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Abstract 

The problem of checking for consistency of 
Constraint-Satisfaction Problems (CSPs) is a fun- 
damental problem in the field of constraint-based 
reasonning. Moreover, it is a hard problem since 
satisfiability of CSPs belongs to the class of NP- 
complete problems. So, in (Freuder 1982), Freud- 
er gave theoretical results concerning consisten- 
cy of binary CSPs (two variables per constraints). 
In this paper, we proposed an extension to these 
results to general CSP (n-ary constraints). On 
one hand, we define a partial consistency well ad- 
justed to general CSPs called hyper-k-consistency. 
On the other hand, we proposed a measure of the 
connectivity of hypergraphs called width of hyper- 
graphs. Using width of hypergraphs and hyper-k- 
consistency, we derive a theorem defining a suffi- 
cient condition for consistency of general CSPs. 

Introduction 
Constraint-satisfaction problems (CSPs) involve the 
assignment of values to variables which are subject to 
a set of constraints. Examples of CSPs are map color- 
ing, conjunctive’queries in a relational databases, line 
drawings understanding, pattern matching in produc- 
tion rules systems, combinatorial puzzles. . . In the gen- 
eral case checking for the satisfiability (i.e. consisten- 
cy) of a CSP is a NP-complete problem. A well known 
method for solving CSP is the Backtrack procedure. 
The complexity of this procedure is exponential in the 
size of the CSP, and consequently, this approach fre- 
quently induces ” combinatorial explosion” . So, many 
works try to improve the search efficiency. Three im- 
portant classes of methods has been proposed: 

1. Improving Backtrack search: eg. dependency- 
directed backtracking, Forward Checking (Haralick 
& Elliot 1980), etc. 

2. Improving representation of the problem before 
search: eg. technics of achieving local consisten- 
cies using arc-consistent filtering (Mohr & Hender- 
son 1986). 

3. Decomposition methods: these technics are based on 
an analysis of topological features of a the constraint 
network related to a given CSP; these methods have 
generally better complexity upper bound than Back- 
track methods. 

The two first classes of methods do not improved the- 
oretical complexity of solving CSP, but give on many 
problems, good practical results. The methods of 
the third class are based on theoretical results due to 
Freuder (Freuder 1982) (eg. the cycle-cutset method 
(Dechter 1990)) or research in the field of relation- 
al databases theory (Beeri et al. 1983) (eg. tree- 
clustering (Dechter & Pearl 1989)). These theoreti- 
cal results associate a structural property of a given 
constraint network (eg. an acyclic network) to a se- 
mantic property related to a partial consistency (eg. 
arc-consistency). These two properties permit to de- 
rive a theorem concerning global consistency of the C- 
SP and its tractability. Intuitivly, more the network 
is connected, more the CSP must satisfies a large con- 
sistency, and consequently, more the problem is hard 
to solve. These theoretical results have two practical 
benefits: on one hand, to define polynomial classes of 
CSPs, and on the other hand, to elaborate decomposi- 
tion methods. 
In this paper, we propose a theoretical result that is 
a generalization of the results given in (Freuder 1982) 
and in relational databases theory (‘Beeri et al. 1983). 
Indeed, the theorem given by Freuder concerns bina- 
ry CSPs (only two variables per constraint), and so 
this limitation induces practical problems to its ap- 
plication. On the contrary, the property given in the 
field of relational databases concerns n-ary CSPs (no 
limitation to the number of variables per constraint), 
but only CSPs with no cycle. The theorem given in 
this paper concerns binary and n-ary CSPs, and cyclic 
constraint networks. It permits to define a sufficient 
condition to global consistency of general CSPs. This 
property associates a structural measure of the con- 
nectivity of the network, called width of hypergraph (in 
the spirit of Freuder), to a semantic property of CSPs 
related to partial consistency of n-ary CSPs, that is 
called hyper-k-consitency. 
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It is known that any non-binary CSP can be treated 
as a binary CSP if one look at the dual representation 
or join-graph (this representation has been defined in 
the field of relational databases: constraints are vari- 
ables and binary constraints impose equality on com- 
mon variables). But this approach if of limited interest: 
it does not allow to realize extension of all theorems 
and algorithms to non-binary CSPs. For example, the 
width of an n-ary CSP cannot be defined exactly as 
the width of its join graph (see example in figure 3). 
So, original definitions are introduced in this paper. 

The second section presents definitions and preliminar- 
ies. In the third section, we defined hyper-k-consitency 
while in next section we introduce the notion of width 
of hypergraphs. The last section exposes the consis- 
tency theorem and give comments about its usability. 

efinitions and preliminaries 
Finite Constraint-Satisfaction Problems 
A General Constraint-Satisfaction Problem involves 
a set, X of n variables Xi, X2, . . . X, , each defined 
by its finite domain values D1, &, . . . D,, (d denotes 
the maximum cardinality over all the Di). D is 
the set of all domains. C is the set of constraints 
Cl, (72,. . .c,. A constraint Ci is defined as a set 
of variables (Xi,, Xia,. . . Xi,,). To any constrain- 
t, Ci, we associate a subset of the Cartesian product 
Di, x . . . x Dijt that is denoted R; (Ri specifies which 
values of the variables are compatible with each other; 
Ri is a relation, so it is a set of tuples). R is the set 
of all Ri. So, we denote a CSP P = (X, D, C, R). A 
solution is an assignment of value to all variables sat- 
isfying all the constraints. 
Given a CSP P = (X, D, C, R), the hypergraph (X, C) 
is called the constraint hypergraph (nodes are varia.bles 
and hyper-edges are defined by constraints). A binary 
CSP is one in which all the constraints are binary, i.e. 
only pairs of variables are possible, so (X, C) is a graph 
called constraint graph. For a given CSP, the problem 
is either to find all solutions or one solution, or to know 
if there exists any solution. The decision problem (ex- 
istence of solution) is known to be NP-complete. We 
use two relationnal operators, Projection of relation,- 
s: if X’ E Ci, the projection of Ri on X’ is denoted 
Ri[X'] and join of relations denoted Ri W Rj ; see for- 
mal definitions in (Maier 1983). 

Partial consistencies in CS 
Different levels of consistency have been introduced in 
the field of CSPs. The methods to achieve these lo- 
cal consistencies are considered as filtering algorithm- 
s: they may lead to problem simplifications, without 
chaaging the solution set. They have been used as 
well to improve the representation prior the search, as 
t,o a.void backtrack during the search (Haralick & El- 
liot 1980). Historically, the first partial consistency 

proposed was arc-consistency. Its generalization was 
given in (Freuder 1978). 

Definition 1 (Freuder 1978). A CSP is k-consistent iff 
for all set of Ic - 1 variables, and all consistent assign- 
ments of these variables (that satisfy all the constraints 
among them), for all lath variable XI,, there exists a val- 
ue in the domain & that satisfies all the constraints 
among the K variables. A CSP is strongly k-consistent 
iff the CSP is j-consistent for j = 1, . . . k. 

Given a CSP and a value k, the complexity of the 
algorithm achieving k-consistencyis O(nkdk) (Cooper 
1989). But achieving k-consistency on a binary CSP 
generally induces new constraints, with arity equal to 
k - 1. Consequently, a binary CSP can be tranformed 
in an n-ary CSP using this method (eg. achieving 4- 
consistency). 
An other partial-consistency has been defined particu- 
larly for n-ary CSPs: the pairwise-consistency (Janssen 
et al. 1989) 1 a so called inter-consistency (Jegou 1991). 
This consistency is based on works concerning rela- 
tional da.tabases (Beeri et al. 1983). Whereas k- 
consistency is a local consistency between variables, 
domains and constraints, inter-consistency defines a 
consistency between constraints and relations. On 
the contrary of k-consitency, that does not consider 
structural features of the constraint network, inter- 
consistency is particularly adjusted to the connections 
in n-ary CSPs, because connections correspond to in- 
tersections between constraints. 

Definition 2 (Beeri et al. 1983)(Janssen et al. 1989). 
We said that P = (X, D, C, R) is inter-consistent iff 
VC$Z’~,R$2$6’~]=R#$6’~]andVR~,R~#0. 

In (Janssen et al. 1989) a polynomial algorithm 
achieving this consistency is given. This algorithm is 
based on an equivalent binary representation given in 
the next section. 

Binary representation for n-ary CS 

In this representation, the vertices of the constraint 
graph are n-ary constraints Ci, their domains are the 
associated relations Ri, and the edges, that, are new 
constraints, are given by intersections between Ci. The 
compatibility relations are then given by the equali- 
ty constraints between the connected Ri. This binary 
representation is called the constraint intergraph asso- 
ciated to a constraint hypergraph (Jegou 1991). 

Definition 3. A hypergraph H is a pair (X, C) where 
X is a finite set of vertices and C a set of hyper-edges, 
i.e. subsets of X. When the cardinality of any hyper- 
edges is two, the hypergraph is a graph (necessary 
undirected). Given a CSP (X, D, C, R), we consider 
its associated hypergraph denoted (X, C). 
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Definition 4 (Bernstein SC Goodman 1981). Given 
a hypergraph H = (X,C), an intergraph of H is a 
graph G(H) = (C, E) such as: 

o E E ((Ci,Cj) C C/i# j and CanCj # 0) 
* VCi, Cj E C, if Ci n Cj # 0, there is a chain (Ci = 

Cl, ~32,. . .Cq = Cj) in G(H) such as 
Vk,l<k<q,CinCjECknCk+l 

Intergraphs are also called line-graphs, join-graphs 
(Maier 1983) and dual-graphs (Dechter si Pearl 1989). 

Definition 5 (Jegou 1991). Given a CSP (X, D, C, R), 
we defined an equivalent (equivalent sets of solutions) 
binary CSP (C, R, E, Q): 

o (C, E) is an intergraph of the hypergraph (S, C). 
0 c: = {C,,...C,) is a set of variables defined on 

domains R = {RI, . . . R, }. 

o if (Ci, Cj} E E, then we have an equality constraint: 
Qk = {(ri,Vj) E Ri x Rj/ri[Ci nCjJ = rj[Ci f?Cj]} 

Given a hypergraph, it can exists several associa t- 
ed intergraphs. Some of them can contain redundant, - 
edges that can be deleted to obtain an other inter- 
graph. The maximal one is called representalive graph. 
In the field of CSPs, we are naturally interested with 
minimal intergraphs: all edges are necessary, i.e. no 
edge can be deleted conserving the property of chains 
in intergraphs. So an algorithms have been proposed 
to find minimal intergraphs in (Janssen et al. 1989). 
11 study of combinatorial properties of minimal inter- 
graphs is given in (Jegou St Vilarem 1993). In the next. 
example two minimal intergraphs are given: 

Figure 1. Hypergraph (a) and two minimal intergraphs. 

A sufficient condition for CSPs consistency 
Freuder has identified sufficient conditions for a bina.- 
ry CSP to satisfy consistency, ie. satisfiability. These 
conditions associate topology of the constraint graph 
with partial consistency. 

Definition 6 (Freuder 1982). An ordered constraint 
graph is a constraint graph in which nodes are linearly 
ordered. The width of a node is the number of edges 
that link that node to previous nodes. The width of an 
order is the maximum width of all nodes. The width of 
n gmph is the minimum width of all orderings of that 
graph. 

This definition is illustrated in figure 1: the width of 
the graph (1)) is 2 and the width of the graph (c) is 3. 
On this example, we can remark that the width of an 
hypergraph cannot be defined as the width of its min- 
imal intergraph, because all minimal intergraphs has 
not the same width. 

Theorem 7 (Freuder 1982). Given a CSP, if the lev- 
el of strong consist5ency is greater than the width of 
the const.raint graph, then the CSP is consistent and 
it is possible to find solutions without backtracking (in 
polynomial time). 

Freuder also gave an algorithm to compute the width of 
any graph (in O(n+?n)). So given a CSP, it is sufficien- 
t to know the width of the constraint graph, denoted 
b - 1, then to achieve k-consistency. But a problem 
appears: tohis approach is possible only for acyclic con- 
straint graphs (width equal to one) and a subclass of 
graphs the width of which is two (called regular graphs 
of width two in (Dechter ti Pearl 1988)). The cause 
of t,hat problem: achievin g k-consistency generally in- 
duces nary constraints (arity can be equal to k - l), so 
the corresponding problem is a const5raint hypergraph, 
aud the t.heorem can not be applied. Nevertheless, 
the result concerning acyclic CSPs is applied in the 
cycle-cutset, method (Dechter 90) and we can consider 
Freuder’s t.heorem as a vehicle to give a lower bound 
for complexity of a binary CSP: to the order of cl” if 
its width is k - 1, because complexity of achieving k- 
coiisist,ency is O( ?z’cl” ) (Cooper 1989). 

A result of relational database theory 

A similar property has been derived in the field of re- 
latioual databases. This property is related to acyclic 
hypergraphs. 

Definition 8 (Beeri et al. 1983). A hypergraph 
is acyclic iff 3 a. linear order (Cl, Cz, . . . Cm) such as 
Vi, 1 < i 5 m. 3ji < i/(Ci nU~l’,C~) E Cj, (this prop- 
erty is called runntllg infers&?o:n property) 

Figure 2. Cyclic (a) and acyclic (b) hypergraphs. 

(Beeri et al. 1983) gave a fundamental property of 
acyclic database schemes that concerns consistency of 
such databases, namely global consisfency. This result 
is presented below using CSPs terminology: 

Definition 9. Let P = (S, D, C, R) be a CSP. We 
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say that P is globally consistent if there is a rela- 
tion S over the variables X (S is the set of solution- 
s) such as Vi, 1 5 i 5 m, Ri = S[Ci]. It is equiv- 
alent to Vi, 1 5 i 5 m, (D$El Rj)[Ci] = Rd since 
S = (WY& Rj). 

Note that global consistency of CSPs implies satisfi- 
ability of CSPa. Indeed, a CSP is globally consistent 
iff every tuple of relations appears at least in one so- 
lution. Furthermore, it is clear that global consistency 
implies inter-consistency but the converse is false. We 
give the interpretation in the field of CSP to the prop- 
erty given by (Beeri et al. 1983): 

Theorem 10 (Beeri et al. 1983). If P is such as 
its constraints hypergraph is acyclic, then 

P is inter-consistent e P is globally consisient. 
An immediate application of this theorem concerns 
the consistency checking of CSPs. We know polyno- 
mial algorithms to achieve inter-consistency while to 
check global consistency is a NP-complete problem. 
So, knowing this theorem, if the database scheme is 
acyclic, it is possible to check global consistency in a 
polynomial time achieving inter-consistency. This re- 
sult is applied in the tree-clustering method (Dechter 
& Pea.rl 1989). 

Some remarks 
Theorems 7 and 10 are significant. First, they can be 
used to solve CSP, immediatly if the considered CSP 
is acyclic, or for all CSP, using decomposition methods 
as the cycle-cutset method, or tree-clustering scheme. 
Second, because they define polynomial subclasses of 
CSPs. Nevertheless, there is two significant limitations 
to these theoretical results. On one hand, theorem 7 
is only defined on binary CSPs, and so, it can not be 
a.pplied, nor on n-ary CSPs, nor on constraints graph 
with width greater than 2. On the other hand, theorem 
11 concerns only acyclic n-ary CSPs. So, a genera.liza- 
tion to cyclic n-ary CSPs is necessary to extend this 
kind of theoretical approach to all CSPs. 

A new consistency fcmr wary CS 
yper-k-consistency 

When Freuder defined k-consistency, the definition is 
related to assignments: “given a consistent assignment 
of variables Xi, X2, . . . Xk- 1, it is possible to extend 
this assignment for all kth variable”. To generalize 
k-consistency to n-ary CSPs, we consider the same a.p- 
proach but with constraints and relations: we can con- 
sider ” assignment” of constraints Cl, Cz, . . . Ck- 1, and 
their extension to any kth constraint. Our definition 
of hyper-k-consistency is given in this spirit: 

Definition 11. A CSP P = (X, D, C, R) is hyper- 
k-consistent iff VRi, Ri # 0 and VCi, Ca, . . .Ck-1 E C, 

($;lj Ri)[(&; Ci) n Ck] c Rk[(&$i) n Ck] 

P is strongly hyper-k-consistent iff Vi, 1 5 i 5 k, P is 
hyper-i-consistent. 

We can note that hyper-2-consistency is equivalen- 
t to inter-consistency. So, hyper-k-consistency con- 
stitutes really a generalization of inter-consistency to 
greater levels. Actually, this definition can be con- 
sidered as a formulation of k-consistency on the con- 
straint intergraph: (Wfi,’ ri)~(D$z: Ri) signifies 
that (~1, ~2,. . . rk-1) is a consistent assignment of con- 
straints Cl, C2, . . . Ck - 1, and if there is rk E Ra such 
as: 

then (q, r2,. . . v-k-1, rk) is a consistent assignment of 
constraints Cl, C2, . . . Ck-l,C’k, i.e. k variables of the 
constraint intergraph. This particularity induces a 
method to achieve hyper-k-consitency, that is based 
on the same approach of achieving k-consistency on 
binary CSPs. So, we have the same kind of problems: 
achieving hyper-k-consistency can modified constraint 
hypergraph. A second problem concerns the complex- 
ity of achieving hyper-k-consistency: the complexity is 
in the order of rk if r is the maximum size of Ri. These 
problems are discussed in (Jegou 1991). 
Another remark about hyper-k-consistency concerns 
its links with global consistency; we easily verify that 
if a CSP P is hyper-m-consistent, then P is globally 
consistent while the converse is generally false. 

The definition of hyper-k-consistency in n-ary CSP 
concerns connections in hypergraphs, i.e. intersection- 
s between hyper-edges. So the definition of width of 
hypergraph is based on the same principles. 

Connections in hypergraphs concerns intersections be- 
tween hyper-edges. So, the consistency of a n-ary CSP 
is intimately connected to the intersections between 
hyper-edges. The definition of width of hypergraph 
allows us to define a degree of cyclicity of hypergraph- 
s. Using this width, we shall work out links between 
structural properties of hypergraphs and the global 
consistency of n-ary CSPs. 

Before to give our definition of the width of an hy- 
pergraph, we must explain why this definition is not 
immediatly related to intergraphs. A first reason has 
already been given: all minimal intergraphs of a. hyper- 
graph have not necessary the same width (see figure 1). 
An other rea.son is the next one: if we define the width 
of an hypergraph as the width of one of its intergraph 
(not necessary a minimal one), we cannot obtain the 
same properties than we have with Freuder’s theorem 
that is based on a good order for the assignment of the 
variables: 
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Figure 3. Problem of order on variables. 

The hypergraph considered in the figure 4 is the one 
of the figure 1. We consider two possible orders on this 
intergraph. The first one is not a possible order for the 
assignment of the variables. Indeed, when the variable 
corresponding to C’s is assigned, the variable 1 of the 
hypergra.ph has already been assigned and so, it is pos- 
sible to assign Ca with an other value for 1. This is 
possible because C2 is given before C’s in the order a.nd 
because there is no edge between C2 and Ca. So, we 
can obtain two different assignments for the variable 
1, and finally, we can obtain a consistent assignment 
011 C1,C&.. . C’s, and consequently an assignment on 
variables Xi, X2, . . . Xc that is not a solution of the 
problem. The second order of width 3 does not induce 
such problems. 

Definition 12. Given a hypergraph H = (S, C), 
0 the set of linear orders on C, and a linear order 
T=(cl,. ..c~)EO: 

the *width of Ci in order r on H is the number of 
maximal intersections with predecessors of Cd in r; 
&(Ci) denots the width of Ci in order r: C,(Ci) = 
I{C~nCj/j<ir\l3k,k<i/CinCj c#CinCk} 1 

the luidth ofr is ,!ZH(~) = ma2 {LT(Ci)/Ci E C) 

the width of H is E(H) = min {L~(r)/r E 0) 

Order 

Cl c3 c4 c5 c2 

Figure 4. Width of the hypergraph. 

In the fugure 4, we see the width of the hyper- 
graph H given in figure l-a. Here, CH(~) = 3 since 
&({3,5,6}) = 3; we can verify that VT E 0, LN( T) = 
3, and consequently that ,!Z( H) = 3. A property relies 
width and cyclicity: 

Proposition 13. H is acyclic e L(H) = 1 
Proof. H acyclic satisfies the running intersection 
property 
H 3order (Cl, (2’2,. . .C,,-,) such as 
Vi, 1 < i 5 m, 3ji < i/(Ci n( Ui;iCk) ) C Cj, 

e 3order (Cl, C2,. . . C,,,) such as Vi, 1 < i 5 m, 
1 {cincj/j < ir\+lk, k < i/CiflCj C# CinCk) I< 1 
e 3order (Cl, Cz, . . .C,,,)/L&) 5 1 @ L(H) 5 1: 
Moreover, it is clear that if H is connected and if 
C possesses naore than one hyper-edge, the inequali- 
ty L(H) 2 1 necessary holds. 

Given a hypergraph (X, C) and an order on C, it is 
not hard to find the width of this order. It is just 
necessary to compute for each Ci the number of max- 
imal intersections with predecessors, and to select the 
greater. 011 the contrary, finding an order that give 
the minimal width of a hypergraph is an optimization 
problem; this problem seems us to be open concerning 
its complexity: does it belong to NP-hard problems ? 
This question is at present an open question. In (JCgou 
1991), an heuristic is proposed to find small width, ie. 
just an approximation of the width of a given hyper- 
graph. 

Consistency Theorem 
In t,his section, we derive a sufficient condition to con- 
sistency of general CSPs. This condition concerns the 
width of the hypergraph associated to the CSP, a.nd 
the hyper-k-consistency that the relations satisfy (i.e. 
the value k). 

Theorem 14. Let P = (X, D, C, R) be a CSP and 
H = (S, C). If P is strongly hyper-k-consistent, and if 
L(H) 2 k - 1, then P is consistent. 
Proof. We mast show that P is consistent, i.e. 
Vi, 1 5 i 5 m,3ri E Ri/(w~?., ri) E (WEI Ri). 
That is (rl, rz,. . .rm) can be considered as a consis- 
tent assignment on (Cl, C?, . . .C,): Vi, j, 1 5 i, j 5 
m, ri [Ci n Cj] = Tj [Ci n Cj]. 

We proove this property by induction on p, such as 
1 Lps m.. 

IfP = 1, the property trivially holds. 

We consider now a linear order (Cl, (2’2,. . . Cm) as- 
sociated to the width t(H) 5 k - 1. Suppose that the 
property holds for p - 1 such as 1 < p 5 m. That is 
we have (rl , rz, . . . rp--l)/Vl:, 1 5 i 5 p - 1, ri E Ri and 
Vi,j,l<i,j<p-l,r&XCj]=rj[CinCj]. 

By definition of the width, C,, possesses at most k - 1 
maximal intersections with predecessors in the order. 
Let Cil,Cj2,... Ci, be the corresponding Ci, with nec- 
essary q 5 k - 1, considering only one Ci for ev- 
ery maximal intersection. Q being strongly hyper-k- 
consistent, and since q 5 k - 1, we have 

(WY=1 Rij)[(U~=,Cij) n C,] E RP[(Ul,1Ci,) n C,] 

and for the ri, ‘s appearing in. (r1 , 1.2, . . . rP--l ) 

(W&l Ti,)[(U~=lCi,) n Cp] E Rp[(UjQ=tCiJ 1 n Cpl 
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so, 3-p E RP such as rP is consistent with 
(7’. 21) Pi2,. . . rip), that is: Vj, 1 5 j 5 Q, rij[Ci, n C,] = 
rP[Cij n C,]. 

We show now, that rP is also consistent for all the 
ri ‘s, i. e. ra[Ci n C,] = rP[Ci n C,] . 

Consider Ci such as 1 < i < p and C; n Cp # 0. 
By the definition of the width, 3j, 1 < j 5 q such 
as Ci n CP C Cij n CP because the CijTs are maximal 
for the intersection with CP. Consequently, we have 
CinCP E CinCjj. 

By hypothesis, we have rd[Ca n Cij] = ri,[Ci n Cd,], 
a fortiori, we have ri[Cd n C,] = rij[Ci n C,]. We 
seen that rij [Cij nCp] = rP[Cij n CP]; this emplies that 
ri, [Ci n C,] = rP[Cs n C,]. Consequently, ri[Ca n C,] = 
raj [Ci n C,] = rP[Cj n C,]. So, (rl,rl,. . .rP-l,rP) is 
consistent assignment on (Cl, C2, . . . C,_l, C,>. 

So the property holds for p, and consequently, P is 
consistent. 

If we recall the property given about acyclic database 
schemes (Beeri et al. 1983), it is clear that theorem 10 
is a corollary of theorem 14 (because k = 2). A more 
interesting result is the next corollary: 

Corollary 15. Let P = (X, D, C, R) be a CSP such 
as (X, C) is a graph (i.e. all hyper-edges have cardi- 
nality 2). If P is strongly hyper-3-consistent, then P 
is consistent. 
Proof. It is suficient to remark that if (X, C) is a 
graph, its width is at most 2, because a/l hyper-edges 
of (X, C) are edges, and an edge has no more than 2 
maximal intersections. 

Nevertheless, this surprising corollary is not allways us- 
able, because achieving hyper-k-consistency can modi- 
fy the hypergraph associated to a n-ary CSP. Freuder’s 
theorem has the same kind of problems: try to obtain 
its preconditions can modify these preconditions. So, 
concerning the practical use of the theorem, a problem 
is given by the verification of hyper-k-consistency in a 
CSP. On one hand, the theorem gives a sufficient con- 
dition to consistency, and not a necessary condition; 
on the other hand, given a value k, it is possible to 
obtain hyper-k-consistency using filtering mecanisms 
(J&go*& 1991) in polynomial time in k, in the size of 
the CSP. But this process can modify the hypergraph 
with a.dditions of new hyper-edges, and so modify the 
width. Nevertheless, contrary to Freuder’s theorem, 
the consistency theorem can be tried to apply after 
modification of the width because it is directly defined 
on n-ary CSPs. 
Consequently, the theorem must be considered in a first 
time as a theoretical result, with, at this moment, only 
one practical application: the corollary given in (Beeri 

et al. 1983), and not as a directly usable result. 
The next research must be to exploit the theorem, on 
one hand to try to find new polynomial classes of C- 
SP, and on the other hand to propose new methods to 
solve practically n-ary CSPs. 

eferenees 
Beeri, C., Fagin, R., Maier, D. and Uannakakis, M. 
1983. On the desirability of acyclic database schemes. 
Journal of the ACM 30:479-513. 

Dechter, R. 1990. Enhancement Schemes fo Constrain- 
t Processing: Backjumping, Learning and Cutset De- 
composition. Artificial Intelligence 41:273-312. 

Dechter, R. and Pearl, J. 1988. Network-based heuris- 
tics for constraint satisfaction problems. Artificial In- 
telligence 34~1-38. 

Dechter, R. and Pearl, J. 1989. Tree Clustering for 
Constraint Networks. Artificial Intelligence 38:353- 
366. 

Freuder, E.C. 1978. Synthesizing constraint expres- 
sions. Communications of the ACM 21:958-967. 

Freuder, E.C. 1982. A sufficient condition for 
backtrack-free search. Journal of the ACM 29(1):24- 
32. 

Ha.ralick, R.M. and Elliot, G.L. 1980. Increasing tree 
search efficiency for constraint-satisfaction problems. 
Artificial Intelligence 14:263-313. 

Janssen, P., J&gou, P., Nouguier, B. and Vilarem, M.C. 
1989. A filtering process for general constraint satis- 
faction problems: achieving pairwise-consistency using 
an associated binary representation. In Proceedings of 
the IEEE Workshop on Tools for Artificial Intelligence, 
420-427. Fairfax, USA 

Jkgou, P. 1991. Contribution 8. l’&ude des probE?mes 
de satisfaction de contraintes. . . Thbse de Doctorat, U- 
niversitk Montpellier II, France. 

Jegou, P. and Vilarem, M.C. 1993. On some partial 
line graphs of a hypergraph and the associated ma- 
troid. Discrete Mathematics. To appear. 

Maier, D. 1983. The Theory of Relational Databas- 
es. Computing Science Press. 

Mohr, R. and Henderson, T.C. 1986. Arc and path 
consistency revisited. Artificial Intelligence 28(2):225- 
233. 

Constraint-Based Reasoning PI9 


