tested are simple random elimination, lexicographic search, maxi-mum cardinality search, extended random elimination, the fmint algorithm applied tothe triangulations produced by simple random elimination and by maximum cardinalitysearch, and �nally the three heuristic algorithms minimum �ll, minimum size, and mini-mum weight. The minimum weight heuristic is the only one that takes the weight of thevertices into account when selecting the next vertex to be eliminated.The algorithms were �rst ran on the graphs with the vertices having di�erent weights(for the Medianus graphs the state sizes lies in the range from 3 to 21 with an averageof approximately 6, and for the arti�cial graphs the state sizes are uniformly distributedbetween 2 and 5). Subsequently all orderings �rst obtained, except those produced bythe minimum weight heuristic, were applied to the graphs with all vertices being of equalweight (state size 6 for the Medianus graphs and 2 for the arti�cial ones).For each algorithm we record the following two key �gures for a triangulated graphG = (V;E[ T): Number of �ll edges (jT j) and weight of G (w(G)). Tables 2.1-2.4 showthe minimum, average/median and maximum of these two key �gures for the four graphsmentioned above. Note that the weight �gures in the middle column represent the medianweights (i.e. the base 2 logarithm of the average size of the state space).The algorithms are ordered in Tables 2.1-2.4 according to the median weight of thetriangulated graphs in the case where the vertices are of di�erent weight (the reasonbeing that this is the key �gure from the point of view of belief graphs).The most immediate result of the test runs is the overwhelming superiority of theheuristic algorithms no matter which kind of measure is employed (i.e. jT j or w(G)). Thissuperiority becomes even more distinct when the results of the test runs are displayed



Chapter 2. Strategic Search 17Minimum Average/median MaximumAlgorithm1 jT j w(G)2 w(G)3 jT j w(G)2 w(G)3 jT j w(G)2 w(G)3Random elimination 100 27.75 30.28 156 41.66 48.36 244 47.25 54.61Ext. random elim. 63 22.84 24.65 100 30.94 36.26 175 36.19 41.44Lexicographic search 68 23.44 25.05 100 30.29 35.30 177 36.50 41.47Thinning (random) 62 22.86 24.66 98 30.14 35.51 162 35.41 41.69Max. cardinality 68 23.63 25.27 100 29.00 31.97 136 32.63 36.49Thinning (max card) 63 22.86 24.58 82 26.42 28.56 111 28.30 31.47Min. size heuristic 57 22.71 24.55 58 23.27 24.88 60 24.17 26.15Min. �ll heuristic 57 22.71 24.55 58 23.14 24.80 61 24.79 26.31Min. weight heuristic 57 22.94 { { { 57 22.99 { { { 57 23.08 { { {1: 400 runs2: Di�erent vertex state sizes (between 3 and 21)3: Equal vertex state sizes (= 6)Table 2.1: Key �gures for the triangulation of the Medianus-I graph.Minimum Average/median MaximumAlgorithm1 jT j w(G)2 w(G)3 jT j w(G)2 w(G)3 jT j w(G)2 w(G)3Random elimination 134 29.28 32.08 213 46.35 50.32 345 53.86 56.94Lexicographic search 98 22.28 23.61 145 30.59 33.71 253 35.21 39.57Ext. random elim. 89 21.67 23.27 130 30.07 33.36 198 36.01 39.77Thinning (random) 83 21.09 22.99 129 29.97 32.53 209 35.74 37.94Max. cardinality 101 22.38 23.96 133 29.17 31.88 188 35.28 38.82Thinning (max card) 87 21.61 23.17 116 26.93 28.87 153 31.68 34.85Min. size heuristic 74 20.50 22.11 79 22.19 24.27 86 24.88 26.28Min. �ll heuristic 74 20.57 22.15 78 21.78 23.47 84 23.49 24.89Min. weight heuristic 76 20.65 { { { 76 20.65 { { { 76 20.65 { { {1: 400 runs2: Di�erent vertex state sizes (between 3 and 21)3: Equal vertex state sizes (= 6)Table 2.2: Key �gures for the triangulation of the Medianus-II graph.Minimum Average/median MaximumAlgorithm1 jT j w(G)2 w(G)3 jT j w(G)2 w(G)3 jT j w(G)2 w(G)3Random elimination 283 32.86 19.72 390 48.31 26.19 565 54.77 31.46Max. cardinality 222 27.24 16.51 305 36.61 20.57 406 41.46 23.42Lexicographic search 217 26.41 16.49 297 33.77 19.84 405 38.25 22.82Thinning (random) 184 25.01 15.59 254 32.95 18.83 339 37.04 22.20Ext. random elim. 204 24.72 15.88 260 32.86 18.91 343 37.20 21.09Thinning (max card) 182 24.62 15.42 224 31.36 17.53 300 35.97 20.53Min. size heuristic 149 23.05 14.36 157 25.93 15.11 169 28.67 16.37Min. weight heuristic 156 25.06 { { { 158 25.34 { { { 160 25.92 { { {Min. �ll heuristic 149 24.82 14.57 151 24.97 14.60 153 25.61 14.741: 100 runs2: Di�erent vertex state sizes (between 2 and 5)3: Equal vertex state sizes (= 2)Table 2.3: Key �gures for the triangulation of the Sparse graph.



Chapter 2. Strategic Search 18Minimum Average/median MaximumAlgorithm1 jT j w(G)2 w(G)3 jT j w(G)2 w(G)3 jT j w(G)2 w(G)3Random elimination 538 62.84 37.33 677 73.57 41.99 795 77.40 44.83Max. cardinality 499 59.14 34.82 567 66.41 38.21 615 67.92 39.21Lexicographic search 432 54.39 32.59 538 65.41 36.73 644 70.84 40.80Ext. random elim. 439 53.72 31.70 525 63.92 36.29 633 69.94 41.00Thinning (random) 412 52.88 31.74 528 62.73 36.25 638 66.87 39.66Thinning (max card) 438 56.42 32.92 481 59.57 34.26 545 62.53 35.72Min. size heuristic 384 55.01 31.69 387 56.37 32.06 394 57.09 32.22Min. �ll heuristic 374 54.40 31.82 390 56.35 32.31 398 57.81 32.73Min. weight heuristic 388 53.48 { { { 388 53.48 { { { 388 53.48 { { {1: 100 runs2: Di�erent vertex state sizes (between 2 and 5)3: Equal vertex state sizes (= 2)Table 2.4: Key �gures for the triangulation of the Dense graph.graphically as in Figure 2.8 which shows the graph weights obtained for the Medianus-Igraph with di�erent vertex weights (a similar representation of graph weights employingequal vertex weights yields essentially the same result). The 400 �gures are ordered in50 intervals and displayed in a bar chart with the height of each bar being proportionalto the number of �gures in the corresponding interval. (However, if the interval width interms of pixels7 is less than 1, given the width of the display area provided, the numberof intervals for the particular set of �gures is reduced such that 1 pixel represents thewidth of one interval.)The tiny marks in Figure 2.8 indicate the overall minimum weight (in this case foundby the minimum size heuristic) and the median weights for each algorithm.A similar graphical representation of the number of �ll edges for the Medianus-I tri-angulations looks very much like Figure 2.8. The main di�erence is that for the heuristicalgorithms the dispersion is even less than in Figure 2.8.Representing the results obtained from the Medianus-II, the Sparse, and the Densegraphs in the same fashion provide bar charts of very similar appearance.Figure 2.9 shows enlarged representations of the graph weight results for the fourgraphs tested obtained by the heuristic methods. The most striking result being that therange and dispersion of results for the minimum weight heuristic is very small, exceptmaybe for the Sparse graph. This seems, however, to be a mixed blessing as for theMedianus and the Sparse graphs it is not able to �nd triangulations producing graphweights that are as small as those produced by some of the triangulations found by theminimum size heuristic which on the other hand produces very dispersed results.Instead of breaking ties at random it might be possible to achieve less dispersed resultsby applying some sort of strategic tie breaking. To �nd a good strategy we should beable to identify some characteristic features of the choices made during the construction7A pixel is the atomic element in computer graphics



Chapter 2. Strategic Search 19Random elimination Thinning of random triangulationsMinimum size heuristic
Extended random elimination Maximum cardinality search Minimum �ll heuristic
Lexicographic search Thinning of max. card. triang. Minimum weight heuristic

Figure 2.8: Distribution of graph weights obtained by 400 runs on the Medianus-I graphwith di�erent vertex weights.of the best orderings. However, by inspecting the elimination process pertaining to theseorderings it seems impossible to �nd any pattern, at least from a local point of view, inthe way ties are broken.A way of improving the performance of the heuristic algorithms would be to try outall orderings that might possibly be produced by the algorithms. That is, for every tieto record the candidate vertices and then to perform a depth-�rst search in the treeof orderings successively constructed. However, by counting the number of candidatevertices for every tie, it was experimentally found that for the Medianus-I graph we mayexpect the number of possible orderings which can be achieved by the minimum sizeand the minimum �ll heuristics to be as high as 2 � 107. This means that an exhaustivesearch in the tree of candidate orderings is absolutely infeasible for these two algorithms.The tree size for the minimum weight heuristic amounts to only 24 orderings for theMedianus-I graph. On the other hand, not much can be gained by an exhaustive searchin this case as the dispersion is rather modest.A total of 1000 triangulations were produced by the heuristic algorithms and, surpris-ingly, it appeared that all of these were minimal. However, as mentioned in Section 2.1none of the heuristic algorithms are, in general, guaranteed to produce minimal triangu-lations; although in practice there seems to be no reason to run the fmint algorithm toensure minimality.Although the heuristic algorithms and especially the minimum weight seem to pro-



Chapter 2. Strategic Search 20Minimum size heuristic (Med-I) Minimum �ll heuristic (Med-I) Minimum weight heuristic (Med-I)
Minimum size heuristic (Med-II) Minimum �ll heuristic (Med-II) Minimum weight heuristic (Med-II)
Minimum size heuristic (Sparse) Minimum �ll heuristic (Sparse) Minimum weight heuristic (Sparse)
Minimum size heuristic (Dense) Minimum �ll heuristic (Dense) Minimum weight heuristic (Dense)

Figure 2.9: Distribution of graph weights obtained by running the heuristic algorithms400 times on the Medianus graphs and 100 times on the arti�cial graphs. Di�erent vertexweights.duce fairly satisfactory triangulations we still face a major question: How far are we froma minimum weight triangulation?Assuming the distance8 between the elimination orderings produced by the heuristicalgorithms and a minimum weight ordering, say #, is modest the branch-and-boundalgorithm (cf. Section 2.1) might provide an answer to our question. This algorithm hasthe essential property of searching in a very systematic way as all permutations withidentical pre�x (v1; : : : ; vk) are tested before permutations with pre�x (v1; : : : ; vi), wherei < k. This has the important implication that the number of iterations needed by thebranch-and-bound algorithm to reach # might be orders of magnitude greater than theminimum distance to #. This might, however, not necessarily mean that the algorithmdoes not have any practical signi�cance. If the cardinality of the set, S, of orderings8Here we de�ne the distance between two orderings in terms of the minimum number of interchangesbetween neighbouring (i.e. adjacent in the ordering) vertices in one of the orderings required to reach theother (cf. Chapter 3).



Chapter 2. Strategic Search 21the weights of which di�ers insigni�cantly from the minimum weight, is large enoughand the distances between the members of S are generally relatively large there mightbe a chance that the branch-and-bound algorithm is a practical solution to re�nementof orderings found by heuristic methods. On the other hand, if the cardinality of S issmall we should, in general, expect an algorithm which chooses the next permutation ina non-deterministic manner to perform considerably better.The best orderings known yet for the Medianus-I graph were found by the minimumsize heuristic. About one seventh (56 out of 400) of the orderings found by this heuristicproduced triangulated graphs with practically identical weights. A sample of 10 of theseorderings were tested two by two to measure the distances between them (i.e. a total of45 measure were calculated). It turned out that no two of these orderings were identicaland that the distances between them were equally distributed in the interval from 20 to58. The result of this little test indicates that we might expect a lot of orderings to beminimum and the distances between them to be quite signi�cant.Still, in order to get answers to the above questions we need to know, at least byhigh probability, what the minimum weight triangulation of a graph is. In the nextsection we consider a stochastic algorithm which with probability arbitrarily close to1 �nds a minimum triangulation, and hence we postpone the discussion of the utilityof the branch-and-bound algorithm until the simulated annealing algorithm has beenevaluated.



Chapter 3Stochastic Search3.1 Simulated AnnealingSimulated annealing is a stochastic algorithm which is used for �nding global minimumcost con�gurations for NP-complete problems with cost functions having many localminima. The trick applied to avoid getting stuck in local minima is to accept costfunction increases with positive probability.For a given optimisation problem to be suitable for the annealing algorithm it shouldbe possible to describe it in terms of a solution space S the elements of which all relateto some cost function value c(s), s 2 S, and which are connected by some appropri-ate neighbouring structure. That is, S has a certain topology which has the essentialfeature that for every pair of con�gurations, si; sj 2 S, sj should be reachable from si,where reachability is de�ned as a series of transitions, sk ! sl, each of which consist ofa perturbation imposed on con�guration sk such that it changes to a neighbouring con-�guration sl. The distance between two con�gurations si; sj 2 S is de�ned as the leastnumber of transitions required to reach sj from si. The radius of a space S is de�ned asthe maximum distance between two con�gurations in S. Of course the radius dependson the perturbation scheme employed.In our case S is the set of all possible orderings of the vertices V of a graph G = (V;E)(i.e. jSj = n!, where n = jV j) and a transition si ! sj is simply de�ned as the interchangeof two vertices in ordering si resulting in ordering sj. As the aim is to minimise theweight of a triangulated graph Gt = (V;E[ T(G#)) the cost function is de�ned asc(#) = w(Gt)where G# = (V;E). So we want to �nd an optimal ordering #� such that c(#�) � c(#)for all # 2 S.The annealing algorithm starts at some, possibly random, con�guration #i (i = 0),selects two vertices v and w (according to a perturbation scheme as discussed below), andcomputes the cost c(#p) of the potential new con�guration #p obtained by interchanging22



Chapter 3. Stochastic Search 23v and w. Now, #p is accepted ifc(#p) � c(#i) - ti loguwhere u 2 ]0; 1] is a uniform random number and ti is a control parameter called thetemperature which is gradually decreased as described below. This means that an uphillstep of �ti will be allowed with probability e-�. In other words the new con�guration#i+1 is set to #p with probability p = min
1; e- �ti�and to #i with probability 1 - p, where � = c(#p) - c(#i). Large values of ti allowlarge cost function increases, and small values allow only small increases.The initial temperature t0 should be set to some suitable large value such that allperturbations are accepted (this ensures that all con�gurations can be reached). That is,if #i and #j are adjacent con�gurations in S and if we de�neU = maxi;j jc(#i) - c(#j)jto be the maximum cost function increase then an uphill step of U should be acceptedwith probability close to 1. Thus if U = �t0 we get the following rulee-� � 1meaning that t0 should be large compared with U or 0 < �� 1.(Lundy & Mees 1986) concluded in their study on convergence properties of theannealing algorithm that the temperature should be lowered exponentially asti+1 = ti1+ �ti (3.1)where �� 1U , and that the �nal temperature, tf, should (essentially) obey the followinginequality tf � �log jSj (3.2)where � is the acceptable error (i.e. � = c(#f) - c(#�)). An equivalent formulation ofEquation 3.1 is ti+1 = t01+ i
� (3.3)where � = Ut0 , 0 < 
� 1 and 
� = �t0. By solving Equation 3.3 for i it appears that thenumber of iterations required to reach a temperature ti+1 is less than U
ti+1 and hence toreach the �nal temperature tf takes I iterations, whereI < U log jSj
�



Chapter 3. Stochastic Search 24However, even if we set � = 0:1 (a reasonable value would rather be 0.01) and 
 = 0:1(which is a very large value knowing that ideally 
� � 1), we �nd by accepting an error� = U � 10-3 that I � n(logn - 1) � 104 which for n = 50 is approximately 1:5 � 106.So in order to get reasonable response times from the annealing algorithm we have toadopt a more pragmatic approach. There are three parameters which determine thenumber of iterations required: The initial temperature t0, the cooling rate, and the �naltemperature tf. To allow essentially free motion in the space S in the initial phase (toavoid getting trapped in local minima at an early stage) the probability that any uphillstep is accepted should be close to 1 as discussed above. Thus the rule t0 � U mustnot be violated. A further increase of the cooling rate seems not to be a fair solution tothe problem as again the probability of getting trapped in high level basins becomes toolarge. Specifying a reasonable acceptable error � often leads to extremely small values ofboth tf and the changes in ti when ti is close to tf. This means that the algorithm mayhave reached con�gurations # for which c(#) - c(#�) � �, (#� still being the optimalcon�guration) long before ti has reduced to tf. Furthermore, by constantly keeping inmind the least-cost con�guration visited, tf can de�nitely be set at a considerably highervalue than recommended by Equation 3.2. That is, we may specify a considerably higher\acceptable error" than really wanted.In the initial phase it seems intuitively reasonable to keep the radius of the searchspace S as small as possible to keep the distance between any two con�gurations assmall as possible. Later, when the algorithm has found an attractive subspace (basin)containing low-cost con�gurations, it seems to be more convenient to have a large radius(i.e. narrowing down the focus of attention by reducing the number of neighbours foreach con�guration). Initially the only constraint we put on the perturbation scheme isthat we de�ne a perturbation to be the interchange of only two vertices v and w. Withthat constraint in mind the scheme providing the least possible radius chooses v andw completely arbitrarily from a con�guration #, and the scheme providing the largestpossible radius chooses an arbitrary pair v;w for which j#(v) - #(w)j = 1 (i.e. v andw are adjacent in #). For both schemes the pair of con�gurations #i;#j 2 S betweenwhich the distance equals the radius of S are characterised by the one being the reverseof the other (i.e. #i(v) 6= #j(v) for all v 2 V except for at most one vertex). Thus forthe two perturbation schemes the radii rmin and rmax of S are given byrmin = � n2 if n is evenn-12 if n is oddrmax = n-1Xi=1 n- i = n2 - n2As we see rmax = (n - 1)rmin if n is even and rmax = n � rmin if n is odd, and hencethere is a substantial di�erence between rmin and rmax even for a moderate numberof vertices. The two perturbation schemes may be replaced by the general scheme forwhich the interchange of v and w is restricted by the condition j#(v)-#(w)j < !, where



Chapter 3. Stochastic Search 252 � ! � n. That is, we de�ne a \window" of width ! within which the perturbationstake place. Initially we set ! = n and decrease it gradually until it reaches the lowerbound 2. A reasonable way of narrowing the window width (i.e. increasing the radius ofthe search space) could be to follow the reduction scheme applied to the temperature.Given the cost c(#i) of con�guration #i and given the candidate next con�guration#p it should be possible based on c(#i) to locally compute c(#p). Otherwise we haveto �nd all cliques of the graph Gt = (V;E[T(G#p)), where G#p = (V;E), to compute itsweight w(G) = c(#p). Theorem 6 states that c(#p) can be derived from c(#i).Theorem 6 Let G#a = (V;E) and H#b = (V;E) be ordered graphs such that #a = #bexcept that #b(u) = j and #b(v) = i, where #a(u) = i < #a(v) = j and u; v 2 V. Thenw(Ht) = w(Gt) + �, where� = jXk=iw(Ck(H)) - jXk=iw(Ck(G))Proof: The proof consists of two parts: First we shall prove that all cliques Ck(G)for 0 < k < i and j < k � n, remain untouched by the interchange of u and v in theelimination ordering. Knowing that the triangulation of a graph determines how thecliques of the resulting triangulated graph are composed the problem is equivalent tothe problem of proving that the �ll edges Tk(G) = Tk(H) for all 0 < k < i and for allj < k � n. For 0 < k < i the problem is trivial as the set of �ll edges produced byeliminating a vertex solely depends on the original edges E and on the �ll edges alreadyproduced. The validity of the equality for j < k � n follows immediately from Theorem 1.Secondly we shall prove that for every new clique Ck(H), i � k � j, Ck cannot be asuperset of a clique Cl(G), 0 < l < i and j < l � n. For 0 < l < i the problem is trivialas #-1a (l) = #-1b (l) 2 Cl and hence cannot be a member of Ck. To prove it for the casewhere j < l � n we assume there is a clique Cl such that Cl � Ck. For this to be truethe vertex #-1b (k) (the elimination of which created Ck) must have been adjacent to allvertices in Cl in Hk-1. By Corollary 2 we see that there would also have been such avertex in Gk-1 and hence Cl would not have been a clique. 23.2 Annealing in PracticeFrom the above discussion it appears that the total number of attempted con�gurationtransitions before reaching the �nal temperature depends on the size of the search spaceand on the maximum cost di�erence between any two con�gurations. In relation to theproblem of low weight (cost) graph triangulations this means that in practice there is alimit in terms of number of vertices and dispersion of vertex weights (loosely speaking)above which the annealing algorithm is inapplicable. This is, of course, a rather un-satisfactory situation which can be avoided by allowing more \coarse-grained" solutionsfor large graphs. That is, if we adopt such a rather pragmatic approach the stopping



Chapter 3. Stochastic Search 26criterion must be de�ned such that it becomes independent of the parameters mentionedabove. From Equation 3.3 we get I = �
 �t0tf - 1�= 1
 �Utf - ��from which we see that if the �nal temperature is de�ned in terms of U the number ofiterations required depends solely on the cooling rate. One way of de�ning tf is to saythat it is the temperature at which an uphill step of cU, where 0 < c < 1, is accepted withprobability p, where 0 < p < 1. Recalling that an uphill step of �tf = cU is acceptedwith probability e-� = p at temperature tf we getI = - 1
 � log pc + �� , p < e-�c (3.4)as desired. By �xing � and c we observe that the cooling rate may be given eitherexplicitly via 
 or implicitly via I and p. Similarly I may be given explicitly or implicitlyvia 
 and p.The annealing algorithm performs a search in the graph of con�gurations (the solutionspace) which is normally controlled solely by the temperature parameter. However, byallowing a gradual increase of the radius of the graph during the search process we haveintroduced an additional control parameter. Ideally the �nal temperature, tf, should below (relative to the acceptable error, �) and the �nal radius should be large (i.e. ! shouldbe small). However, to determine the e�ect of the two control parameters separately aseries of test runs in which one of them is kept at a �xed value which can be small,medium or large must be performed.The three temperature levels are de�ned in the same way as tf above with c = 0:1and probabilities ps = 0:05, pm = 0:5, and pl = 0:95. Thusts = U10 log 20tm = U10 log 2tl = U-10 log 0:95The radius levels are de�ned as rs = rminrm = rmin + rmax2rl = rmaxAs the radius of the search graph is determined by !, r is not an explicit controlparameter. So we need an algebraic relationship between r and !. This is, however,



Chapter 3. Stochastic Search 27rather hard to �nd if we insist on employing the perturbation scheme described above.If we accept a slightly di�erent scheme, namely a \move-and-push" scheme, ! can beexpressed in terms of r and n as! = & (n - 1)22r- n+ 1 + 0:5'The interchange and the \move-and-push" schemes are identical for ! = 2. For! = n \move-and-push" yields rmin = n- 1. Thusrm = rmin + rmax2 = n2 + n- 24!m = &2(n- 1)2n(n- 1) + 0:5' = �2(1- 1n) + 0:5�The non-�xed control parameter may be subjected to a slow, medium or fast reduction(t) / increase (r) scheme.The rate by which the temperature parameter is decreased is determined by theratio 
� . Recalling that e-� expresses the probability of accepting uphill steps of U weselect � = 0:1 (i.e. with probability 0.9 an uphill step of U is accepted when t = t0).The fact that the rule of essentially free motion in the initial phase is not violated isclearly demonstrated by the fact that at temperature ti uphill steps of U is acceptedwith probability e- Uti (i.e. even with the temperature lowered to one tenth of t0 morethan one third of the potential uphill steps of size U is accepted). So, with � �xed thecooling rate is determined by 
. A slow cooling rate is de�ned such that the temperatureequals tl when only 10% of the iterations are left, for a medium rate the �nal temperatureis reached at the last iteration, and for a fast cooling rate the temperature equals ts whenonly 10% of the iterations are done. In the case of a medium cooling rate we set tf = ts.Thus 
s = - 10:9I � log plc + �� = -10 log 0:95- �0:9I
m = -1I � log psc + �� = 10 log 20- �I (3.5)
f = - 10:1I � log psc + �� = 10 log 20- �0:1IEven though we argued above that � can be set to a value which is considerably higherthan the actual acceptable error provided the least-cost con�guration visited is kept inmind it seems hard to justify tf = ts as � then becomes comparable with U. A furtherdiscussion of whether tf = ts is a reasonable choice will be postponed till after the resultsof the test runs are known.Now we should assign values to either I or 
 (note that values of p have already beendetermined). As I is a derived parameter which is de�ned in terms of the cooling rate



Chapter 3. Stochastic Search 28and the �nal temperature we naturally choose the latter. Knowing that 
� � 1 or 
� �a value of 
 = 10-3 seems reasonably and we �nd from Equation 3.5I = 10 log 20- �
m � 104 log 20 � 3 � 104The window width, !, is decreased exponentially as!i+1 = !01+ i�The rates by which r is increased is thus determined by�s = !0!m - 1I�m = !0!s - 10:8I�f = !0!s - 10:2INote that !m corresponds to rm, !0 = n, and !s corresponds to rl. That is, a slowrate is de�ned such that the radius of the search space is medium when the annealingterminates, for a medium rate the radius is maximum when the annealing is 80% done,and for a fast rate it is maximum when 20% done.Now, the only unde�ned parameter is the maximum cost function increase, U, which,depending on the problem at hand, can be found either analytically or experimentally.For the graph triangulation problem it seems very hard to �nd U the analytic way asit depends on a number of parameters such as the size and density of the graph, thehomogeneity of the graph w.r.t the distribution of edges and vertex weights, and thewindow width !. So we will stick to the experimental approach.In order to �nd the optimal controlling scheme a selected set of schemes is �rst testedon a particular graph and secondly a subset of these schemes which appeared to producegood results is then applied to the three other graphs. Then, hopefully, we should beable to point out which controlling scheme(s) are generally preferable.In the �rst test cycle we select the control schemes for which at least one of the controlparameters is varying, giving a total of 27 distinct combinations. As the target graphwe use the Medianus-I for which we �nd U � 7. Because of either the extremely largeacceptable error (high �nal temperature) in the cases of slow and medium cooling or highbasin trapping in the case of fast cooling we cannot be sure that the annealing algorithmwill end up �nding the same least-cost con�guration every time given a particular controlscheme. Therefore we have to run the algorithm several times for each scheme. Table 3.1shows the minimum, median, and maximum least costs found for the 27 di�erent controlschemes with 10 runs for each instance. The schemes have been ordered according to themedian least cost value (average state size).A varying control parameter is indicated by a 
 for the temperature or a � for theradius and the rate is indicated by index s, m, or f (i.e. slow, medium, or fast). A �xed



Chapter 3. Stochastic Search 29Min. Med. Max. Min. Med. Max.1. ts; �m 22.63 22.71 22.92 15. 
m; �f 22.71 23.41 24.402. 
m; rs 22.68 22.73 22.81 16. 
m; rl 22.69 23.46 24.233. ts; �s 22.66 22.78 23.14 17. tm; �m 23.17 23.63 24.374. ts; �f 22.65 22.95 23.87 18. tm; �f 22.98 23.81 24.435. 
f; rs 22.63 22.96 23.44 19. 
s; rs 23.99 24.95 25.836. 
m; �m 22.70 22.99 23.47 20. tl; �s 24.07 25.16 26.037. 
f; �s 22.63 23.00 23.44 21. 
s; �s 24.35 25.23 26.188. 
f; �m 22.70 23.03 24.06 22. tl; �m 24.12 25.34 26.339. 
m; �s 22.74 23.07 23.63 23. 
s; �m 24.07 25.66 27.0510. 
f; rm 22.63 23.13 24.06 24. 
s; �f 25.36 26.43 27.2811. 
f; �f 22.63 23.19 23.78 25. tl; �f 25.06 26.67 28.4112. 
m; rm 22.68 23.25 24.19 26. 
s; rm 25.64 27.18 30.4613. 
f; rl 22.63 23.35 24.06 27. 
s; rl 25.07 27.44 29.1214. tm; �s 22.79 23.36 23.92Table 3.1: Minimum, median, and maximum least costs found for 27 di�erent controlschemes applied 10 times to the Medianus-I graph.control parameter is indicated by a t for the temperature or an r for the radius and thelevel is indicated by index s, m, or l (i.e. small, medium, or large).Considering the results provided by the top third control schemes in Table 3.1 weobserve that for all of these the �nal temperature is low (i.e. tf � ts) and that the initialradius is small (i.e. r0 = rs). The results obtained by applying these schemes to thethree other test graphs are displayed in Table 3.2. In Table 3.1 the most strikingobservation is that the three schemes with a constant low temperature belong to the top�ve schemes. Therefore an interesting experiment would be to test a strictly descentversion of the annealing algorithm (i.e. t = 0). However, before doing that we will adda few more comments on Tables 3.1-3.2. The last third of the schemes are characterisedby a high �nal temperature. For the middle third the �nal temperature is either low ormedium. Note that the overall average state size (median weight) is more than doubledfrom the 18th best to the 19th best scheme (i.e. the boundary between middle and lastthird). By calculating the average relative deviation of the median values from the leastmedian for each control scheme in Table 3.2 we �nd that the ranking of the schemes are3, 2, 1, 6, 8, 7, 4, 9, 5 (i.e. scheme number 3 is the best), where the di�erences betweenscheme 3 and scheme 2 is insigni�cant.To test the utility of a descent algorithm we perform four additional tests: i) Con-stant small radius ii) slow increasing radius iii) medium increasing radius and iv) fastincreasing radius. Table 3.3 shows the resultant minimum, average, and maximum leastcosts obtained by these four descent schemes applied 10 times to the four test graphs.Not surprisingly, constant small radius is found to be superior. More surprising is thefact that the results produced by this scheme turn out to be comparable with the resultsof the top four schemes (i.e. 3, 2, 1, and 6) above.The conclusion to be drawn from the above analysis is the following: If the tem-perature is kept at a constant low level the radius should either be constantly small or



Chapter 3. Stochastic Search 30Medianus-I Medianus-IIMin. Med. Max. Min. Med. Max.1. ts; �m 22.63 22.71 22.92 20.49 20.76 22.442. 
m; rs 22.68 22.73 22.81 20.49 20.58 20.793. ts; �s 22.66 22.78 23.14 20.49 20.54 20.644. ts; �f 22.65 22.95 23.87 20.52 20.86 22.445. 
f; rs 22.63 22.96 23.44 20.45 20.57 20.776. 
m; �m 22.70 22.99 23.47 20.67 21.16 22.097. 
f; �s 22.63 23.00 23.44 20.46 20.96 22.438. 
f; �m 22.70 23.03 24.06 20.54 20.73 21.209. 
m; �s 22.74 23.07 23.63 20.46 20.61 20.79Sparse DenseMin. Med. Max. Min. Med. Max.1. ts; �m 22.71 22.80 22.87 50.88 51.42 52.702. 
m; rs 22.75 22.93 23.15 51.05 51.34 52.023. ts; �s 22.72 22.82 22.97 50.96 51.15 51.614. ts; �f 22.73 23.08 24.35 51.02 52.29 53.325. 
f; rs 22.61 22.64 22.66 50.88 51.96 53.496. 
m; �m 22.81 23.37 23.85 51.14 53.04 53.497. 
f; �s 22.61 22.76 22.98 50.88 51.57 52.588. 
f; �m 22.64 22.77 23.27 50.88 51.82 53.499. 
m; �s 22.94 23.19 23.51 51.09 52.31 53.29Table 3.2: Minimum, median, and maximum least costs found for 9 di�erent controlschemes applied 10 times to the four test graphs.increased slowly (by a medium or fast rate of increase we may be trapped in a highlevel basin | see schemes 1 and 4 in Table 3.2). If the temperature is lowered at amedium rate (schemes 2, 5, and 9) we observe that the radius must be constantly small(to compensate for the relatively large number of uphill steps). But as small radii arecomputationally more expensive than large radii we reject these schemes. Finally, if astrict descent algorithm is employed the radius must be constantly small (to compensatefor the lack of ability to climb hills). Thus, based on the performed analysis we recom-mend a combination of control parameters given by a positive low temperature and aradius which initially should be small and then slowly increased.



Chapter 3. Stochastic Search 31

Medianus-I Medianus-IIMin. Med. Max. Min. Med. Max.1. t = 0; �s 22.63 22.89 23.12 20.45 20.96 22.432. t = 0; �m 22.63 22.97 23.44 20.45 20.96 21.773. t = 0; rs 22.63 23.18 24.25 20.45 20.60 21.084. t = 0; �f 22.63 23.23 24.25 20.45 20.76 22.79Sparse DenseMin. Med. Max. Min. Med. Max.1. t = 0; �s 22.61 23.13 24.33 50.88 51.30 52.702. t = 0; �m 22.61 22.87 23.35 50.88 51.78 52.713. t = 0; rs 22.61 22.77 23.28 50.88 51.26 52.704. t = 0; �f 22.84 23.74 26.86 50.88 52.74 53.37Table 3.3: Minimum, median, and maximum least costs found for 4 di�erent descentcontrol schemes applied 10 times to the four test graphs.



Chapter 4ConclusionWith the practical constraints given in Section 3.2 it appeared that simulated annealingperformed best with a constant low temperature1 and a slowly increasing radius of thesearch space. In the following discussion it is implicitly assumed that the term annealingmeans simulated annealing applied with that control scheme. Furthermore, the resultsby the heuristic algorithms referred to below is implicitly assumed to be those which forthe actual graph are produced by the algorithm which provided the least median weight.By loosely comparing the �gures of Table 2.1-2.4 and Table 3.2 we observe that thebest elimination orderings found by annealing for the Medianus graphs are only slightlybetter than the best found by the heuristic algorithms, whereas those found for the Sparseand Dense graphs by annealing are clearly superior.A detailed comparison tells us that for Medianus-I annealing may in the worst caseproduce triangulated graphs the state size of which are about 10{15% greater than thatof the graph produced by minimum weight. In the average case, however, annealingperforms 20% better than minimum weight. For the Medianus-II annealing is in no casesworse than minimum weight; in the average case it is about 10% better. For the Sparseand Dense graphs, however, annealing is considerably (300{800%) better than the bestheuristic method.The lesson to be learnt from this comparison is: If time is not a crucial parameterit might be recommendable to use annealing. The clearest example appears with theSparse graph where annealing at best performs almost an order of magnitude better thanany of the heuristics. On the other hand, if triangulation have to be fast we can by nomeans recommend the annealing algorithm which is orders of magnitude slower than theheuristic algorithms.Since annealing performs best with a constant low temperature (with the time con-straints given in Section 3.2) there is no reason to start with an arbitrary vertex orderingwasting a lot of time testing useless orderings. Instead it is highly recommended to applyone of the heuristic ordering algorithms �rst and then let the annealing process start1It is not really quite correct to call it simulated annealing then, but anyway we will stick to thatterm. 32



Chapter 4. Conclusion 33with that ordering.In Chapter 2 we mentioned the branch-and-bound algorithm which in a way is thedeterministic equivalent of the annealing algorithm. Comparisons with the Medianus-I asthe target graph showed that branch-and-bound could not at all compete with annealing.A test was conducted by �rst applying minimum weight 10 times and the correspondingorderings were stored. Subsequently the annealing and the branch-and-bound algorithmswere ran with these orderings as starting points and a �xed amount of time were allocatedfor each run. In 9 out of the 10 cases annealing improved the initial ordering down to alevel very close to the lowest level known (which by very high probability is the minimumweight level). Branch-and-bound, on the other hand, made modest improvements in just2 out of the 10 cases.As mentioned in Section 2.3 none of the triangulations produced by the heuristicalgorithms turned out to be non-minimal and hence there does not seem to be a plausiblereason to apply the fmint algorithm to ensure minimality. However, as none of theheuristic algorithms are, in general, guaranteed to produce minimal triangulations theremight be cases where it would be bene�cial to apply fmint.Another feature of the minimum size and the minimum weight heuristics is that theydo not, in general, produce perfect orderings if the graph is triangulated. This means thata simplicial vertex, v, is not guaranteed to be eliminated before a non-simplicial vertexeven though the (complete) set C = fvg [ adj(v) eventually will turn out to be either aproper subset of a clique or a clique itself. That is, there is no point in postponing theelimination of v, and at worst there will be a clique which is a proper superset of C. Theminimum �ll heuristic takes simplicial vertices �rst, but at the expense of increased timecomplexity compared to the minimum size and weight heuristics. However, by expandingminimum size and weight with test for simpliciality no e�ects were observed concerningthe weights of the triangulated graphs. So, if time complexity is an important parameterwe cannot recommend such an expansion to be carried out. On the other hand if timecomplexity is of little importance this expansion should preferably be included.AcknowledgmentsI wish to thank my supervisors Finn V. Jensen and Ste�en L. Lauritzen for their valuablecomments and suggestions during the process of producing this paper. I am also gratefulto Frank Jensen who gave me his source code of the branch-and-bound algorithm. In myimplementation of the simulated annealing algorithm I found bene�t in reuseing some ofthe ideas from this code.The research was �nancially supported by Judex Datasystemer A/S and The DanishAcademy of Technical Sciences.
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