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Abstract

Search algorithms for solvingCSP (Constraint Satisfaction Problems) usually fall into one of
two main families: local search algorithms and systematic algorithms. Both families have their
advantages. Designing hybrid approaches seems promising since those advantages may be combined
into a single approach. In this paper, we present a new hybrid technique. It performs a local
search over partial assignments instead of complete assignments, and uses filtering techniques and
conflict-based techniques to efficiently guide the search. This new technique benefits from both
classical approaches:a priori pruning of the search space from filtering-based search and possible
repair of early mistakes from local search. We focus on a specific version of this technique:tabu
decision-repair . Experiments done on open-shop scheduling problems show that our approach
competes well with the best highly specialized algorithms. 2002 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Many industrial and engineering problems can be modelled as constraint satisfaction
problems (CSP). A CSP is defined by a set of variables along with their associated domain
of possible values and a set of constraints over those variables. Algorithms for solving
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CSP usually fall into one of two main families: systematic algorithms and local search
algorithms.

Systematic algorithms for solvingCSPtypically explore a search tree which is based on
the possible values for each of the variables of the solved problem. Such search algorithms
start from an empty variable assignment that is extended until obtaining a complete
assignment that satisfies all the constraints in the problem. Backtracking occurs when a
dead-end is reached. The biggest problem of such backtracking-based search algorithms
is that they are typically cursed with early mistakes in the search, i.e., a wrong variable
value can cause a whole subtree to be explored with no success. Two ways of improving
chronological backtracking are well identified (e.g., see [4] or [15]):

• Look-back enhancements, which exploit information about search which has already
been performed. Examples of look-back techniques arebackjumpingandlearning[40,
45,53], which analyse the conditions of failures during the search in order to determine
better backtrack points or new constraints.

• Look-ahead enhancements, which exploit information about the remaining search
space. Such look-ahead techniques are:filtering techniques, which allow the early
pruning of subparts of the search space that would necessarily lead to a dead-end;
as well as heuristics forvariable or value ordering.

Look-back and look-ahead enhancements reduce the importance of the early-mistake
problem, but unfortunately, they cannot solve it completely: to undo a decision, a proof of
inconsistency has to be found, which still requires a whole subtree to be explored.

Local search algorithms (e.g.,min-conflict[34], GSAT [47], tabu search[20]) perform an
incomplete exploration of the search space by repairing infeasible complete assignments.
They do not suffer from the early-mistake problem: as soon as a decision is suspected
to lead to a dead-end, it can be undone, without having anything to prove. Local search
algorithms are capable of following a local gradient in the search space. They may be far
more efficient (w.r.t. response time) than systematic ones to find a first solution. And for
optimization problems they can reach a far better quality in a given time frame.

But, local search algorithms cannot guarantee that they find a solution, and may be
unable to find one. And thus, they are not the panacea.

Several works have studied cooperation between local and systematic search [2,13,17,
36,43,44,48,54].Those hybrid approaches have led to good results on large scale problems.
Three categories of hybrid approaches can be found in the literature:

• performing a local search before or after a systematic search;
• performing a systematic search improved with a local search at some point of the

search: at each leaf of the tree (i.e., over complete assignments) but also at nodes in
the search tree (i.e., on partial assignments);

• performing an overall local search, and using systematic search either to select a
candidate neighbor or to prune the search space.

In this paper, we present a hybrid approach that falls into the third category. Indeed, our
main goal is to show that the look-back and look-ahead enhancements of backtracking-
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based algorithms can be exploited for local search algorithms, and can greatly improve
their behavior too. This leads us to propose a generic search technique overCSPwhich is
calleddecision-repair . The basic idea is the following: the algorithm starts with a
partial solution which is the result of a set of decisions. It first applies a filtering technique.
When no inconsistency is detected, the algorithm adds a decision that extends the current
partial solution, and the search continues. When a dead-end is reached, we know that there
exists an incompatibility between the decisions made so far. The algorithm tries torepair
that set of decisions. Aconflict is identified (the smaller the conflict, the better), and the
conflict is used to choose a judicious neighbor of the current set of decisions. For example,
a judicious neighbor may be obtained by performing a local change on the current set of
decisions: negate one of the decisions that occurs in the conflict.

We focus in this paper on an implementation ofdecision-repair which merges a
tabu search [20] together with a filtering technique and conflict-based heuristics to guide
the search. This new incomplete technique is studied through solving open-shop scheduling
problems. We compare it against highly specialized algorithms on hard instances and study
its behavior while varying the values of its parameters.

Another contribution of the paper is to emphasize the efficiency of conflict-based
heuristics. A new heuristic, which we called aweighting-conflictheuristic, was quite
successful: each times a conflict is found, a counter is increased for each decision occuring
in the conflict. The counters are then used to choose the decision to undo.

This paper is organized as follows. We first recall basic concepts ofConstraint
Satisfaction Problems(Section 2). Then we introduce thedecision-repair algorithm
(Section 3). After a discussion of related works (Section 4), a case-study of atabu
instance ofdecision-repair is presented in Section 5.

2. Constraint satisfaction problems

2.1. Definition

A Constraint Satisfaction Problem (CSP) can be described as a pair〈V,C〉 where
V = {v1, . . . , vn} is a set of variables andC = {c1, . . . , cm} a set of constraints. Ak-
ary constraint onk variables(v1, . . . , vk) is a logical formula that defines the allowed
combinations of values for the variables(v1, . . . , vk). A constraint may be given in
extension or in intension. The domains of the variables (their set of possible values) are
expressed as unary constraints.

In the following, we will use the same notation for a set of constraints (S = {c1, . . . , ck})
and the logical conjunction of its constitutive constraints (S = (c1 ∧ · · · ∧ ck)). By
convention:∅ ⇔ true .

2.2. Abstracting problem solvers

In the next section, thedecision-repair algorithm is presented in a framework
that abstracts the nature of the problems to be solved: they may be discrete binaryCSP,
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numericCSP as well as scheduling problems. This framework has been made possible
thanks to:

(1) the parameterΦ, which represents the filtering algorithm used;
(2) the functionobviousInference , tightly related to the filtering algorithm; it is able

to examine a set of constraints in order to decide whether to stop the computation or
not;

(3) the concept of decision constraint.

2.2.1. Filtering algorithms
Filtering algorithms are typically used at each node of the search tree developed by

systematic algorithms for solvingCSP. For example, for binaryCSP over finite domains,
arc-consistency filtering [33] is often used. After such an arc-consistency filtering step,
three situations may arise:

(1) the domain of a variable becomes empty: there is no feasible solution;
(2) all the domains are reduced to singletons: those values assigned to their respective

variables provide a feasible solution for the problem under consideration;
(3) there exists at least one domain which contains two values or more: the search has not

yet been successful. In a classical approach, it would be time for enumeration through
a backtracking-based mechanism.

In a more general way, a filtering algorithmΦ applied to a setC of constraints returns
a new setC′ = Φ(C) such thatC ⊆ C′. (Note that we consider domain reduction as
additional constraints.) Moreover, for any filtering algorithmΦ applied to the setC of
constraints of a givenCSP, there exists a functionobviousInference which interprets
the results of the filtering algorithm for the overall search algorithm. When applied to
C′ =Φ(C), the functionobviousInference answers:

• noSolutioniff it is immediate to infer that no solution can be found forC′ (as in
situation (1) above);

• solution iff the current constraint system can immediately provide a solution that
satisfies all the constraints inC′ (as in situation (2) above);

• flounderin all other situations (as in situation (3) above).

The functionobviousInference typically has a low computational cost. Its aim
is to make explicit the use of some properties that depend on the filtering algorithm that
is used (as done with arc-consistency above when checking empty or singleton domains).
A function obviousInference can be identified in many other filtering or pruning
algorithms. (See Example 1 for linear constraint solving over reals.)

Example 1(obviousInference for Linear programming). In integer linear program-
ming, the aim is to find an optimal integer solution. This can be achieved by using the
simplex algorithm over the reals. If there is no real solution or if the real optimum has
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only integer values, then anobviousInference function would return respectively
noSolutionor solution.

2.2.2. Decision constraints
Search for discrete binaryCSP consists in trying to assign values to variables, i.e.,

adding new constraints of the formv = a. For other kinds of problems, search may consist
in adding other kinds of constraints. We will call those constraintsdecision constraints.
A hypothesis holds over the way such constraints are generated: there exists an integer1

Ne such that whatever the setE of at leastNe different decision constraints, the call
obviousInference( Φ(C∪E)) will not answerflounder. This condition is necessary
to ensure termination (for systematic algorithms), and is fulfilled by any reasonable search
strategy.

Example 2 (Decision constraints for numericCSP). For numericCSP, enumeration is
performed through adding splitting constraints (e.g.,v � a).

Example 3 (Decision constraints for scheduling problems). For some scheduling prob-
lems, enumeration is performed through adding precedence constraints between tasks of
the problem.

3. Thedecision-repair search algorithm

The idea of thedecision-repair comes from the following observations:

• current local search algorithms mainly work on a total instantiation of the variables;
• backtracking-based search algorithms work, by construction, on a partial instantiation

of the variables.

Backtracking-based search algorithms can be combined with filtering techniques
because they work on a partial instantiation of the variables. If local search algorithms
were working on a partial instantiation of the variables, they could also be combinedwith
filtering techniques. Indeed, thedecision-repair algorithm is such an algorithm. The
partial instantiation under consideration is defined by a set of decision constraints on the
variables of the problem. The namedecision-repair comes from the fact that this
algorithm works by repeatedly repairing a set of decisions. In the following, the decision
set will be denoted byCD .

3.1. Principles ofdecision-repair

Thedecision-repair algorithm is presented in Fig. 1.

1 For discreteCSP where decision constraints are value assignments,Ne is clearly the number of involved
variables. For numericCSP, Ne strongly depends on the desired precision of the result.



26 N. Jussien, O. Lhomme / Artificial Intelligence 139 (2002) 21–45

proceduredecision-repair( C)
(1) CD ← any initial set of decisions
(2) repeat
(3) if conditions of failure satisfiedthen
(4) return failure
(5) else
(6) C′ ← φ(C ∪CD)

(7) switch obviousInference(C’)
(8) case noSolution:
(9) k ← conflict explaining the failure
(10) CD ← neighbor( CD , k, Γ )
(11) case solution:
(12) returnC′

(13) default :
(14) CD ← extend( CD , Γ )
(15) endswitch
(16) endif
(17) until false

Fig. 1. Thedecision-repair algorithm.

The parameterC of thedecision-repair algorithm is the set of constraints to be
solved.CD contains the current set of decisions. The algorithm starts by assigningCD

with an initial set of decisions that is determined by some initialization method. (It may
range from the empty set to a decision set that defines a complete assignment.) The main
loop merely applies the filtering algorithm toC ∪ CD providing a new set of constraints
C′ =Φ(C∪CD). TheobviousInference function is then called overC′. Three cases
may occur:

• obviousInference( C′) = solution: a solution has been found. The algorithm
terminates and returnsC′.

• obviousInference( C′) = flounder: thedecision-repair algorithm tries to
extend the current set of decisionsCD by adding a decision constraint. That behavior
is similar to that of backtracking-based search algorithms. For that purpose, a function
extend( CD, Γ ) is assumed to exist that chooses a decision constraint to be added
and adds it toCD . ParameterΓ can be used to store a context that varies according to
the chosen version of the algorithm. (Its meaning will be made clear later, but for now
let us ignore it.)

• obviousInference( C′) = noSolution: C ∪ CD is inconsistent. We will say that
CD is a dead-end, or CD is inconsistent: CD cannot be extended. Thedecision-
repair algorithm will thus try torepair the current set of decisions by choosing a
new set of decisions through the functionneighbor( CD, k, Γ ) . (Parameterk asΓ
will be explained in the following sections.)

This is repeated as long as somefailure conditions2 are not satisfied.

2 Those conditions depend on the instance of the algorithm; examples are given in the following sections.
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The decision-repair algorithm appears here as a search method that handles
partial instantiations and uses filtering techniques to prune the search space. One of the
key components of this algorithm is the way the neighborhood is defined.

3.2. Neighborhood indecision-repair

In a local search algorithm such asGSAT [47] (on BooleanCSP), an inconsistent
instantiation is replaced by a new one built by negating the value of one of its variables.
That variable is heuristically chosen (e.g., selecting the one whose negation will allow the
greatest number of clauses to become satisfied). More generally, a local search algorithm
uses complete instantiations and replaces an inconsistent one with another complete
instantiation chosen among itsneighbors.

Thedecision-repair algorithm works in the same way except that it uses partial
instantiations (sets of decisions): as soon as a decision set becomes inconsistent, one of
its neighbors needs to be chosen. A decision set being a partial instantiation, it represents
several complete instantiations. Switching the current decision set is like setting aside many
irrelevant complete instantiations in one move.

Like any local search algorithm,decision-repair may use a heuristic way to
select an interesting neighbor. It seems to be a good idea to select a neighboring decision
set C′

D which does not have the drawbacks of the current decision setCD . (Recall
that in decision-repair , neighbors of decision setCD are computed only ifCD

is inconsistent.) Ideally, we would like to find a consistent neighborC′
D , i.e., such that

obviousInference( Φ(C ∪ C′
D)) = solution. However, that ideal is equivalent to

solving the whole problem.
Instead, we may try to get to a partially consistent neighborC′

D such that
obviousInference( Φ(C ∪ C′

D)) �= noSolution. Unfortunately, the only way to get
there (without using computing resources) is to get back to an already explored node but,
doing so, we would achieve a kind of backtracking mechanism, which is not wanted in the
decision-repair algorithm.

Nevertheless, what can be done is to avoid the neighbors that can already be known
as inconsistent. Such information can be extracted from an inconsistent decision setCD .
Indeed, inconsistency means thatC ∧CD ⇒ false. It is possible to compute a subset of an
inconsistent decision setCD that is alone inconsistent withC: that is aconflict.

Definition 1 (Conflict). A conflict k for a set of constraintsC and a decision setCD is a
subset ofCD , k ⊆ CD such thatC ∧ k ⇒ false.

Now, we can define a neighborC′
D of a decision setCD according to a single conflictk.

As long as constraints in the computed conflictk remain altogether in a given decision set
C′
D , that decision set will remain inconsistent. Therefore, in order to find a decision set

with some hope of being consistent, we need to remove from the current decision setCD

at least one of the decisions ink.
Indeed, a more precise neighborhood can be computed. Letc ∈ k be a constraint to be

removed fromCD . As long as all the constraints ink \ c remain in the active decision set,
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c will never be satisfiable. Thus, the negation ofc can be added to the new decision set.
A neighbor of a decision setCD according to a conflictk is thus defined as follows:

Definition 2 (Neighbor w.r.t. one conflict). Let k be a conflict for a decision setCD , a
neighbor ofCD w.r.t. k is a decision setC′

D such that∃c ∈ k,C′
D = CD \ c ∪ {¬c}.

The concept of conflict is crucial fordecision-repair . It is used to focus the
search on judicious (and dynamic) neighborhoods. Conflicts have been widely used in AI
in different contexts and under different names, such as nogoods as in [45] or conflict sets
as in [41]. See Appendix A for a presentation of a conventional way to compute conflicts.

3.3. tabu decision-repair

Decision-repair is a generic algorithm for which instances are obtained by
specializing several parameters:

• the nature and behavior ofΓ the storage structure;
• the neighboring computation function (neighbor );
• the extension computation function (extend );
• thefailure conditions that indicate when to halt the search;
• the filtering techniques to be used (theΦ function).

In this section, we present an instance ofdecision-repair , which we calledtabu
decision-repair , that merges atabu searchwith filtering techniques and conflict-
based heuristics.

Tabu decision-repair uses a tabu list of a given sizes. The s last-computed
conflicts are kept in a listΓ . The algorithm maintains as invariant thatCD is compatible
with the conflicts inΓ . Formally:

Definition 3 (Invariant of tabu decision-repair ). There does not exist a conflict
in Γ that is a subset ofCD .

So far, we have defined a neighborw.r.t. one single conflict. Now, we have to extend the
definition when facing multiple stored conflicts.

Definition 4 (Neighbor w.r.t. several conflicts). Let Γ be a set of conflicts and letCD be
a decision set. A neighborC′

D of CD w.r.t.Γ satisfies∃c ∈ CD,C
′
D = CD \ c ∪ {¬c} and

C′
D is compatible with the conflicts inΓ .

In other words, at least one decision in each conflict ofΓ is not (or is negated) in the
new neighbor. To compute such a neighbor in reasonable time, a greedy algorithm can be
used.

Fig. 2 shows an implementation of theneighbor function for tabu decision-
repair that has been used for solving scheduling problems. Theneighborfunction has to
record inΓ the new conflictk found by the filtering algorithm and to maintain the invariant.
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functionneighbor( CD, k, Γ )
% precondition: k ⊂ CD , CD is compatible withΓ

(1) begin
(2) add k to the list of conflictsΓ
(3) if sizeof( Γ ) > s then
(4) remove the oldest element ofΓ
(5) endif
(6) L← ordered list (decr. weight) of decisions ink
(7) repeat
(8) remove the first decisionc from L

(9) C′
D ←CD \ {c} ∪ {¬c}

(10) if C′
D is compatible with all conflicts inΓ then

(11) return C′
D

(12) endif
(13) until L empty
(14) return stop (or extend the neighborhood)
(15) end

Fig. 2. Theneighbor function fortabu decision-repair .

It tries to find one decision ink such that negating this decision makes the decision set
compatible with all the conflicts. When several decisions can be negated, we use the
following heuristics, which we call weighting-conflict heuristics: a weight is associated
with each decision; the weight characterizes the number of times that the decision has
appeared in any conflict. A weighting-conflict heuristic that works well takes into account
the arity of the conflicts. Each time a conflict is found, the weight of its decision constraints
is increased by 1/r wherer is the arity of the conflict. Theneighborfunction chooses to
negate the decision with the greatest weight that, when negated, makes the new decision set
compatible with all the conflicts inΓ . If such a decision does not exist, the neighborhood
can be extended. For example, we may try to negate two decisions. In our implementation
for open-shop problems (see Section 5), this case is handled as a stopping criterion, so
there is no need for any neighborhood extension.

Note that, in the same way, the functionextend( CD, Γ ) has to useΓ in order
to extend the current decision set while maintaining the invariant. For choosing a new
decision constraint that extends the current decision set, it is generally worthwhile to use
a domain-dependent heuristic. It may be integrated indecision-repair as follows:
a heuristically ordered list of decision constraints is dynamically generated and the first
decision constraint that allows compatibility with all the conflicts inΓ is chosen.

3.4. Example

A run of tabu decision-repair where decision constraints are assignments is
given below. Assume the maximal size of the tabu list is 2.

Let x1, x2, x3, x4 be four variables with domain{1,2,3}.

• Suppose that the search has reached a point where one conflict has been encountered
and is in the tabu listΓ = 〈{x1 = 1, x3 = 1}〉.



30 N. Jussien, O. Lhomme / Artificial Intelligence 139 (2002) 21–45

• Let the current decision set be{x1 = 1, x2 = 1, x3 = 2, x4 = 1}, and assume that, for
that decision set, the filtering algorithm detects that no solution exists and identify
{x1 = 1, x3 = 2, x4 = 1} as a conflict.

• The tabu list is increased with the new conflict:Γ = 〈{x1 = 1, x3 = 1}, {x1 = 1, x3 =

2, x4 = 1}〉. A decision constraint has to be negated to build a relevant neighbor. The
respective weights of the decision constraints that appear inΓ are as follows:
– weight(x1 = 1)= 1/2+ 1/3= 5/6.
– weight(x3 = 1)= 1/2.
– weight(x3 = 2)= 1/3.
– weight(x4 = 1)= 1/3.

• The decision contraint with the maximal weight isx1 = 1. Its negation in the current
decision set allows compatibility with all the conflicts inΓ , so the current decision set
becomes{x1 �= 1, x2 = 1, x3 = 2, x4 = 1}.

• Assume the filtering algorithm cannot deduce that there is no solution nor that a
solution is found in the current decision set. The current decision set is then extended,
and letx1 = 2 be the added decision constraint.

• A new conflict detected by the filtering algorithm is{x1 = 2, x4 = 1}. It is added inΓ ,
and the older conflict is removed fromΓ since the size of the tabu list is bounded by
two.
The respective weights of the decision constraints become:
– weight(x1 = 1)= 5/6.
– weight(x1 = 2)= 1/2.
– weight(x3 = 2)= 1/3.
– weight(x4 = 1)= 1/3+ 1/2= 5/6.

• The decision constraint chosen to be negated by theneighborfunction isx4 = 1. The
current decision set becomes{x1 �= 1, x1 = 2, x2 = 1, x3 = 2, x4 �= 1}.

• After another extension of the decision set by adding the decisionx4 = 2, the filtering
algorithm detects a solution.

4. Related works

The decision-repair algorithm takes its roots in many other works, among
which [18] has probably been the most influential by highlighting the relationships between
local search and systematic search, and by the use of conflicts to guide the search
and make it systematic. In the same spirit are [7,16,19,45].Decision-repair is a
generic algorithm. It generalizes not only some non-systematic algorithms but also some
systematic ones. For example,Dynamic Backtracking[19] can be obtained by specifying
the decision-repair parameters as follows:neighbor keeps only conflicts that
correspond to relevanteliminating explanations(see Appendix A), applies resolution over
eliminating explanations, and undoes the most recent decision in the computed conflict.

The algorithm proposed in [44] can also be seen as an instance of thedecision-re-
pair algorithm where the decision constraints are instantiations; there is no propagation
and no pruning; (the filtering algorithmΦ only consists in checking whether the constraints
containing only instantiated variables are not violated); and it does not make use of con-
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flicts, neither in theneighborfunction nor in theextendfunction. The common idea, which
already exists in previous works [24], is essentially to extend a partial instantiation when
it is consistent, and to perform a local change when the partial solution appears to be a
dead-end.

The idea of using a filtering algorithm during the running of a local search has been
also used in [49] and in [48]. In [49], an extension toGENET, a local search method based
on an artificial neural network aiming at solving binaryCSP, is introduced. This extension
achieves what is calledlazy arc-consistencyduring the search. The lazy arc-consistency
filtering performs a filtering over the initial domains. The result is at most the one ob-
tained by filtering the domains before any search. Indecision-repair , the filtering is
applied over the current domains at every step. In [48], a technique calledLarge Neighbor-
hood Search(LNS) is proposed for solving optimization problems. Unlikedecision-
repair , LNS performs a local search ontotal assignments of variables. And it uses a
filtering algorithm for making a move: it unassigns several variables and uses a tree-based
search with constraint propagation to find the next total assignment.

Introducing a stochastic seed in a backtracking algorithm [30,37] can also be seen
as some kind of hybrid between local search and systematic search. The neighborhood
is no longer defined by conflicts but is stochastically generated. An algorithm like the
tabu version ofdecision-repair is a trade-off between keeping all the conflicts
encountered during search (which potentially needs exponential space) and replacing the
useful information of the conflicts by random actions.

The heuristic we used to select the decision constraint to negate—choose the one
that has appeared the greatest number of times in small conflicts—is in some sense
a generalization of a similar approach forGSAT counting the number of times that a
constraint has not been satisfied [46].

The way conflicts are computed by the filtering algorithm is a well-known technique
that has already been used with slight variations for different combinations of filtering
algorithms with systematic search algorithms (forward checking+ backjumping [40], for-
ward checking+ dynamic backtracking [52], arc-consistency+ backjumping [11,42], arc-
consistency+ dynamic backtracking [28], 2B-consistency+ dynamic backtracking [27]).
Nevertheless, as far as we know, thetabu version ofdecision-repair is the first
time such a technique has been used in combination with a local search algorithm.

5. A case study: Solving scheduling problems

5.1. Open-shop scheduling problems

Classical scheduling shop problems for which a setJ of n jobs consisting each ofm
tasks (operations) must be scheduled on a setM of m machines can be considered asCSP.3

One of those problems is called the open-shop problem [21]. For that problem, operations

3 The variables of theCSPare the starting date of the tasks. Bounds thus represent the least feasible starting
time and the least feasible ending time of the associated task.
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for a given job may be sequenced as wanted but only one at a time. We will consider here
the building of non-preemptive schedules of minimal makespan.4

The open-shop scheduling problem is NP-hard as soon as min(n,m) � 3. This problem
although quite simple to enunciate is really hard to solve optimally: instances of size 6× 6
(i.e., 36) variables remain unsolved!

5.2. tabu decision-repair for open-shop problems

The tabu version ofdecision-repair has been tried on the open-shop problem.
The implementation is described below.

• Filtering techniques. Precedence constraints are handled with 2B-consistency filter-
ing [12,32] and resource usage constraints are handled throughtask intervals[10].
Thedecision-repair algorithm needs to call the filtering algorithm many times
with little change of the constraint set. Instead of recomputing the arc-consistency clo-
sure from scratch, it is possible to maintain it incrementally. That problem has been
addressed for dynamicCSP. The algorithms used indecision-repair are similar
to those of [5,14] or other works [27].

• Computation of conflicts. Conflicts are computed as stated in the annex. More details
about the computation of the conflicts can be found in [26].

• Search strategy. For shop problems, enumeration is usually performed on the relative
order in which tasks are scheduled on the resources. The decision constraints are
thus precedence constraints between tasks. (When every possible precedence has been
posted, setting the starting date of the variable to their smallest value provides a
feasible solution.)

• Tabu list. The implementation uses a tabu list of size 7.
• Neighborhood. Theneighbor function is the one given in Fig. 2.
• Stopping criterion. The failure conditions specifying the exit ofdecision-re-

pair (Fig. 1) are either astopreturned by theneighbor function or 3000 iterations
without improvement since the last solution reached.

• Minimisation of the makespan. The open-shop problems we consider are optimisation
problems. This requires a main loop that calls the functiondecision-repair
until improvement is no longer possible. (See Fig. 3.) Improvements are generated by
adding a constraint that specifies that the makespan is less than the current best solution
found. The initial decision set for each call of the functiondecision-repair is
the latest set of decisions (which defines the last solution found).

5.3. First results

We present here results obtained bytabu decision-repair on three series of
reference problems:

4 Ending time of the last task.
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procedureminimise-makespan( C)
(1) begin
(2) CD ← initial decision set
(3) bound← +∞

(4) lastSolution← failure
(5) repeat
(6) C ← C ∪ { makespan< bound}
(7) solution← decision-repair( C)
(8) if solution= failure then
(9) return lastSolution
(10) else
(11) bound← value of makespan in solution
(12) lastSolution← solution
(13) endif
(14) until false
(15) end

Fig. 3. Algorithm used to solve open-shop problems.

(1) Taillard’s problems [50]: 40 problems are solved consisting of 4 series of 10 problems
of size 4× 4, 5× 5, 7× 7, and 10× 10.

(2) Brucker et al.problems [8]: 52 problems of size 3× 3 to 8× 8. Those problems are
characterized by a commonLB (the classical lower bound5) value: 1000.

(3) Guéret and Prins’ problems: Those 80 problems (8 series of 10 problems of size 3× 3
to 10× 10) have been generated using results presented in [22] for generating really
hard open-shop instances. They all share a commonLB (classical lower bound) value
and the fact that another lower bound [22] gives a much greater value. Those problems
are downloadable at http://www.emn.fr/gueret/OpenShop/OpenShop.html.

The tabu decision-repair algorithm (referred to as TDR in the results) is
compared with the best published solving techniques for the open-shop problem:

• For Taillard’s instances, our results are compared with two highly specialized tabu
searches tailored for solving open-shop problems, one presented in [1] (referred to as
TS-A97 in the results) and one presented in [31] (referred to as TS-L98 in the results).

• For all the instances, our results are also compared with a genetic algorithm introduced
in [38] (referred to as GA-P99 in the results) which gives very good results on all those
problems.

Fig. 1 presents results obtained on Taillard’s problems, Fig. 2 on Brucker’s instances,
and finally Fig. 3 on Guéret and Prins’ problems. CPU time is not available in [1,31],
nor in [38].6 AverageCPU time fortabu decision-repair is not really significant

5 Maximum load of the involved machines and jobs.
6 This is quite usual for open-shop scheduling results. Indeed, the problem itself being really hard, what is

important is the quality of the solution and not the time required to obtain it. Moreover, in real-life applications
such as satellite scheduling problems [39] improving a solution by one can save so much money that satellite
operators are ready to wait as long as a full day for that improvement!
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Table 1
Results on Taillard’s instances. Results are presented in the following format: “average deviation
from the optimal value”/“maximum deviation from the optimal value” (“number of optimally
solved instances”)

Series TS-L98 TS-A97 GA-P99 TDR

4× 4 0/0 (10) (*) 0.31/1.84 (8) 0/0 (10)
5× 5 0.09/0.93 (9) (*) 1.26/3.72 (1) 0/0 (10)
7× 7 0.56/1.77 (6) 0.75/1.71 (2) 0.41/0.95 (4) 0.44/1.92 (6)

10× 10 0.29/1.41 (6) 0.73/1.67 (1) 0/0 (10) 2.02/3.19 (0)

(*) Only results for 7 problems of size 7× 7 and 3 of size 10× 10 are given in the paper.

Table 2
Results on Brucker’s instances. Results are presented accord-
ing to the following format: “average deviation from the op-
timal value”/“maximum deviation from the optimal value”
(“number of optimally solved instances”) except for 7×7 and
8× 8 problems for which the deviation is computed from the
LB value (1000 for each problem)

Series GA-P99 TDR

3× 3 (8 pbs) 0/0 (8) 0/0 (8)
4× 4 (9 pbs) 0/0 (9) 0/0 (9)
5× 5 (9 pbs) 0.36/2.07 (6) 0/0 (9)
6× 6 (9 pbs) 0.92/2.27 (3) 0.71/3.50 (6)

7× 7 (9 pbs) 3.82/8.20 (6) 4.40/11.5 (5)
8× 8 (8 pbs) 3.10/7.50 (8) 4.95/11.8 (2)

since CPU time strongly depends on the instance of the problem. Just to give an idea, for
Taillard’s instances, 10×10 average CPU time is 15 hours and for 7×7 average CPU time
is 2 hours. For Brucker’s instances and Guéret and Prins’ problems, 10× 10 average CPU
time is 3 to 4 hours and, for size less than 8× 8, average CPU time less than 4 minutes.

First recall thatdecision-repair is a generic algorithm which has been instan-
tiated simply to solve a very specific problem which has its own research community.
The results obtained on the three sets of problems are therefore very interesting because
they show thattabu decision-repair is a competitive algorithm compared with the
other techniques.

As far as Taillard’s instances are concerned,tabu decision-repair gives
comparable results but thetabu searchof [31] is still the best technique except for 10× 10
problems where the genetic algorithm shows the best results.

On Brucker’s instances,tabu decision-repair is far better than the genetic
algorithm on small instances but the latter becomes better on larger problems.

For the third set of problems (the really hard instances of Guéret and Prins)tabu
decision-repair shows all the interest of combining local search and constraint
propagation:tabu decision-repair closed7 6 of these instances. Furthermore, it

7 An optimal solution was found and proved—a lower bound is known—for the first time.
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Table 3
Results on Guéret and Prins’ problems. Results are presented according to the following format:
“number of problems solved giving the best results”/“number of optimally solved problems”. BB-
G00 reports the results of a systematic search introduced in [23] and stopped after 350 000 backtracks
(which represents around 24 hours of CPU time). Whattabu decision-repair gave to the
solving of those problem (TDR yield) is indicated by “the number of closed instances”/“the number
of newly improved instances”

Series BB-G00 GA-P99 TDR Open instances TDR yield

3× 3 10/10 10/10 10/10 0 –
4× 4 10/10 10/10 10/10 0 –
5× 5 10/10 8/8 10/10 0 –
6× 6 9/7 2/1 10/8 3 1/1
7× 7 3/1 6/3 10/4 9 1/3
8× 8 2/1 2/1 10/4 9 3/7
9× 9 1/1 0/0 10/2 9 1/9

10× 10 0/0 5/0 5/0 10 0/5

provided new best results for 19 other instances; thus it improved known results for 25
instances out of 40 open ones.

Up to size 9× 9, tabu decision-repair gives far better results than both
the genetic algorithm and branch and bound search (that has been truncated by a time
criterion). For 10× 10 problems,tabu decision-repair is still better than the
branch and bound but is matched by the genetic algorithm.

Such good behavior oftabu decision-repair was quite surprising because,
unlike the other specialized algorithms, our implementation remains general and does
not need any tuning of complex parameters. This is probably due to the search used for
the open-shop problem, which dynamically builds independent sub-problems by adding
precedence constraints: classical backtracking algorithms may start by partially solving
a sub-problem, then go to another one, solve it, and then continue to solve the first sub-
problem. In cases where it has to backtrack to choices in the first part of its work, the search
space of the two sub-problems are multiplied. Ourdecision-repair , thanks to its use
of conflicts, can identify independent sub-problems and stay in a sub-problem until it has
been solved. Also the heuristic we have introduced seems to be good. Once again, this is
another benefit from the use of conflicts.

5.4. In-depth analysis

In this section, we proceed to a more in-depth analysis of the behavior ofdecision-
repair in order to better understand its excellent performance.

A series of experiments were made in order to study:

• howdecision-repair performance is affected by a modification of the structural
parameters of the algorithm;

• if the use of precise conflicts is important for the search performed;
• if the use of repair techniques is really crucial compared to other conflict-based

techniques.
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Notice that we consider constraint propagation as mandatory when dealing with
combinatorial problems such as open-shop scheduling and will therefore not compare
decision-repair with enumeration-only techniques.

5.4.1. Varying parameters
Thetabu decision-repair algorithm has three main parameters:

• the maximum number of allowed movements without improvement;
• the length of the tabu list;
• the selection of the candidate neighbor for repair (handled through the definition of the

weight of each constraint in the conflict).

5.4.1.1. Protocol of the experiments.Experiments were done on theGuéret and Prins’
problems [22]. We testeddecision-repair with different sets of values for the
parameters. All possible combinations were used:

• the maximum number of authorized moves with no improvements:{1500, 3000}.
• the length of the tabu list:{2,7,12,17}.
• the definition of the weight of a constraint to be used when repairing an infeasible

partial solution (Notice that constraints with higher weight are most likely to be
selected for repair.):
– nb-conflicts(nc) The weight associated with each constraint is its number of

occurrences in all the conflicts encountered so far.
– weighted-nb-conflicts(wnc) The weight associated with each constraint is the

number of occurrences in all the conflicts encountered so far taking into account the
size of each conflict. LetC be the set of conflicts in which a constraintc appears.
The weightw(c) of constraintc is defined as:

w(c) =
∑

σ∈C

size(σ )−1.

– most-recent(mr) The weight associated with each constraint is the time-stamp of
its activation.

– most-ancient(ma) The weight associated with each constraint is the inverse time-
stamp of its activation.

5.4.1.2. Varying the maximum number of moves.Tables 4 and 5 present the results
obtained when varying the maximum number of consecutive moves allowed without
improvement. Results with other techniques are also reported on those tables.

As we can see, allowing more possible moves leads to better results. Doubling the
number of allowed moves leads to an increase in total moves by only 37%.

What is important to notice here is thatdecision-repair does not seem really to
rely on that parameter since considering the two possible values given, results remainfar
better than the other techniques presented.
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Table 4
decision-repair : varying the maximum number of moves—
Final makespan

Problem 1500 moves 3000 moves BB-G00 GA-P99

9x9-1 1131 1129 1150 1149
9x9-2 1111 1111 1226 1126
9x9-3 1115 1115 1150 1118
9x9-4 1130 1130 1181 1151
9x9-5 1180 1180 1180 1181
9x9-6 1096 1094 1136 1122
9x9-7 1091 1091 1173 1124
9x9-8 1106 1105 1193 1111
9x9-9 1123 1123 1218 1138
9x9-10 1118 1111 1166 1131

Table 5
decision-repair : varying the maximum number
of moves—Total number of moves

Problem 1500 moves 3000 moves

9x9-1 5717 10701
9x9-2 7136 8928
9x9-3 5632 7233
9x9-4 5013 5013
9x9-5 1686 1686
9x9-6 10941 15648
9x9-7 8571 10301
9x9-8 15348 19033
9x9-9 8110 9748
9x9-10 8089 16212

5.4.1.3. Length of the tabu list.Tables 6 and 7 present the results obtained when varying
the length of the tabu list. Results with other techniques are also reported in those tables.

As we noticed for the maximum number of consecutive moves without improvement
allowed, whatever the value given for the size of the tabu list,tabu decision-
repair remains a better technique than other efficient ones.

However, focusing the comparison ontabu decision-repair leads to the
observation that a tabu list of size 2 or 12 seems to be the best value and that 17 is more
often the worst one (especially considering the total number of moves—Table 7).

5.4.1.4. Constraint weights.Tables 8 and 9 present the results obtained when varying
the weight associated with each constraint appearing in the conflicts. (See Section 5.4.1.1.)
Results with other techniques are also reported in those tables.

The most-recent technique is clearly out performed by all the other techniques.
The most-ancient technique is worse thannb-conflicts andweighted-nb-
conflicts . Those last two are the best methods (including the genetic algorithm of GA-
P99 and the branch and bound of BB-G00). Furthermore,weighted-nb-conflicts
is a little better than the others.
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Table 6
decision-repair : varying the length of the tabu list—Final makespan

Problem 2 7 12 17 BB-G00 GA-P99

9x9-1 1129 1129 1129 1129 1150 1149
9x9-2 1111 1111 1110 1110 1226 1126
9x9-3 1115 1115 1115 1115 1150 1118
9x9-4 1130 1130 1130 1130 1181 1151
9x9-5 1180 1180 1180 1180 1180 1181
9x9-6 1094 1094 1093 1094 1136 1122
9x9-7 1094 1091 1097 1092 1173 1124
9x9-8 1108 1105 1112 1105 1193 1111
9x9-9 1123 1123 1123 1123 1218 1138
9x9-10 1110 1111 1119 1113 1166 1131

Table 7
decision-repair : varying the maximum num-
ber of moves—Total number of moves

Problem 2 7 12 17

9x9-1 13531 10701 12655 11578
9x9-2 10046 8928 10822 8921
9x9-3 5183 7233 6290 8343
9x9-4 6665 5013 8651 9330
9x9-5 1769 1686 894 795
9x9-6 11572 15648 15180 13893
9x9-7 18618 10301 12756 25117
9x9-8 11364 19033 10322 22695
9x9-9 7852 9748 11322 10679
9x9-10 15384 16212 13267 12372

Table 8
decision-repair : varying the heuristic selection—Final makespan

Problem nc wnc mr ma BB-G00 GA-P99

9x9-1 1129 1129 1182 1129 1150 1149
9x9-2 1112 1111 1164 1138 1226 1126
9x9-3 1116 1115 1192 1115 1150 1118
9x9-4 1131 1130 1188 1170 1181 1151
9x9-5 1180 1180 1191 1180 1180 1181
9x9-6 1093 1094 1177 1132 1136 1122
9x9-7 1092 1094 1139 1094 1173 1124
9x9-8 1110 1108 1180 1105 1193 1111
9x9-9 1123 1123 1184 1176 1218 1138
9x9-10 1116 1110 1146 1111 1166 1131

5.4.1.5. Conclusion. This comprehensive study of the parameters oftabu decision-
repair shows that the length of the tabu list and the maximum number of allowed con-
secutive moves without improvement are not key parameters for our technique.
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Table 9
decision-repair : varying the heuristic selec-
tion—Total number of moves

Problem nc wnc mr ma

9x9-1 13945 13531 3555 5479
9x9-2 10614 10046 2995 893
9x9-3 6983 5183 3465 3004
9x9-4 13301 6665 3791 2030
9x9-5 1240 1769 3438 1040
9x9-6 12158 11573 3894 2152
9x9-7 16779 18618 3512 17607
9x9-8 13552 11364 6895 12847
9x9-9 12835 7852 4178 2047
9x9-10 13185 15384 6154 11637

However, the weighting technique seems quite important and our results show that the
techniques that make use as much as possible of the information stored in past conflicts
give better results.

5.4.2. Impact of using conflicts
As recalled in Appendix A, there exist several ways of computing a single conflict.

One question that may arise aboutdecision-repair is: is it worthwhile designing
precise explanation-based algorithms rather that providing very general explanations when
propagating constraints? We compared results both on Taillard’s instances (Table 10) and
9x9 Guéret and Prins’ instances (Table 11) with two sets of algorithms:

• a propagation algorithm for scheduling problems that is based upon Carlier and
Pinson’simmediate selections(TDR-IS) [9] that gives only general explanations;

• a propagation algorithm for scheduling problems that is based upon thetask intervals
(TDR-TI) of Caseau and Laburthe [10].Task intervalsgive very precise explanations
for value removals.

The results (Table 8) clearly show that using precise conflicts leads to better results.
Moreover, when computing conflicts usingtask intervalsthe overall search requires less
CPU time than the search obtained when computing conflicts withimmediate selections.
Precise conflicts are priceless for algorithms such asdecision-repair !

5.4.3. Impact of using repair
Another question arises abouttabu decision-repair results: is the repair

component of the algorithm is a key component? In order to answer that question, we
are comparing here three algorithms:

• tabu decision-repair as described in this paper;
• mac-dbt [28] which combines arc-consistency with dynamic backtracking and

which is indeed a special case ofdecision repair that does not really performs
a local search because of the completeness requirements;
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Table 10
decision-repair : varying the explanation system—Final makespan—
Taillard’s instances

Problem TDR-IS TDR-TI TS-L98 TS-A97 GA-P99

5x5-1 301 300 300 – 301
5x5-2 262 262 262 – 263
5x5-3 323 323 326 – 335
5x5-4 311 310 310 – 316
5x5-5 326 326 326 – 330
5x5-6 314 312 312 – 312
5x5-7 304 303 303 – 308
5x5-8 300 300 300 – 304
5x5-9 356 353 353 – 358
5x5-10 326 326 326 – 328

7x7-1 435 435 435 437 436
7x7-2 439 447 447 444 447
7x7-3 473 477 474 476 472
7x7-4 463 463 463 464 463
7x7-5 416 416 417 417 417
7x7-6 460 455 459 – 455
7x7-7 430 425 429 429 426
7x7-8 424 424 424 – 424
7x7-9 458 458 458 458 458
7x7-10 398 398 398 398 398

Table 11
decision-repair : varying the explanation system—Final
makespan—Guéret and Prins’ instances

Problem TDR-IS TDR-TI BB-G00 GA-P99

9x9-1 1129 1129 1150 1149
9x9-2 1111 1111 1226 1126
9x9-3 1115 1115 1150 1118
9x9-4 1188 1130 1181 1151
9x9-5 1180 1180 1180 1181
9x9-6 1093 1094 1136 1122
9x9-7 1102 1091 1173 1124
9x9-8 1109 1105 1193 1111
9x9-9 1212 1123 1218 1138
9x9-10 1119 1111 1166 1131

• the branch and bound algorithm of [23], which is actually an intelligent backtracker
that makes a limited use of computed conflicts.

Results presented in Table 12 show thattabu decision-repair out-performs
mac-dbt (which has been cut after 3000 consecutive moves without improvements).
This tends to show that the local search part ofdecision-repair is really important.
Moreover,tabu decision-repair is much quicker thanmac-dbt .
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Table 12
decision-repair : varying the repair technique—
Final makespan

Problem TDR MAC-DBT BB-G00

9x9-1 1129 1182 1129
9x9-2 1111 1164 1226
9x9-3 1115 1192 1150
9x9-4 1130 1188 1181
9x9-5 1180 1191 1180
9x9-6 1094 1177 1136
9x9-7 1091 1139 1173
9x9-8 1105 1180 1193
9x9-9 1123 1184 1218
9x9-10 1111 1146 1166

Our results also show thattabu decision-repair out-performs the intelligent
backtracker BB-G00 (which has been cut after 350 000 backtracks). This tends to show the
repairing part ofdecision-repair is a key component of the algorithm.

Moreover, whereas BB-G00 needs 12 hours on average to solve one problem,tabu
decision-repair needs only 4–6 hours and gives far better results.

Notice thatmac-dbt competes well withBB-G00, showing once more that the interest
of decision-repair relies on the combination of efficient propagation, free moves,
and a conflict-directed heuristic.

6. Conclusion and future work

In this paper, we introduced a new algorithm for solvingCSP, thedecision-repair
algorithm. The two main points of that algorithm are: it makes use of a repair algorithm
(local search) as a basis, and it works on a partial instantiation in order to be able to use
filtering techniques. The concept ofconflicthas been crucial to implement that algorithm:
conflicts allow relevant neighborhoods to be considered, and conflicts can be used to derive
efficient neighbor-selecting heuristics for adecision-repair algorithm.

Experiments with atabu version ofdecision-repair have shown good results
over open-shop scheduling problems. Several well known hard instances of the open-shop
scheduling problems have been solved for the first time thanks todecision-repair ,
and the best bounds of some other instances have been improved. So, at least,decision-
repair competes well with the best highly specialized algorithms. This result was quite
surprising since, unlike those specialized algorithms, our implementation is general and
does not need any tuning of complex parameters.

A comprehensive study of the behavior ofdecision-repair has shown that the
key components of this algorithm are: its conflict-directed heuristics and its ability both to
perform a local search and to prune the search space.

In future work, we will investigate the following issues:
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• In our implementation for open-shop scheduling problems, the conflicts we compute
are not minimal. A method like the one presented in [25] is able to compute
minimal conflict in reasonable time. As more precise conflicts may greatly improve
the efficiency of adecision-repair implementation, such a conflict-detection
method deserves experimentation.

• Also experiments ofdecision-repair over other fields than scheduling problems
have to be performed.
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Appendix A. Conflicts for constraint programming

A conflict (a.k.a.nogood[45]) is a subset (heredc1, . . . , dck) of the current decision
constraints (the setCD) that, taken along with the original constraints (the setC), leads to
a contradiction (no feasible solution contains a conflict) (Eq. (A.1))

¬(C ∧ dc1 ∧ · · · ∧ dck). (A.1)

Notice that, from that definition, if the current decision setCD is inconsistent,CD is a
valid conflict. Obviously, a strict subset will be much more interesting. A minimal (w.r.t.
the inclusion) conflict would be the best, but could be expensive to compute [25,51]. Our
current implementation does not try to find such a minimal conflict. Instead, it tries to
compute agoodconflict quickly.

A conflict must be computed each time the filtering algorithm can prove that no solution
exists with the current decision set. This happens when the domain of a variablev becomes
empty. Assume that each valueai of the domain ofv has been removed. Assume also that,
for each valueai , a subset ofCD , denoted byexpl (v �= ai), is given.expl (v �= ai)

is called aneliminating explanation(explanation for short) and justifies the removal of
value ai from the domaind(v) of variable v. Formally, expl (v �= ai) is such that:
C ∧ expl (v �= ai) ⇒ v �= ai . Thus,k =

⋃
i expl (v �= ai) is a conflict since no value

for v is allowed by the union of the eliminating explanations.8

Thus, computing explanations is sufficient to compute conflicts within constraint
programming. Filtering operations inCSP can be considered as a sequence of value
removals which can all be explained by an eliminating explanation. The simplest of
all explanations is to merely consider the complete set of decisions. Much more useful
explanations can be provided by instrumenting the propagation algorithms. Indeed, value
removals are direct consequences of the filtering algorithms. For some algorithms, this

8 Note that this inference is called hyper-resolution in [29].
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instrumentation is quite simple. For AC-4 [35], value removal explanations can be
computed by a simple trace mechanism embedded within the filtering algorithm and by
storage of the reason for a removal (e.g., see [28]). For numericCSPand 2B-consistency
(arc-consistency restricted to the bounds of the domains [12,32]) a better way to compute
conflicts is not to keep why values have been removed but to maintain an explanation
for the current values of the two bounds of a domain (e.g., see [27]). When a domain
becomes empty, the lower bound becomes greater than the upper bound, and the union of
the explanations of the two current bounds is a conflict. (Recall that decisions are typically
made by addingsplittingconstraints in numericCSP. See Example 2.)

For other filtering algorithms, like AC-6 [6], computing the eliminating explanations
cannot be done without changing the asymptotic behavior of the algorithm. In such a case,
a practical implementation is to consider an explanation for the current domain of a variable
(e.g., see [42]), but this implementation is less precise than considering only the supports
of the values.

Example A.1 (Computing eliminating explanations). For example, let us consider two
variablesv1 andv2 whose domains are both{1,2,3}.

• Let c1 be a first decision constraint:c1: v1 � 3. Let us assume that the filtering
algorithm in use is 2B-consistency filtering. The constraintc1 leads to the removal
of {1,2} from the domain ofv1. An explanation for the new domain{3} of v1 is thus
{c1}.

• Let c2 be a second constraint:c2: v2 � v1. Value 1 and value 2 ofv2 have no support
in the domain ofv1, and thusc2 leads to the removal of{1,2} from v2. An explanation
of the removal of{1,2} from v2 will be: c1 ∧ c2 becausec2 precipitates that removal
only because previous removals occurred inv1 due toc1.

Several explanations generally exist for the removal of a given value. Recording all
of them leads to an exponential space complexity. Another technique relies onforgetting
(erasing) explanations that are no longer relevant9 to the current variable assignment. By
doing so, the space complexity remains polynomial. Here, we retainoneexplanation at a
time for a value removal.
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