
Computing and Exploiting Tree-Decompositions

for Solving Constraint Networks

Philippe Jégou, Samba Ndojh Ndiaye, and Cyril Terrioux

LSIS - UMR CNRS 6168,
Université Paul Cézanne (Aix-Marseille 3),

Avenue Escadrille Normandie-Niemen,
13397 Marseille Cedex 20, France

{philippe.jegou, samba-ndojh.ndiaye, cyril.terrioux}@univ.u-3mrs.fr

Abstract. Methods exploiting tree-decompositions seem to provide the
best approach for solving constraint networks w.r.t. the theoretical time
complexity. However, they have not shown a real practical interest yet.
In this paper, we study several methods for computing a rough optimal
tree-decomposition and assess their relevance for solving CSPs.

1 Introduction

The CSP formalism (Constraint Satisfaction Problem) offers a powerful frame-
work for representing and solving efficiently many problems. A CSP instance is
defined by a tuple (X, D, C). X is a set {x1, . . . , xn} of n variables. Each vari-
able xi takes its values in a finite domain from D. The variables are subject to
the constraints from C which express restrictions between the different possi-
ble assignments. Given an instance (X, D, C), the CSP problem, which consists
in determining whether a solution (i.e. an assignment of each variable which
satisfies each constraint) exists, is NP-complete. In this paper, without loss of
generality, we only consider binary constraints (i.e. constraints which involve two
variables). So, the structure of a CSP can be represented by the graph (X, C),
called the constraint graph.

The usual method for solving CSPs is based on backtracking search. This ap-
proach, often efficient in practice, has an exponential theoretical time complexity
in O(e.dn) for an instance having n variables and e constraints and whose largest
domain has d values. Several works have been developed to improve this theo-
retical complexity bound thanks to particular features of the instance. The best
known bound is given by the ”tree-width” w of a CSP. This parameter, related
to a tree-decomposition of the constraint graph, leads to a time complexity in
O(n.dw+1). As w+1 ≤ n, depending on the instances, we can expect a significant
gain w.r.t. enumerative approaches. So several methods have been proposed to
reach this bound like Tree-Clustering [1] or BTD [2]. Yet, the space complexity,
often linear for enumerative methods, is in O(n.s.ds) with s the size of the largest
minimal separators of the graph and so may make such an approach unusable in
practice. Hence, most of works based on this approach only present theoretical

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 777–781, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

778 P. Jégou, S.N. Ndiaye, and C. Terrioux

results. Except [2,3], no practical results have been provided. Moreover, find-
ing an optimal tree-decomposition (i.e. a tree-decomposition with width w) is
NP-Hard [4]. So approximate optimal tree-decompositions (with width w+ s.t.
w ≤ w+ ≤ n − 1) are often exploited. Yet, although this choice is first induced
by runtime reasons, we will show that it seems sensible in practice. This paper
deals with the computation of a suitable tree-decomposition w.r.t. CSP solving.

An algorithmic way to compute a tree-decomposition relies on triangulated
graphs [5]. As any graph G is not necessarily triangulated, we can triangulate
G. A triangulation of G consists in adding a set C′ of edges to G s.t. G′ =
(X, C∪C′) is triangulated. The width of G′ is equal to the maximal size of cliques
minus one in graph G′. The tree-width of G is then equal to the minimal width
over all triangulations. Hence, a rough tree-decomposition can be computed by
using a non-optimal triangulation. Many algorithms exist for computing such
a triangulation. So, in order to make structural methods efficient, this paper
studies and compares some of them w.r.t. to CSP solving. This work is performed
by using the BTD method [2] (one of few structural methods which have been
implemented and used successfully for practical CSP solving).

By lack of place, the ideas we present are not fully developed and explained.
A more complete version of this paper can be found in [6].

2 Triangulation Algorithms

This section raises the problem of computing ”good” tree-decompositions thanks
to ”good” triangulations. Several approaches and algorithms have been proposed
for triangulations. In any case, they aim to minimize either the number of added
edges, or the size of the cliques in the triangulated graph. We can distinguish
four classes of approaches. First, computing an optimal triangulation is NP-
hard. So no polynomial algorithm is known yet and the proposed algorithms
have an exponential time complexity. Secondly, we can exploit approximation
algorithms which approximate the optimum by a constant factor and whose
complexity is often polynomial in the tree-width [7]. Unfortunately, implement-
ing these two first approaches do not have much interest from a practical view-
point (e.g. the latter is time expensive while obtaining results of poor quality).
On the other hand, we can exploit minimal triangulations. A minimal trian-
gulation computes a set C′ s.t. (X, C ∪C′) is triangulated and, for every subset
C” ⊂ C′, (X, C ∪ C”) is not triangulated. Note that a minimal triangulation
is not necessarily optimal. The main interest of this approach is related to the
existence of polynomial algorithms (e.g. LEX-M [8] and LB [9] whose time com-
plexity is O(ne′) with e′ the number of edges in the triangulated graph). Finally,
the fourth approach, namely heuristic triangulations, generally add some
edges to the initial graph until the graph is triangulated. They often achieve this
work in polynomial time (between O(n + e′) and O(n(n + e′))) but they do not
provide any minimality warranty. Nonetheless, in practice, they can be easily
implemented and their interest seems justified. In effect, these heuristics appear
to obtain triangulations reasonably close to the optimum [10]. In the following,

Computing and Exploiting Tree-Decompositions 779

we consider two such heuristics: MCS and min-fill. MCS relies on the algorithm
of [11] which recognizes the triangulated graphs. Min-fill orders the vertices from
1 to n by choosing as next vertex one which leads to add a minimum of edges
when completing the subgraph induced by its unnumbered neighbors.

3 Experimental Study

3.1 Comparison Based on Graphical Criteria

According to the experiments presented in the literature, the two first approaches
do not appear very interesting as a first step of a CSP solving method due to a
too expensive runtime w.r.t. the weak improvement of the value w+. Hence, we
only assess the interest of the two other approaches by experimenting them on
graphs from real-world problems and random structured graphs (partial k-trees).

Table 1 presents empirical results for some graphs of the CALMA archive
(real-world frequency assignment problems). We compare four triangulation al-
gorithms, namely n-LEX-M, n-LB, n-min-fill and n-MCS, defined respectively
from LEX-M, LB, min-fill and MCS. Precisely, each algorithm n-X fixes the
choice of the first vertex and then uses the method X for the remaining vertices.
It repeats this process by choosing each vertex as the first vertex. We note that
the best results w.r.t. tree-width are performed by n-min-fill and n-LB. However,
n-LB offers a more promising trade-off between the runtime and the quality of
w+. These results appear generally better than ones obtained by the MSVS
heuristic [12] (based on network flow techniques instead of triangulation). Note
that we have observed similar trends on partial k-trees [6].

As an indication, a random choice of the first vertex leads, of course, to worse
results. However, these results are often very close to the previous ones. They
are obtained in a time divided by n w.r.t. the times provided in table 1. For
instance, for CALMA problems, the time does not exceed 2 s.

Table 1. Tree-width obtained after triangulation and triangulation time (in s) for

graphs from CALMA archive

Instance n e n-LEX-M n-LB n-min-fill n-MCS
w+ time w+ time w+ time w+ time

CELAR02 100 311 10 0.42 10 0.36 10 0.53 10 0.33
CELAR03 200 721 17 4.71 17 3.71 14 5.78 17 4.32
CELAR06 100 350 11 0.42 11 0.37 11 0.58 11 0.37
CELAR07 200 817 19 4.42 18 3.80 16 6.44 18 4.20
CELAR08 458 1655 20 55.85 19 82.73 16 73.57 19 51.74
CELAR09 340 1130 18 39.96 18 38.89 16 31.43 19 36.36

GRAPH05 100 416 28 1.00 26 0.68 25 1.34 31 0.97
GRAPH06 200 843 58 15.56 53 7.92 54 19.64 58 15.65
GRAPH11 340 1425 106 146.16 90 39.63 91 162.90 104 150.13
GRAPH12 340 1256 99 140.09 85 45.19 85 148.28 96 142.62
GRAPH13 458 1877 146 558.38 120 115.43 126 710.06 131 640.62

780 P. Jégou, S.N. Ndiaye, and C. Terrioux

Table 2. Runtime (in s) for a value s respectively unlimited and limited to 10. T and

M mean that some instances cannot be solved for time reason or for a lack of memory.

Instance d t Time for unlimited s Time for s limited to 10
LEX-M LB min-fill MCS LEX-M LB min-fill MCS

CELAR02 50 1216 2.72 2.81 2.73 2.80 2.74 2.82 2.72 2.80
CELAR03 30 373 2.22 57.71 M 1.95 2.23 2.60 1.45 1.51
CELAR06 50 1155 3.40 3.52 3.41 3.50 3.43 3.53 3.41 3.48
CELAR07 25 209 12.79 M 13.23 4.66 4.92 4.83 4.86 4.69
CELAR09 25 209 12.47 T 11.82 6.72 4.69 4.88 4.66 4.76

Table 3. Runtime (in s) and value of w+ for class (150, 25, 15, t, 5, 15) after removing

p% edges (with s limited to 5)

p t LEX-M LB min-fill MCS
w+ time w+ time w+ time w+ time

10% 215 18.50 5.53 14.00 3.95 15.97 10.66 14.03 4.06
20% 237 22.00 4.07 14.00 4.37 16.33 6.74 14.00 3.53
30% 257 23.30 82.79 14.00 2.85 17.20 5.49 15.03 3.81
40% 285 24.90 78.22 14.00 1.11 15.33 1.21 15.33 5.88

Here, the quality of a decomposition is only assessed w.r.t. the value of
w+. Nonetheless, from the viewpoint of CSP solving, the most relevant crite-
rion is related to the solving efficiency obtained thanks to the computed tree-
decomposition. Of course, this computation must be achieved in reasonable time.

3.2 Comparison Based on CSP Solving Efficiency

In the frame of CSP solving, the quality of a decomposition mostly depends on
the practical efficiency we obtain by exploiting it. So we compare LEX-M, LB,
min-fill and MCS w.r.t. CSP solving. We consider random CSPs whose graph is
one of some CALMA instances (see table 2). Surprisingly, the most interesting
decompositions are computed by MCS. Moreover, when we limit the maximal
size of separators in the decomposition, the gap between the triangulations sig-
nificantly decreases. Note that, for efficiency reasons, it is our interest to reduce
the value of s, by aggregating the clusters which share a large intersection.

Then, we experiment on partial random structured CSPs (see table 3). For
each instance, we randomly produce a random structured CSP [2] and then we
remove p% edges. The least promising method, namely MCS, obtains interesting
results. Only LB obtains similar or better results w.r.t. the value of w+ or the
CSP solving. However, on the whole, MCS seems the most robust heuristic since
it often provides the best approximation of w+ while offering a limited value of s
and solving efficiently CSP. The value of s seems to be an important criterion for
the practical solving efficiency. Indeed, with an unlimited value of s, LB or min-
fill cannot success in solving some classes (see table 2). Yet, when s is bounded,

Computing and Exploiting Tree-Decompositions 781

LB and min-fill may obtain results close to ones of MCS. Likewise, bounding the
value of s significantly improves the results obtained by TM.

4 Discussion and Conclusion

We have considered several approaches for computing a tree-decomposition by
triangulating the constraint graph. First, we have observed that, for solving
CSPs, the heuristic triangulations in polynomial time might be sufficient to
produce a suitable decomposition. Indeed, the optimal or approximate triangu-
lations turn to be too expensive in time w.r.t. the improvement we can expect
for the solving. Besides, the criterion w+ is not relevant enough for CSP solving.
Finally, we have noted that limiting the size s of the largest minimal separator
allows us to improve the solving runtime, what contradicts the theory (i.e. the
time complexity) which requires to minimize w+ rather than s.

This study must be carried on. The first way consists in improving the com-
putation of tree-decompositions by computing a decomposition which optimizes
the solving instead of minimizing the value w+. Then, another way relies on
the strategies to achieve the best depth-first traversal of the associated cluster
tree w.r.t. CSP solving, what corresponds to variable heuristics for enumerative
methods. Finally, our study must be extended to Valued CSP.

References

1. R. Dechter and J. Pearl. Tree-Clustering for Constraint Networks. Artificial Intel-
ligence, 38:353–366, 1989.

2. P. Jégou and C. Terrioux. Hybrid backtracking bounded by tree-decomposition of
constraint networks. Artificial Intelligence, 146:43–75, 2003.

3. G. Gottlob, M. Hutle, and F. Wotawa. Combining hypertree, bicomp and hinge
decomposition. In Proceedings of ECAI, pages 161–165, 2002.

4. S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of finding embeddings
in a k-tree. SIAM Journal of Discrete Mathematics, 8:277–284, 1987.

5. M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press.
New-York, 1980.

6. P. Jégou, S. N. Ndiaye, and C. Terrioux. Computing and exploiting tree-decompo-
sition for (Max-)CSP. Technical Report LSIS.RR.2005.005 (www.lsis.org), 2005.

7. E. Amir. Efficient approximation for triangulation of minimum treewidth. In
Proceedings of UAI, pages 7–15, 2001.

8. D. Rose, R. Tarjan, and G. Lueker. Algorithmic Aspects of Vertex Elimination on
Graphs. SIAM Journal on computing, 5:266–283, 1976.

9. A. Berry. A Wide-Range Efficient Algorithm for Minimal Triangulation. In Pro-
ceedings of SODA, january 1999.

10. U. Kjaerulff. Triangulation of Graphs - Algorithms Giving Small Total State Space.
Technical report, Judex R.R. Aalborg., Denmark, 1990.

11. R. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM Journal on Computing, 13 (3):566–579, 1984.

12. A. M. C. A. Koster, H. L. Bodlaender, and C. P. M. van Hoesel. Treewidth:
Computational Experiments. Technical Report 01–38, Berlin, Germany, 2001.

	Introduction
	Triangulation Algorithms
	Experimental Study
	Comparison Based on Graphical Criteria
	Comparison Based on CSP Solving Efficiency

	Discussion and Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

