LALXABJAINJ AU\ U LNAL YV aJjiuJa 1 1

-

Triangulation of Graphs —

Space
by

Uffe Kjeerulff

Algorithms Giving Small Total State

\R 90-09 ISSN 0908-1216 March 1990/

INSTITUTE FOR ELECTRONIC SYSTEMS
DEPARTMENT OF MATHEMATICS AND COMPUTER
SCIENCE
Fredrik Bajers Vej 7TE — DK 9220 Aalborg @ — Denmark
Tel.: +45 98 15 85 22 — TELEX 69 790 aub dk

Triangulation of Graphs — Algorithms Giving Small
Total State Space

Uffe Kjeerulff
Judex Datasystemer A/S
DK-9000 Aalborg, Denmark

March 1, 1990

Abstract

The problem of achieving small total state space for triangulated belief graphs (networks)
is considered. It is an VP-complete problem to find a triangulation with minimum state
space.

Our interest in this topic originates from the field of knowledge engineering where the
applied knowledge representation scheme is provided by the notion of causal probabilistic
networks (belief networks); CPNs for short. The application of a generalised evidence
propagation scheme in CPNs requires triangularity (chordality) of the actual network.

The paper includes a survey and evaluation of existing triangulation algorithms most
of which are found to be highly ineffective w.r.t. the applied efficiency measure. Simple
heuristic methods are presented and found to produce high-quality triangulations. More-
over, we introduce a method by which any non-minimal triangulation may be turned into
a minimal one.

Furthermore, we present a stochastic algorithm based on a technique known as simu-
lated annealing by which the optimal solution to N P-complete problems may be found
with probability arbitrarily close to 1.

Key words. graph triangulation, graph algorithms, causal probabilistic networks, belief
networks, A/P-complete problems, simulated annealing.

Contents

1 Introduction 2
1.1 Background e 2
1.2 Terminology 0 i e e e e e 3
2 Strategic Search 6
2.1 Well-known Triangulation Methods 6
2.2 Minimal Triangulations by Recursive Thinning 10
2.3 Evaluating the Algorithms oo 16
3 Stochastic Search 24
3.1 Simulated Annealing 24
3.2 Annealing in Practice o oo 28

4 Conclusion 35

Chapter 1

Introduction

1.1 Background

The notion of triangulated (chordal, decomposable, ...) graphs applies to problem solv-
ing within as widely different areas as solution of sparse symmetric systems of linear
equations, pedigree analysis, and evidence propagation in belief graphs. Our interest in
graph triangulation originates from the latter of these areas. The actual evidence prop-
agation technique was discovered by Lauritzen & Spiegelhalter (1988). This technique
is general in the sense that if the belief graph is triangulated no additional dependency
relations will ever be needed in order to ensure correctness during propagation of new
evidence. The present paper deals with the problem of achieving approximate optimal
triangulations of (undirected) graphs. In the context of belief graphs the notion of opti-
mality relates to the sum total of the state space sizes of the cliques of the triangulated
graph. This optimality task has been proved to be ANP-complete (Arnborg, Corneil &
Proskurowski 1987).

The basic technique applied to triangulate a graph G is to add the extra edges T
produced by eliminating the vertices of G one by one. (A vertex v is eliminated by
adding edges such that the vertices adjacent to v are pairwise adjacent and by subsequent
deletion of v and its incident edges.) This technique is not guaranteed to produce minimal
triangulations neither in terms of number of edges nor in terms of the size of the state
space when the vertices are selected at random. Furthermore, in average these quantities
are typically far above those of a minimum triangulation.

Triangulating graphs using the elimination technique is essentially a problem of es-
tablishing a sequential ordering of the vertices specifying the order in which they should
be eliminated. Hence the term elimination ordering (or sequence) refers to such an order-
ing. Several algorithms have been suggested for establishing elimination orderings which
have certain desired properties. As the task of establishing an elimination ordering may
be perceived as a sorting problem such algorithms are quite often referred to as sorting
algorithms. Since most of the algorithms apply some sort of search strategy the term
search algorithms is also frequently used.

Chapter 1. Introduction 3

In Chapter 2 we consider and evaluate some well-known search algorithms. We also
develop a method by which a set R C T of redundant edges in a triangulation T may
be pointed out such that T \ R is a minimal triangulation. This method is then applied
to the triangulations produced by one of the conventional search algorithms which does
not guarantee minimality. However, simple heuristic algorithms turn out to be clearly
superior to all of the more sophisticated algorithms (at least for the employed test graphs),
but no guarantees can be made as to the optimality of these heuristics.

In Chapter 3 we approach the sorting problem from the point of view of stochastic
optimisation. That is, the set of all possible elimination orderings is regarded as a search
space within which we perform a controlled random walk to find an ordering of minimum
cost. By applying this technique we obtain slightly better triangulations than those
obtained by the heuristic algorithms.

1.2 Terminology

A graph G consisting of a finite set of vertices V and a set of edges E (vertex pairs from
V) is denoted G = (V,E). Throughout this paper we shall use n = [V| to denote the
number of vertices and e = |E| to denote the number of edges. Let A be a set of vertices
and B be a set of edges. Then G(A) and G(B) denote the subgraphs of G induced by
A and B, respectively. V(B) (E(A)) denotes the subset of vertices (edges) induced by B
(A). An ordering of V is a bijection # : V < {1,2,...,n}. Gx = (V,E) is an ordered
graph.! A graph G is called a belief graph, if a finite set of elements, called states, is
attached to each vertex in G. The base 2 logarithm of the number of states (state size)
of a vertex v is denoted w(v) (the weight of v).
Two vertices v,w € V are adjacent (or neighbours) if {v,w} € E. The set

adj(v,G) ={w e V| {v,w} € E}

is the vertices adjacent to v in G. The set of vertices monotonely adjacent to v in G is
defined by
madj(v, G) = adj(v,G) N{w € V [#(v) < #(w)}

A complete subgraph of G is a set of vertices all of which are pairwise adjacent. A clique
is a maximal complete subgraph of G. A vertex v € V is said to be simplicial if adj(v, G)
induce a complete subgraph of G (which then together with v form a clique in G).

A vertex v € V is said to be eliminated if the adjacency set of v is made a complete
subgraph of G = (V,E) and v and its incident edges are removed from G. Let G; =
(Vi, Ey), where i = 1,...,n, denote the ordered graph obtained by eliminating in order

'When it appears clearly from the context that a graph is ordered we shall often drop the #-index.

Chapter 1. Introduction 4

the vertices # '(1),...,# '(i—1) € V from the ordered graph G = (V, E), where

Vi = {veVI[#{)>1i]

Ei = {{vywleEi1lv,we ViU
{{v,w} C Vi | v,w € madj(u), where #(u) = 1}
E, = E

By C;i(G) we denote the clique, if any, produced by eliminating vertex # '(i) in G; 1.
If Ci(G) is a clique it consists of the set {# (i)} U{adj(# (1), Gi_1)}

A chain in G = (V,E) is a sequence of distinct vertices <vi,...,v> such that
{vi,vi;r1} € Efori =1,...,k — 1. A cycle is a chain <vy,...,v > with the excep-
tion that vi = v and such that k > 3. A chord in a cycle is an edge {vi,v;} such that
1 <[i—jl<k—2(ie. {vi,vj} connects the two non-consecutive vertices v; and vj in the
cycle). G is triangulated (or chordal) if any cycle of length greater than 3 has a chord.

Let G4 = (V,E) be an ordered graph. Then G' denotes the triangulated graph
obtained by eliminating the vertices of G in the order defined by #. G' has vertex set V
and edge set EU T, where the set T of fill edges is a triangulation of G. A filledge f € T
is redundant if T \ {f} is also a triangulation of G. T is minimal if for any T’ C T (proper
containment) G’ = (V,EUT’) is not triangulated. T is minimum if for any triangulation
T’ of G, [T| < |T'|. Tiy(G) denotes the fill edges produced by eliminating vertex #'(i) in
Gi_7 and

Note that Gt = (V,EUT(G)).
Let C = {vq,..., vy} represent a clique of a triangulated graph G. The size of C is
s(C) =k and the weight (base 2 logarithm of the state size) of C is

k

w(C) = wivi)

i=1

The size of G, s(G), is the sum of the sizes of all of its cliques, and the weight of G is

w(G) =1log, y 2¢
C

For CCV,
adj(C,G)={v|veV\Cve U adj(w, G)}
weC
denotes the set of vertices separating G into components C and V' \ (C U adj(C, G)).
Throughout this paper we assume that the graphs considered are connected (i.e. for
each pair of distinct vertices v, w there is a chain <v,... ,w>). Note that connectivity is
invariant under elimination.

Chapter 2

Strategic Search

2.1 Well-known Triangulation Methods

Rose, Tarjan & Lueker (1976) provided the following useful characterisation of the fill
edges produced by the elimination technique.

Theorem 1 (Rose et al. (1976)) Let G = (V,E) be an ordered graph. Then {v,w}
is an element in T(G) if and only if there is a chain <v,vq,...,Vi,Ww> in G such that
V(v;) <min(# '(v),# '(w)) forall 1 <i<k.

Note that for k = 0 (i.e. {v,w} € E) the condition is regarded as satisfied. From that
theorem we may formulate the following corollaries.

Corollary 1 Let G = (V,E) be an ordered graph and <vi,...,vx,Ww> be a chain in
G, where # '(vi) < # '(w) for all i < k. Then N\ {vq,..., v} C adj(w, G'), where
N = Uve{\u vy} adj(v, G)

Proof: Follows directly from Theorem 1. O

Corollary 2 Let G4, = (V,E) and G%&b = (V,E) be ordered graphs, where #'(i+1) =
#b](i—l— 1). Then G; = G/ for all k <i<mn, where 0 <k <n.

Proof: Clearly G; and G{ consist of the same vertex set, and from Theorem 1 it is
equally clear that they also have identical edge sets. O

It appears from Theorem 1 that in order to profit by it in establishing an elimination
ordering (e.g. to keep the size of T as small as possible) the ordering should be constructed
backwards. The two most well-known ordering algorithms (lexicographic search by Rose
et al. (1976) and maximum cardinality search by Tarjan & Yannakakis (1984)) are based
on this principle.

The basic idea in the backwards approach is to separate the vertices already ordered
in a way such that there is no chains between them of the type described above. The

Chapter 2. Strategic Search 6

maximum cardinality search does that by continuously selecting a vertex (to be ordered
next) with the highest number of ordered neighbours. The lexicographic search does
something similar, but in addition it is guaranteed to produce minimal triangulations
(in O(ne) time), whereas the maximum cardinality search is not. Maximum cardinality
search has the property of not adding edges to an already triangulated graph and hence
may be used as an efficient test for graph chordality as it runs in O(n + e) time.

Fujisawa & Orino (1974) have described an extended elimination technique which
does not necessarily add fill edges between all non-adjacent vertices in the adjacency
set of a vertex being eliminated. This extended elimination strategy produces minimal
triangulations no matter which ordering of vertices is employed.

By comparing the ordinary elimination technique with theirs it appears that there are
two distinct cases in which the ordinary technique fails to produce minimal triangulations.
The two cases are described below.

Let G = (V,E) be a graph and let v € V be the vertex to be eliminated next.

Case I. {vlUadj(v,G) = V. If T is a triangulation of G’ = G \ {v} then it
is also a triangulation of G. Hence we need not complete adj(v, G) when v is
eliminated, it suffices to just remove v from G.

Case I1. (See Figure 2.1) adj(v, G) separates G into components {v}, Cy,..., Cyy,
m>1.If
GO = (adj(\}) G)aEO)a

G] = (C1 Uadj(C1,G),E1),

Gm = (CrUadj(C, G),Em)

are triangulated so is G” = (V,EUT), where T = [J{*, E; \ E is a triangulation
of G' = Ui, Gi. Again we need not complete adj(v, G), it suffices to complete
each adj(Cy, G).

Fujisawa & Orino (1974) have proved that by extending ordinary vertex elimination by
the results from these two observations any elimination ordering produces a minimal
triangulation. More precisely they have formulated and proved the following theorems.

Theorem 2 (Fujisawa & Orino (1974)) Let v be a vertex of a connected graph G =
(V,E) such that {v} U adj(v,G) =V, and let T be a minimal triangulation of the section
graph G\ {v}. Then T is a minimal triangulation of G.

Theorem 3 (Fujisawa & Orino (1974)) Let v be a vertex of a connected graph G =
(V,E) such that {v}U adj(v,G) C V, and let adj(v,G) be a separator with components
v}, Cy,...,Cm, m > 1. Furthermore, let F be the set of edges needed to make each
adj(Ci, G) a complete subgraph and let G \ {v}. If T is a minimal triangulation of G’
then T UF is a minimal triangulation of G.

Chapter 2. Strategic Search 7

Gy e Cm

v

Figure 2.1: By eliminating v we need not complete adj(v), it suffices to complete each

adj(Cy).

Based on these theorems they have formulated an O(n(e+ f)) time algorithm for finding
a minimal triangulation T of a graph G = (V, E), where f = |T|.

Both the lexicographic search and the extended elimination algorithms produce min-
imal orderings, but such orderings are not necessarily close to a minimum fill' ordering.
On the other hand a minimum fill ordering is not necessarily a minimum weight ordering.
If, for example, we let the solid circles in Figure 2.2 represent vertices with large relative
weights then only (a) is a minimum weight triangulation, whereas both (a) and (b) are
minimum fill triangulations. However, we claim that a triangulation T; is very unlikely
to have weight less than a triangulation T, if |T;| is significantly greater than |T,|. As will
be demonstrated in Section 2.3 this claim seems empirically reasonable.

— fill edges
— original edges

(a) (b)

Figure 2.2: Both of the triangulations (a) and (b) are minimum fill, but only (a) is
minimum weight (solid circles represent vertices with large relative weights).

Depending on the problem to be solved by graph triangulation, optimality may be
defined differently. Three typical candidates are

e minimum fill

'We shall use the terms minimum fill, minimum weight, and minimum size triangulations as short
for triangulations consisting of a minimum number of fill edges, triangulations producing triangulated
graphs with minimum weight, and triangulations producing triangulated graphs for which the sum of the
clique sizes is minimum, respectively.

Chapter 2. Strategic Search 8

e minimum size
e minimum weight

In order to meet these optimality criterions using the elimination technique the most
immediate strategy would be to successively choose the next vertex to be eliminated to
be one which produces as few fill edges as possible, the smallest clique, or the clique
with the least weight, respectively. Henceforth we will call the algorithms based upon
these three heuristic rules the minimum fill, the minimum size, and the minimum weight
heuristic, respectively. Rose (1973) described the first two of these heuristics under the
names minimum deficiency and minimum degree algorithms and referred to other papers
(e.g. Sato & Tinney (1963) and Tinney & Walker (1967)) in which it is assumed that
these algorithms produce near optimal orderings.

As noted by Rose (1973) the minimum size heuristic is fast (can be implemented to
run in O(n + e') time, where e’ = e + |T|), but has some disadvantages:

e does not, in general, produce a perfect ordering? if the graph is triangulated
e does not, in general, produce minimal triangulations

e there exist examples for which the triangulation produced is arbitrarily greater than
a minimum (fill) triangulation

However, this last feature does not really count as a disadvantage in the context of belief
networks as we do not care about the number of fill edges.

The minimum fill heuristic has the advantage of producing a perfect ordering when
the graph is triangulated, but has the following disadvantages:

e slightly slower than the minimum size heuristic, because the adjacency set of each
vertex must be edge tested

e does not, in general, produce minimal triangulations

The minimum weight heuristic has exactly the same advantages and disadvantages as the
minimum size heuristic. Note that if all vertices have equal weights these two heuristics
are identical.

As the complexity of finding a minimum triangulation grows like n! we are not able to
run a straightforward exhaustive search, except for very small n. However, by construct-
ing an elimination ordering successively and cutting off when the sum of the weights of
the cliques produced so far exceeds the current least weight of a complete ordering we
might be able to run an exhaustive search even for graphs of moderate sizes. Usually this
cutting and branching technique is called branch-and-bound. As we are dealing with an
NP-complete problem we should not, in general, expect a branch-and-bound algorithm

If G4 = (V,E) is an ordered graph then # is a perfect ordering if T(G4) = (. Any triangulated graph
Gy = (V,EUT(Gy)) has a perfect ordering, since # is a perfect ordering of this graph.

Chapter 2. Strategic Search 9

to find an optimal ordering within certain acceptable time bounds. That is, the algo-
rithm must terminate prematurely when the number of vertices exceeds a certain limit
or when the number of permutations cut off grows too slowly. Of course, the initial or-
dering heavily influences the success of this algorithm. So a branch-and-bound algorithm
should preferably be cascaded (as the last element) with other faster ordering algorithms
to set-up a “good” initial ordering for it in order to avoid checking too many useless
orderings and in order to minimise the distance to some minimum ordering (assuming
that a low cost ordering is closer to a minimum one than a high cost ordering is).

2.2 Minimal Triangulations by Recursive Thinning

When an elimination ordering has been established and the corresponding triangulation,
T, of a graph, G, has been determined it might turn out that there is a subset, T' C T,
such that T’ is also a triangulation of G. For the minimum fill criterion T’ is, of course,
strictly better than T. For the minimum weight criterion T’ is no worse than T, and most
often T’ is significantly better than T. But for the minimum size criterion T is normally
better than T'. The fact that T’ is most often better than T for the minimum weight
criterion will become evident in the following.

In order to develop an algorithm to remove redundant fill edges we first characterise
a minimal triangulation in the following way.

Theorem 4 (Rose et al. (1976)) Let G = (V,E) be a graph and G' = (V,EUT) be
triangulated. Then T is minimal if and only if each edge in T is a unique chord of a
4-cycle in G'.

An equivalent formulation of Theorem 4 is provided by the following corollary.

Corollary 3 Let G = (V,E) be a graph and G’ = (V,EU T) be triangulated. Then
T is minimal if and only if for each edge {v,w} € T there is a pair of distinct vertices
{x,y} C adj(v,G’) N adj(w, G') such that {x,y} Z EUT.

Proof: As {v,w} is a chord of a 4-cycle <v,x,w,y,v> in G’, x and y will both be
adjacent to both v and w in G’. By the uniqueness of the {v,w} chord it follows that
x,y}€EUT. O

By formulating Theorem 4 that way we easily get the next corollary.

Corollary 4 Let T be a triangulation of a graph G = (V,E), let G’ = (V,EUT) be the
corresponding triangulated graph, and let {v,w} € T. Then T \ {{v,w}} is a triangulation
of G if and only if the set of vertices N = adj(v,G’') N adj(w, G’) induces a complete
subgraph G'(N) of G'.

Proof: Let us first prove that if T\{{v, w}} is a triangulation of G then G’(N) is complete.
By assuming G’(N) is not complete (e.g. x,y € N are non-adjacent) we get the unchorded
4-cycle <v,x,w,y,v> which contradicts the definition of triangulated graphs.

Chapter 2. Strategic Search 10

Secondly we shall prove that completeness of G/(N) implies that G/(EUT\ {{v,w}}) is
triangulated. Assuming G’'(EUT\{{v,w}}) is not triangulated there must be an unchorded
cycle of length 4 in it because if it had length > 4 there would be an unchorded cycle of
length > 3 before {v, w} was removed. As G’ is triangulated this cycle must include both
v and w and as the cycle has length 4 it must be a <v, x,w,y,v> cycle, where x,y € N.
But as G/(N) is complete the cycle has a chord. O

Notice that Theorem 4 and Corollary 3 characterises the fill edges of a minimal triangula-
tion T’ C T, whereas Corollary 4 characterises the fill edges in T\ T’. Thus an alternative
proof of Corollary 4 could be based on the results of Corollary 3.

The above propositions tell us that the redundant edges of a triangulation are char-
acterised by not being unique chords of 4-cycles. Note that this set of edges is identical
to the set {e;} for which all e; is a proper subset of a unique clique in the graph. To be
precise we formalise this observation as:

Lemma 1 Let G = (V,E) be a triangulated graph, let Ez = {e € E | e is not a unique
chord of a 4-cycle in G}, and let C = {C;} be the set of cliques in G. Then for all e € Eg
there is a unique C € C such that e C C.

Proof: Assume e = {v,w} € Eg is a subset of more than one clique. Then there is an
unchorded cycle <v,...,w,...,v> of length greater than 3. Thus the graph is no longer
triangulated which contradicts the fact that e is redundant. O

As a redundant (fill) edge, e = {v,w}, can only be subset of a single clique, C, it is now
clear that this clique splits into two new cliques C; = C\ {v} and C; = C \ {w} the sum
of weights of which is typically significantly less than the weight of C and in any case no
worse than that.

A non-minimal triangulation T may become minimal by simply dropping the edges in
T that do not fulfil the conditions of Corollary 3. However, it does not suffice in general
to sweep through the edges just once, which is illustrated by the following example. In
Figure 2.3 the vertices b and ¢ have a common pair of non-adjacent neighbours (i.e. {b, c}
is a unique chord of the 4-cycle <a,b,c,d, a>) and hence we are not allowed to remove
edge {b,c}. The vertices ¢ and d do not have such a pair in common and we may remove
edge {c,d}. Examining the reduced graph we now find that {b, c} may be removed.

@ ©

— fill edges

— original edges

(——=0
Figure 2.3: A non-minimal triangulation produced by the elimination ordering a, b, c, d.

Clearly for a fill edge which in a previous sweep was found to be a unique chord of a 4-
cycle to become redundant, according to Corollary 4, one of the four edges in that 4-cycle

Chapter 2. Strategic Search 11

must have been removed. So, assuming it takes k sweeps to minimise a triangulation,
for i = 2,... k it suffices in sweep 1 to test the fill edges which intersect (i.e. share an
end-point (vertex)) with an edge removed in sweep i — 1. Depending on the number of
sweeps required this observation may substantially improve the minimisation process.

Based on Corollary 4 and the above discussion we may formulate the following
O(c?|T|?) time® algorithm which removes redundant fill edges from a non-minimal trian-
gulation T.

miNt (T,G = (V,EUT),R) (initially R = T)
R'={e;€T|de; e R:esNey #0}
T ={{v,w} € R’ | G(adj(v, G) Nadj(w, G)) is complete}
if T' # () then
return (MINT (T\T',G=(V,EUT\T'),T"))
else
return (T)

Obviously the number of sweeps required heavily depends on the order in which we
arrange the fill edges and will typically be much less than |T|. The clearest example
appears in the generalisation of the graph in Figure 2.3 (a string graph* triangulated by
successively eliminating vertices in the middle of the string), where only one fill edge may
be removed in each sweep if the edges are ordered according to the order in which they
have been generated, whereas all of them may be removed in just one sweep if they are
investigated in the reverse order. This gives us the clue of a considerably more efficient
minimisation algorithm. The existence of such an algorithm is verified by the proof of
Theorem 5. However, before presenting this theorem let us have a closer look at the
rationale leading to it.

An immediate idea emerging from the above discussion is: Is one sweep sufficient in
general provided that the fill edges are ordered appropriately? There are two obvious
ways of ordering the fill edges of a triangulated graph. The first being the order of creation
(i.e. corresponding to the elimination ordering) and the second being the reversed of the
first. As became clear from the string graph example above the first ordering strategy is
not applicable, whereas the second could be. Notice that these orderings are not uniquely
defined as the fill edges are created in groups (one group, possibly empty, for each vertex
elimination). There seems not to be any obvious way of ordering fill edges belonging
to the same group. So in order for reversed orderings to be minimised in one sweep
it is a requirement that each group of edges can be minimised in one sweep no matter
how they are ordered. The example in Figure 2.4 shows that this requirement cannot
be satisfied. The elimination of vertex a produces three fill edges (none of which are
necessary as the graph is already triangulated). In order to minimise this group (which
is assumed to be the last group of a series) we first apply MINT on edge {d,c} and find

®The constant ¢ expresses the density of the graph and equals the cardinality of the intersection of
the adjacency sets of the vertices which constitute a fill edge.
“The term string graph denotes a graph which topologically resembles a string of pearls.

Chapter 2. Strategic Search 12

— fill edges

— original edges

Figure 2.4: The group of fill edges generated by the elimination of a single vertex cannot
be minimised in one sweep.

that it is redundant and we remove it. Then we apply MINT on {b, e} and find that it
cannot be removed. Finally {b, c} is found to be redundant and it is removed. Now {b, e}
becomes redundant as well. This shows us that in order to (locally) minimise a group
of fill edges MINT must keep its recursive mode of operation. Furthermore, the example
in Figure 2.3 demonstrates that the groups have to be ordered according to the reverse
ordering scheme if a single sweep through the sequence of groups should be enough to
minimise a triangulation. These were the considerations leading to Theorem 5.

Theorem 5 Let G = (V,E) be an ordered graph, T = T(G), and F = {F{,F,...,Fa}
where F; = MINT(Ti(G),G’), G' = (V,EUF), and F = Uj_; Tj(G) U Ug_i41 Fx. Then
T’ = U; Fi is a minimal subset of T.

Proof: Let G’ = (V,EUT) be the initial triangulated graph. First we observe that since
G’ is triangulated the removal of a fill edge that according to Corollary 4 is redundant
does not introduce unchorded 4-cycles (the resulting graph will still be triangulated).
Now, assume we have just finished the recursive thinning of T;(G), and that {u, v} € F;.
Note that {u, v} was once produced by the elimination of a vertex x and hence is a unique
chord of the 4-cycle <u,w, v, x,u>. We will prove that {u, v} is not redundant in the final
triangulated graph G” = (V,EUT’) either. Thus T’ will be minimal. Let us therefore
assume that {u,v} is in fact redundant in G” (which should lead to a contradiction). As
we do not add new edges during the thinning process the only way in which {u, v} could
have become redundant is that one or more of the edges in the 4-cycle <u,w,v,x, u>
have been removed. Let us consider the case where just one edge, {v,x} say, has been
removed. According to Theorem 1 there is a chain <v,vi,..., Vg, x> from v to x in
G (and hence also in G”) such that all vertices vy,..., v are eliminated before both v
_____ v1adj(y,G) = 0. Otherwise,
there would be a fill edge {w, x} (which would make {u, v} redundant) and/or a fill edge
{u, v} which contradicts the fact that the elimination of x produced {u,v}. Thus, there is

and x. Next, Corollary 1 tells us that {u,v,w} N Uyep,

an unchorded cycle <u,w,v,vy,..., Vg, x,u> the length of which is clearly greater than
3. Repeating this argument in the cases where two, three or all four edges have been
removed result in similar conclusions. This completes the proof. O

Based on Theorem 5 we may now formulate a significantly more efficient minimisation
algorithm, FMINT.

Chapter 2. Strategic Search 13

FMINT (F,G = (V,EUT))
for i =n downto 1 do
R = Fli] \ MINT (Fli],G = (V,EUT))
T=T\R
return (T)

F is an array of length R of sets of fill edges ordered according to the order of creation
when applying the elimination procedure.

The magnitude of the improved performance achieved by FMINT compared to MINT
depends on the distribution of the fill edges over the series of the n groups. The more
equal they are distributed the better performance is achieved. In the worst case (i.e. all
edges in the same group) no improvement is obtained. If the edges are equally distributed
(% edges in each group) FMINT runs in O((c%)z) time. However, it is the size of the
greatest group that determines the performance of FMINT. If the size of the greatest

%, m > 1, FMINT runs in O((c%)z) time. So for example even if one fourth of

group is
all fill edges belongs to the same group, FMINT will run 16 times as fast as MINT.

Letting G = (V,E) be an ordered non-triangulated graph it appears from the above
discussion that by approaching the graph triangulation problem by means of vertex elim-
ination the fill edges T" = (i, Ti(G) seem to prevent a proper thinning of the fill edges
T = Uf:]] Ti(G) before T has been thinned out. An idea emerging naturally from this
observation is: Is it possible, in general, to obtain minimal triangulations by applying
MINT on each group Ti(G) before proceeding to the elimination of vertex # '(i+1)? In
case of an affirmative answer we have found that the global search necessary to implement
a triangulation algorithm based on the results by Fujisawa and Orino can be replaced
by a local search. This seems intuitively very unlikely to be the case. The following
example clearly shows that the question unfortunately must be returned a negative an-
swer. Consider the example in Figure 2.5 and assume that vertex v is to be eliminated
(cf. Case II above) which will produce a fill edge {u,w}. Theorem 3 states that {u,w}
is necessary if u and w are connected by a path not including v and that it is redun-
dant otherwise. Since the problem of determining if such a path exists cannot be solved
locally our previous results which apply to triangulated graphs are insufficient when we
deal with non-triangulated graphs.

Figure 2.5: Fill edge {u,w} is only necessary if u and w are connected by a path not
including v.

However, note that in the special case where u and w are eliminated last we may

Chapter 2. Strategic Search 14

remove {u,w} irrespective of the topology of the rest of the graph as {u,w} will be
reproduced if u and w are connected by a path not including v (cf. Theorem 1).

2.3 Evaluating the Algorithms

In order to assess the virtues and vices of the various triangulation algorithms we want
to perform a series of tests. These tests will be based on two “real world” graphs and on
two artificial ones.

The two “real world” graphs, called Medianus-1° and Medianus-II originate from the
development of the MUNIN® system (Andreassen, Jensen, Andersen, Falck, Kjzerulff,
Woldbye, Sgrensen, Rosenfalck & Jensen 1989, Olesen, Kjeerulff, Jensen, Jensen, Falck,
Andreassen & Andersen 1989). Medianus-II is a modified version of Medianus-I (see
Figures 2.6-2.7). Both of these graphs have a layered structure, which means that the
number of fill edges required should be moderate.

Figure 2.6: The Medianus-I graph.

For a graph G = (V, E) to be connected a minimum of n — 1 edges are required. The

n)y nf-n
2/ 2

5Bayesian inference network describing relations between disorders, pathophysiological features and
measurements for the human median nerve.

SKnowledge based system for diagnosing diseases and malfunctions in the human neuromuscular
system.

maximum number of edges in G is

Q Q ’QQ

QY .%. > ()

“‘ “ ")

V V i P

ure 2.7: The Medianus-II graph

Chapter 2. Strategic Search 16

in which case G is complete.
The artificial graphs consist of a sparse and a dense graph. The notions of sparsity
and density are based on the following definition.

Definition 1 Let G = (V,E) be a (connected) graph. G is sparse if n — 1 < e <
11—0 (“ZT*“) (i.e. the number of edges is less than or equals one tenth of the maximum

number of edges). G is dense if e > % (“ZTfn) O

From this definition follows that sparse graphs are only defined for n > 20, whereas dense
graphs are defined for all n > 0.

We let a computer generate the graphs by first making a string graph (to assure that
the graphs will be connected) and then adding edges at random by visiting the vertices
one by one to assure a fairly equal distribution.

In the implementation of the algorithms for which the next vertex to be enumerated
is not selected at random, but according to some ranking strategy, ties are solved by
picking one of the equally ranked vertices using a random number generator.

For the Medianus graphs the algorithms were ran 400 times, whereas for the artificial
graphs (let us call them Sparse and Dense) the number of runs were reduced to 100, but
as will become quite clear below the conclusion is not influenced by that.

The algorithms tested are simple random elimination, lexicographic search, maxi-
mum cardinality search, extended random elimination, the FMINT algorithm applied to
the triangulations produced by simple random elimination and by maximum cardinality
search, and finally the three heuristic algorithms minimum fill, minimum size, and mini-
mum weight. The minimum weight heuristic is the only one that takes the weight of the
vertices into account when selecting the next vertex to be eliminated.

The algorithms were first ran on the graphs with the vertices having different weights
(for the Medianus graphs the state sizes lies in the range from 3 to 21 with an average
of approximately 6, and for the artificial graphs the state sizes are uniformly distributed
between 2 and 5). Subsequently all orderings first obtained, except those produced by
the minimum weight heuristic, were applied to the graphs with all vertices being of equal
weight (state size 6 for the Medianus graphs and 2 for the artificial ones).

For each algorithm we record the following two key figures for a triangulated graph
G = (V,EUT): Number of fill edges (|T|) and weight of G (w(G)). Tables 2.1-2.4 show
the minimum, average/median and maximum of these two key figures for the four graphs
mentioned above. Note that the weight figures in the middle column represent the median
weights (i.e. the base 2 logarithm of the average size of the state space).

The algorithms are ordered in Tables 2.1-2.4 according to the median weight of the
triangulated graphs in the case where the vertices are of different weight (the reason
being that this is the key figure from the point of view of belief graphs).

The most immediate result of the test runs is the overwhelming superiority of the
heuristic algorithms no matter which kind of measure is employed (i.e. |T|or w(G)). This
superiority becomes even more distinct when the results of the test runs are displayed

Chapter 2. Strategic Search 17

Minimum Average/median Maximum
Algorithm] T] w(G)Z w(G)*||T] w(G)?Z w(G)*||T| w(G)? w(G)3
Random elimination |100 27.75 30.28|156 41.66 48.36(244 47.25 54.61
Ext. random elim. 63 22.84 24.65(100 30.94 36.26|175 36.19 41.44

Lexicographic search | 68 23.44 25.05|100 30.29 35.30(177 36.50 41.47
Thinning (random) 62 22.86 24.66| 98 30.14 35.51|162 35.41 41.69
Max. cardinality 68 23.63 25.27(100 29.00 31.97(136 32.63 36.49
Thinning (max card) | 63 22.86 24.58| 82 26.42 2856|111 28.30 31.47
Min. size heuristic 57 2271 24.55| 58 23.27 24.88| 60 24.17 26.15
Min. fill heuristic 57 22.71 24.55| 58 23.14 24.80| 61 24.79 26.31
Min. weight heuristic| 57 2294 —---| 57 2299 —--—-| 57 23.08 ———

1: 400 runs
2: Different vertex state sizes (between 3 and 21)
3: Equal vertex state sizes (= 6)

Table 2.1: Key figures for the triangulation of the Medianus-I graph.

Minimum Average/median Maximum

Algorithm Tl w(G)? w(G)3|IT] w(G)? w(G)*| T] w(G)Z w(G)3
Random elimination |134 29.28 32.08|213 46.35 50.32(345 53.86 56.94
Lexicographic search | 98 22.28 23.61|145 30.59 33.71(253 35.21 39.57
Ext. random elim. 89 21.67 23.27(130 30.07 33.36(198 36.01 39.77
Thinning (random) 83 21.09 22.99(129 29.97 32.53(209 35.74 37.94
Max. cardinality 101 22.38 23.96|133 29.17 31.88(188 35.28 38.82
Thinning (max card) | 87 21.61 23.17|116 26.93 28.87(153 31.68 34.85
Min. size heuristic 74 2050 22.11| 79 2219 24.27| 86 24.88 26.28
Min. fill heuristic 74 20.57 22.15| 78 21.78 23.47| 84 23.49 24.89
Min. weight heuristic| 76 2065 —--—-| 76 2065 —-—-—| 76 20.65 ———

1: 400 runs

2: Different vertex state sizes (between 3 and 21)
3: Equal vertex state sizes (= 6)

Table 2.2: Key figures for the triangulation of the Medianus-II graph.

Minimum Average/median Maximum
Algorithm Tl w(G)? w(G)3|IT] w(G)? w(G)3| [T] w(G)Z w(G)3
Random elimination [283 32.86 19.72(390 4831 26.19(565 54.77 31.46
Max. cardinality 222 27.24 16.51[305 36.61 20.57|406 41.46 23.42

Lexicographic search |217 26.41 16.49|297 33.77 19.84(405 38.25 22.82
Thinning (random) 184 25.01 1559|254 32,95 18.83|339 37.04 22.20
Ext. random elim. 204 24.72 15.88|260 32.86 18.91|343 37.20 21.09
Thinning (max card) | 182 24.62 1542(224 31.36 17.53(300 35.97 20.53
Min. size heuristic 149 23.05 14.36|157 25.93 15.11|169 28.67 16.37

Min. weight heuristic | 156 25.06 ——-—-|158 2534 —--—-|160 2592 - ——
Min. fill heuristic 149 24.82 14.57|151 24.97 14.60|153 25.61 14.74
1: 100 runs

2: Different vertex state sizes (between 2 and 5)
3: Equal vertex state sizes (= 2)

Table 2.3: Key figures for the triangulation of the Sparse graph.

Chapter 2. Strategic Search 18

Minimum Average/median Maximum
Algorithm' [T] w(G)? w(G)3|IT] w(G)? w(G)*| [T] w(G)? w(G)3
Random elimination |538 62.84 37.33|677 73.57 4199|795 77.40 44.83
Max. cardinality 499 59.14 34.82|567 66.41 3821|615 67.92 39.21

Lexicographic search |432 54.39 32.59|538 65.41 36.73(644 70.84 40.80
Ext. random elim. 439 53.72 31.70|525 63.92 36.29|633 69.94 41.00
Thinning (random) |412 52.88 31.74(528 62.73 36.25(638 66.87 39.66
Thinning (max card) | 438 56.42 32.92(481 59.57 34.26(545 62.53 35.72
Min. size heuristic 384 55.01 31.69|387 56.37 32.06|394 57.09 32.22
Min. fill heuristic 374 54.40 31.82|390 56.35 32.31|398 57.81 32.73
Min. weight heuristic | 388 53.48 - --|388 53.48 ---|388 5348 ---

1: 100 runs
2: Different vertex state sizes (between 2 and 5)
3: Equal vertex state sizes (= 2)

Table 2.4: Key figures for the triangulation of the Dense graph.

graphically as in Figure 2.8 which shows the graph weights obtained for the Medianus-I
graph with different vertex weights (a similar representation of graph weights employing
equal vertex weights yields essentially the same result). The 400 figures are ordered in
50 intervals and displayed in a bar chart with the height of each bar being proportional
to the number of figures in the corresponding interval. (However, if the interval width in
terms of pixels’ is less than 1, given the width of the display area provided, the number
of intervals for the particular set of figures is reduced such that 1 pixel represents the
width of one interval.)

The tiny marks in Figure 2.8 indicate the overall minimum weight (in this case found
by the minimum size heuristic) and the median weights for each algorithm.

A similar graphical representation of the number of fill edges for the Medianus-I tri-
angulations looks very much like Figure 2.8. The main difference is that for the heuristic
algorithms the dispersion is even less than in Figure 2.8.

Representing the results obtained from the Medianus-II, the Sparse, and the Dense
graphs in the same fashion provide bar charts of very similar appearance.

Figure 2.9 shows enlarged representations of the graph weight results for the four
graphs tested obtained by the heuristic methods. The most striking result being that the
range and dispersion of results for the minimum weight heuristic is very small, except
maybe for the Sparse graph. This seems, however, to be a mixed blessing as for the
Medianus and the Sparse graphs it is not able to find triangulations producing graph
weights that are as small as those produced by some of the triangulations found by the
minimum size heuristic which on the other hand produces very dispersed results.

Instead of breaking ties at random it might be possible to achieve less dispersed results
by applying some sort of strategic tie breaking. To find a good strategy we should be
able to identify some characteristic features of the choices made during the construction

A pixel is the atomic element in computer graphics

Chapter 2. Strategic Search 19

Random elimination Thinning of random triangulatignsMinimum size heuristic
Extended random elimination Maximum cardinality search Minimum fill heuristic
Lexicographic search Thinning of max. card. triang. Minimum weight heuristic
, alimdlelfonn cacdbin L

Figure 2.8: Distribution of graph weights obtained by 400 runs on the Medianus-I graph
with different vertex weights.

of the best orderings. However, by inspecting the elimination process pertaining to these
orderings it seems impossible to find any pattern, at least from a local point of view, in
the way ties are broken.

A way of improving the performance of the heuristic algorithms would be to try out
all orderings that might possibly be produced by the algorithms. That is, for every tie
to record the candidate vertices and then to perform a depth-first search in the tree
of orderings successively constructed. However, by counting the number of candidate
vertices for every tie, it was experimentally found that for the Medianus-I graph we may
expect the number of possible orderings which can be achieved by the minimum size
and the minimum fill heuristics to be as high as 2- 107. This means that an exhaustive
search in the tree of candidate orderings is absolutely infeasible for these two algorithms.
The tree size for the minimum weight heuristic amounts to only 24 orderings for the
Medianus-I graph. On the other hand, not much can be gained by an exhaustive search
in this case as the dispersion is rather modest.

A total of 1000 triangulations were produced by the heuristic algorithms and, surpris-
ingly, it appeared that all of these were minimal. However, as mentioned in Section 2.1
none of the heuristic algorithms are, in general, guaranteed to produce minimal triangu-
lations; although in practice there seems to be no reason to run the FMINT algorithm to
ensure minimality.

Although the heuristic algorithms and especially the minimum weight seem to pro-

Chapter 2. Strategic Search

20

Minimum size heuristic (Med-I)

[do ol .

Minimum fill heuristic (Med-I)

1

Minimum weight heuristic (Med

Minimum size heuristic (Med-II

I_.Jln,J-Lwnln_Hn

Minimum fill heuristic (Med-II)

Adite. ofh o0 omone o

Minimum weight heuristic (Med

Minimum size heuristic (Sparse)

Hﬂ.n-n‘f!ﬂn 0 o

Minimum fill heuristic (Sparse)

Minimum weight heuristic (Spar

L

)

Minimum size heuristic (Dense)

Minimum fill heuristic (Dense)

Minimum weight heuristic (Deng

N T I I

Figure 2.9: Distribution of graph weights obtained by running the heuristic algorithms
400 times on the Medianus graphs and 100 times on the artificial graphs. Different vertex
weights.

duce fairly satisfactory triangulations we still face a major question: How far are we from
a minimum weight triangulation?

Assuming the distance® between the elimination orderings produced by the heuristic
algorithms and a minimum weight ordering, say #, is modest the branch-and-bound
algorithm (cf. Section 2.1) might provide an answer to our question. This algorithm has
the essential property of searching in a very systematic way as all permutations with
identical prefix (vi,...,vk) are tested before permutations with prefix (vq,...,v;), where
i < k. This has the important implication that the number of iterations needed by the
branch-and-bound algorithm to reach # might be orders of magnitude greater than the
minimum distance to #. This might, however, not necessarily mean that the algorithm

does not have any practical significance. If the cardinality of the set, S, of orderings

8Here we define the distance between two orderings in terms of the minimum number of interchanges
between neighbouring (i.e. adjacent in the ordering) vertices in one of the orderings required to reach the
other (cf. Chapter 3).

Chapter 2. Strategic Search 21

the weights of which differs insignificantly from the minimum weight, is large enough
and the distances between the members of S are generally relatively large there might
be a chance that the branch-and-bound algorithm is a practical solution to refinement
of orderings found by heuristic methods. On the other hand, if the cardinality of S is
small we should, in general, expect an algorithm which chooses the next permutation in
a non-deterministic manner to perform considerably better.

The best orderings known yet for the Medianus-I graph were found by the minimum
size heuristic. About one seventh (56 out of 400) of the orderings found by this heuristic
produced triangulated graphs with practically identical weights. A sample of 10 of these
orderings were tested two by two to measure the distances between them (i.e. a total of
45 measure were calculated). It turned out that no two of these orderings were identical
and that the distances between them were equally distributed in the interval from 20 to
58. The result of this little test indicates that we might expect a lot of orderings to be
minimum and the distances between them to be quite significant.

Still, in order to get answers to the above questions we need to know, at least by
high probability, what the minimum weight triangulation of a graph is. In the next
section we consider a stochastic algorithm which with probability arbitrarily close to
1 finds a minimum triangulation, and hence we postpone the discussion of the utility
of the branch-and-bound algorithm until the simulated annealing algorithm has been
evaluated.

Chapter 3

Stochastic Search

3.1 Simulated Annealing

Simulated annealing is a stochastic algorithm which is used for finding global minimum
cost configurations for A/P-complete problems with cost functions having many local
minima. The trick applied to avoid getting stuck in local minima is to accept cost
function increases with positive probability.

For a given optimisation problem to be suitable for the annealing algorithm it should
be possible to describe it in terms of a solution space S the elements of which all relate
to some cost function value c(s), s € S, and which are connected by some appropri-
ate neighbouring structure. That is, S has a certain topology which has the essential
feature that for every pair of configurations, si,s; € S, s; should be reachable from s;,
where reachability is defined as a series of transitions, sy — si, each of which consist of
a perturbation imposed on configuration sy such that it changes to a neighbouring con-
figuration s;. The distance between two configurations s;i,s; € S is defined as the least
number of transitions required to reach s; from s;. The radius of a space S is defined as
the maximum distance between two configurations in S. Of course the radius depends
on the perturbation scheme employed.

In our case S is the set of all possible orderings of the vertices V of a graph G = (V, E)
(i.e. |S| =n!, where n = |V]) and a transition s; — s; is simply defined as the interchange
of two vertices in ordering s; resulting in ordering s;. As the aim is to minimise the
weight of a triangulated graph G' = (V,EUT(Gy)) the cost function is defined as

c(#) =w(G")

where Gx = (V,E). So we want to find an optimal ordering #* such that c(#*) < c(#)
for all # € S.

The annealing algorithm starts at some, possibly random, configuration #; (i = 0),
selects two vertices v and w (according to a perturbation scheme as discussed below), and
computes the cost c(#,) of the potential new configuration #, obtained by interchanging

22

Chapter 3. Stochastic Search 23

v and w. Now, #, is accepted if

c(#p) < c(#i) —tilogu

where u €]0;1] is a uniform random number and t; is a control parameter called the
temperature which is gradually decreased as described below. This means that an uphill
step of At; will be allowed with probability e ». In other words the new configuration
#i41 is set to #, with probability

‘pzmin{],e tA}

and to #; with probability 1 — p, where A = c(#,) — c(#i). Large values of t; allow
large cost function increases, and small values allow only small increases.

The initial temperature ty should be set to some suitable large value such that all
perturbations are accepted (this ensures that all configurations can be reached). That is,
if #; and #; are adjacent configurations in S and if we define

u= max c(#1) —c(#)]

to be the maximum cost function increase then an uphill step of U should be accepted
with probability close to 1. Thus if U = oty we get the following rule

meaning that ty should be large compared with U or 0 < ox < 1.
(Lundy & Mees 1986) concluded in their study on convergence properties of the
annealing algorithm that the temperature should be lowered exponentially as

t;

titr = 3.1
i+1 1+ 6ti ()
where 3 < ﬁ, and that the final temperature, t¢, should (essentially) obey the following
inequality
te < 3.2
f= log |S| (3:2)

where € is the acceptable error (i.e. € = c(#¢) — c(#*)). An equivalent formulation of

Equation 3.1 is
to

-9 3.3
T+il (3.3)

ti1

where x = %, 0<vy<1and % = [3to. By solving Equation 3.3 for i it appears that the

u

and hence to
Ytisa

number of iterations required to reach a temperature t;;; is less than
reach the final temperature t; takes I iterations, where

ui
- og|S|
YE

[

Chapter 3. Stochastic Search 24

However, even if we set o« = 0.1 (a reasonable value would rather be 0.01) and y = 0.1
(which is a very large value knowing that ideally £ < 1), we find by accepting an error
e = U-1073 that I = n(logn — 1) - 10* which for n = 50 is approximately 1.5 - 10°.
So in order to get reasonable response times from the annealing algorithm we have to
adopt a more pragmatic approach. There are three parameters which determine the
number of iterations required: The initial temperature ty, the cooling rate, and the final
temperature t;. To allow essentially free motion in the space S in the initial phase (to
avoid getting trapped in local minima at an early stage) the probability that any uphill
step is accepted should be close to 1 as discussed above. Thus the rule ty > U must
not be violated. A further increase of the cooling rate seems not to be a fair solution to
the problem as again the probability of getting trapped in high level basins becomes too
large. Specifying a reasonable acceptable error € often leads to extremely small values of
both tf and the changes in t; when t; is close to t¢. This means that the algorithm may
have reached configurations # for which c(#) — c(#*) < €, (#"* still being the optimal
configuration) long before t; has reduced to t¢. Furthermore, by constantly keeping in
mind the least-cost configuration visited, t¢ can definitely be set at a considerably higher
value than recommended by Equation 3.2. That is, we may specify a considerably higher
“acceptable error” than really wanted.

In the initial phase it seems intuitively reasonable to keep the radius of the search
space S as small as possible to keep the distance between any two configurations as
small as possible. Later, when the algorithm has found an attractive subspace (basin)
containing low-cost configurations, it seems to be more convenient to have a large radius
(i.e. narrowing down the focus of attention by reducing the number of neighbours for
each configuration). Initially the only constraint we put on the perturbation scheme is
that we define a perturbation to be the interchange of only two vertices v and w. With
that constraint in mind the scheme providing the least possible radius chooses v and
w completely arbitrarily from a configuration #, and the scheme providing the largest
possible radius chooses an arbitrary pair v,w for which |#(v) — #(w)| =1 (i.e. v and
w are adjacent in #). For both schemes the pair of configurations #;,#; € S between
which the distance equals the radius of S are characterised by the one being the reverse
of the other (i.e. #i(v) # #;(v) for all v € V except for at most one vertex). Thus for
the two perturbation schemes the radii 7,in and 0y of S are given by

Tmin = {
2

n 1 n2_n
rmaX:Zn—i: 3
i=1

As we see Timax = (N — 1)Tmin if 1 is even and Tax = N - Timin if 1 is odd, and hence

if n is even
1 ifn is odd

ERNE

N‘

there is a substantial difference between i, and T,qx even for a moderate number
of vertices. The two perturbation schemes may be replaced by the general scheme for
which the interchange of v and w is restricted by the condition |#(v) — #(w)| < w, where

Chapter 3. Stochastic Search 25

2 < w < n. That is, we define a “window” of width w within which the perturbations
take place. Initially we set w = n and decrease it gradually until it reaches the lower
bound 2. A reasonable way of narrowing the window width (i.e. increasing the radius of
the search space) could be to follow the reduction scheme applied to the temperature.

Given the cost c(#;) of configuration #; and given the candidate next configuration
#p it should be possible based on c(#;) to locally compute c(#,). Otherwise we have
to find all cliques of the graph G* = (V,EUT(Gy,)), where G4 = (V,E), to compute its
weight w(G) = c(#yp). Theorem 6 states that c(#) can be derived from c(#;).

Theorem 6 Let Gu = (V,E) and Hy, = (V,E) be ordered graphs such that #. = #p
except that #,(u) =3 and #y(v) =1, where #4(u) =1 < #4(v) =j and u,v € V. Then
w(HY) = w(G*') + 6, where

j j
5= w(C(H))) w(C(G))

k=i k=i

Proof: The proof consists of two parts: First we shall prove that all cliques Cy(G)
for 0 < k < iand j < k < n, remain untouched by the interchange of u and v in the
elimination ordering. Knowing that the triangulation of a graph determines how the
cliques of the resulting triangulated graph are composed the problem is equivalent to
the problem of proving that the fill edges T, (G) = Ty(H) for all 0 < k < i and for all
j <k <n. For 0 < k < i the problem is trivial as the set of fill edges produced by
eliminating a vertex solely depends on the original edges E and on the fill edges already
produced. The validity of the equality for j < k < n follows immediately from Theorem 1.

Secondly we shall prove that for every new clique Cy(H), i < k < j, Cy cannot be a
superset of a clique C(G),0<l<iandj<l<n. For0<1l<1ithe problem is trivial
as #45'(1) = #? (1) € Cy and hence cannot be a member of Cy. To prove it for the case
where j < 1 < n we assume there is a clique C; such that C; C Cy. For this to be true
the vertex #: (k) (the elimination of which created Cy) must have been adjacent to all
vertices in C; in Hy ;. By Corollary 2 we see that there would also have been such a
vertex in Gy 1 and hence C; would not have been a clique. O

3.2 Annealing in Practice

From the above discussion it appears that the total number of attempted configuration
transitions before reaching the final temperature depends on the size of the search space
and on the maximum cost difference between any two configurations. In relation to the
problem of low weight (cost) graph triangulations this means that in practice there is a
limit in terms of number of vertices and dispersion of vertex weights (loosely speaking)
above which the annealing algorithm is inapplicable. This is, of course, a rather un-
satisfactory situation which can be avoided by allowing more “coarse-grained” solutions
for large graphs. That is, if we adopt such a rather pragmatic approach the stopping

Chapter 3. Stochastic Search 26

criterion must be defined such that it becomes independent of the parameters mentioned

[= 5<t_°]>
Y \t¢
()

= —|——«
Y \t¢

from which we see that if the final temperature is defined in terms of U the number of
iterations required depends solely on the cooling rate. One way of defining t¢ is to say
that it is the temperature at which an uphill step of cU, where 0 < ¢ < 1, is accepted with
probability p, where 0 < p < 1. Recalling that an uphill step of Aty = cU is accepted
with probability e = p at temperature t; we get

-1 <logv
C

Y

above. From Equation 3.3 we get

—|—oc>,p<e xe (3.4)

as desired. By fixing « and c we observe that the cooling rate may be given either
explicitly via y or implicitly via I and p. Similarly I may be given explicitly or implicitly
via y and p.

The annealing algorithm performs a search in the graph of configurations (the solution
space) which is normally controlled solely by the temperature parameter. However, by
allowing a gradual increase of the radius of the graph during the search process we have
introduced an additional control parameter. Ideally the final temperature, t¢, should be
low (relative to the acceptable error, €) and the final radius should be large (i.e. w should
be small). However, to determine the effect of the two control parameters separately a
series of test runs in which one of them is kept at a fixed value which can be small,
medium or large must be performed.

The three temperature levels are defined in the same way as t¢ above with ¢ = 0.1
and probabilities ps = 0.05, p;n = 0.5, and py = 0.95. Thus

f u
7 10log20
u
ty =
101og 2
o u
Y7 T1010g0.95
The radius levels are defined as
Ts = Tmin
- Tmin + Tmax
fm = T
Tt = Tmax

As the radius of the search graph is determined by w, r is not an explicit control
parameter. So we need an algebraic relationship between r and w. This is, however,

Chapter 3. Stochastic Search 27

rather hard to find if we insist on employing the perturbation scheme described above.
If we accept a slightly different scheme, namely a “move-and-push” scheme, w can be
expressed in terms of r and n as

{(nnz
w =

——— +05
2r—m+1 +

The interchange and the “move-and-push” schemes are identical for w = 2. For
w =n “move-and-push” yields rnin =n — 1. Thus

_Tmin+rmax _le—l-Tl—Z

m=T - 1
_ 2 1) B 1

The non-fixed control parameter may be subjected to a slow, medium or fast reduction
(t) / increase (r) scheme.

The rate by which the temperature parameter is decreased is determined by the
ratio % Recalling that e * expresses the probability of accepting uphill steps of U we
select &« = 0.1 (i.e. with probability 0.9 an uphill step of U is accepted when t = to).
The fact that the rule of essentially free motion in the initial phase is not violated is
clearly demonstrated by the fact that at temperature t; uphill steps of U is accepted
with probability e m (i.e. even with the temperature lowered to one tenth of ty more
than one third of the potential uphill steps of size U is accepted). So, with « fixed the
cooling rate is determined by y. A slow cooling rate is defined such that the temperature
equals t; when only 10% of the iterations are left, for a medium rate the final temperature
is reached at the last iteration, and for a fast cooling rate the temperature equals t; when
only 10% of the iterations are done. In the case of a medium cooling rate we set t; = ts.
Thus

1 (log p1 —i—oc) _ —1010g 0.95 — o

Ys= 7001 0.91
1 /1 101o0g 20 —
Y= (—"gpwa):io 0g20 — (3.5)
I c |
1 [logps _ 10log20 —
Yf—ﬁ(c +°‘>_ 011

Even though we argued above that € can be set to a value which is considerably higher
than the actual acceptable error provided the least-cost configuration visited is kept in
mind it seems hard to justify tf = t; as € then becomes comparable with U. A further
discussion of whether t; = t; is a reasonable choice will be postponed till after the results
of the test runs are known.

Now we should assign values to either I or 'y (note that values of p have already been
determined). As I is a derived parameter which is defined in terms of the cooling rate

Chapter 3. Stochastic Search 28

and the final temperature we naturally choose the latter. Knowing that % Llory <«
a value of vy = 10 3 seems reasonably and we find from Equation 3.5

~ 10log 20 —
Ym

I ~ 10%10g 20 ~ 3 - 10?

The window width, w, is decreased exponentially as
Wo

Wi = 1+—1T

The rates by which r is increased is thus determined by

wo

Ts — W

0.21
Note that w,, corresponds to r,, wg = n, and wy corresponds to r;. That is, a slow
rate is defined such that the radius of the search space is medium when the annealing
terminates, for a medium rate the radius is maximum when the annealing is 80% done,
and for a fast rate it is maximum when 20% done.

Now, the only undefined parameter is the maximum cost function increase, U, which,
depending on the problem at hand, can be found either analytically or experimentally.
For the graph triangulation problem it seems very hard to find U the analytic way as
it depends on a number of parameters such as the size and density of the graph, the
homogeneity of the graph w.r.t the distribution of edges and vertex weights, and the
window width w. So we will stick to the experimental approach.

In order to find the optimal controlling scheme a selected set of schemes is first tested
on a particular graph and secondly a subset of these schemes which appeared to produce
good results is then applied to the three other graphs. Then, hopefully, we should be
able to point out which controlling scheme(s) are generally preferable.

In the first test cycle we select the control schemes for which at least one of the control
parameters is varying, giving a total of 27 distinct combinations. As the target graph
we use the Medianus-I for which we find U ~ 7. Because of either the extremely large
acceptable error (high final temperature) in the cases of slow and medium cooling or high
basin trapping in the case of fast cooling we cannot be sure that the annealing algorithm
will end up finding the same least-cost configuration every time given a particular control
scheme. Therefore we have to run the algorithm several times for each scheme. Table 3.1
shows the minimum, median, and maximum least costs found for the 27 different control
schemes with 10 runs for each instance. The schemes have been ordered according to the
median least cost value (average state size).

A varying control parameter is indicated by a y for the temperature or a 7 for the
radius and the rate is indicated by index s, m, or f (i.e. slow, medium, or fast). A fixed

Chapter 3. Stochastic Search 29

Min. Med. Max. Min. Med. Max.
1. ts,Tm 22.63 2271 2292 | 156. ym,Tf | 22.71 23.41 24.40
2. Ym,Ts 22.68 22.73 2281 | 16. ym,T, 22.69 23.46 24.23
3. ts, Ts 22.66 22.78 23.14 17. tm,Tm 23.17 23.63 24.37
4. tg,Ts 22.65 2295 23.87 | 18. t;m,Tf 22.98 23.81 24.43
5. V¢, Ts 22.63 22.96 23.44 19. vs,Ts 23.99 24.95 25.83
6. Ym,Tm 22.70 22.99 23.47 | 20. t,Ts 24.07 25.16 26.03
7. Y, Ts 22.63 23.00 23.44 21. vs,Ts 24.35 25.23 26.18
8. Y, Tm 22.70 23.03 24.06 | 22. t,Tm 24,12 25.34 26.33
9. Ym, Ts 22.74 23.07 23.63 | 23. Y5, Tm 24.07 25.66 27.05
10. v, ™Tm 22.63 23.13 24.06 | 24. v, T 25.36 26.43 27.28
11. v¢, T¢ 22.63 23.19 23.78 | 25. ti,Ts 25.06 26.67 28.41
12, Ym,rm | 22.68 2325 24.19 | 26. y5,Tm 25.64 27.18 30.46
13. v¢, 11 22.63 23.35 24.06 27. vs,T1 25.07 27.44 29.12
14, tm,Ts 22.79 23.36 23.92

Table 3.1: Minimum, median, and maximum least costs found for 27 different control
schemes applied 10 times to the Medianus-I graph.

control parameter is indicated by a t for the temperature or an r for the radius and the
level is indicated by index s, m, or 1 (i.e. small, medium, or large).

Considering the results provided by the top third control schemes in Table 3.1 we
observe that for all of these the final temperature is low (i.e. tf < tg) and that the initial
radius is small (i.e. 19 = 15). The results obtained by applying these schemes to the
three other test graphs are displayed in Table 3.2. In Table 3.1 the most striking
observation is that the three schemes with a constant low temperature belong to the top
five schemes. Therefore an interesting experiment would be to test a strictly descent
version of the annealing algorithm (i.e. t = 0). However, before doing that we will add
a few more comments on Tables 3.1-3.2. The last third of the schemes are characterised
by a high final temperature. For the middle third the final temperature is either low or
medium. Note that the overall average state size (median weight) is more than doubled
from the 18th best to the 19th best scheme (i.e. the boundary between middle and last
third). By calculating the average relative deviation of the median values from the least
median for each control scheme in Table 3.2 we find that the ranking of the schemes are
3,2,1,6,8,7,4,9, 5 (i.e. scheme number 3 is the best), where the differences between
scheme 3 and scheme 2 is insignificant.

To test the utility of a descent algorithm we perform four additional tests: i) Con-
stant small radius ii) slow increasing radius iii) medium increasing radius and iv) fast
increasing radius. Table 3.3 shows the resultant minimum, average, and maximum least
costs obtained by these four descent schemes applied 10 times to the four test graphs.
Not surprisingly, constant small radius is found to be superior. More surprising is the
fact that the results produced by this scheme turn out to be comparable with the results
of the top four schemes (i.e. 3, 2, 1, and 6) above.

The conclusion to be drawn from the above analysis is the following: If the tem-
perature is kept at a constant low level the radius should either be constantly small or

Chapter 3. Stochastic Search

30

Medianus-I Medianus-II

Min. Med. Max. Min. Med. Max.
1. ts,Tm 22.63 22.71 22.92 | 20.49 20.76 22.44
2. Ym,Ts 22.68 22.73 22.81 20.49 20.58 20.79
3. tg,Ts 22.66 22.78 23.14 | 20.49 20.54 20.64
4. ts,T¢ 22.65 22.95 23.87 20.52 20.86 22.44
5. Y Ts 22.63 22.96 23.44 | 20.45 20.57 20.77
6. Ym,Tm 22.70 22.99 23.47 20.67 21.16 22.09
7. v¢, Ts 22.63 23.00 23.44 | 20.46 20.96 22.43
8. YfTm 22.70 23.03 24.06 20.54 20.73 21.20
9. Ym,Ts 22.74 23.07 23.63 | 20.46 20.61 20.79

Sparse Dense

Min. Med. Max. Min. Med. Max.
1. ts,Tm 22.71 22.80 22.87 | 50.88 51.42 52.70
2. Ym,Ts 22.75 22.93 23.15 51.05 51.34 52.02
3. tg,Ts 22.72 22.82 2297 | 50.96 51.15 51.61
4. tg,T¢ 22.73 23.08 24.35 51.02 52.29 53.32
5. v, Ts 22.61 22.64 22.66 | 50.88 51.96 53.49
6. Ym,Tm | 22.81 23.37 23.85 | 51.14 53.04 53.49
7. v¢, Ts 22.61 22.76 22.98 | 50.88 51.57 52.58
8 Y, Tm 22.64 22.77 23.27 | 50.88 51.82 53.49
9. Ym,Ts 22.94 23.19 2351 | 51.09 52.31 53.29

Table 3.2: Minimum, median, and maximum least costs found for 9 different control

schemes applied 10 times to the four test graphs.

increased slowly (by a medium or fast rate of increase we may be trapped in a high

level basin — see schemes 1 and 4 in Table 3.2). If the temperature is lowered at a

medium rate (schemes 2, 5, and 9) we observe that the radius must be constantly small

(to compensate for the relatively large number of uphill steps). But as small radii are

computationally more expensive than large radii we reject these schemes. Finally, if a

strict descent algorithm is employed the radius must be constantly small (to compensate

for the lack of ability to climb hills). Thus, based on the performed analysis we recom-
mend a combination of control parameters given by a positive low temperature and a

radius which initially should be small and then slowly increased.

Chapter 3. Stochastic Search

31

Medianus-I Medianus-II
Min. Med. Max. Min. Med. Max.
1. t=0,7¢ 22.63 22.890 23.12 | 20.45 20.96 22.43
2.t=0,Tm 22.63 22.97 23.44 20.45 20.96 21.77
3.t=0,rg 22.63 23.18 2425 | 20.45 20.60 21.08
4. t =0,7¢ 22.63 23.23 24.25 20.45 20.76 22.79
Sparse Dense
Min. Med. Max. Min. Med. Max.
1. t=0,7¢ 22.61 23.13 2433 | 50.88 51.30 52.70
2. t=0,tm | 22.61 22.87 23.35 | 50.88 51.78 52.71
3.t=0,rg 22.61 22.77 23.28 | 50.88 51.26 52.70
4. t=0,71¢ 22.84 23.74 26.86 | 50.88 52.74 53.37

Table 3.3: Minimum, median, and maximum least costs found for

control schemes applied 10 times to the four test graphs.

4 different descent

Chapter 4

Conclusion

With the practical constraints given in Section 3.2 it appeared that simulated annealing
performed best with a constant low temperature! and a slowly increasing radius of the
search space. In the following discussion it is implicitly assumed that the term annealing
means simulated annealing applied with that control scheme. Furthermore, the results
by the heuristic algorithms referred to below is implicitly assumed to be those which for
the actual graph are produced by the algorithm which provided the least median weight.

By loosely comparing the figures of Table 2.1-2.4 and Table 3.2 we observe that the
best elimination orderings found by annealing for the Medianus graphs are only slightly
better than the best found by the heuristic algorithms, whereas those found for the Sparse
and Dense graphs by annealing are clearly superior.

A detailed comparison tells us that for Medianus-I annealing may in the worst case
produce triangulated graphs the state size of which are about 10-15% greater than that
of the graph produced by minimum weight. In the average case, however, annealing
performs 20% better than minimum weight. For the Medianus-1I annealing is in no cases
worse than minimum weight; in the average case it is about 10% better. For the Sparse
and Dense graphs, however, annealing is considerably (300-800%) better than the best
heuristic method.

The lesson to be learnt from this comparison is: If time is not a crucial parameter
it might be recommendable to use annealing. The clearest example appears with the
Sparse graph where annealing at best performs almost an order of magnitude better than
any of the heuristics. On the other hand, if triangulation have to be fast we can by no
means recommend the annealing algorithm which is orders of magnitude slower than the
heuristic algorithms.

Since annealing performs best with a constant low temperature (with the time con-
straints given in Section 3.2) there is no reason to start with an arbitrary vertex ordering
wasting a lot of time testing useless orderings. Instead it is highly recommended to apply
one of the heuristic ordering algorithms first and then let the annealing process start

Tt is not really quite correct to call it simulated annealing then, but anyway we will stick to that
term.

32

Chapter 4. Conclusion 33

with that ordering.

In Chapter 2 we mentioned the branch-and-bound algorithm which in a way is the
deterministic equivalent of the annealing algorithm. Comparisons with the Medianus-I as
the target graph showed that branch-and-bound could not at all compete with annealing.
A test was conducted by first applying minimum weight 10 times and the corresponding
orderings were stored. Subsequently the annealing and the branch-and-bound algorithms
were ran with these orderings as starting points and a fixed amount of time were allocated
for each run. In 9 out of the 10 cases annealing improved the initial ordering down to a
level very close to the lowest level known (which by very high probability is the minimum
weight level). Branch-and-bound, on the other hand, made modest improvements in just
2 out of the 10 cases.

As mentioned in Section 2.3 none of the triangulations produced by the heuristic
algorithms turned out to be non-minimal and hence there does not seem to be a plausible
reason to apply the FMINT algorithm to ensure minimality. However, as none of the
heuristic algorithms are, in general, guaranteed to produce minimal triangulations there
might be cases where it would be beneficial to apply FMINT.

Another feature of the minimum size and the minimum weight heuristics is that they
do not, in general, produce perfect orderings if the graph is triangulated. This means that
a simplicial vertex, v, is not guaranteed to be eliminated before a non-simplicial vertex
even though the (complete) set C = {v} U adj(v) eventually will turn out to be either a
proper subset of a clique or a clique itself. That is, there is no point in postponing the
elimination of v, and at worst there will be a clique which is a proper superset of C. The
minimum fill heuristic takes simplicial vertices first, but at the expense of increased time
complexity compared to the minimum size and weight heuristics. However, by expanding
minimum size and weight with test for simpliciality no effects were observed concerning
the weights of the triangulated graphs. So, if time complexity is an important parameter
we cannot recommend such an expansion to be carried out. On the other hand if time
complexity is of little importance this expansion should preferably be included.

Acknowledgments

I wish to thank my supervisors Finn V. Jensen and Steffen L. Lauritzen for their valuable
comments and suggestions during the process of producing this paper. I am also grateful
to Frank Jensen who gave me his source code of the branch-and-bound algorithm. In my
implementation of the simulated annealing algorithm I found benefit in reuseing some of
the ideas from this code.

The research was financially supported by Judex Datasystemer A/S and The Danish
Academy of Technical Sciences.

Bibliography

Andreassen, S., Jensen, F., Andersen, S., Falck, B., Kjzrulff, U., Woldbye, M., Sgrensen,
A., Rosenfalck, A. & Jensen, F. (1989). MUNIN — an expert EMG assistant,
wn J. Desmedt (ed.), Computer-Aided Electromyography and Ezpert Systems,
Elsevier Science Publishers, Amsterdam, chapter 21.

Arnborg, S., Corneil, D. & Proskurowski, A. (1987). Complexity of finding embeddings
in a k-tree, STAM Journal on Algebraic and Discrete Methods 8: 277-284.

Fujisawa, T. & Orino, H. (1974). An efficient algorithm of finding a minimal triangula-
tion of a graph, IEEE International Symposium on Circuits and Systems, San
Francisco, pp. 172-175.

Lauritzen, S. & Spiegelhalter, D. (1988). Local computations with probabilities on graph-
ical structures and their application to expert systems, Journal of the Royal Sta-
tistical Society, Series B 50(2): 157-224.

Lundy, M. & Mees, A. (1986). Convergence of an annealing algorithm, Mathematical
Programmang 34: 111-124.

Olesen, K., Kjeerulff, U., Jensen, F., Jensen, F., Falck, B., Andreassen, S. & Andersen, S.
(1989). A MUNIN network for the median nerve — a case study on loops, Applied
Artificral Intelligence. Special issue: Towards Causal AI Models in Practice.

Rose, D. (1973). A graph-theoretic study of the numerical solution of sparse positive
definite systems of linear equations, «n R. C. Read (ed.), Graph Theory and Com-
puting, Academic Press, New York, pp. 183-217.

Rose, D., Tarjan, R. & Lueker, G. (1976). Algorithmic aspects of vertex elimination on
graphs, SIAM Journal on Computing 5: 266—-283.

Sato, N. & Tinney, W. (1963). Techniques for exploiting the sparsity of the network
admittance matrix, IEEE, PAS pp. 944-950.

Tarjan, R. & Yannakakis, M. (1984). Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs,
SIAM Journal on Computing 13(3): 566-579.

34

Bibliography 35

Tinney, W. & Walker, J. (1967). Direct solutions of sparse network equations by optimally
ordered triangular factorization, Proc. IEEFE 55: 1801-1809.

