
Reformulating CSPs for Scalability with Application to
Geospatial Reasoning

Kenneth M. Bayer1, Martin Michalowski2, Berthe Y. Choueiry1,2, Craig A. Knoblock2

1 Constraint Systems Laboratory, University of Nebraska-Lincoln
{kbayer,choueiry}@cse.unl.edu

2 University of Southern California, Information Sciences Institute
{martinm,knoblock}@isi.edu

Abstract. While many real-world combinatorial problems can be advantageously
modeled and solved using Constraint Programming, scalability remains a major
issue in practice. Constraint models that accurately reflect the inherent structure
of a problem, solvers that exploit the properties of this structure, and reformu-
lation techniques that modify the problem encoding to reduce the cost of prob-
lem solving are typically used to overcome the complexity barrier. In this pa-
per, we investigate such approaches in a geospatial reasoning task, the building-
identification problem (BID), introduced and modeled as a Constraint Satisfac-
tion Problem by Michalowski and Knoblock[1]. We introduce an improved con-
straint model, a custom solver for this problem, and a numberof reformulation
techniques that modify various aspects of the problem encoding to improve scal-
ability. We show how interleaving these reformulations with the various stages of
the solver allows us to solve much larger BID problems than was previously pos-
sible. Importantly, we describe the usefulness of our reformulations techniques
for general Constraint Satisfaction Problems, beyond the BID application.

1 Introduction

Geospatial data integration aims at combining geospatial information from traditional
and non-traditional data sources to infer information thatis not available in any one
source. The inadvertent bombing of the Chinese Embassy in Belgrade[2] illustrates the
importance of geospatial data integration. That event could have been avoided by rea-
soning about the information that was available at the time (i.e., telephone books and
maps) to identify the buildings shown in a satellite image. More generally, the informa-
tion gained by data integration can be used to verify and augment geospatial databases
(e.g., gazetteers), and extend the capabilities of geospatial systems (e.g., Google Maps,
Google Earth, and Microsoft VirtualEarth).

Michalowski and Knoblock[1] identified and studied the Building Identification
(BID) problem as an application of significant intelligenceand civilian impact. The
task is to assign a potentially incomplete list of postal addresses, collected from vari-
ous ‘phone-book’ sources, to buildings appearing in a satellite image. A map provides
the names of the streets and the positions of the buildings, but we do not know the ad-
dresses of the buildings or, for a building located on a street corner, on which street the
building’s address lies. They modeled the problem as a Constraint Satisfaction Problem
(CSP) and used an existing solver (CPlan[3]) to findall possiblematchings of addresses



2

to buildings that are consistent with the phone book and withthe geographical layout
in the image. Their work established the feasibility of the approach andidentified an
important new area where CP techniques are useful for solving real-world problems.
However, their approach resisted scaling because their model included high-arity con-
straints and their generic solver failed to take advantage of the structural information in
the application domain. While we show in this paper that the particular BID problem
studied in[1] is tractable, it is clear that only a careful theoretical study can determine
whether or not a given set of constraints in the BID problem yields a tractable problem.
The value of a CP approach is its flexibility in solving new problems with arbitrary
constraints even when the problem’s tractability is unknown. This paper addresses the
scalability of the CP approach to the BID problem with the useof reformulation tech-
niques, and discusses the use of the proposed reformulations to general CSPs.

First, we propose an improved constraint model that reflects the topology of the
streets layout, and accommodates the addition of new constraints locally to express
variations of street-numbering schemas around the world.Second, we introduce a cus-
tom solver, based on backtrack search, that exploits structural properties of a problem
instance, such as identifying backdoor variables[4] and exploiting them to decom-
pose the problem into tractable components.Third, we introduce four reformulation
techniques to reduce the cost of problem solving. These techniques are (1) reformu-
lating the BID problem from a counting problem to a satisfiability one, (2) reducing
the domains size of variables in the scope of a global constraint that we identify and
characterize, (3) relaxing the satisfiability problem intoa matching problem, (4) using
symmetry to generate efficiently all possible solutions of the relaxed version of the orig-
inal BID counting problem.Fourth, as we introduce each reformulation technique, we
also discuss its application to general CSPs.Fifth, we evaluate the benefits of 3 of our
reformulations on the BID problem, showing that we can now solve instances involving
206 buildings while the problem solved by Michalowski and Knoblock included only
34 buildings.

This paper is structured as follows. Section 2 positions ouradopted perspective on
reformulation. Section 3 describes the new CSP model and custom solver for the BID
problem. Sections 4, 5, 6, and 7 describe our reformulationsof the BID problem and
their utility for general CSPs. Section 8 evaluates our techniques on real-world BID
instances. Finally, Section 9 describes related work and concludes the paper.

2 Background

Choueiry et al.[5] characterized a reformulation as a transformation of a problemP
from one encoding to another, where a problem is given by aformulationand aquery,
P = 〈F ,Q〉. The transformation may change the query and/or any of the compo-
nents of the formulation. The goal of the reformulation is to‘simplify’ problem solv-
ing, where the benefit of the ‘simplification’ and other effects of the reformulation are
clearly articulated in the particular problem-solving context. The reformulation tech-
niques discussed in this paper operate on various aspects ofa Constraint Satisfaction
Problem (CSP) in order to improve the performance of problemsolving. The problem
formulation of a CSP is given byF = (V ,D, C) whereV= {Vi} is a set of variables,
D= {DVi

} the set of their respective domains, andC a set of constraints. A constraint is



3

a relation over a subset of the variables specifying the allowable combinations of values
for the variables in its scope. A solution is an assignment tothe variables such that all
constraints are satisfied. The query is usually to find one consistent solution or all pos-
sible solutions. In this paper, we describe a reformulationof a CSP as a transformation
of the original problemPo = 〈Fo,Qo〉 into the reformulated problemPr = 〈Fr,Qr〉,
whereFi indicates a formulation andQi indicates a query, as illustrated in Figure 1.

rP

oQQuery:

oP

o=(V o,Do,C )F o r=(V r ,Dr ,C )F rFormulation:
Query: rQ

ReformulationFormulation:

Fig. 1. The general pattern of a CSP transformation.

3 Modeling and solving the BID problem as a CSP

The task is to assign possible addresses to the buildings that appear in a satellite image.
Each address consists of the combination of a street name anda number. The names of
the streets are provided by a map and the positions of the buildings are extracted from
a satellite image. Thus, we know the street names and the positions of the buildings,
but we do not know the addresses of the buildings or, for buildings located on corners,
on which street the buildings are located. The addresses canbe partially retrieved from
a variety of data sources such as a phone books, gazetteers, or property records. We
generically refer to the addresses given as input as phone-book addresses regardless of
their actual source. Figure 2 shows a BID instance with 10 buildings. The set of phone-

B6

B3

B8

B4

B9

B1 S1#1, S1#4,
S1#8, S2#7,
S2#8, S3#1,
S3#2, S3#3,

S3#15
= Corner building
= Building

Si = Street

B2

B5
B7 B10

S3

S1 S2

Fig. 2. An example of the building-identification problem.

book addresses may beincomplete, that is, there could be fewer addresses than there are
buildings in an image. However, we assume that the reverse does not hold, that is, every
phone-book address must be assigned to a building on the image. A solver must infer
addresses for buildings that do not have an address in the phone book. In addition to the
phone-book addresses, we may have information about street-numbering schemas used
in a given region in the world, such as the 100-block increment in the addresses across
street intersections used in the US or the red-black numbering used in Italy. Also, we
may know the exact address of one or morelandmarks, such as the residence of the
Prime Minister in London.

3.1 A new constraint model

Below we describe the variables and constraints in our CSP model of the BID problem.
Our model uses three types of variables:orientation, corner, andbuilding. In general,
there are fourorientation variables. These Boolean variables determine the global ori-
entation properties of the map. The first two areorderingvariables and indicate whether



4

or not addresses increase in value when moving toward the north and to the east. The
remaining two areparity variables and indicate on which side of the street odd ad-
dresses occur. Thecorner variablesrepresent the possiblestreetson which a corner
building might be. We generate one corner variable for each corner building, whose
domain is the list of streets on which the building could lie.The corner buildings are
natural ‘backdoors’[4] in the constraint network: once the solver assigns values to all
corner buildings, the network degenerates into a set of chains (corresponding to build-
ings along street segments) that can be solved in a backtrack-free manner. Thus our
solver instantiates corner variables as soon as possible. The building variables repre-
sent the addresses (i.e., numbers) of the buildings. We generate a building variable for
every building on the map. The domain of a variable is every possible address on the
building’s streets.

Our model has five types of constraints:parity, ordering, corner, phone book, and
grid. Parity constraintsare binary constraints and ensure that the numbers assignedto
buildings respect the values assigned to the parity (orientation) variables.Ordering con-
straintsare ternary constraints, and link an ordering variable to two building variables
along the same street. These constraints ensure that the addresses assigned to the build-
ing variables respect the ordering specified by the orderingvariable.Corner constraints
are binary constraints that apply to the pair of variables ofeach corner building, namely,
the corner variable (which determines the street), and the building variable (which de-
termines the address on the street). It reinforces that the address assigned to the building
is consistent with the street chosen for the building.Phone-book constraintsexist for
each street on the map. These constraints ensure that the solver assigns every address
in the phone book to some building along that street. These constraints usually have a
high arity, because their scope is the set of buildings alongthe street.Grid constraints
exist between buildings across certain artificial grid-lines, depending on the region we
are modeling. These constraints ensure that the addresses of adjacent buildings across
the grid-lines are in separate numeric increments. For example, in many cities in the
United States, addresses increase to the next increment of 100 across intersections.

Our new model improves the original one proposed in[1] as follows. The number
of variables for non-corner buildings is reduced by half, reducing number of variables
between 37% and 43% in our test cases. Domains of the buildingvariables in[1] were
enumerated and upper bounds chosen arbitrary. They are represented as intervals with
potentially infinite bounds in the new model. We reduced constraint arity from four to
two for parity constraints, and from six to three for ordering constraints. Corner con-
straints are new and allow early decomposition of the problem. Grid constraints are
also new and allow a more precise modeling of the real world. Interestingly, we show,
in Section 6, that in the absence of grid constraints, the BIDproblem is tractable. The
tractability of the BID problem in the presence of grid constraints remains an open ques-
tion. Thus, modeling the BID problem as a CSP remains a pertinent approach because
it gives us the flexibility to represent arbitrary constraints such as grid constraints and
other street-addressing schemas used around the world.

3.2 A custom backtrack-search solver
Our custom solver, written in Java, is a backtrack-search procedure. We adapted the
conflict-directed backjumping mechanism MAC-CBJ of[6] to handle constraints of any



5

arity with nFC3, a look-ahead strategy for non-binary CSPs[7], yielding nFC3-CBJ.
Key to the solver’s success are the domain representation and the variable ordering.
Domains of building variables are represented as a list of intervals, where an interval
is a sequence of values. This representation allows us to restrict propagation to the
boundaries of the intervals, as in bound consistency, whenever possible, and iterate over
the individual values only when necessary. Using intervalswith arbitrary large bounds is
crucial when the phone book is incomplete and the smallest orlargest address number
on a given street is not known. Variables are ordered as follows: building and corner
variables corresponding to landmark buildings, orientation variables, corner variables,
then building variables. Because corner variables are backdoor variables,satisfiability
can be determined without instantiating the building variables, which are instantiated
only when full solutions are sought. Further, instantiating the backdoor variables (corner
variables) decomposes the problem into chains, one for eachentire street.

4 Query reformulation
Michalowski and Knoblock[1] searched for all solutions in order to retrieve for each
building on the map the set of acceptable addresses.When the phone book is complete,
the problem has few solutions. Our solver, but not the one in[1], can easily find all so-
lutions forall real-world examples we tested.When the phone book is not complete, the
number of solutions quickly increases. The sheer number of solutions to be enumerated
forced us to reconsider the task and reformulate the original query as explained below.

4.1 Per-variable solutions

Finding all solutions of a CSP isO(dn) wheren is the number of variables andd is the
maximum domain size. In practice, this process is prohibitively expensive. We consider
the situation where we do not need to find all solutions, but only the values that each
variable takes in any solution. We call this problemfinding the per-variable solutions3.
Thus, we reformulate the query fromQo= enumerating all solutions, toQr= finding the
per-variable solutions, whereQr is “∀Vi, x ∈ DVi

, find if Po ∧ (Vi ← x) is satisfiable”
as illustrated in Figure 3. This query changes the complexity class of the problem from
a counting problem to a satisfiability one.

oQ

oP
Query: = Enumerate all solutions
The problem is a counting problem

rQ

rP
Query: = Find a per−variable solution
The problem is a satisfiability problem

Fig. 3. Reformulation for the per-variable solution query.

Algorithm 1 tests for every variable-value pair(Vi, x) if the CSP withVi←x is solv-
able. When it is,x is added to the data structure returned by the algorithm. Algorithm 1
returns the set of variables along with all their values thatappear in a solution.

The inner loop of the algorithm runsO(nd) times. Each iteration requires deter-
mining the satisfiability of a CSP. This operation appears costly, but in cases where
the original CSP has significantly more thannd solutions, Algorithm 1 can perform
significantly better than enumerating all solutions to the CSP.

3 Formally, this query corresponds to finding the minimal CSP.It is also equivalent to the inverse
consistency property introduced in[8], and to relational (1,|C|)-consistency defined in[9].



6

Input : P =(V,D, C)
Output : S, a per-variable solution
foreachVi ∈ V do1

S[Vi]← ∅2

end3

foreachVi ∈ V do4

foreach x ∈ DVi
do5

if P with Vi←x has a solutionthen6

S[Vi]← S[Vi] ∪ {x}7

end8

end9

if |S[v]| = 0 then10

return P has no solutions11

end12

end13

return S14

Algorithm 1 : Finding the per-variable solutions.

When the test in Line 6 is executed by finding a solution to the CSP, the values for
the variables in the solution found can be collected, and excluded from future calls in
the loops on Lines 1 and 5 thus reducing the number of loops4. In the BID problem, we
are not able to exploit this improvement for the following reason. A variable-value pair
in Algorithm 1 for the BID problem is a combination of a building and a street name
and number. However, the satisfiability of the BID instance is determined, and search is
terminated, after the assignment of the backdoor variablesand without instantiating the
building variables (see Section 3.2). The benefit of continuing search and generating
solutions after the instantiation of the backdoor variables in order to exploit the above
improvement remains to be assessed.

4.2 Application to relational (i, m)-consistency

In non-binary CSPs, in order to enforce higher level consistency than (generalized)
arc-consistency, Dechter and van Beek[9]introducedrelational (i, m)-consistencyas
the consistency ofm non-binary constraints over every subset ofi variables in the
CSP. Dechter[10] proposed the algorithmRC(i,m) for computing relational(i, m)-
consistency.RC(i,m) works as follows. For every setCm of m constraints in a con-
straint network, join them constraints and project the result on each subset ofi vari-
ables. The algorithm is not practical for large values ofm, because the memory re-
quirements for computing and storing a join ofm constraints rises exponentially with
the number of variables in the scopes of these constraints.

Algorithm 1 computes a minimal network, and the resulting network is the same
as if we had executedRC(1,m). The difference between the two algorithms is that Al-
gorithm 1 is polynomial space, whereasRC(1,m) is exponential space. We can easily
generalize Algorithm 1 to consider sets ofi variables (and all tuples in the Cartesian
product of their domain) rather than a single variable (and asingle variable-value pair).
This extension would allow Algorithm 1 to produce the same results asRCi,m. The
memory requirement rises exponentially withi, which quickly becomes impractical,
but remains more efficient thanRC(i,m) whose space complexity is exponential in the
size of the union of them constraints scopes.

4 This improvement was suggested by an anonymous reviewer.



7

5 Domain reformulation using symbolic values
If the phone book is incomplete, we must infer the missing numbers to add to the vari-
ables’ domains. Michalowski and Knoblock[1] proposed to enumerate all numbers
between 1 and the largest address that appears on the street.Their approach has two
problems. First, the choice of the upper limit is arbitrary.When the largest address is
not in the phone book, this approach may yield incorrect solutions. The second prob-
lem with this approach is that the size of the domains becomesprohibitively large on
real-world data. We propose a reformulation of the variables domains that reduces their
size using symbolic variables, thus solving both problems.

5.1 Symbolic values in the BID problem

Assume we have, on the even side of a streetS, the set of buildingsBS={B1, B2,
. . ., B5}, the set of phone-book addresses of even parityPS={S#12, S#18}, and the
range of address numbers [2,624]. Any assignment cannot usemore than 3 numbers
in each of [2,12), (12,18), and (18,624]. Using symbolic values to represent an address
in a solution, we replace the domain [1,624] of each variableBS with the significantly
smaller set{s1, s2, s3, 12,s4, s5, 18,s6, s7, s8} wheres1, s2, s3 ∈ [2,12),s4, s5 ∈
(12,18), ands6, s7, s8 ∈ (18,624] andsi<sj for i<j. This process allows us to choose
arbitrarily large bounds on a given street. Figure 4 illustrates this transformation. More

1 2 3 4 5 6 7 8

{2, 4, ..., 8, 10, 12, 14, 16, 18, 20, 22, ..., 622, 624 }Original domain

Reformulated domain , s , s , s, 18, , s , s s , 12, s s{  }

Fig. 4.Domain reformulation for the building-identification problem.

generally, when [min,max] is the range of address numbers onthe considered side of
S, the address numbers inPS partition [min,max] into consecutive convex intervals. In
any such interval (i1, i2), we cannot use more than minimum(|BS|-|PS |, b

(i2−i1)−1
2 c)

addresses. Below we introduce ALL DIFF-ATMOST as a global constraint useful in such
situations and discuss how to reformulate the domains of thevariables in the scope of
this constraint in order to reduce their size both for general and totally ordered domains.

5.2 TheALL DIFF-ATMOST global constraint

Example 1. An emerging country received an aid to build 7 hospitals on its territory,
but does not want to put more than 2 hospitals in areas with high volcanic activity.

We propose the constraint ALL DIFF-ATMOST to model this situation. Given a set of
variablesA = {V1, V2, ..., Vn} with domainsDVi

, ALL DIFF-ATMOST(A, k, d), where
d⊆DVi

for i ∈ [1, n], k∈N, andk≤|d|, requires that (1) all variables take different
values and (2) at mostk variables inA have values fromd. Note that while the domains
DVi

may be different,d must be a subset of each one of them andDVi
, andd andDVi

may be finite or infinite5.

5 Many definitions of the ATMOST constraint exist (e.g., ECLiPse and on page 148 of[11]).
Our definition of ALL DIFF-ATMOST allows us to express a situation of interest to resource
allocation problems where our reformulation can be used to reduce the domain size.



8

Example 2. Consider with the variablesA={V1, V2, V3, V4} of a CSP, withDi={1,
2, . . . , 8} and the constraintALL DIFF-ATMOST(A, 2, {1, 3, 4, 5, 8}). The assignment
V1←5, V2←2, V3←7 andV4←4 satisfies the constraint.

We can express the above described situation for the BID problem as ALL DIFF-ATMOST(BS,
ka, (i1, i2)) with ka=minimum(|BS|-|PS |, b

(i2−i1)−1
2 c).

5.3 ALL DIFF-ATMOST reformulation

Our reformulation of the domains of the variables in a ALL DIFF-ATMOST constraint
is theorem constant, in the sense that solutions to the reformulated problem map to
solutions to the original problem[12]. The benefit of this reformulation is the reduction
of the domain sizes. Because the complexity of many CP techniques depends on the
sizes of the domains, the reformulation improves the solverperformance.

We reformulate the domains of the variables in the scope of the constraint ALL DIFF-
ATMOST(A, k, d) by introducingk valuessl that we callsymbolic valuesas follows:

∀Vi ∈ A DVir
= {s1, s2, . . . , sk} ∪ (DVi

\ d) (1)

where the symbolic valuessj (1 ≤ j ≤ k) can take any distinct values ind. Applying
this reformulation on Example 2 yields the following domains for all four variables:
DVi

={s1, s2, 2, 6, 7}, wheres1, s2 can take any different values in{1, 3, 4, 5, 8}. In
Example 1, the domains become{s1, s2} ∪ {sites in non-volcanic areas} wheres1, s2

are different and range over sites with volcanic activities.
This reformulation operates on the problem formulation andaffects, strictly speak-

ing, both the ALL DIFF-ATMOST constraint and the domains of the variables in its
scope, see Figure 5. However the most significant modification is the domain refor-
mulation. We transformDo toDr, where inDr the domains of variables inA have been
reformulated according to Equation (1). Replacingd with k symbolic values reduces
the domains sizes by|d| − k, which is useful whend is large or infinite.

=(V o,C )oo o,DF

oP
rF

rD

rC

Pr

Formulation:
Formulation:

: Replace AllDiff−Atmost with AllDiff
: Smaller domains with symbolic values

Fig. 5. The reformulation of ALL DIFF-ATMOST.

This operation is particularly useful during backtrack search where the domain val-
ues are enumerated. If we want to assign ‘ground’ values to each symbolic value, we
can do so as a post-processing step while ensuring that two symbolic values are always
mapped back to distinct ground values. While a solution to the reformulated problem
does not map to a unique solution to the original problem, we can generate any solution
to the original problem from some solution to the reformulated problem. Of particular
concern is the interaction between this reformulation and the other constraints in the
problem. When all the constraints in a problem can be checkedon the symbolic values,
as in the case of the BID problem, the reformulation is sound.When one or more con-
straints in a problem must be checked on the ‘ground’ values,then propagation must
run on the appropriate representation for each constraint and, as soon as domain filtering



9

causes|d| ≤ k, then reformulated domains should be dropped and ALL DIFF-ATMOST

replaced with a ALL DIFF constraint, as is the case in a BID instance with a complete
phone-book. While this double representation works for constraint propagation, using
it during backtrack search requires further investigation.

5.4 Symbolic intervals
When the values in the variables domains follow a total order, as in numeric domains,
the domains are commonly represented as intervals and constraint propagation is typ-
ically restricted to the endpoints of these intervals, as inbox-consistency algorithms.
The reformulation of an ALL DIFF-ATMOST in the presence of totally ordered domains
obviously remains valid. However, in order torestrict propagation to the endpoints of
the intervalsrepresenting the domains, the following is needed:

1. We require the values ind to form a convex interval.
2. We must add total ordering constraints between the symbolic values:s1 < s2 <

. . . < sk.
3. We must add total ordering constraints between the two extreme symbolic values,

s1 andsk, and their closest neighbors in the reformulated domains. Let Dl
Vir

and
Dr

Vir
be respectively the intervals ofDVi

\d to the left and right of, and adjacent to,
d. The right endpoint ofDl

Vir
must be less thans1, and the left endpoint ofDr

Vir

must be greater thansk. Figure 6 illustrates this transformation.

, ,{ s1 s2 , ... sk }

d

i

Do
Vi

VDref
i

D= V
ref,l Dref,r

Vi
∪∪

Fig. 6. ALL DIFF-ATMOST reformulation for totally ordered domains.

4. When mapping the symbolic values back to ground values, the ground values must
respect the total ordering imposed on the symbolic values.

In the BID problem, we use this particular form of the reformulation of the ALL DIFF-
ATMOST on the building variables, which have totally ordered domains.

6 Problem relaxation by constraint removal
Removing (or adding) a constraint in a problem formulation to yield a necessary (or
sufficient) tractable approximation of the problem is a typical reformulation strategy.
Examples abound and include: In AI, admissible heuristics generation for A∗ (page 107
in [11]) and theory approximation[13]; in mathematical programming, linear relaxation
of integer programs, Lagrangian relaxation[14], and the cutting-plane method. Below,
we show that removing the grid constraint from the BID problem yields a tractable
problem that is a tractable necessary approximation of the BID problem.

6.1 A tractable necessary approximation of the BID problem
We describe a construction to efficiently solve the BID problem in the absence of grid
constraints by finding a maximum matching in a bipartite graph. We first recall some
terminology. LetG = (X ∪ Y, E) be a bipartite graph with edge setE, vertex set
V = X ∪Y , and partitionsX andY , which are independent sets of vertices. We define



10

a match countfor each vertex inv ∈ V , which we denotem(v), to be a positive (non-
null) integer. Amatchingin G is a set of edgesM ⊆ E such that for allv ∈ V there
exists at most one edgee ∈ M incident tov. In this paper we consider a matching in
G to be a set of edgesM ⊆ E such that for allv ∈ V there exists at mostm(v) edges
e ∈ M incident tov. Further, we say that a matchingM saturates vertexv iff M has
exactlym(v) edges incident tov; and a matchingM saturates a setS iff M saturates
all vertices inS. A matching that saturatesS can be computed in polynomial time[15].

Given an instance of the BID problem without grid constraints, we construct a bi-
partite graphG = (B∪S, E) as follows. First, assume an assignment to the orientation
variables (there are 24 such assignments). For each buildingβ in the problem, add a
vertexb to B and set its match count to 1. For each streetσ in the problem, add two
verticessodd andseven to S, one for each side of the street. Set the match count of each
si to the number of phone-book addresses on streets with parity i. For each building
β, add an edge between vertexb and the street vertex corresponding to the street side
on whichβ may be. (Note that corner buildings are on two streets.) Figure 7 shows the
construction ofG for the map in Figure 2 where we assume that odd numbers appear
on the North and West sides of the street. We can show that a matching in this graph
that saturatesS corresponds to a satisfactory assignment of streets to corner buildings6.
We find a maximum matching using anO(n5/2) algorithm by Hopcroft and Karp[16]
after replacing each vertex in the bipartite graph by as manyvertices as its match count.

B5 B6 B7 B8 B9 B10B4B3B2B1

S2_evenS2_odd S3_odd S3_evenS1_evenS1_odd

Fig. 7. Graph construction for Figure 2.

S2_odd
(1)

S2_even
(1)

S3_odd
(3)

S3_even
(2)

S1_odd
(1)

S1_even
(2)

B2
(1)

B3
(1)

B4
(1)

B5
(1)

B6
(1)

B7
(1)

B8
(1)

B9
(1)(1)

B1 B10
(1)

Fig. 8.A saturating matching for Figure 7.

Figure 8 shows a saturating matching for the graph of Figure 7, where the edges
of the matching are darkened and the numbers in parentheses indicate the match count.
This matching determines the satisfiability of the relaxed BID problem, and yields as-
signments to all corner variables in the corresponding CSP.For a complete solution, we
still need to instantiate the building variables, which canbe done in linear time because
the constraint network becomes a set of chains after the instantiation of the backdoor
(corner) variables. While the matching approach is powerful, it does not model the grid
constraint. The tractability of the problem with grid constraints remains an open ques-
tion.
6.2 Relaxing resource allocation problems

At the core of many resource allocation problems lies the problem of matching between
the elements of two sets: the tasks and the resources. In general, the resource allocation
problem may be complex (and likely intractable). However, we may sometimes be able
to identify those constraints that, when removed, reduce the original problem into the
problem of finding a matching in a bipartite graph that saturates one of the two partitions
as described above. Figure 9 illustrates this relaxation.

6 The matching must saturateS because the BID problem assumes that all addresses in the
phone book, whether complete or incomplete, must be assigned to a building.



11

Po Pr

o=(V o,Do,C )oFFormulation:
Query:Q o = Is the problem satisfiable?

Formulation:
Query:Q r = Is there a matching saturating a partition of V?

G = (V,E)

Fig. 9. Relaxing a CSP as a matching problem.

6.3 Using the relaxation in problem solving

We can use the above relaxation in four ways for the BID problem and for other appli-
cations that can be relaxed as a matching problem:

1. To solve problem instances that do not have the grid constraints, e.g.[1].
2. As a first preprocessing step to quickly rule out unsatisfiable instances, i.e. before

Line 1 in Algorithm 1. Our experiments on the BID problem (notincluded here
for lack of space) showed that this early preprocessing is effective only on tight
problems.

3. As a second preprocessing between Line 5 and Line 6 in Algorithm 1, see Section 8.
4. As a lookahead mechanism when using search at Line 6 in Algorithm 1. We use

the construction of[17] to filter out, from the domains of the future variables, those
values that cannot yield a solution. As such, the relaxed problem appears as a (spe-
cial version of the) all-diff constraints of[17], added to the problem as anewbut
redundant constraint to enhance propagation, see Section 8.

7 Generating solutions by symmetry

The set of solutions to the relaxed problem of Section 6 can beobtained by enumerating
all maximum matchings using an algorithm such as the one proposed by Uno[18]. In
this section, we characterize all maximum matchings in a bipartite graph as symmetric
to a single base matching, and proposed to use this symmetry to enumerate all solutions.

Our symmetry detection relies on two graph constructions described by Berge[19]:
alternating cycles(AltCyc) andeven alternating paths starting at a free vertex(EvAltP).
An AltCyc or EvAltP in a graphG relative to a matchingM alternate between edges
in M and edges not inM . If we take a maximum matchingM and a AltCyc or EvAltP
P , we can produce another maximum matchingM ′ by computing the symmetric dif-
ference ofM andP , denotedM∆P . We use that mechanism to identify all maximum
matchings in a bipartite graphG as symmetric of a single maximum matchingM . Let
S be the set of all AltCyc’s and EvAltP’s relative toM . We construct another maxi-
mum matchingMi by choosing a disjoint subsetSi ⊆ S and computingM∆Si. Mi

is symmetrical toM in that it is identical toM in all edges except those inSi. In
fact, for any maximum matchingMj of G, we prove7 that there exists anSj such that
Mj = M∆Sj . We generateS by first orientingG using the construction described by
Hopcroft and Karp[16]. From the oriented graph, we enumerate the alternating paths
by finding all EvAltP’s, as defined by Berge[19]. We enumerate the AltCyc’s from the
strongly connected components in the oriented graph as described by Régin[17]. Thus,
to store the information necessary to enumerate all alternating paths and cycles, and

7 The proof is omitted for lack of space.



12

therefore all maximum matchings, we only need to store a single base matching, the set
of free vertices, and the set of strongly connected components8.

Consider the bipartite graphG = (X ∪ Y, E), whereX = {x1, x2, x3, x4}, Y =
{y1, y2, y3}, andE={(x1, y1), (x2, y1), (x2, y2), (x3, y2), (x3, y3), (x4, y2), (x4, y3)}.
Figure 10 (a) shows a maximum matchingM in G. P = x1y1x2 is an alternating path
andC = x3y2x4y3x3 is an alternating cycle. We find other maximum matchings using
the symmetric difference operator. Figure 10 (b) showM∆P , Figure 10 (c) shows
M∆C, and Figure 10 (d) showsM∆(C ∪ P ).

1x

x2

x3

4x

X

y3

Y

y1

y2

(a)

y3

1x

x2

x3

4x
(b)

Y

y1

y2

X

1x

x2

x3

4x

X

y3

(c)

Y

y1

y2

1x

x2

x3

4x

X

y3

(d)

Y

y1

y2

Fig. 10.Multiple matchings saturatingY .

Formulation:
−A maximum matchingM
−The set of strongly connected components in the oriented graph
−The set of free vertices in the oriented graph

Formulation:
Query:Q r = Enumerate all maximum matchings in G

G = (V,E)
oP Pr1

Pr2

Formulation: The set of all maximum matchings in G

Uno’s algorithm

Fig. 11.Finding all maximum matchings.

Figure 11 illustrates the two reformulations ofPo, the problem of enumerating all
maximum matchings. We can reformulatePo asPr1, the set of all maximum match-
ings, using Uno’s algorithm. Alternatively, we can reformulate the problem asPr2,
a base matching and its corresponding sets of strongly connected components and free
vertices. All matchings can be enumerated fromPr2 as needed. Our construction has the
same time complexity as Uno’s, which is linear in the number of maximum matching.
However, our characterization of the solutions as symmetries has valuable properties
which we do not fully exploit:

1. It provides a more compact representation of the set of solutions. Rather than stor-
ing all matchings, we store a single matching, a set of strongly connected compo-
nents, and a set of free vertices.

2. In case one is indeed seekingall, or a given number of, the solutions to BID problem
(similarly, to a resource allocation problem that has a maximum matching relax-
ation), we can generate every symmetric matching to that known single matching
and test if it satisfies the additional constraints of the non-relaxed problem, when
it does not, the matching is a solution to the non-relaxed problem found without
search. Naturally, the number of maximum matchings can be large.

8 Experiments
We integrate our techniques in the flowchart shown in Figure 12, which implements the
instruction in Line 6 of Algorithm 1. Table 1 describes the properties of the regions of
the the city of El Segundo (CA), on which we ran our experiments. The number of calls
refers to the total number of calls to Line 6 of Algorithm 1. Each call to Line 6 was timed
out after one hour. We report the number of timed out executions. The completeness of
the phone book indicates what percent of the buildings on themap have a corresponding
address in the phone book. We created the complete phone books using property-tax
data, and the incomplete phone books using the real-world phone-book.

8 An improvement suggested by an anonymous reviewer.



13

Does
matching solution

exist?

−Lookahead using matching relaxation

−Only instantiate corner buildings

−nFC3−CBJ
−Special variable ordering

−Lookahead with nFC3

Execute backtrack search

Build the CSP model

Execute the matching solver

Build the matching model

Solution Exists

No

Yes

No solution exists

No
No solution exists

Yes

Does

exist?
CSP solution

Address−assignment problem instance

Fig. 12. Implementing Line 6 of Algorithm 1.

Table 1.Case studies used in experiments.
Case study Phone book Number of

completenessbldgs crnr bldgs blks calls
NSeg125-c 100.0% 4160
NSeg125-i 45.6%

125 17 4
1857

NSeg206-c 100.0% 4879
NSeg206-i 50.5%

206 28 7
10009

SSeg131-c 100.0% 3833
SSeg131-i 60.3%

131 36 8
2375

SSeg178-c 100.0% 4852
SSeg178-i 65.6%

178 46 12
2477

Table 2.Domain reformulation.
Case studyAvg. domain size Runtime [sec] Timeouts

Orig. Ref. Orig. Ref. Orig. Ref.
NSeg125-i 1103.1 236.1 2943.7 744.7 0 0
NSeg206-i 1102.0 438.8 14818.9 5533.8 0 0
SSeg131-i 792.9 192.9 67910.1 66901.1 18 17
SSeg178-i 785.5 186.3119002.4 117826.7 32 29

Table 3.Solvers’ performance (no grid).
Runtime [sec]

BT Matching
Matching +

Case study
Symmetry

NSeg125-c 139.2 4.8 0.03
NSeg125-i 744.7 2.5 *
NSeg206-c 4971.2 16.3 0.06
NSeg206-i 5533.8 8.5 *
SSeg131-c 38618.3 7.3 0.26
SSeg131-i 66901.1 3.1 *
SSeg178-c117279.1 22.5 0.41
SSeg178-i 117826.7 4.9 *
* Did not finish in 1 hour.

Effect of domain reformulation.Table 2 shows the effect of domain reformulation by
comparing the domain sizes and the cost of BT before and afterreformulation. When
the phone book is complete, the reformulation is not used as no ALL DIFF-ATMOST

constraints exist. The advantage of the reformulation increases with the incompleteness
of the phone book.

Effect of query reformulation.As stated in Section 4, the sheer number of solutions
made it impossible to solve problem instances with incomplete phone-books using the
query of enumerating all solutions. Thus, without the queryreformulation, we would
not have been able to solve the incomplete phone-book instances.

Effect of finding symmetrical maximum matchings.In the absence of grid constraints,
the building-identification problem can be solved in polynomial time by the match-
ing solver. Here we compare backtrack search, a solver that uses Algorithm 1 with a
matching solver, and a solver that uses the reformulation ofsymmetric matchings from
Section 7. Finding all symmetric matchings requires enumerating all matchings, which
isn’t feasible for the under-constrained incomplete phone-book problems. Thus, those
problem instances timed out and are indicated by asterisks.However, when the number
of solutions was small, such as when the phone-book is complete, the symmetry solver
had significantly better performance than the per-variablematching solver. The benefit
in terms of runtime reduction is shown in Table 3.

Effect of relaxing a CSP into a matching problem.To test the use of the matching re-
laxation as a preprocessing step and lookahead mechanism, we added grid constraints



14

to each region. Table 4 shows the results of these experiments, comparing the perfor-
mance of: (1) the backtrack search (BT), (2) BT with matchingfor preprocessing (Pre-
proc+BT), (3) BT with matching for lookahead (Lkhd+BT), and(4) BT with matching
for both purposes (Preproc+BT+Lkhd). We report runtime, number of timeouts, and
number of calls to the CSP solver saved by the preprocessing.In all cases, the same so-
lutions were found. Our results indicate that, in general, the integration of the matching
and BT improves performance. There are exceptions, when thecost of the additional
processing exceeds the gains in terms of reduced search space. However, even when we
saw performance degradation, the degradation was minimal.

Table 4. Improvements due to preprocessing and lookahead.

NSeg125-c + grid CPU [sec] #Timeouts Calls saved
BT 100.8 0 -

Preprocessing+BT 33.2 0 97.0%
BT+Lkhd 140.2 0 -

Preproc+BT+Lkhd 39.6 0 97.0%
NSeg125-i + grid CPU [sec] #Timeouts Calls saved

BT 1232.5 0 -
Preprocessing+BT 1159.1 0 62.6%

BT+Lkhd 726.6 0 -
Preproc+BT+Lkhd 701.1 0 62.6%

NSeg206-c + grid CPU [sec] #Timeouts Calls saved
BT 2277.5 0 -

Preprocessing+BT 614.2 0 98.9%
BT+Lkhd 1559.2 0 -

Preproc+BT+Lkhd 443.8 0 98.9%
NSeg206-i + grid CPU [sec] #Timeouts Calls saved

BT 4052.8 0 -
Preprocessing+BT 3806.7 0 87.8%

BT+Lkhd 3499.5 0 -
Preproc+BT+Lkhd 3510.0 0 87.8%

SSeg131-c + gridCPU [sec] #Timeouts Calls saved
BT 17063.3 0 -

Preprocessing+BT 5997.9 0 92.5%
BT+Lkhd 9745.8 0 -

Preproc+BT+Lkhd 4256.0 0 92.5%
SSeg131-i + grid CPU [sec] #Timeouts Calls saved

BT 114405.9 30 -
Preprocessing+BT 114141.3 29 74.2%

BT+Lkhd 107896.3 30 -
Preproc+BT+Lkhd 108646.5 30 74.2%

SSeg178-c + gridCPU [sec] #Timeouts Calls saved
BT 78528.6 14 -

Preprocessing+BT 15717.9 1 91.9%
BT+Lkhd 74172.0 14 -

Preproc+BT+Lkhd 13961.1 1 91.9%
SSeg178-i + grid CPU [sec] #Timeouts Calls saved

BT 138404.2 35 -
Preprocessing+BT 103244.7 25 72.7%

BT+Lkhd 121492.4 32 -
Preproc+BT+Lkhd 85185.9 22 72.7%

9 Related work and conclusions

Reformulation has been applied to a wide range of CSP problems with much success.
The literature also encompasses approaches to modeling, abstraction, approximation,
and symmetry detection9. Nadel studied 8 different models of then-Queens problem,
some of which much easier to solve than others[20]. Glaisher proposed avoiding sym-
metry in the Eight Queens as far back as 1874[21]. Holte and Choueiry provide a gen-
eral discussion on abstraction and reformulation in AI including CSPs[22]. Razgon et
al. [23] studied a class of problems that is similar to the one we investigate, and which
they call Two Families of Sets constraints (TFOS). They introduced a technique for
reformulating TFOS problems into network flow problems. Conceptually, the relaxed
problem we study in Section 6 constitutes a special case of the TFOS problem.

An interesting feature of our work is the design of several techniques and their
integration in a comprehensive framework for solving the BID problem while high-
lighting their usefulness for general CSPs. Also, our queryreformulation facilitates a
much wider use of relational consistency algorithms than was possible before. In the

9 Some successful dedicated meetings are: Symposium on Abstraction, Reformulation and Ap-
proximation, Workshop on Modeling and Reformulation, Workshop on Symmetry in CSPs.



15

future, we intend to evaluate these techniques in other application settings. For exam-
ple, we believe that many resource allocation problems havematching relaxations like
we described.
Acknowledgments.Experiments were conducted on the Research Computing Facility at UNL.
This research is supported by NSF CAREER Award #0133568 and the Air Force Office of Sci-
entific Research under grant numbers FA9550-04-1-0105 and FA9550-07-1-0416.

References

1. Michalowski, M., Knoblock, C.: A Constraint Satisfaction Approach to Geospatial Reason-
ing. In: AAAI 2005. (2005) 423–429

2. Pickering, T.: Speech by Under Secretary of State T. Pickering on 06/17/1999 to the Chinese
Government Regarding the Accidental Bombing of the PRC Embassy in Belgrade (1999)

3. van Beek, P., Chen, X.: CPlan: A Constraint Programming Approach to Planning. In: AAAI
1999. (1999) 585–590

4. Kilby, P., Slaney, J., Thiébaux, S., Walsh, T.: Backbones and Backdoors in Satisfiability. In:
AAAI 2005. (2005) 1468–1373

5. Choueiry, B.Y., Iwasaki, Y., McIlraith, S.: Towards a Practical Theory of Reformulation for
Reasoning About Physical Systems. Artificial Intelligence162 (1–2)(2005) 145–204

6. Prosser, P.: MAC-CBJ: Maintaining Arc Consistency with Conflict-Directed Backjumping.
Technical Report 95/177, Univ. of Strathclyde (1995)

7. Bessière, C., Meseguer, P., Freuder, E., Larrosa, J.: OnForward Checking for Non-binary
Constraint Satisfaction. In: CP 1999. (1999) 88–102

8. Freuder, E., Elfe, C.: Neighborhood Inverse ConsistencyPreprocessing. In: AAAI 1996.
(1996) 202–208

9. Dechter, R., van Beek, P.: Local and Global Relational Consistency. Journal of Theoretical
Computer Science (1996)

10. Dechter, R.: Constraint Processing. Morgan Kaufmann (2003)
11. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall (2003)
12. Giunchiglia, F., Walsh, T.: A Theory of Abstraction. Artificial Intelligence57(2-3) (1992)

323–389
13. Selman, B., Kautz, H.: Knowledge Compilation and TheoryApproximation. Journal of the

ACM 43(2) (1996) 193–224
14. Milano, M., ed.: Constraint and Integer Programming: Toward a Unified Methodology.

Kluwer Academic Publishers (2004)
15. Gallai, T.:Über extreme Punkt- und Kantenmengen. Ann. Univ. Sci. Budapest, Eotvos Sect.

Math.2 (1959) 133–139
16. Hopcroft, J., Karp, R.: Ann5/2 Algorithm for Maximum Matchings in Bipartite Graphs.

SIAM 2 (1973) 225–231
17. Régin, J.: A Filtering Algorithm for Constraints of Difference in CSPs. In: AAAI 1994.

(1994) 362–367
18. Uno, T.: Algorithms for Enumerating All Perfect, Maximum and Maximal Matchings in

Bipartite Graphs. In: Int. Symp. on Algorithms and Comput. (ISAAC ’97). (1997) 92–101
19. Berge, C.: Graphs and Hypergraphs. American Elsevier (1973)
20. Nadel, B.: Representation Selection for Constraint Satisfaction: A Case Study Using n-

Queens. IEEE Expert5(3) (1990) 16–24
21. Glaisher, J.: On the Problem of the Eight Queens. Philosophical Magazine4(48) (1874)

457–467
22. Holte, R.C., Choueiry, B.Y.: Abstraction and Reformulation in Artificial Intelligence. Philo-

sophical Trans. of the Royal Society Sect. Biological Sciences358(1435) (2003) 1197–1204
23. Razgon, I., O’Sullivan, B., Provan, G.: Generalizing Global Constraints Based on Network

Flows. In: Workshop on Constraint Modelling and Reformulation. (2006) 74–87


