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The problem of checking for consistency of
Constraint-Satisfaction Problems (CSPs) is a fun-
damental problem in the field of constraint-based
reasonning. Moreover, it is a hard problem since
satisfiability of CSPs belongs to the class of NP-
complete problems. So, in (Freuder 1982), Freud-

er gave theoretical results concerning consisten-
cy of binary CSPs (two variables per constramts)
In this paper, we proposed an extension to these
results to general CSP (n-ary constraints). On
one hand, we define a partial consistency well ad-
justed to general CSPs called hyper-k-consistency.
On the other hand, we proposed a measure of the
connectivity of hypergraphs called width of hyper-
graphs. Using width of hypergraphs and hyper-k-
consistency, we derive a theorem defining a suffi-
cient condition for consistency of general CSPs.

Introduction

Constraint-satisfaction problems (CSPs) involve the
assignment of values to variables which are subject to
a set of constraints. Examples of CSPs are map color-
ing, conjunctive queries in a relational databases, line
drawings understanding, pattern matching in produc-
tion rules systems, combinatorial puzzles. . . In the gen-
eral case checking for the satisfiability (i.e. consisten-
cy) of a CSP is a NP-complete problem. A well known
method for solving CSP is the Backtrack procedure.
The complexity of this procedure is exponential in the
size of the CSP, and consequently, this approach fre-
quently induces ” combinatorial explosion”. So, many
works try to improve the search efficiency. Three im-
portant classes of methods has been proposed:

1. Improving Backtrack search: eg. dependency-
directed backtracking, Forward Checking (Haralick
& Elliot 1980), etc.

2. Improving representation of the problem before
search: eg. technics of achieving local consisten-
cies using arc-consistent filtering (Mohr & Hender-
son 1986).
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an analysis of topological features of a the constraint
network related to a given CSP; these methods have
generally better complexity upper bound than Back-
track methods.

The two first classes of methods do not improved the-

oretical complexity of solving CSP, but give on many
problems; good practical results, The methods of
the third class are based on theoretical results due to
Freuder (Freuder 1982) (eg. the cycle-cutset method
(Dechter 1990)) or research in the field of relation-
al databases theory (Beeri et al. 1983) (eg. tree-
clustering (Dechter & Pearl 1989)). These theoreti-
cal results associate a structural property of a given
constraint network (eg. an acyclic network) to a se-
mantic property related to a partial consistency (eg.
arc-consistency). These two properties permit to de-
rive a theorem concerning global consistency of the C-
SP and its tractability. Intuitivly, more the network
is connected, more the CSP must satisfies a large con-
sistency, and consequently, more the problem is hard
to solve. These theoretical results have two practical
benefits: on one hand, to define polynomial classes of
CSPs, and on the other hand, to elaborate decomposi-
tion methods.

In this paper, we propose a theoretical result that is
a generalization of the results given in (Freuder 1982)
and in relational databases theory (Beeri et al. 1983).
Indeed, the theorem given by Freuder concerns bina-
ry CSPs (only two variables per constraint), and so
this limitation induces practical problems to its ap-
plication. On the contrary, the property given in the
field of relational databases concerns n-ary CSPs (no
limitation to the number of variables per constraint),
but only CSPs with no cycle. The theorem given in
this paper concerns binary and n-ary CSPs, and cyclic
constraint networks. It permits to define a sufficient
condition to global consistency of general CSPs. This
property associates a structural measure of the con-
nectivity of the network, called width of hypergraph (in
the spirit of Freuder), to a semantic property of CSPs
related to partial consistency of n-ary CSPs, that is
called hyper-k-consitency.



It is known that any non-binary CSP can be treated
as a binary CSP if one look at the dual representation
or join-graph (this representation has been defined in
the field of relational databases: constraints are vari-
ables and binary constraints impose equality on com-
mon variables). But this approach if of limited interest:
it does not allow to realize extension of all theorems
and algorithms to non-binary CSPs. For example, the
width of an n-ary CSP cannot be defined exactly as
the width of its join graph (see example in figure 3).
So, original definitions are introduced in this paper.

The second section presents definitions and preliminar-
ies. In the third section, we defined hyper-k-consitency
while in next section we introduce the notion of width
of hypergraphs. The last section exposes the consis-
tency theorem and give comments about its usability.

Definitions and preliminaries
Finite Constraint-Satisfaction Problems

A General Constraint-Satisfaction Problem involves
a set X of n variables X, Xs,...X,, each defined
by its finite domain values Dj, D»,...D, (d denotes
the maximum cardinality over all the D;). D is
the set of all domains. C is the set of constraints
C1,Cs,...Cp. A constraint C; is defined as a set
of variables (Xj,,Xi,,...Xi; ). To any constrain-
t C;, we associate a subset of the cartesian product
D, x ...x Dj; that is denoted R; (R; specifies which
values of the variables are compatible with each other;
R; is a relation, so it is a set of tuples). R is the set
of all R;. So, we denote a CSP P = (X,D,C,R). A
solution is an assignment of value to all variables sat-
isfying all the constraints.

Given a CSP P = (X, D, C, R), the hypergraph (X, C)
is called the constraint hypergraph (nodes are variables
and hyper-edges are defined by constraints). A binary
CSP is one in which all the constraints are binary, i.e.
only pairs of variables are possible, so (X, C) is a graph
called constraint graph. For a given CSP, the problem
is either to find all solutions or one solution, or to know
if there exists any solution. The decision problem (ex-
istence of solution) is known to be NP-complete. We
use two relationnal operators. Projection of relation-
s: if X' C Cj, the projection of R; on X’ is denoted
R;{X’] and join of relations denoted R; ™M R;; see for-
mal definitions in (Maier 1983).

Partial consistencies in CSPs

Different levels of consistency have been introduced in
the field of CSPs. The methods to achieve these lo-
cal consistencies are considered as filtering algorithm-
s: they may lead to problem simplifications, without
changing the solution set. They have been used as
well to improve the representation prior the search, as
to avoid backtrack during the search (Haralick & El-
liot 1980). Historically, the first partial consistency

proposed was arc-consistency. Its generalization was

given in (Freuder 1978).

Definition 1 (Freuder 1978). A CSP is k-consistent iff
for all set of k — 1 variables, and all consistent assign-
ments of these variables (that satisfy all the constraints
among them), for all k** variable X}, there exists a val-
ue in the domain Dj that satisfies all the constraints
among the k variables. A CSP is strongly k-consistent
iff the CSP is j-consistent for j = 1,...k.

Given a CSP and a value k, the complexity of the
algorithm achieving k-consistencyis O(n*d*) (Cooper
1989). But achieving k-consistency on a binary CSP
generally induces new constraints, with arity equal to
k — 1. Consequently, a binary CSP can be tranformed
in an n-ary CSP using this method (eg. achieving 4-
consistency).

An other partial-consistency has been defined particu-
larly for n-ary CSPs: the pairwise-consistency (Janssen
et al. 1989) also called inter-consistency (Jégou 1991).
This consistency is based on works concerning rela-
tional databases (Beeri et al. 1983). Whereas k-
consistency is a local consistency between variables,
domains and constraints, inter-consistency defines a
consistency between constraints and relations. On
the contrary of k-consitency, that does not consider
structural features of the constraint network, inter-
consistency is particularly adjusted to the connections
in n-ary CSPs, because connections correspond to in-
tersections between constraints.

Definition 2 (Beeri et al. 1983)(Janssen et al. 1989).
We said that P = (X, D, C, R) is inter-consistent iff
VC,:,VCJ', R,‘[Ci N C]‘] = Rj [Ci N Cj] and VR;, R; # 0.

In (Janssen et al. 1989), a polynomial algorithm
achieving this consistency is given. This algorithm is
based on an equivalent binary representation given in
the next section.

Binary representation for n-ary CSPs

In this representation, the vertices of the constraint
graph are n-ary constraints C;, their domains are the
associated relations R;, and the edges, that are new
constraints, are given by intersections between C;. The
compatibility relations are then given by the equali-
ty constraints between the connected R;. This binary
representation is called the constraint intergraph asso-
ciated to a constraint hypergraph (Jégou 1991).

Definition 3. A hypergraph H is a pair (X, C) where
X is a finite set of vertices and C a set of hyper-edges,
i.e. subsets of X. When the cardinality of any hyper-
edges is two, the hypergraph is a graph (necessary
undirected). Given a CSP (X, D,C, R), we consider
its associated hypergraph denoted (X, C).
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Definition 4 (Bernstein & Goodman 1981). Given
a hypergraph H = (X,C), an intergraph of H is a
graph G(H) = (C, E) such as:

« EC{{Ci.C;} CCli# jand C:NCj # 0)

e VC;,C; € C,if CiNC; # 0, there is a chain (C; =
C1,Ca,...Cy = Cj) in G(H) such as
Vi, 1<k <q,CiNC; CCrNCiyy

Intergraphs are also called line-graphs, join-graphs
(Maier 1983) and dual-graphs (Dechter & Pearl 1989).

Definition 3 (Jégou 1991). Given a CSP (X, D, C, R),
we defined an equivalent (equivalent sets of solutions)

binary CSP (C, R, E, @):
e (C, E) is an intergraph of the hypergraph (.Y, C).

o C = {Ci,...Cn} is a set of variables defined on
domains R = {Ry,...Rm }.

e if {Ci,C;} € E, then we have an equality constraint:
Qr = {(ri,7;) € Ry x Rj/T’,‘[C,; an] =r;[CinC;l}

Given a hypergraph, it can exists several associat-
ed intergraphs. Some of them can contain redundant
edges that can be deleted to obtain an other inter-
graph. The maximal one is called representative graph.
In the field of CSPs, we are naturally interested with
minimal intergraphs: all edges are necessary, i.e. no
edge can be deleted conserving the property of chains
in intergraphs. So an algorithms have been proposed
to find minimal intergraphs in (Janssen et al. 1989).
A study of combinatorial properties of minimal inter-
graphs is given in (Jégou & Vilarem 1993). In the next
example two minimal intergraphs are given:

C yC2 € Ca
Cs »Cs Cs Cs
Cs Cy

Figure 1. Hypergraph (a) and two minimal intergraphs.

A sufficient condition for CSPs consistency

Freuder has identified sufficient conditions for a bina-
ry CSP to satisfy consistency, ie. satisfiability. These
conditions associate topology of the constraint graph
with partial consistency.

Definition 6 (Freuder 1982). An ordered constraint
graph is a constraint graph in which nodes are linearly
ordered. The width of a node is the number of edges
that link that node to previous nodes. The width of an
orderis the maximum width of all nodes. The width of
a graph is the minimum width of all orderings of that
graph.
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This definition is illustrated in figure 1: the width of
the graph (b) is 2 and the width of the graph (c) is 3.
On this example, we can remark that the width of an
hypergraph cannot be defined as the width of its min-
imal intergraph, because all minimal intergraphs has
not the same width.

Theorem 7 (Freuder 1982). Given a CSP, if the lev-
el of strong consistency is greater than the width of
the constraint graph, then the CSP is consistent and
it is possible to find solutions without backtracking (in
polynomial time).

Freuder also gave an algorithm to compute the width of
any graph (in O{(n+m)). So given a CSP, it is sufficien-
t to know the width of the constraint graph, denoted
k — 1, then to achieve k-consistency. But a problem
appears: this approach is possible only for acyclic con-
straint graphs (width equal to one) and a subclass of
graphs the width of which is two (called regular graphs
of width two in (Dechter & Pearl 1988)). The cause
of that problem: achieving k-consistency generally in-
duces n-ary constraints (arity can be equal to k—1), so
the corresponding problem is a constraint hypergraph,
and the theorem can not be applied. Nevertheless,
the result concerning acyclic CSPs is applied in the
cycle-cutset method (Dechter 90) and we can consider
Freuder’s theorem as a vehicle to give a lower bound
for complexity of a binary CSP: to the order of d* if
its width is & — 1, because complexity of achieving k-
consistency is O(n*d*) (Cooper 1989).

A result of relational database theory

A similar property has been derived in the field of re-
lational databases. This property is related to acyclic
hypergraphs.

Definition 8 (Beeri et al. 1983). A hypergraph
is acyclic iff 3 a linear order (C},Cb,...Cy) such as
Vi,l< i< m, 34 <i/(C; ﬂu;;llck) C Cj, (this prop-
erty is called running intersection property)

Figure 2. Cyclic (2) and acyclic (b) hypergraphs.

(Beeri et al. 1983) gave a fundamental property of
acyclic database schemes that concerns consistency of
such databases, namely global consistency. This result
is presented below using CSPs terminology:

Definition 9. Let P = (X,D,C,R) be a CSP. We



say that P is globally consistent if there is a rela-
tion S over the variables X (S is the set of solution-
s) such as Vi,1 < ¢ < m,R; = S[Ci]. It is equiv-
alent to Vi,1 < i < m, (XL, R;)[Ci] = R; since

Note that global consistency of CSPs implies satisfi-
ability of CSPa. Indeed, a CSP is globally consistent
iff every tuple of relations appears at least in one so-
lution. Furthermore, it is clear that global consistency
implies inter-consistency but the converse is false. We
give the interpretation in the field of CSP to the prop-
erty given by (Beeri et al. 1983):

Theorem 10 (Beeri et al. 1983). If P is such as
its constraints hypergraph is acyclic, then

P is inter-consistent < P is globally consistent.

An immediate application of this theorem concerns
the consistency checking of CSPs. We know polyno-
mial algorithms to achieve inter-consistency while to
check global consistency is a NP-complete problem.
So, knowing this theorem, if the database scheme is
acyclic, it is possible to check global consistency in a
polynomial time achieving inter-consistency. This re-
sult is applied in the tree-clustering method (Dechter
& Pearl 1989).

Some remarks

Theorems 7 and 10 are significant. First, they can be
used to solve CSP, immediatly if the considered CSP
is acyclic, or for all CSP, using decomposition methods
as the cycle-cutset method, or tree-clustering scheme.
Second, because they define polynomial subclasses of
CSPs. Nevertheless, there is two significant limitations
to these theoretical results. On one hand, theorem 7
is only defined on binary CSPs, and so, it can not be
applied, nor on n-ary CSPs, nor on constraints graph
with width greater than 2. On the other hand, theorem
11 concerns only acyclic n-ary CSPs. So, a generaliza-
tion to cyclic n-ary CSPs is necessary to extend this
kind of theoretical approach to all CSPs.

A new consistency for n-ary CSPs:
Hyper-k-consistency

When Freuder defined k-consistency, the definition is
related to assignments: ”given a consistent assignment
of variables X1, Xs,...Xg.1, it is possible to extend
this assignment for all k** variable”. To generalize
k-consistency to n-ary CSPs, we consider the same ap-
proach but with constraints and relations: we can con-
sider ” assignment” of constraints Cy, Cy,...Cr—-1, and
their extension to any k*® constraint. Our definition
of hyper-k-consistency is given in this spirit:

Definition 11. A CSP P = (X,D,C,R) is hyper-
k-consistent iff VR;, R; # ® and VC1,Cq,...Cr_1 € C,

(MEZE Ri)[(UEZECi) N Cx) C Re[(UEZ1C) N G

P 1s strongly hyper-k-consistent iff Vi, 1 < i < k, P is
hyper-i-consistent.

We can note that hyper-2-consistency is equivalen-
t to inter-consistency. So, hyper-k-consistency con-
stitutes really a generalization of inter-consistency to
greater levels. Actually, this definition can be con-
sidered as a formulation of k-consistency on the con-
straint intergraph: (X:Z! m)e(™@EZ! R;) signifies
that (r1,72,...7r—1) is a consistent assignment of con-
straints C1,Cs,...Ck_1, and if there is 7 € Ry such
as: ’
(M2 ) [(UES) C) N Gl = mi[(UEZ) C3) N Ci)

=1

then (r1,72,...7k—1,7) is a consistent assignment of
constraints Cy,Cy,...Ck-1,Ck, i.e. k variables of the
constraint intergraph. This particularity induces a
method to achieve hyper-k-consitency, that is based
on the same approach of achieving k-consistency on
binary CSPs. So, we have the same kind of problems:
achieving hyper-k-consistency can modified constraint
hypergraph. A second problem concerns the complex-
ity of achieving hyper-k-consistency: the complexity is
in the order of 7* if r is the maximum size of R;. These
problems are discussed in (Jégou 1991).

Another remark about hyper-k-consistency concerns
its links with global consistency; we easily verify that
if a CSP P is hyper-m-consistent, then P is globally
consistent while the converse is generally false.

The definition of hyper-k-consistency in n-ary CSP
concerns connections in hypergraphs, i.e. intersection-
s between hyper-edges. So the definition of width of
hypergraph is based on the same principles.

Width of Hypergraphs

Connections in hypergraphs concerns intersections be-
tween hyper-edges. So, the consistency of a n-ary CSP
is intimately connected to the intersections between
hyper-edges. The definition of width of hypergraph
allows us to define a degree of cyclicity of hypergraph-
s. Using this width, we shall work out links between
structural properties of hypergraphs and the global
consistency of n-ary CSPs.

Before to give our definition of the width of an hy-
pergraph, we must explain why this definition is not
immediatly related to intergraphs. A first reason has
already been given: all minimal intergraphs of a hyper-
graph have not necessary the same width (see figure 1).
An other reason is the next one: if we define the width
of an hypergraph as the width of one of its intergraph
(not necessary a minimal one), we cannot obtain the
same properties than we have with Freuder’s theorem
that is based on a good order for the assignment of the
variables:
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Figure 3. Problem of order on variables.

The hypergraph considered in the figure 4 is the one
of the figure 1. We consider two possible orders on this
intergraph. The first one is not a possible order for the

assienment of the variables an‘por]’ when the variable
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corresponding to (3 is assigned, the variable 1 of the
hypergraph has already been assigned and so, it is pos-
sible to assign C3 with an other value for i. This is

possible because (5 is g\vpn before Ca in the order and
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because there is no edge between C, and C3. So, we
can obtain two different assignments for the variable
1, and finally, we can obtain a consistent assignment
on (4. Cs .C=. and consequently an assieonment on
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variables /\1,X2,. .. Xs that is not a solution of the
problem. The second order of width 3 does not induce
such problems.

Definition 12. Given a hypergraph H = (X, (),
QO the set of linear orders on C, and a linear order
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maximal intersections with predecessors of C; in 7;

L:{C;) denots the width of C; in order 7: LA(C;) =
[ {C:AC;/j <iA-3k,k < i/CiNC; C# CiNCr} |
e the width of v is Ly(7) = maz {L,(C;)/Ci € C}
o the width of H is L(H) = min {Ly(r)/T € O}

Order

— ®

C; Cs G &

1
1 - -

ni

Figure 4. Width of the hypergraph.
In the fugure 4, we see the width of the hyper-

graph H given in figure 1-a. Here, Ly(7) = 3 since
£:({3,5,6}) = 3; we can verify that Vr € O, Ly(7) =

3, and consequently that LZ(H) = 3. A property relies
width and cyclicity:

Proposition 13. H is acyclic & L(H) =1
Proof. H acyclic satisfies the running intersection

property
< Jorder (C1,Cs,...Cm) such as
Vi,1<i<m, 3 <i/(CiWUZiCr) ) C Gy,
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problem; this problem seems us to be open concerning
its complexity: does it belong to NP-hard problems ?
This question is at present an open question. In (Jégou

00 H ta nd amall widih o
LJJA} il 1iCULIOVILV 1O lel}UDCU bU FLI1A Oliiail willuil 1C.

:n order Tt 3ig ngt
villS OrGer. 1v I8 jusi

1001 an hanriatie 1a nraonosed

graph.

i
n this section, we derive a sufficient condition to con-
ncy of c‘enpral CSPs. This condition concerns the

w1dtl of the hypergraph associated to the CSP, and
e hyper-k-consistency that the relations satlsfy (i.e.
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Theorem 14. Let P = (X, D,C, R) be a CSP and
H=(X,C). IfPis strongly hyper-l\ consistent and 1if
/‘/U\/l‘_1 than D atant
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We must show that P is consistent, i.e.
Vz 1< z < m, 37, € Rz/(N"‘ 7',) € (M, R,)
} can be considered as a consis-

2
tent nsc')nnm_on# on If". s f" \ Yi11 < 1.7 <
ent assignment on (L, Un, ... VL LL S L S
m,r;[Ci N C;] = r;[C; N Cj].

We proove hzs property by induction on p, such as
l<p<m.

If p = 1, the property trivially holds.

We consider now a linear order (Cy,C
sndod 4o 4ha r{ Hy < | c:a'\/nnc
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property holds forp— 1 such as 1 < p < m. That s
we have (71,7‘2,. . ‘7,)._1_)/\'/1,1 <i<p- 1,1‘, € R; and
Vi, j,1< 4,7 <p-1,r[CinC;] =r;[Ci 0 Gl

[V

By definition of the width, C, possesses at most k—1
mazimal intersections with predecessors in the order.
Let C;,,Ci,, - .. Ci, be the corresponding C;, with nec-

sccary a < L 1 2da mly ome ' for ew
€8saATyY ¢ S N — 1, comsiaeTing oniy one Ly jOor €v-

ery mazimal intersection. P being strongly hyper-k-
consistent, and since ¢ < k — 1, we have

(d_, R (UI_.C:)NC] C RI(VI_,Ci )N CY)
J=1 3/ =1""%5/ ri PR~ j=1 i’ Pi
and for the r;;’s appearing in (ry,72,...Tp—1)

(M-, mi ) (VIS Ci) NGyl € Rp[(VS2,Ciy) NGy

=1



So, 3r, € R, such as rp, is consistent with
(Piy, Tias - --Tiy), that is: Vj,1 < j < q,7;[Ci; N Cp) =
7p[Ci; N Cy].

We show now, that rp is also consistent for all the

r;’s, i.e. ;[C; NCp] = 1p[Ci N Cyp).

Consider C; such as 1 < i < p and C;NCp # 0.
By the definition of the width, 35,1 < j < q such
as C; N Cp C Ci; NCy because the C;;’s are mazimal
for the intersection with C,. Consequently, we have
NG, C C,;nC,'J-.

By hypothesis, we have r;[C; N Cy;] = r;,[C; N Cyl,
a fortiori, we have r;[Ci N Cp] = r,{Ci N Cpl. We
seen that v, [C;; N Cpl = rp[Ci; N Cp); this emplies that
7i,[CiNCp] = r,[CiNCy]. Consequently, r;[C;NCp] =
ri,[Ci N Cp] = rp[Ci N Cy. So, (r1,72,...7p—-1,7p) I8
consistent assignment on (C1,Ca,...Cp_1,C)).

So the property holds for p, and consequently, P s
consistent.

If we recall the property given about acyclic database
schemes (Beeri et al. 1983), it is clear that theorem 10
is a corollary of theorem 14 (because k = 2). A more
interesting result is the next corollary:

Corollary 15. Let P = (X, D,C, R) be a CSP such
as (X,C) is a graph (i.e. all hyper-edges have cardi-
nality 2). If P is strongly hyper-3-consistent, then P
is consistent.

Proof. It is sufficient to remark that if (X,C) is a
graph, its width is al most 2, because all hyper-edges
of (X,C) are edges, and an edge has no more than 2
mazimal intersections.

Nevertheless, this surprising corollary is not allways us-
able, because achieving hyper-k-consistency can modi-
fy the hypergraph associated to a n-ary CSP. Freuder’s
theorem has the same kind of problems: try to obtain
its preconditions can modify these preconditions. So,
concerning the practical use of the theorem, a problem
is given by the verification of hyper-k-consistency in a
CSP. On one hand, the theorem gives a sufficient con-
dition to consistency, and not a necessary condition;
on the other hand, given a value k, it is possible to
obtain hyper-k-consistency using filtering mecanisms
(Jégou 1991) in polynomial time in k, in the size of
the CSP. But this process can modify the hypergraph
with additions of new hyper-edges, and so modify the
width. Nevertheless, contrary to Freuder’s theorem,
the consistency theorem can be tried to apply after
modification of the width because it is directly defined
on n-ary CSPs.

Consequently, the theorem must be considered in a first
time as a theoretical result, with, at this moment, only
one practical application: the corollary given in (Beeri

et al. 1983), and not as a directly usable result.

The next research must be to exploit the theorem, on
one hand to try to find new polynomial classes of C-
SP, and on the other hand to propose new methods to
solve practically n-ary CSPs.
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