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Abstract

We propose a framework for solving CSPs based both on backtracking techniques and on the
notion of tree-decomposition of the constraint networks. This mixed approach permits us to define
a new framework for the enumeration, which we expect that it will benefit from the advantages of
two approaches: a practical efficiency of enumerative algorithms and a warranty of a limited time
complexity by an approximation of the tree-width of the constraint networks. Finally, experimental
results allow us to show the advantages of this approach.
 2003 Published by Elsevier Science B.V.
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1. Introduction

The CSP formalism (Constraint Satisfaction Problem) offers a powerful framework
for representing and solving efficiently many problems. Formulating a problem as a
CSP consists in defining a set X of variables x1, x2, . . . , xn, which must be assigned
in their respective finite domain Di , by satisfying a set C of constraints which express
restrictions between the different possible assignments. A solution is an assignment
of every variable which satisfies all constraints. Many academic or real problems can
be formulated in this framework. This formal framework allows the expression of
NP-complete problems.
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The usual method for solving CSPs is based on backtracking search, which, in order

to be efficient, must use both filtering techniques and heuristics for choosing the next
variable or value. This approach, often efficient in practice, has an exponential theoretical
complexity in O(m.dn) where n and m are respectively the number of variables and
the number of constraints of the treated instance, while d is the maximum size of
domains.

Several works have been developed, in order to provide bounds of the theoretical
complexity according to particular features of the instance, like for example the acyclicity
of a constraint network [14,16]. The best known bounds of complexity are given by the
“tree-width” of a CSP, i.e., a parameter associated with the graph which represents the
interactions between variables via the constraints. Different methods are proposed like
the Tree-Clustering[15] (see [19] for a survey about these methods and their theoretical
comparison). Tree-Clustering is based on the notion of tree-decomposition of the graph.
It aims to represent any constraint network by covering the constraints by cliques, whose
arrangement is a tree. The new structure must be equivalent in terms of set of solutions. The
best decomposition leads to a time complexity in O(n.dw+1), where w is the tree-width of
the network [29]. Depending on the instances, the effective gain may be significant with
respect to enumerative approaches. Yet, the space complexity, which is not considered for
the backtracking because it is generally linear, may make such an approach absolutely
ineffective in practice. It can be reduced to O(n.s.ds) where s is the maximum size of
minimal separators of the network [13].

The purpose of this contribution is to propose an alternative way which aims to benefit
from backtracking for its practical efficiency while giving bounds of complexity which
will be ones provided by structural approaches. The main idea of our approach is that
backtracking search will be guided, for the choice of variables, by the structure of the
network’s tree-decomposition. The order imposed to enumeration will allow to exploit
two notions. The first one is the notion of “structural nogood”. It is a nogood in the
classical sense of the term (i.e., a partial assignment of the set of variables which cannot
be extended to a solution [34]), but we only find it thanks to structural properties. It will be
used for pruning the tree search by cuts which permit not to explore inconsistent subtrees.
The second notion is one of “structural good”. A good is a partial assignment which has
at least a consistent extension on a well-identified part of the problem. A good will be
detected by structural criteria. The pruning induced by goods is used to cut branches of
the search tree in order to avoid exploring consistent subtrees. In some respects, exploiting
goods leads to realize a “forward-jump” in the search tree, by analogy with the classical
and reverse terminology of backjumping. Note that related notions of goods and nogoods
based on structural properties have been introduced in [5] but these notions are formally
different.

The exploitation of the structure through the notions of structural goods and nogoods is
at the root of our scheme of enumerative resolution. We will explain how this approach can
guarantee a theoretical time bound, which is at most O(n.dw+1) if we get an optimal tree-
decomposition of the network, while limiting the space complexity to O(n.s.ds). The given
bounds are in the worst case; so we will show that our approach is always more efficient
than Tree-Clustering because our method requires less time and less space. Experimental
results will confirm these features.



P. Jégou, C. Terrioux / Artificial Intelligence 146 (2003) 43–75 45

In Section 2, we remember the main notations and results about CSPs as well as the

notions of graph theory exploited in tree-decomposition methods. Section 3 presents the
method and justifies its validity. In Section 4, we then provide comparative theoretical
results and time and space complexities. Section 5 presents some experimental results,
Section 6 recalls some related works, and we finally give some perspectives which are
offered by our approach in Section 7.

2. Preliminaries

2.1. Notations

Formally, a Constraint Satisfaction Problemis defined by a quadrupletP = (X,D,C,R)
with X = {x1, x2, . . . , xn} a finite set of variables and D = {D1,D2, . . . ,Dn} a finite
set of domains such that Di is the finite set of values which the variable xi can take.
C = {C1,C2, . . . ,Cm} is a finite set of constraints such that a constraint Ci is defined by a
set of variables {xi1, xi2, . . . , xiji } and R = {R1,R2, . . . ,Rm} is a finite set of relations over
the domains of variables of each constraint, i.e., a relation is associated with each Ci such
that Ri ⊆Di1 × · · · ×Diji . The relation Ri defines the allowed assignments of variables,
i.e., the assignments which satisfy the constraint Ci .

Given such a quadruplet, different queries can be formulated, like the decision
problem which concerns the existence of an assignment of variables satisfying all
the constraints, i.e., does a function f :X → ⋃n

i=1Di exist such that ∀i , 1 � i �m,
(f (xi1), f (xi2), . . . , f (xiji

)) ∈ Ri . If such a function exists, then f is a solution of P .
The CSP problem is NP-complete.

Afterwards, we call binary CSPevery instance of CSP whose arity of constraints is two.
For binary CSPs (every constraint involves a pair of variables), the mathematical object
corresponding to the constraint network is a graph (X,C), whose vertices and edges are
labeled respectively by the domains and the relations; it is called the constraint graph. For
n-ary CSPs (the constraints have any arity), the mathematical object is an hypergraph, the
constraint hypergraph. In this paper, we restrict the study to binary CSPs, without loss of
generality, in order to simplify the explanations.

2.2. Tree-decomposition of CSPs

The significant works about CSPs can be divided in three trends, which are not
incompatible: the techniques of simplification by filtering, the optimization of backtracking
algorithms, and the decomposition methods based on the exploitation of polynomial
classes.

The basic method of resolution, generally called Chronological Backtracking, assigns
to each variable a value of its domain, by checking the consistency of the current
instantiation—compatibility of the new assignment with the previous ones—and by going
back as far as possible in the search tree if an inconsistency occurs, or by extending
it otherwise. This approach leads to a combinatorial explosion. Its worst-case time
complexity is O(m.dn) while its space complexity can be bounded to O(n). In order
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to lessen the impact of the theoretical and practical inefficiency of such an approach,

many different techniques were developed. For example, simplify the treated instance by
filtering, before or during the resolution. Either, analyze the reasons of failures in order
to prevent these failures reproducing (constraint learning [12], nogood recording [34]) as
well as jumping back as far as possible in the search tree (backjumping [17], dependency
directed backtracking [33], conflict-directed backjumping [28], Dynamic Backtracking
[18]). Jointly, many heuristics were proposed with a view to guide the algorithms for
the choices of variables and values to assign first. To date, there is neither algorithm,
nor heuristic which are always better than other ones, because the particular features of
instances can favour one method or another one. Note that if we consider static variables
(and/or values) ordering, a formal comparison between backtracking algorithms can be
partially established (see [23]). [11] partly extends these results to dynamic orderings.

The only guarantee which can exist in terms of theoretical complexity before solving
a problem are offered by decomposition methods. They proceed by isolating the parts
intrinsically exponential—that is to say untractable in polynomial theoretical time—to
induce a second step which guarantees a polynomial time of resolution. These methods
generally exploit topological properties of the constraint graph and are based on the notion
of tree-decomposition of graphs [29], as defined below.

Definition 1 (tree-decomposition[29]). Let G= (X,E) be a graph.
A tree-decomposition ofG is a pair (C,T ) with T = (I,F ) a tree and C = {Ci : i ∈ I } a

family of subsets of X, such that each Ci is a node of T and verifies:

(1)
⋃
i∈I Ci =X,

(2) for all edge {x, y} ∈E, there exists i ∈ I with {x, y} ⊂ Ci , and
(3) for all i, j, k ∈ I , if k is in a path from i to j in T , then Ci ∩ Cj ⊆ Ck .

The width of a tree-decomposition (C,T ) is equal to maxi∈I |Ci |−1. The tree-width of the
graph G is the minimal width over all the tree-decompositions of G.

Note that for the reader who is not familiar with these notions, the definition of a
tree T = (I,F ) refers to a set of edges F which is required to satisfy the part (3) of
Definition 1. Even if the complexity of the problem of finding tree-decomposition is NP-
Hard [1], many works have been developed in this direction [3], which often exploit
equivalent definitions of this notion, including one based on an algorithmic approach
related to triangulatedgraphs (see [20] for an introduction to triangulated graphs). The
link between triangulated graphs and tree-decomposition is obvious. Indeed, given a
triangulated graph, the set of maximal cliques C = {C1,C2, . . . ,Ck} of (X,E) corresponds
to the family of subsets associated with a tree-decomposition. As any graph G = (X,E)
is not necessarily triangulated, a tree-decomposition can be approximated by triangulating
G. We call triangulationthe addition to G of a set E′ of edges such thatG′ = (X,E ∪E′)
has no cycle of length at least 4 without a chord (i.e., an edge joining two non-consecutive
vertices in the cycle). The width of a triangulation G′ of graph G is equal to the maximal
size of cliques minus one in the resulting graph G′. The tree-width of G is then equal to
the minimal width over all triangulations.
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Fig. 1. A constraint graph on 15 variables.

Fig. 2. The constraint graph given in Fig. 1 after its triangulation (dashed lines).

The graph in Fig. 1 is not triangulated. In Fig. 2, a possible triangulation of this graph
is provided where the maximum size of cliques is four (see Fig. 3). This is an optimal
triangulation, so, the tree-width of this graph is three. In Fig. 4, a tree whose nodes
correspond to maximal cliques of the triangulated graph is a possible tree-decomposition
for the graph of Fig. 1. So, we get C1 = {A,B,C,D}, C2 = {C,D,E}, C3 = {E,F,G},
C4 = {C,D,H }, C5 = {D,H, I }, C6 = {H,I,J }, C7 = {H,J,K}, C8 = {B,D,L,M},
C9 = {L,M,N} and C10 = {M,N,O}.

The CSP decomposition method called Tree-Clustering, proposed by Dechter and Pearl
[15] is based on these notions (see also [13] for a more recent description); it proceeds by
four steps:

1. Triangulate the constraint graph.
2. Find maximal cliques (each clique corresponds to a subproblem).
3. Solve every subproblem induced by the maximal cliques.
4. Solve the new acyclic n-ary CSP.

The guiding idea of this method is to provide a systematic scheme, which, from any
CSP, produces an equivalent n-ary CSP by a covering of the set of constraints in order to
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Fig. 3. The acyclic hypergraph induced by maximal cliques of the triangulated graph given in Fig. 2.

Fig. 4. The tree-decomposition of the triangulated constraint graph given in Fig. 2.

build an acyclic constraint hypergraph. Such a CSP can be solved in polynomial time with
respect to the size of the induced n-ary CSP.

This method is generally presented [15] using an approximation of the optimal
triangulation (some comments about triangulations are given in Section 5). Phases 1 and 2
are feasible in polynomial time, more precisely, in O(n+m′) with m′ the number of edges
of the graph after the triangulation (m�m′ < n2). Moreover, note that the tree associated
to the acyclic hypergraph can be computed in linear time, given the maximal cliques. Step
3 is feasible in O(m.dw

++1) with w+ the size minus one of the biggest produced clique
(w+ + 1 � n). The last step has the same complexity. The space complexity, which is
bound to the storage of solutions of subproblems, can be reduced to O(n.s.ds) with s
the maximal size of minimal separators, which equals the size of the biggest intersection
between subproblems (s �w+). Finally, note that for every decomposition which induces
a value w+, we have w �w+ with w the tree-width of the initial constraint graph.

Figs. 1–3 can be considered as an illustration of this method. In Fig. 1, we see
a constraint graph. After step 1, the triangulation adds two edges (the dashed lines).
A covering of this graph by maximal cliques defines an acyclic hypergraph. Each maximal
clique defines a subproblem.
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Although theoretically interesting, all the practical interest of this method is not proved

yet, even if it is clear that, for some classes of CSP, it can provide an useful approach
[13]. One reason of the lack of efficiency of Tree-Clustering is due to the heaviness
of the approach, and specially the required space. In the case where all the solutions
are searched, it may be useful. In the other hand, if we check the consistency or if we
search only one solution, we will prefer to use an enumerative algorithm such as Forward
Checking (denoted FC [21], Real Full Look-Ahead (denoted RFLA [27]) or Maintaining
Arc-Consistency (denoted MAC [31]), due to the space costs of Tree-Clustering, and to its
practical efficiency.

In the next section, we show how the reference to such a structural decomposition allows
to establish a search procedure based on enumeration while keeping the complexity bounds
given above.

3. The BTD method

3.1. Presentation

The BTD method (for Backtracking with Tree-Decomposition) proceeds by an
enumerative search guided by a static pre-established partial order induced by a tree-
decomposition of the constraint-network. So, the first step of BTD consists in computing
a tree-decomposition or an approximation of a tree-decomposition. The obtained partial
order allows to exploit some structural properties of the graph, during the search, in order
to prune some branches of the search tree. Hence, what distinguishes BTD from other
techniques concerns the following points:

• the variable instantiation order is induced by a tree-decomposition of the constraint
graph,
• some parts of the search space would not be visited again as soon as their consistency

is known (notion of structural good),
• some parts of the search space would not be visited again if it is known that the current

instantiation leads to a failure (notion of structural nogood).

Note that this method is called BTD for Backtracking with Tree-Decomposition, but we
will see latter that the enumerative search can be implemented with the basic Backtracking,
or FC, or MAC (and more sophisticated algorithms).

3.2. Theoretical foundations

Let P = (X,D,C,R) be an instance where (X,C) is a graph, with A = (C,T ) a
tree-decomposition (or an approximation) where T = (I,F ) is a tree. We suppose that
the elements of C = {Ci : i ∈ I } are indexed with respect to the notion of compatible
numeration:



50 P. Jégou, C. Terrioux / Artificial Intelligence 146 (2003) 43–75

Definition 2. A numeration on C compatible with a prefix numeration of T = (I,F ) with

C1 the root is called compatible numerationNC .

Note that the example of tree-decomposition given in Fig. 4 is a compatible numeration
on C . We note Desc(Cj ) the set of variables belonging to the union of the descendants Ck
of Cj in the tree rooted in Cj , Cj included. For example, Desc(C4)= C4 ∪ C5 ∪ C6 ∪ C7 =
{C,D,H, I, J,K}. Note that the numeration NC defines a partial variable ordering that
permits to get an enumeration order of the variables of P :

Definition 3. An order �X of variables of X such that ∀x ∈ Ci , ∀y ∈ Cj , with i < j ,
x �X y is a compatible enumeration order.

For example, the alphabetical order A,B, . . . ,N,O is a compatible enumeration order.
The tree-decomposition with the numeration NC permits to clarify some relations in the
constraint graph.

Theorem 1. Let Cj be a son ofCi (so i < j ). There does not exist an edge{x, y} in the

graph(X,C) wherex ∈ (⋃j−1
k=1 Ck)\(Ci ∩ Cj ) andy ∈Desc(Cj )\(Ci ∩ Cj ).

Proof. By construction, Ci ∩ Cj is clearly a separator of the graph which disconnects

(
⋃j−1
k=1 Ck)\(Ci ∩ Cj ) and Desc(Cj )\(Ci ∩ Cj ). ✷
For example, let i = 1, j = 4, and C4 be a son of C1. There is no edge in G

between (C1 ∪ C2 ∪ C3)\(C1 ∩ C4)= {A,B,C,D,E,F,G}\{C,D} = {A,B,E,F,G} and
Desc(C4)\(C1 ∩ C4)= {C,D,H, I, J,K}\{C,D} = {H,I,J,K}.

In terms of CSP, there is no constraint joining these two subsets of variables and
therefore these two subproblems. Consequently, the compatibility relations between
instantiations pass only through the separator Ci ∩ Cj .

The BTD method is based on compatible enumeration order and this first theorem. Let
us consider a consistent instantiation A of variables of C1∪· · ·∪Ci∪Ci+1∪· · ·∪Cj−1, with
Cj a son of Ci . Due to the definition of compatible orders, the enumeration continues with
the variables of the lineage Desc(Cj ) except ones which belong to Ci ∩ Cj . Then two cases
arise depending on whether a consistent extension of the current instantiation on Desc(Cj )
exists or not:

• There is no consistent extension. In such a case, the reason of the inconsistency can
only be the unsatisfaction of some constraints which join two variables of Desc(Cj ) or
(not exclusive or) a variable of this set and a variable which precedes it in the order, so
which belongs to Ci ∩Cj (see Theorem 1). In both case, if a new consistent assignment
A′ such that A′ and A are equal on Ci ∩Cj is tried, its extension on Desc(Cj ) will lead
to the same failure, independently of what precedes. In fact, the instantiation restricted
to Ci ∩Cj may be considered as a nogoodin the usual sense of the term, although, here,
it is found by structural criteria. This nogood can be recorded and exploited during next
searches.
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• There exists a consistent extension. By a similar reasoning to previous one, we can

nt
prove that every instantiation which is the same on Ci ∩ Cj will lead to a success
on Desc(Cj ), because it is independent of what precedes. This assignment can be
now considered as a good in the sense that on a part of the problem, Desc(Cj ), this
assignment has a consistent extension. Like nogoods, goods may be recorded and used
during further searches, allowing to jump in the search tree (forward-jumping), what
leads to continue the enumeration with the variables located after ones of Desc(Cj ) in
the compatible enumeration order.

The closest works of our approach are ones of Bayardo and Miranker in [4] whose
study is limited to the resolution of binary CSPs whose constraint graph is a tree. Our
approach can be considered as a generalization of their work since their goods and nogoods
instantiate variables while our goods and nogoods instantiate sets of variables (separators).
In [5], Bayardo and Miranker propose another generalization of goods and nogoods which
is not based on separators but on sets of ancestors in an ordered constraint graph. Formally,
their work is different though their use of goods and nogoods during search is similar to
ours (see Section 6 for more details).

Now, we formally introduce goods and nogoods based on separators.

Definition 4. Given Ci and Cj one of its sons, a good (respectively nogood) of Ci with
respect to Cj , noted g(Ci/Cj ) (respectively ng(Ci/Cj )), is a consistent assignment A of
Ci ∩ Cj such that there exists (respectively does not exist) a consistent extension of A on
Desc(Cj ).

The following Lemma 1 and its corollary show that the interactions between a
subproblem rooted in Cj and the remaining of the CSP pass through the intersection
between Cj and its father Ci . These properties are at the origin of the cuttings (for the
nogoods) and the jumps (for the goods) which will be realized in the tree search.

Lemma 1. Given Ci and Cj one of its sons, givenY ⊂ X such that Desc(Cj ) ∩ Y =
Ci ∩ Cj , every consistent instantiationB of Desc(Cj ) is compatible with every consiste
instantiationA of Y iff A[Ci ∩ Cj ] = B[Ci ∩ Cj ].

Proof. According to Theorem 1 and by construction, the only constraints joining the
variables of Y to the variables of Desc(Cj ) are the constraints which involve the variables
common to Desc(Cj ) and to Y , i.e., Ci ∩ Cj . It results that A and B are compatible iff each
common variable has the same value in A and B (i.e., A[Ci ∩ Cj ] = B[Ci ∩ Cj ]). ✷

It ensues the following corollary:

Corollary 1. GivenCi andCj one of its sons, every consistent instantiationB of Desc(Cj )
is compatible with every consistent instantiationA of (X\Desc(Cj ))∪ Ci iff A[Ci ∩ Cj ] =
B[Ci ∩ Cj ].

We then formalize the exploitation of goods:
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Lemma 2 (jump by the goods). GivenCi andCj one of its sons, givenY ⊂ X such that

Desc(Cj ) ∩ Y = Ci ∩ Cj , for all g(Ci/Cj ), every consistent instantiationA of Y such that
A[Ci ∩ Cj ] = g(Ci/Cj ) has a consistent extension on Desc(Cj ).

Proof. Let A be a consistent instantiation such that A[Ci ∩ Cj ] = g(Ci/Cj ). According
to the definition of goods, there exists an instantiation B on Desc(Cj ) such that B is
consistent and B[Ci ∩ Cj ] = g(Ci/Cj ). As A[Ci ∩ Cj ] = g(Ci/Cj ) = B[Ci ∩ Cj ], A and
B are compatible (according to Lemma 1). Therefore, B is a consistent extension of A on
Desc(Cj ). ✷

Thus, if a partial instantiation A is such that A[Ci ∩ Cj ] is a good of Ci with respect to
Cj , then it is not necessary to extend the search on Desc(Cj ). So the enumeration goes on
with the variables of the first Ck located out of Desc(Cj ), for instance the next brother of
Cj , if there exists one.

Lemma 3 (cutting by the nogoods). GivenCi andCj one of its sons, givenY ⊂ X such
that Desc(Cj ) ∩ Y = Ci ∩ Cj , for all ng(Ci/Cj ), there is no assignmentA of Y such that
A[Ci ∩ Cj ] = ng(Ci/Cj ) and such thatA has a consistent extension on Desc(Cj ).

Proof. According to the definition of a nogood, there is no extension of ng(Ci/Cj ) on
Desc(Cj ). As A[Ci ∩ Cj ] = ng(Ci/Cj ), A cannot be extended on Desc(Cj ). ✷
3.3. The basic algorithm

The method obtained from these notions can be implemented in several ways according
to whether a filtering is associated or not with the enumeration. However, the mechanisms
will be similar. The BTD method explores the search space by using a compatible order
�X, which begins with the variables of C1. Inside Ci , the enumeration works in classical
way. On the other hand, when all the variables are assigned by satisfying all the involved
constraints, we then get a consistent instantiation A of variables of C1∪· · ·∪Ci . The search
must go on with the variables of the first son Ci+1 of Ci if there exists one. More generally,
let us consider the case of one son Cj of Ci . We check if A[Ci ∩ Cj ] is a good or a nogood
and we take appropriate action:

• In the case of a nogood, we change the current instantiation on Ci .
• In the case of a good, a “forward-jump” happens in order to continue the enumeration

with the first variable located after those of Desc(Cj ). Fig. 5 illustrates the case of a
forward-jump, assuming that A[C4 ∩ C5] =A[{D,H }] is a good. We show in part (a)
the jump in a compatible enumeration order, and in part (b), where the search goes on
in the structure of the instance.
• In the other cases, i.e., A[Ci ∩ Cj ] is neither a good nor a nogood, A must be extended

in consistent way on the variables of Desc(Cj ). If so, A[Ci ∩Cj ] is recorded as a good;
on the contrary, if A cannot be extended in consistent way, the nogood A[Ci ∩ Cj ] is
recorded.
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Fig. 5. Example of a forward-jump with a good A[C4 ∩ C5] on {D,H }. In (a), we show the jump along the
enumeration order, while in (b) we see the jump in the structure of the problem.

Fig. 6 describes the BTD algorithm restricted to the consistency check: it returns True
if the consistent instantiation A can be extended to a consistent instantiation on VCi and
on all the descents of Ci ; False otherwise. VCi represents the set of unassigned variables
of Ci and G and N respectively the set of recorded goods and of nogoods. This algorithm
is run after having computed a tree-decomposition (or an approximation) of the constraint
graph.

Theorem 2. BTD is sound, complete and terminates.

Proof. This algorithm is proved by induction, exploiting properties of structural goods and
nogoods. The induction is made on the number of variables appearing in the lineage of Ci
except the already assigned variables of Ci . This set of variables is denoted

VAR(Ci , VCi )= VCi ∪
( ⋃

Cj∈Sons(Ci )

(
Desc(Cj )\(Ci ∩ Cj )

))
.

VAR(Ci , VCi ) is then the set of variables to assign to know whether A can be extended
to a consistent assignment on VCi and its lineage.

To prove BTD, we must prove the property P(A,VAR(Ci , VCi )) defined as:
“BTD(A,Ci, VCi ) returns true if the consistent assignment A can be extended to a

consistent assignment on VCi and the lineage of Ci ; otherwise, BTD returns false”.
Consider P(A,∅):
If VAR(Ci , VCi )= ∅, then VCi = ∅ and Sons(Ci )= ∅. Since A is a consistent assignment,

A can be extended to a consistent assignment on VCi and on the lineage of Ci . Therefore
P(Ci ,VAR(Ci , VCi )) is true.

Induction step: P(A, S) with S �= ∅. Suppose that ∀S′ ⊂ S,P (A, S′) holds.
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1. BTD(A,C ,V )
i Ci
2. If VCi =∅
3. Then
4. If Sons(Ci )= ∅ Then Return True
5. Else
6. Consistency← True
7. F ← Sons(Ci )
8. While F �= ∅ and ConsistencyDo
9. Choose Cj in F
10 F ← F\{Cj }
11. If A[Cj ∩ Ci] is a good of Ci/Cj in G Then Consistency← True
12. Else
13. If A[Cj ∩ Ci ] is a nogood of Ci/Cj in N Then Consistency← False
14. Else
15. Consistency← BTD(A,Cj ,Cj\(Cj ∩ Ci ))
16. If Consistency
17. Then Record the good A[Cj ∩ Ci ] of Ci/Cj in G
18. Else Record the nogood A[Cj ∩ Ci ] of Ci/Cj in N
19. EndIf
20. EndIf
21. EndWhile
22. Return Consistency
23. EndIf
24. Else
25. Choose x ∈ VCi
26. dx←Dx
27. Consistency← False
28. While dx �= ∅ and ¬ConsistencyDo
29. Choose v in dx
30. dx← dx\{v}
31. If � ∃c ∈C such that c is not satisfied by A∪ {x← v}
32. Then Consistency← BTD(A∪ {x← v},Ci , VCi \{x})
33. EndIf
34. EndWhile
35. Return Consistency
36. EndIf

Fig. 6. The BTD algorithm.

– If VCi �= ∅:
During the While loop (lines 28–34) the assertion: “there is no value v of x already
checked such that A extended by that value leads to a consistent assignment for VCi
and the lineage of Ci” is true.
If BTD is called (line 32), A ∪ {x ← v} is then consistent (since no constraint is
violated) and VAR(Ci , VCi\{x})⊂ VAR(Ci , VCi ). According to the induction hypothesis,
the assignment A has been extended if BTD(A∪ {x← v},Ci , VCi\{x}) is true. In that
case, BTD(A,Ci , VCi ) returns true and P(A,VAR(Ci , VCi )) is satisfied.
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After the loop (line 35), all the possible values have been tried without consistent

extension of A. Therefore, BTD(A,Ci , VCi ) returns false and P(A,VAR(Ci , VCi )) is
satisfied.

– If VCi = ∅:
During the While loop (lines 8–21) the assertion: “for each son Cf already checked,
A can be extended to a consistent assignment on Desc(Cf )” holds.
We show that this assertion is true at the end of the loop.
Let Cj be a son of Ci to be examined.
+ If A[Cj ∩ Ci] is a good of Ci/Cj , by Lemma 2, we know that A can be extended on

Desc(Cj ). Therefore, the assertion is true at the end of the loop.
+ If A[Cj ∩ Ci] is a nogood of Ci/Cj , by Lemma 3, we know that A cannot be

extended on Desc(Cj ). The loop is then finished.
+ If A[Cj ∩ Ci] is neither a good, nor a nogood, then, BTD is called with A which

is a consistent assignment and VAR(Cj ,Cj\(Cj ∩ Ci ))⊂ VAR(Ci ,∅). So, according
to the induction hypothesis, BTD(A,Cj ,Cj\(Cj ∩ Ci )) returns true if A admits a
consistent assignment on Desc(Cj ), and then the assertion is verified. Otherwise,
the loop is stopped.
After the loop (line 22), BTD(A,Ci ,∅) returns true if A has been consistently
extended on every son, and returns false otherwise.
Therefore, P(A,VAR(Ci , VCi )) is satisfied. Note that the memorization of goods
and nogoods is justified by their definition.

To summarize, since BTD satisfies P(A,VAR(Ci , VCi )), in particular BTD satisfies
the property P(∅,VAR(C1,C1)) for the first call, and then BTD is sound, complete and
terminates. ✷
3.4. Extensions of BTD

We now discuss extensions of the BTD algorithm presented in the previous section. It is
based on Chronological Backtracking. It is well known that this algorithm is not efficient
in practice. So, its natural extensions which generally exploit lookahead techniques like
arc-consistency or forward-checking must be integrated to the BTD approach.

Thus, we introduce two extensions based on filterings:

• FC-BTD which is BTD using the classical filtering used in Forward-Checking [21].
• MAC-BTD which is BTD using an arc-consistency filtering [31].

These extensions are straightforward if the used filtering does not modify the structure
of the constraint network. Indeed, a more powerful filtering like path-consistency [26] [25]
applied during search is not possible because new edges can be added to the constraint
network, modifying its structural properties with consequences on the properties of BTD.
So that for FC-BTD, the correctness of the extension is trivial, for MAC-BTD this
extension is straightforward but we consider it must be established by the next property:
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Theorem 3. LetCj be a son ofCi and letA be a consistent assignment on
⋃j−1 Ck . Assume
k=1

that the arc-consistent closure of the CSPP after the assignmentA (denoted AC(P,A))
has no empty domains. Ifg is a good ofCi with respect toCj in P such thatg =A[Ci ∩Cj ],
theng is a good in AC(P,A).

Proof. Let B be a consistent assignment on Desc(Ci ) associated to the good g. That is
B is a solution of the subproblem of P induced by the variables occurring in Desc(Ci ).
Therefore, we get A[Ci ∩ Cj ] = B[Ci ∩ Cj ]. By definition, B satisfies all the constraints
belonging to Desc(Cj ). Moreover, all the values in A are compatible with all the values in
B. Indeed, the constraints between A and B associate pairs of variables {xi, xj } such that
xi ∈ Ci and xj ∈ Cj . Then, three cases exist:

(1) xj ∈ Ci . Therefore, since A is a consistent assignment, A satisfies the constraints
occurring in Ci especially {xi, xj }.

(2) xi ∈ Cj . Therefore, since B is a consistent assignment, B satisfies the constraints
occurring in Cj especially {xi, xj }.

(3) xi, xj ∈ Ci ∩ Cj which is a particular case of the upper cases.

Therefore, the assignment defined by the assignment A extended by B, that is A∪B, is
a solution of the subproblem defined by the variables appearing in A or in Desc(Cj ) since
all the constraints are satisfied. Thus, A∪B is a consistent assignment, and then the values
in B necessarily appear in AC(P,A). ✷

Another way to improve backtracking search consists in using a non-chronological
backtracking like Backjumpingclassically denoted BJ [17]. Backjumping allows us to
define three immediate extensions of BTD:

• BTD-BJ which is BTD using Backjumping.
• FC-BTD-BJ which is BTD using the classical filtering used in Forward-Checking and

Backjumping.
• MAC-BTD-BJ which is BTD using an arc-consistency filtering and Backjumping.

BTD-BJ (respectively FC-BTD-BJ and MAC-BTD-BJ) is similar to BTD (respectively
FC-BTD and MAC-BTD) with an additional phase of backjump. This phase of backjump
is achieved when BTD comes back to the cluster Ci after a failure during the search for
an extension of the current instantiation over the descent of Ci rooted in a son Cj of Ci . It
consists in coming back to the deepest variable which belongs both to Ci and Cj .

Finally, note that the BTD algorithm only builds a consistent instantiation which can
be extended to a solution of the treated instance, if one exists. Indeed, some variables are
unassigned due to the jumps realized thanks to goods. Nonetheless, it is easy to extend the
produced assignment to a solution of the problem by using a backtracking search and by
checking the recorded goods and nogoods as new constraints. Note that this extension does
not change anything to the complexity bounds provided in the next section.
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4. Time and space complexities

t

In this section, we first assess the time and space complexities of the BTD algorithm.
Then, we compare BTD with the Chronological Backtracking and the Tree-Clustering.
Note that these results also hold if we consider more sophisticated backtracking search
as FC or MAC. Let us assume that a tree-decomposition or its approximation has been
computed.

We begin by evaluating the space complexity of BTD:

Theorem 4. BTD has a space complexity inO(n.s.ds) wheres is the size of the larges
intersectionCi ∩ Cj with Cj son ofCi .

Proof. BTD only records the goods and the nogoods. Goods and nogoods are instanti-
ations on the intersections Ci ∩ Cj with Cj son of Ci . Therefore, if s is the size of the
largest of these intersections, BTD has a space complexity in O(n.s.ds) because the num-
ber of intersections Ci ∩ Cj is bounded by n while the number of goods and nogoods
associated to one intersection is bounded by ds and the size of a good or a nogood is at
most s. ✷

Next, we calculate the time complexity of BTD.

Theorem 5. BTD has a time complexity inO(n.s2.m. log(ds).dw
++1) withw+ + 1 the size

of the largestCi ands the size of the largest intersectionCi ∩ Cj with Cj son ofCi .

Proof. Assume that we want to extend an instantiation on Cj . There exist two cases:

– Either Cj = C1, and then find the consistent instantiations on Cj has a worst-case time
complexity in O(m.d |Cj |). Note that m is due to the number of constraints to check to
ensure consistency.

– Or Cj is a son of Ci . Let A be a consistent assignment on Y (Y ⊂ X such that
Desc(Cj )∩ Y = Ci ∩ Cj ).
Find the consistent extensions of A[Cj ∩ Ci] on Cj has a worst-case time complexity
in O(m.d |Cj \Cj∩Ci |).
BTD searches the extension of A[Cj ∩ Ci] once and only once (thanks to recorded
goods and nogoods). As there exist at most d |Ci∩Cj | assignments A[Cj ∩Ci ], the worst-
case time complexity of finding the extension on Cj is in O(d |Cj |).

Therefore, if w++1 is the size of the largest Ci , the search of an extension by BTD has a
complexity in O(n.m.dw

++1), to which must be added the cost of managing and exploiting
goods and nogoods. As this cost is zero for C1, we focus on the case where Cj is a son of Ci .
The comparison between A[Ci ∩Cj ] and a recorded good (or nogood) requires O(|Ci ∩Cj |)
steps. The addition or the search of a good (or a nogood) is in O(|Ci ∩ Cj | log(d |Ci∩Cj |)).
So the management and the exploitation of goods and nogoods have a complexity in
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O(d |Ci ||Ci ∩ Cj | log(d |Ci∩Cj |)), given Ci and one of its sons Cj . Therefore, on the overall

which
search, it has a cost in O(n.s.m.dw
++1 log(ds)).

Thus, the time complexity of BTD is O(n.m.dw
++1 + n.s.m.dw++1 log(ds)), i.e., a

complexity in O(n.s2.m. log(ds).dw
++1). ✷

The time and space complexities of BTD are comparable to ones of Tree-Clustering.
We now show that BTD develops fewer nodes (or as many nodes in the worst case) than
Chronological Backtracking (denoted BT) and than Tree-Clustering (denoted TC). In order
to do these comparisons, we consider that BT and TC use the same variables/values order as
BTD and TC must exploit the same tree-decomposition as BTD. Using compatible orders
allows to compare easily BT with BTD. Nevertheless, it is clear that a compatible order is
not necessarily a good variable order for BT. A more general comparison between BTD
and BT (FC and MAC too), requires to study different orders. So, this analysis should be
extended in the future to consider different orders. We first compare BTD and BT:

Theorem 6. Given a compatible order, BTD develops at most as many nodes as BT.

Proof. Using goods and nogoods permits BTD to avoid some redundancies in the tree
search. So BTD develops at most as many nodes as BT. ✷

Like BT, BTD stops as soon as the problem’s consistency is found. In the other hand,
TC builds every consistent assignment on Ci , for each Ci . Furthermore, when BTD does
not develop a consistent instantiation on Ci , it ensues a saving in number of nodes on all
the descent of Ci .

And so, the next theorem shows the gain in nodes of BTD with respect to TC:

Theorem 7. Given a compatible order, BTD develops at most as many nodes as TC,
uses BT for solving eachCi .

Proof. BTD and TC develop in the worst case the same number of nodes for C1. For all
other Cj (j �= 1), TC searches systematically all consistent assignments on Cj , whereas
BTD only builds the consistent instantiations on Cj which are compatible with the current
instantiation on Ci , the father of Cj . Thus, BTD develops at most as many nodes as TC. ✷

Finally, to conclude this section, note that if we put FC or MAC instead of BT,
Theorem 6 still holds. Moreover, for time complexity, we get the theoretical complexity
time by multiplying the cost by a factor due to the cost of one filtering, in the same spirit
as the complexity analysis proposed in [24].

5. Experimental results

The following experiments are carried out with a view to assessing the interest of
a method like BTD. The first experiments concern networks whose tree-width is not
necessarily small. For them, we hope that BTD is as efficient as any classical enumerative
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algorithms. The second experiments work on structured CSPs: we hope that BTD will

exploit efficiently topological properties of the network when these properties are related
to tree-decomposition, that is CSP with small tree-width. Finally, we assess the behaviour
of our method on some real-world instances.

5.1. About implementation

5.1.1. The implemented algorithms
We implement different versions of BTD. The first version, noted FC-BTD, corresponds

to a simple implementation of the BTD algorithm based on the Forward-Checking
algorithm. The second version, noted FC-BTD-BJ, is FC-BTD with the additional phase of
backjump (see Section 3.4 for more details). The last two versions, noted respectively FC-
BTD− and FC-BTD-BJ−, respectively correspond to FC-BTD and FC-BTD-BJ without
the recording of the goods and nogoods. We need these versions to assess the contribution
of goods and nogoods. In other words, these versions correspond to Forward Checking
where the choice of the next variable to instantiate is partly guided by a compatible
enumeration order of BTD. Likewise, we define the MAC based versions of BTD.

We implement several algorithms in order to compare them with the different versions
of BTD. We use FC [21], Forward-Checking with Conflict-directed BackJumping (denoted
FC-CBJ [28]), and MAC [31]. For MAC, arc-consistency is achieved thanks to the AC-
2001 algorithm [8], which has an optimal worst-case time complexity.

For the purpose of comparing the number of developed nodes and the space
requirements of BTD and Tree-Clustering, we implement a partial version of Tree-
Clustering. By partial version, we mean that we only compute all solutions of each cluster.
We do not solve the acyclic CSP obtained from the previous computation because this step
presents no interest for our comparisons. We note TC-FC our partial implementation of
Tree-Clustering based on the Forward-Checking algorithm. Of course, BTD and TC-FC
exploit the same tree-decomposition (or the same approximation). Finally, note that we
only assess the required memory for TC-FC without recording any partial instantiation
because we would need too much space.

5.1.2. Heuristic for choosing the next variable to instantiate
For choosing the next variable to instantiate, all the algorithms in this study use the

heuristic dom/deg [7]. This heuristic is one of the best heuristics for ordering variables.
According to this heuristic, the next variable to instantiate is the variable xi which
minimizes the ratio |Di |/|Γi | with Di the current domain of xi and Γi the set of the
neighbours of xi . We select the next variable:

– among all the unassigned variables of the problem for FC, FC-CBJ or MAC,
– among all the unassigned variables of the current cluster for the different versions of

BTD.

Note that the different versions of FC-BTD (respectively MAC-BTD) use exactly the
same variable ordering.
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5.1.3. Approximation of a tree-decomposition by triangulation

As the problem of finding a tree-decomposition is NP-Hard, we only use an approxima-

tion of a tree-decomposition by triangulating the constraint graph.
We try several algorithms for triangulating the constraint graph among the LEX-M

algorithm [30], the LB-TRIANGalgorithm [2] and the Fill-in Computationalgorithm [35].
The first two algorithms produce a minimal triangulation (a triangulation E′ of a graph
G = (V ,E) is minimal if there is no triangulation E′′ such that E′′ ⊂ E′). They have a
time complexity in O(nm) with n the number of vertices and m one of edges of the graph,
whereas the time complexity of the Fill-in Computationalgorithm is linear in O(n+m′)
(m′ is the number of edges of the triangulated graph). The experimentations on classical
random problems show that the LEX-M algorithm provides the best results for BTD. So,
for all the following results, we use the LEX-M algorithm to compute a triangulation.

From this triangulation, if we compute an approximation of a tree-decomposition, we
obtain that cliques and separators have on average a reasonable size, that is to say, the
time and the memory needed by BTD are feasible in practice. On the contrary, the largest
separator size may be too important, that is to say BTD may request too much memory.
So, to prevent this problem, we propose to limit the size of separators by a given parameter
smax, like in [13]. This trade-off is made to the detriment of the size of clusters and so of
the time. First we compute normally the clique-tree. Then, we traverse the tree in breadth
first search. If the son Cj has an intersection with its parent Ci whose size is less than smax,
the son and its parent remain unchanged. Else, we merge the parent Ci and its son Cj . The
obtained cluster replaces Ci in the tree (so we call this cluster Ci ). Furthermore, the sons of
Cj become the sons of Ci . Finally, note that these modifications do not change the size of
the intersection between Ci and the brothers of Cj .

For the provided results, we limit the separator size to 5. For this size, the separator size
is neither too small, nor too large.

5.2. The experimental protocol

The following experimentations are realized on a Linux-based PC with an Intel Pentium
III 550 MHz processor and 256 Mb of memory. We set a one hour time limit for
determining whether a problem is consistent or not. Beyond one hour, the search is stopped
and the problem’s consistency is said unknown. The given run-time includes the time of
the preliminary treatments (like computing an approximation of a tree-decomposition).

We work on random binary CSPs generated according to two models and on real-world
instances.

5.2.1. Classical random CSPs
In order to produce classical random instances, we use the random generator written by

D. Frost, C. Bessière, R. Dechter and J.-C. Régin. This generator1 takes 4 parameters n,
d , m and T . It builds a CSP of class (n, d,m,T ) with n variables, each having a domain
of size d , and m binary constraints (0 �m� n(n− 1)/2) in which T tuples are forbidden

1 Downloadable at http://www.lirmm.fr/∼bessiere/generator.html.
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(0 � T � d2). Among the CSPs produced by this generator, we keep only those whose

constraint graph is connected.

The listed results are the averages of results obtained on 100 problems per class. We
experiment on random instances with 50 variables and domains of size 15 and whose
constraint graph has a density between 10% and 30%. We also test some problems with
a larger domain from the class (50,25,123,439). Considered classes are close to the
satisfiability’s threshold.

5.2.2. Structured random CSPs
We define a new binary CSPs random generator, which produces instances with a

structured constraint graph. The constraint graph is triangulated. This property allows us
to exactly know the tree-width of the constraint network, and then to know the theoretical
complexity bound. This generator takes 5 parameters n, d , rmax, T and smax. It builds a
binary CSP of the class (n, d, rmax, T , smax) with n variables which have domains of size
d and whose constraint graph has the following properties:

– each vertex v belongs at least to a maximal clique with a size greater than 1,
– the cliques have a size at most rmax,
– the intersection between two cliques has a size at most smax,
– the cliques form a clique-tree and then the graph is triangulated.

To build such a problem, we first choose a set of rmax variables to form the root clique.
Then, while there are remaining variables, we proceed like this:

(1) choose randomly a parent clique Ci ,
(2) choose randomly a size of the intersection between Ci and its son Cj (the size is

bounded by 1 and smax),
(3) choose randomly a size of the clique Cj (the size is at least 3 and bounded by the size

of the intersection plus 1 and rmax),
(4) choose randomly the variables of Ci which belong to the separator.

We associate to each constraint a relation in which T tuples are forbidden (0 � T � d2).
An important drawback of this generator is that the number of constraints depends on the
produced problem. For each class (n, d, rmax, T , smax), we solve 100 problems and present
the average of obtained results. The given results correspond to problems of the classes
(50,25,15, T ,5) with T between 265 and 281. Theses classes are near the satisfiability’s
threshold.

5.2.3. Real-world instances
We experiment our algorithm on some real-world instances of the CELAR from the

FullRLFAP archive.2 These instances correspond to radio link frequency assignment
problems. For more details, they are described in [10]. Note that solving the problems

2 We thank the Centre d’Electronique de l’Armement (France).
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SCEN#01 and SCEN#08 requires a special adaptation of our implementation of BTD

AC
because these problems have a constraint graph with several connected components.

5.3. Experimental results for classical random CSPs

5.3.1. Comparisons of the different versions of BTD
Before comparing BTD to some classical algorithms like FC or MAC, we study the

behaviour of our algorithm. First, we assess the contribution of backjumping by counting
the number of nodes developed by FC-BTD which are not visited by FC-BTD-BJ. We
observe there is no gain for most classes and a slight one for classes (50,15,123,141) or
(50,25,123,439) (the classes we use are given in Table 1). But, even if there is a gain, it is
insignificant. As a good or a nogood is recorded each time BTD comes back from a cluster
to its parent, we can say, according to the little number of recorded goods and nogoods,
that FC-BTD and FC-BTD-BJ rarely visit the descendants of the root cluster. Therefore,
the phase of backjumping is seldom used, which explains that FC-BTD and FC-BTD-BJ
obtain similar or equal results for classical random problems.

Then, we measure the contribution of goods and nogoods by counting the number of
nodes developed by FC-BTD-BJ− which are not visited by FC-BTD-BJ. Like the previous
comparison, there is no gain or a slight one. Indeed only a few goods or nogoods are used
by FC-BTD-BJ to prune the search because of the little number of recorded goods and
nogoods. And so FC-BTD-BJ− and FC-BTD-BJ present similar results. For information,
we obtain similar results with MAC-BTD. As the various versions of BTD based on FC
(respectively on MAC) obtain similar results, for the following comparisons on classical
random problems, we only present the results of FC-BTD-BJ (respectively MAC-BTD-
BJ).

5.3.2. Comparisons between FC-BTD-BJ and FC and between MAC-BTD-BJ and M
Table 1 presents the number of nodes and of constraint checks and the run-time for FC

and FC-BTD-BJ. We observe that FC-BTD-BJ and FC are comparable. And even, for some
classes, FC-BTD-BJ improves the results of FC, by developing fewer nodes and realizing
fewer constraint checks than FC.

Similar results are obtained with MAC and MAC-BTD-BJ, as shown in Table 2.

Table 1
(Classical random CSPs.) Number of nodes, and number of constraint checks and run-time (in milliseconds) for
FC and FC-BTD-BJ

Class FC FC-BTD-BJ

# nodes # checks time # nodes #checks time

(50,15,123,141) 15,884 458,342 250 19,417 541,178 263
(50,15,184,112) 223,588 7,346,620 3,775 229,901 7,521,911 3,490
(50,15,245,93) 1,742,077 64,695,274 31,613 1,690,389 62,741,411 28,045
(50,15,306,78) 6,695,576 275,447,261 130,334 6,516,523 268,222,843 122,202
(50,15,368,68) 19,899,917 865,863,076 410,365 20,202,681 880,491,613 374,439

(50,25,123,439) 148,793 5,968,598 3,164 183,304 7,106,934 3,416
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Table 2

(Classical random CSPs.) Number of nodes, and number of constraint checks and run-time (in milliseconds) for
MAC and MAC-BTD-BJ

Class MAC MAC-BTD-BJ

# nodes # checks time # nodes # checks time

(50,15,123,141) 433 211,854 158 426 212,751 160
(50,15,184,112) 10,570 4,749,549 4,366 10,589 4,767,163 4,468
(50,15,245,93) 115,272 53,354,043 55,693 111,641 51,618,005 52,203
(50,15,306,78) 577,928 263,294,873 293,339 560,541 255,317,033 279,650
(50,15,368,68) 2,024,325 936,053,949 1,082,427 2,053,352 948,798,297 1,101,599

(50,25,123,439) 2,912 2,600,557 1,767 2,703 2,476,033 1,674

Table 3
(Classical random CSPs.) Number of nodes, and number of constraint checks and run-time (in milliseconds) for
FC-CBJ

Class FC-CBJ FC-BTD-BJ

# nodes # checks time # nodes # checks time

(50,15,123,141) 13,820 407,967 285 19,417 541,178 263
(50,15,184,112) 214,314 7,089,277 4,657 229,901 7,521,911 3,490
(50,15,245,93) 1,707,839 63,628,692 39,310 1,690,389 62,741,411 28,045
(50,15,306,78) 6,612,237 272,582,414 160,745 6,516,523 268,222,843 122,202
(50,15,368,68) 19,722,533 859,100,282 504,513 20,202,681 880,491,613 374,439

(50,25,123,439) 127,093 5,208,464 3,613 183,304 7,106,934 3,416

5.3.3. Comparisons between FC-BTD-BJ and FC-CBJ
As FC-BTD-BJ exploits backjumping and “forwardjumping”, we compare our algo-

rithm with a classical backjumping algorithm, namely FC-CBJ. Table 3 provides the num-
ber of nodes, of constraint checks and the run-time for FC-CBJ. We observe that FC-CBJ
often develops fewer nodes than FC-BTD-BJ. However, if we consider the run-time, we
note that FC-BTD-BJ is faster than FC-CBJ for all the classes. A partial explanation of such
a result is the cost of the computation of the conflicts which is too expensive compared to
the number of saved nodes.

5.3.4. Comparisons between BTD and Tree-Clustering
We compare the space requirements for FC-BTD-BJ and our partial version of Tree-

Clustering. In order to measure the memory requirement, we count one unit per assigned
value contained in the recorded partial instantiation. For example, recording a good about
five variables requires five units. Table 4 presents the memory required by FC-BTD-BJ (for
recording goods and nogoods), the memory required by TC-FC (for recording consistent
instantiations respectively on separators and on clusters), the number of developed
nodes and the run-time (in milliseconds) for TC-FC. We observe that TC-FC requires
significantly more memory than FC-BTD-BJ, because FC-BTD-BJ records only a part
of the goods which TC-FC memorizes. Note that for some classes like (50,25,123,439),
TC-FC requires too much memory in practice. Furthermore, TC-FC develops significantly
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Table 4

(Classical random CSPs.) Comparison between FC-BTD-BJ and Tree-Clustering based on FC

Class FC-BTD-BJ TC-FC

memory memory # nodes time

separator cluster

(50,15,123,141) 24.7 219,402 406,212,164 155,668,480 62,994
(50,15,184,112) 9.9 163,523 1,840,482 942,758 8,752
(50,15,245,93) 1.3 33,217 401,269 2,438,672 38,894
(50,15,306,78) 0.5 11,620 199,244 12,932,108 226,546
(50,15,368,68) 0.1 7,052 53,470 25,859,906 492,491

(50,25,123,439) 19.2 1,560,479 375,943,617 89,379,304 106,367

more nodes and is slower than FC-BTD-BJ. So it seems difficult to use Tree-Clustering in
practice.

5.3.5. Summary
FC-BTD and MAC-BTD obtain results which are comparable with ones of FC (or FC-

CBJ) and MAC respectively. It seems difficult to use Tree-Clustering in practice, due to
the required space.

5.4. Experimental results with structured random CSPs

5.4.1. Comparisons of the different versions of BTD
Like for classical problems, before making a comparison between BTD and classical

algorithms like FC, FC-CBJ or MAC, we study the behaviour of our algorithm. First,
with a view to comparing FC-BTD and FC-BTD-BJ, we assess the contribution of the
backjumping by counting the number of nodes developed by FC-BTD which are not visited
by FC-BTD-BJ. Fig. 7 presents the number of nodes developed by FC-BTD and FC-BTD-
BJ. We note on this figure that FC-BTD-BJ develops significantly fewer nodes than FC-
BTD. The economy in term of number of nodes varies between 8% and 26%. However,
using the backjumping has a cost. Indeed, according to Fig. 8 (which reports the run-time
for FC-BTD and FC-BTD-BJ), we observe that the gain in time is slightly less important
than one in nodes. It is bounded by 5% and 19%.

In order to assess the contribution of goods and nogoods, we count the number of nodes
developed by FC-BTD-BJ− which are not visited by FC-BTD-BJ. According to Fig. 9, it
turns out that FC-BTD-BJ always develops fewer nodes than FC-BTD-BJ− and the gain is
very important in some cases, namely near the satisfiability’s threshold. The two algorithms
differ only in recording and using goods and nogoods. It ensues that the gain in nodes is
obtained thanks to the use of goods and nogoods. This gain leads to an economy in time,
as shown in Fig. 10 (which presents the run-time for FC-BTD-BJ and FC-BTD-BJ−).

Similar experimentations are realized with FC-BTD and FC-BTD−. First, it results from
these experimentations that FC-BTD− is unable to solve some instances in one hour. Table
5 gives their number. Therefore, in order to compare FC-BTD and FC-BTD−, we take into
account the problems solved by FC-BTD−. Fig. 11 shows the number of nodes developed
by FC-BTD and FC-BTD−.
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Fig. 7. (Structured random CSPs (50,25,15, T ,5).) Number of nodes developed by FC-BTD and FC-BTD-BJ.

Fig. 8. (Structured random CSPs (50,25,15, T ,5).) Run-time (in milliseconds) for FC-BTD and FC-BTD-BJ.

Then, we observe that FC-BTD develops fewer nodes than FC-BTD−, thanks to the
use of goods and nogoods. Furthermore, the difference between FC-BTD and FC-BTD−
is more important than one between FC-BTD-BJ and FC-BTD-BJ−. This gap highlights
a lot of redundancies in the search tree developed by FC-BTD−, which underlines all the
more the contribution of goods and nogoods and/or of the phase of backjumping (because
FC-BTD-BJ− is not so penalized as FC-BTD−).

According to the previous results, we focus our study on FC-BTD-BJ for the next
comparisons.
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AC
Fig. 9. (Structured random CSPs (50,25,15, T ,5).) Number of nodes developed by FC-BTD-BJ and
FC-BTD-BJ−.

Fig. 10. (Structured random CSPs (50,25,15, T ,5).) Run-time (in milliseconds) for FC-BTD-BJ and
FC-BTD-BJ−.

5.4.2. Comparisons between FC-BTD-BJ and FC and between MAC-BTD-BJ and M
FC and MAC are unable to solve some problems in one hour. Hence, in order to compare

FC (respectively MAC) and FC-BTD-BJ (respectively MAC-BTD-BJ) we consider only
the instances which FC (respectively MAC) can solve in one hour. Table 5 gives the number
of problems solved by FC (respectively MAC). Note that FC-BTD-BJ and MAC-BTD-BJ
solve all the considered instances.



P. Jégou, C. Terrioux / Artificial Intelligence 146 (2003) 43–75 67

Table 5

(Structured random CSPs (50,25,15, T ,5).) Number of consistent (C), inconsistent (I)
and unknown (U) problems

T FC-BTD FC-BTD− FC MAC

C I C I U C I U C I U

265 70 30 70 30 0 67 30 3 67 30 3
266 61 39 60 38 2 56 39 5 55 35 10
267 63 37 62 36 2 61 36 3 60 36 4
268 57 43 56 42 2 55 42 3 54 42 4
269 63 37 62 37 1 58 35 7 54 35 11
270 60 40 60 39 1 53 40 7 53 39 8
271 53 47 51 46 3 46 47 7 43 47 10
272 51 49 49 48 3 47 49 4 44 49 7
273 51 49 50 46 4 45 45 10 44 45 11
274 39 61 38 60 2 34 61 5 32 60 8
275 37 63 35 62 3 32 60 8 31 58 11
276 29 71 26 70 4 27 71 2 24 71 5
277 39 61 36 57 7 34 61 5 33 59 8
278 35 65 33 65 2 26 64 10 25 64 11
279 41 59 39 57 4 35 57 8 33 56 11
280 24 76 24 72 4 21 75 4 20 75 5
281 27 73 26 72 2 25 72 3 24 72 4

Fig. 11. (Structured random CSPs (50,25,15, T ,5).) Number of nodes developed by FC-BTD and FC-BTD−
(with a log scale).

Fig. 12 presents the run-time for FC, FC-BTD-BJ and FC-BTD-BJ−. We note that FC-
BTD-BJ is significantly faster than FC. Indeed, the ratio of the run-time for FC over one for
FC-BTD-BJ is between 7 and 24. We save time not only thanks to the goods and nogoods,
but also thanks to the backjumping. Indeed, the contribution of the backjumping is proved
by the run-time for FC-BTD-BJ−, which is better than one of FC in most cases.
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Fig. 12. (Structured random CSPs (50,25,15, T ,5).) Run-time (in milliseconds) for FC-BTD-BJ, FC-BTD-BJ−
and FC.

Fig. 13. (Structured random CSPs (50,25,15, T ,5).) Run-time (in milliseconds) for MAC and MAC-BTD-BJ.

We obtain similar results when we compare MAC and MAC-BTD-BJ, as is shown by
Fig. 13. MAC-BTD-BJ is between 2 and 7 times as fast as MAC.

5.4.3. Comparisons between FC-BTD-BJ and FC-CBJ
As FC-BTD-BJ uses backjumping and “forwardjumping”, we have to compare FC-

BTD-BJ with an algorithm which exploits backjumping like FC-CBJ. Figs. 14 and 15
present the number of nodes and the run-time for FC-CBJ and FC-BTD-BJ. About the
number of nodes, neither FC-CBJ nor FC-BTD-BJ is always better than the other one.
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Fig. 14. (Structured random CSPs (50,25,15, T ,5).) Number of nodes developed by FC-CBJ and FC-BTD-BJ.

Fig. 15. (Structured random CSPs (50,25,15, T ,5).) Run-time (in milliseconds) for FC-CBJ and FC-BTD-BJ.

Nonetheless, FC-BTD-BJ is always faster than FC-CBJ. This difference in time is mostly
explained by the cost of the computation of conflicts in FC-CBJ which is too important in
comparison with the gain obtained thanks to backjumping.

5.4.4. Comparisons between BTD and Tree-Clustering
Like for classical random problems, we compare the space requirements for FC-BTD-

BJ and our partial version of Tree-Clustering. Table 4 shows the memory requirement
of FC-BTD-BJ (for recording good ands nogoods), the memory requirement of TC-FC
(for recording consistent instantiations respectively on separators and on clusters), the
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Table 6

(Structured random CSPs (50,25,15, T ,5).) Memory requirements for FC-BTD-BJ
and Tree-Clustering based on FC

T FC-BTD-BJ TC-FC

memory memory # nodes time

separator cluster

265 3,599 563,376 16,269,923 4,329,007 14,718
266 4,054 544,683 15,741,988 4,081,041 13,270
267 3,471 391,140 13,536,010 3,630,053 12,486
268 4,174 500,454 14,331,723 3,779,950 12,439
269 3,218 426,517 12,862,473 3,477,518 11,743
270 5,567 457,120 13,071,460 3,505,728 11,652
271 5,005 413,560 13,010,768 3,451,125 11,170
272 4,273 453,395 11,745,237 3,192,403 10,770
273 5,476 401,098 11,476,495 3,083,502 10,286
274 9,008 444,808 10,237,218 2,805,207 9,750
275 5,289 393,569 9,107,353 2,575,782 9,324
276 5,134 342,977 8,301,716 2,385,563 8,921
277 8,408 379,848 9,794,940 2,712,032 9,246
278 5,910 350,243 8,589,484 2,384,354 8,370
279 6,734 416,477 8,265,270 2,307,709 7,917
280 8,304 319,735 7,267,237 2,066,851 7,398
281 5,637 247,736 6,232,299 1,790,943 6,554

number of developed nodes and the run-time (in milliseconds) for TC-FC. We observe
that FC-BTD-BJ outperforms TC-FC by requiring significantly less memory. Furthermore,
it develops fewer nodes and is faster than TC-FC. So, the use of Tree-Clustering seems
difficult in practice.

5.4.5. Summary
Among the different versions of FC-BTD (respectively MAC-BTD), the best one is FC-

BTD-BJ (respectively MAC-BTD-BJ). FC-BTD-BJ and MAC-BTD-BJ are significantly
faster than FC and MAC respectively. Note that FC and MAC are unable to solve some
instances. FC-BTD-BJ is faster than FC-CBJ although they develop comparable number
of nodes. FC-BTD-BJ requires fewer memory is faster than TC-FC.

5.5. Real-world instances

Table 7 presents the results obtained for some instances of the CELAR from the
FullRLFAP archive. In several cases, MAC-BTD-BJ realizes either fewer constraint checks
than MAC or as many as MAC, except for the SCEN#02 instance for which MAC-
BTD-BJ does a few additional checks. About the run-time, MAC-BTD-BJ and MAC
are comparable, except for the SCEN#05 instance. For this instance, MAC-BTD-BJ is
significantly faster than MAC thanks to its reduced number of constraint checks.

We do not give any results about TC-FC because TC-FC is unable to find all solutions
of the root cluster for all problems except the obviously inconsistent ones.
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Table 7

(Real-world Instances.) Number of constraint checks and run-time (in milliseconds) of
MAC and MAC-BTD-BJ for some instances of the FullRLFAP archive

Instance MAC MAC-BTD-BJ

# checks time # checks time

SCEN#01 1,857,660 610 1,855,040 790
SCEN#02 427,104 120 427,306 150
SCEN#03 947,199 300 930,909 400
SCEN#04 246,034 90 246,013 120
SCEN#05 9,220,866 15,380 1,190,682 210
SCEN#06 691,367 90 691,367 80
SCEN#07 1,123,856 110 1,123,856 110
SCEN#08 2,346,455 240 2,346,455 230
SCEN#09 84 10 84 10
SCEN#10 84 10 84 10
SCEN#11 22,520,823 25,520 22,513,770 25,230

5.6. Summary about experimental results

In this section, we have presented experiments on three kinds of CSPs benchmarks:

• Classical random CSPs.
• Structural random CSPs.
• Real-world instances.

For the first class, BTD, that is FC-BTD or MAC-BTD, obtains similar results than FC
or MAC. So, the exploitation of the structure does not slow down the efficiency of search.
For structured random CSPs, we have observed a significant improvement of the search in
using FC-BTD (respectively MAC-BTD) with respect to FC (respectively MAC). We also
have observed that FC-CBJ develops as many nodes as FC-BTD, but FC-BTD is faster.
Finally, on real-world instances, BTD obtains either better results than classical algorithms,
or comparable ones.

For these different kinds of benchmarks, we have observed that Tree-Clustering cannot
be run for two reasons. On the one hand, its practical time complexity is too high. On the
other hand, the required space is really prohibitive, making this method untractable while
this criterion does not constitute a problem for BTD.

To conclude, BTD seems to be an approach which can exploit structural features of
CSPs, without the drawbacks of other structural decomposition methods related to space
complexity.

6. Related works

We can classify related works in three principal trends:
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• Backtracking exploiting structural goods and nogoods as in Bayardo and Miranker [4,

5].
• Tree-Clustering [15] and its theoretical improvements [19].
• Hybrid approaches trying compromise between Tree-Clustering (or adaptive consis-

tency [15]) and Backtracking [13,24].

As indicated in the presentation of BTD (see Section 3.2), the closest works are ones
of Bayardo and Miranker in [4] and in [5]. Note that our approach can be considered as
a natural generalization of [4] since their study is limited to acyclic binary CSPs (trees).
With respect to [5], while the exploitation of goods and nogoods is similar to ours, our
notions of goods and nogoods are formally different. In [5], a good (or a nogood) is defined
with respect to a variable xi and to an ordering on vertices. A good (or a nogood) is an
assignment of a set of variables which precede xi in the ordering and are connected to
at least one variable belonging to the descendants of xi in the tree-decomposition. This
definition is thus formally different from ours. For example, if we consider a triangulated
constraint graph, and xi ∈ Cj , the last variable in Cj , then a good (or a nogood) will
be an assignment of Cj\{xi}. Then, the space requirement of Learning-Tree-Solve (the

algorithm of [5]) will be O(n.dw
++1) (w+ + 1 is the size of the largest Cj ) while the space

requirement of BTD is limited to O(n.ds) with s the size of the largest separator. The
time complexity of Learning-Tree-Solve is O(exp(w+ + 1)) like BTD. Note that these
comments do not constitute an analysis but present some elements for a comparison that
indicate the formal difference between these methods.

Finally, the practical interest of Learning-Tree-Solve is not presented in [5]. Moreover,
in [6], Bayardo and Pehoushek recall the practical advantages on exploiting nogoods for
consistency checking. Nevertheless they have also evoked the difficulty to implement
efficiently this notion of goods which is not realized neither in [5] nor in [6].

The work of Baget and Tognetti [9] can be considered as a similar approach. Indeed,
in their method, clusters are defined by biconnected components, and then goods and
nogoods (they do not use these expressions) are limited to the assignment of one variable,
the one which separates biconnected components. The time complexity of their method
is then O(n.dk) with k the maximum size of biconnected components. In this case,
w+ + 1 � k. If we consider the constraint graph in Fig. 1, we get two biconnected
components, {E,F,G} and {A,B,C,D,H, I, J,K,L,M,N,O}, and then, k = 12 while
w+ = 3. Nevertheless, Baget and Tognetti indicated a few ways to improve their approach
exploiting a generalization to k-connected components. Note that no experimental result is
presented in [9].

BTD is principally based on tree-decomposition. So, works which have been developed
like Tree-Clustering and its improvements are interesting for our purpose. In [19], an
improvement of Tree-Clustering is presented while a theoretical comparison between
decomposition methods is given. These results may indicate ways for (theoretical)
improvements of BTD but we are not sure of their practical effects.

BTD can be considered as an hybrid approach realizing a tradeoff between practical
time and space complexity. In [13], Dechter and El Fattah present a time-space tradeoff
scheme. This scheme allows them to propose a spectrum of algorithms such that tree-
clustering and cycle-cutset conditioning (linear for space complexity) are two extremes in
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this spectrum. Another interesting idea in their work is the possibility to modify the size

of separators to minimize space. We have exploited this idea in Section 5 to minimize the
size of separators. Finally, note that their experimental results are limited to the valuation
of structural parameters (w+ and s) on real-world structured instances (combinatorial
circuits), and then no result on the efficiency in solving these instances is presented.

In [24], Larrosa proposes an hybrid method based on Adaptive Consistency [15] and
on Backtracking (or FC or MAC). Adaptive Consistency (AdCons) relies on the general
scheme of variable elimination which replace sets of variables by new constraints which
summarize the effects of eliminated variables. AdCons has the same bounds as Tree-
Clustering for time and space complexities. So, exponential space complexity limits
severely the algorithm usefulness. The idea of Larrosa consists in limiting the size of the
new constraints produced by AdCons to a parameter k. If larger arity constraints should be
produced, then it switches to search (BT, FC, MAC, . . .). This hybrid approach allows to
bound the required space to O(dk) but the time complexity is now O(exp(z(k)+ k + 1)).
Here z(k) is a structural parameter induced by k and the width of the constraint graph such
that z(k)+ k < n. Note that for sparse constraint graphs (6 per cent), and limited values of
k (k = 2), the author obtains interesting results on random CSPs.

7. Summary and conclusion

The CSP formalism offers a powerful framework for representing and solving efficiently
many problems. Generally, CSPs are solved applying tree search algorithms which use
optimizations of backtracking and then obtain good experimental results. However, since
CSP is a NP-complete problem, there are no better bound for theoretical time complexity
than the size of the search space, which is exponential. On the contrary, methods which
offer better bounds for time complexity—which are generally based on tree-decomposition
of CSPs—have not proved yet their practical efficiency. This paper presents a framework—
BTD—for solving CSPs. BTD is based both on backtracking techniques and on the notion
of tree-decomposition of the constraint network.

We have shown that BTD inherits the advantages of the two other approaches: the practi-
cal efficiency of backtracking algorithms, and a warranty of limited time/space complexity.
In Section 4, we have proved that the theoretical time and space complexities of BTD are
similar to Tree-Clustering’s ones, namely a time complexity in O(n.s2.m. log(ds).dw

++1)

and a space complexity in O(n.s.ds). Moreover, experiments allow us to show that:

– BTD is as efficient as classical algorithms on classical random problems, in some
cases, it is even better,

– on structured random problems, BTD presents a significant gain thanks to the
exploitation of goods and nogoods,

– on real-world instances, BTD obtains either better results than classical algorithms, or
comparable ones,

– about required space, BTD can be used in practice, unlike Tree-Clustering which is
too expensive in memory.
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Among the potential extensions of this method, the first one concerns the generalization

to n-ary CSPs, which should not raise much difficulty, because it is immediately obtained
by construction. A more promising extension is related to optimization tasks. In fact, if
we consider, for instance, the valued CSP framework [32], methods like Russian Dolls
Search [36] or the dynamic programming approach [22] are among the most efficient ones.
These methods record and exploit some informations they explicit during the search. Now,
if we exploit a method like BTD which limits the number of recorded informations, we
can expect significant gains in practice. Finally, the theoretical comparison between BTD
and BT (respectively FC-BTD vs FC and MAC-BTD vs MAC) should be extended in the
future to consider different orders.
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