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Abstract

Tractable classes constitute an important issue in Artificial
Intelligence to define new islands of tractability for reason-
ing or problem solving. In the area of constraint networks,
numerous tractable classes have been defined, and recently,
the Broken Triangle Property (BTP (Cooper, Jeavons, and
Salamon 2010)) has been shown as one of the most impor-
tant of them, this class including several classes previously
defined. In this paper, we propose a new class called ETP

for Extendable-Triple Property, which generalizes BTP, by
including it. Combined with the verification of the Strong-
Path-Consistency, ETP is shown to be a new tractable class.
Moreover, this class inherits some desirable properties of
BTP including the fact that the instances of this class can
be solved thanks to usual algorithms (such as MAC or RFL)
used in most solvers. We give the theoretical material about
this new class and we present an experimental study which
shows that from a practical viewpoint, it seems more usable
in practice than BTP.

Introduction
Constraint Satisfaction Problems (CSPs (Rossi, van Beek,
and Walsh 2006)) constitute an important formalism of Arti-
ficial Intelligence (AI) for expressing and efficiently solving
a wide range of practical problems. A constraint network (or
CSP, abusing words) consists of a set X of variables, each
of which must be assigned a value in its associated (finite)
domain, so that these assignments together satisfy a finite set
C of constraints.

Deciding whether a given CSP has a solution is an NP-
complete problem. Hence classical approaches to this prob-
lem are based on backtracking algorithms, whose worst-case
time complexity is generally in O(e.dn) with n the number
of variables, e the number of constraints and d the size of
the largest domain. To increase their efficiency, such algo-
rithms also rely on filtering techniques during search (among
other techniques, such as variable ordering heuristics or con-
straint learning). With the help of such techniques, despite
their theoretical time complexity, algorithms such as For-
ward Checking (Haralick and Elliot 1980), RFL (for Real
Full Look-ahead (Nadel 1988)) or MAC (for Maintaining
Arc Consistency (Sabin and Freuder 1994)) turn out to be
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very efficient in practice on a wide range of practical prob-
lems. Although these methods are effective in practice, their
time complexity is exponential. To ensure better computa-
tion times, many studies have been developed to highlight
tractable classes, that is to say sets of instances that can be
solved in polynomial time. Unfortunately, these works have
often been of a theoretical interest only, without allowing to
improve solving capabilities in practice. So, these classes
are not in fact used in practice. This is mainly due to the fact
that these classes are often artificial in the sense that they de-
fine instances that do not appear in practice. In addition, it is
quite difficult to integrate the management of these classes
in the solvers of the state of the art. Indeed, tractable classes
are generally handled by ad hoc algorithms. A first algo-
rithm must decide if an instance belongs to a given tractable
class and then, if so, a second algorithm solves the instance.
The implementation of these algorithms in solvers thus leads
to considerable extra cost, even if both algorithms are very
efficient (e.g. in linear time). Hence, in our opinion, in or-
der to be exploited during the solving, the tractable classes
must be implicitly handled by classical solvers (i.e. that
these solvers are able to solve the instances of these classes
in polynomial time without any additional processing). For
example, this is the case of the BTP class (Cooper, Jeav-
ons, and Salamon 2010) whose instances can be solved in
polynomial time by MAC without any additional process-
ing. Such tractable classes can then be useful to explain the
good efficiency of solvers on some benchmarks.

In this paper, we study a possible extension of BTP .
The primary motivation of this study is related to the in-
terest of BTP , both from a theoretical viewpoint (this hy-
brid tractable class includes well known tractable classes
of the literature) and from a practical viewpoint (this class
has very useful properties including the possibility of be-
ing implicitly exploited by the solvers of the state of the
art). In addition, we have observed that BTP can be ex-
tended by relaxing some of the restrictions it imposes. In-
deed, the tractability of the solving of the instances verifying
BTP is based on a property which appears to be very strong.
This property is induced by the conditions allowing to de-
fine BTP. So, we show that it is possible to relax this prop-
erty while preserving the tractability. This leads to define
a weaker property called ETP for Extendable-Triple Prop-
erty which is recognizable in polynomial time. As for BTP,
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this property is definable by the notion of broken triangles.
However while BTP is defined by the existence of an order-
ing prohibiting the existence of any broken triangles, ETP
tolerates some broken triangles. From a theoretical view-
point, this approach makes it possible to generalize the BTP
property by defining a new class that includes it strictly. It
also allows us to offer a class whose instances can poten-
tially appear more easily in practice. Combined with the
verification of the Strong-Path-Consistency (Freuder 1982),
ETP is shown to be a new tractable class. The fact that the
ETP property generalizes the BTP property is experimen-
tally verified in this paper showing that it occurs more fre-
quently than BTP in the benchmarks used by the commu-
nity. In addition, we show that it can sometimes help to
explain why the solving of some benchmarks by algorithms
such as MAC or RFL is really efficient even for instances
that do not belong to BTP . Finally, we show that this new
tractable class turns out to be more exploitable in practice,
particularly by approaches based on the notion of Backdoor
(Williams, Gomes, and Selman 2003).

The paper is organized as follows. The next section in-
troduces notations and recalls some notions about tractable
classes, and more precisely, about BTP . The third section
presents the theoretical basis of this extension, while the
fourth section introduces the property ETP and the associ-
ated tractable class. Then we illustrate its practical interest
by an experimental study before concluding.

Background
Formally, a constraint satisfaction problem also called con-
straint network is a triple (X,D,C), where X = {x1,
. . . , x

n

} is a set of n variables, D = (D
x1 , . . . , Dxn) is

a list of finite domains of values, one per variable, and C =
{c1, . . . , ce} is a finite set of e constraints. Each constraint c

i

is a pair (S(c
i

), R(c
i

)), where S(c
i

) = {x
i1 , . . . , xik} ✓ X

is the scope of c
i

, and R(c
i

) ✓ D
xi1

⇥ · · · ⇥ D
xik

is its
compatibility relation. The arity of c

i

is |S(c
i

)|. In this
paper, we only deal with the case of binary CSPs, that is
CSPs for which all the constraints are of arity 2. Hence, we
will denote by c

ij

the constraints involving x
i

and x
j

. The
structure of a constraint network is represented by a graph,
called the constraint graph, whose vertices correspond to
variables and edges to the constraint scopes. An assign-
ment on a subset of X is said to be consistent if it does
not violate any constraint. Testing whether a CSP has a so-
lution (i.e. a consistent assignment on all the variables) is
known to be NP-complete. So, many works have been real-
ized to make the solving of instances more efficient in prac-
tice, by using optimized backtracking algorithms, heuristics,
constraint learning, non-chronological backtracking, filter-
ing techniques based on constraint propagation, etc. The
worst-case time complexity for these approaches is naturally
exponential, at least in O(e.dn) where n is the number of
variables, d the maximum size of domains and e the num-
ber of constraints. Despite this exponential complexity, the
solvers of the state of the art have shown in many cases their
practical efficiency.

Although the problem CSP is NP-complete, there ex-

ist classes of instances that can be recognized1 and solved
in polynomial time. These classes are called “tractable
classes” and rely on some properties that can be verified
by the instances. There are two main kinds of properties
to define tractable classes. The first one concerns the struc-
tural properties of the constraint network. For example, tree-
structured (i.e. acyclic) binary CSPs can be solved in linear
time (Freuder 1982). Another kind of properties is related to
restrictions on the language defining the constraints. These
restrictions concern the domains and/or the compatibility re-
lations associated with the constraints. For example, it is the
case for the class of “0-1-all constraints” (Cooper, Cohen,
and Jeavons 1994). More recently, a kind of tractable classes
has been proposed such as the BTP class (Cooper, Jeavons,
and Salamon 2010). Their interest is that they are able to
take into account both language and structure restrictions.
They are thus sometimes called “hybrid classes”. We recall
the BTP property:

Definition 1 (Broken Triangle Property) A binary CSP
instance (X,D,C) satisfies the Broken Triangle Property
(BTP) w.r.t. the variable ordering < if, for all triples of vari-
ables (x

i

, x
j

, x
k

) s.t. x
i

< x
j

< x
k

, if (v
i

, v
j

) 2 R(c
ij

),
(v

i

, v
k

) 2 R(c
ik

) and (v
j

, v0
k

) 2 R(c
jk

), then either
(v

i

, v0
k

) 2 R(c
ik

) or (v
j

, v
k

) 2 R(c
jk

). If neither of these
two tuples exist, (v

i

, v
j

, v
k

, v0
k

) is called a broken triangle
on x

k

w.r.t. x
i

and x
j

. If there exists at least one broken
triangle on x

k

w.r.t. x
i

and x
j

, (x
i

, x
j

, x
k

) is called a bro-
ken triple on x

k

w.r.t. x
i

and x
j

. Let BTP be the set of the
instances for which BTP holds w.r.t. some variable ordering.

The BTP property is related to the compatibility between
the values of domains which can be graphically visualized
(Figure 1) on the microstructure graph2. E.g. in Figure 1 (a),
there is a broken triangle on x3 with respect to the variables
x1 and x2 since we have (v1, v03) /2 R(c13) and (v2, v3) /2
R(c23) while (v1, v2) 2 R(c12), (v1, v3) 2 R(c13) and
(v2, v03) 2 R(c23) hold. So (x1, x2, x3) is a broken triple
on x3 w.r.t. x1 and x2. In contrast, in Figure 1 (b), if one
of the two dashed edges (that is binary tuples) appears in the
microstructure, the BTP property holds independently from
the ordering.

v3

3v’v1

v2
x2

x1 x3

v3

3v’v1

v2
x2

x1 x3

(a) (b)

Figure 1: A non-BTP pattern (a) and a BTP one (b) w.r.t. the
order x1 < x2 < x3.

1Here, we consider the definition proposed in (Gottlob, Leone,
and Scarcello 2000).

2The micro-structure (Jégou 1993) of a binary CSP P =
(X,D,C) is the undirected graph µ(P ) = (V,E) where V =
{(x

i

, v

i

) : x
i

2 X, v

i

2 D

xi} and E = { {(x
i

, v

i

), (x
j

, v

j

)} :
i 6= j, c

ij

/2 C or (v
i

, v

j

) 2 R(c
ij

)}.



The time complexity to recognize an instance of the class
BTP (i.e. to show that there exists a variable ordering sat-
isfying the BTP property) is O(n.e.d3). Among the most
important properties of BTP, first of all, we note that it in-
cludes structural tractable classes (e.g. acyclic binary CSPs),
but also tractable classes defined by language restrictions
(e.g. RRM (Cooper, Jeavons, and Salamon 2010)). More-
over, this class is conservative, i.e. it is closed under do-
main restrictions. This is particularly interesting since it al-
lows Cooper et al. to show that MAC (and thus also RFL)
can solve the instances of BTP in polynomial time, pre-
cisely in O(n.e.d3), whatever the instantiation ordering of
the variables during search. For these different reasons,
BTP seems to be the most interesting tractable class de-
fined these last years.

How can we generalize BTP ?
The fact that the class BTP is a very interesting class thanks
to its properties encourages us try to extend it. For this, it
would be desirable to retain its most useful properties, in-
cluding the fact that it is treatable in polynomial time by
algorithms such as MAC, without having to recognize its in-
stances. One possible way is then to relax the conditions
imposed in its definition which, ultimately seem to be ex-
cessive. We develop this point below, but this requires to
remind of some of its associated properties. The first one is
Lemma 2.4 from (Cooper, Jeavons, and Salamon 2010):

Lemma 1 ((Cooper, Jeavons, and Salamon 2010)) A bi-
nary CSP instance satisfies the broken-triangle property
with respect to the variable ordering < if, and only if,
8i < j < k and 8(u, v) 2 R(c

ij

):

(R(c
ik

)[u] ✓ R(c
jk

)[v]) or (R(c
jk

)[v] ✓ R(c
ik

)[u])

with R(c
ij

)[a] = {b 2 D
xj : (a, b) 2 R(c

ij

)}.

From this lemma, it is easy to prove the next property
which shows that an instance which belongs to BTP is solv-
able in polynomial time. This lemma comes from the proof
of Theorem 3.1 in (Cooper, Jeavons, and Salamon 2010).

Lemma 2 ((Cooper, Jeavons, and Salamon 2010))
If a binary CSP instance satisfies the broken-triangle
property with respect to the variable ordering < and
if (u1, u2, . . . uk�1) is a consistent assignment of
(x1, x2, . . . xk�1), then the set {R(c

ik

)[u
i

] : i < k}
is totally ordered by subset inclusion.

The proof that the instances which satisfy BTP can be
solved in polynomial time is based on the fact that from
Lemma 2, one can deduce that the set {R(c

ik

)[u
i

] : i < k}
has a minimal element associated to a rank i0 such that
i0 < k and such that R(c

i0k)[ui0 ] =
T

i<k

R(c
ik

)[u
i

]. A
graphical representation of Lemma 2 is given in Figure 2. In
this figure, a value u

i

2 D
xi is connected by an edge to a

subset R(c
ik

)[u
i

] of D
xk materialized by an ellipse (i.e. u

i

is compatible with all its values).
In Figure 2, we can see that given a consistent assign-

ment (u1, u2, . . . uk�1) of variables (x1, x2, . . . xk�1),
restricted in Figure 2 to the consistent assign-
ment (u1, . . . ui

, . . . u
i0 , . . . uk�1) of the variables

x1

u1

x k-1

uk-1

x i

u i
x i

u i
0

0

xk

Figure 2: Graphical explanation of the property on sub-
domain inclusion showing the tractability of BTP instances.

(x1, . . . xi

, . . . x
i0 , . . . xk�1), it is possible to extend

this assignment to x
k

preserving consistency with a value
belonging to R(c

i0k)[ui0 ] ✓ D
xk . This is the case if

R(c
i0k)[ui0 ] 6= ;, which is valid assuming that the instance

satisfies the arc-consistency. It is noted here that BTP
leads to a sufficient condition to prove the existence of
a polynomial time algorithm to solve the instances, but
this condition does not seem fundamentally necessary.
Indeed, it might be satisfied if there exists at least one value
which appears in

T
i<k

R(c
ik

)[u
i

] independently of the
existence of a minimal element R(c

i0k)[ui0 ]. A graphical
representation is given in Figure 3 where we can see that
every consistent assignment of (x1, x2, . . . xk�1) can be
extended by a value u

k

2
T

i<k

R(c
ik

)[u
i

].

x1

u1

x k-1

uk-1

x i

u i
x i

u i
0

0

xk

uk

Figure 3: Graphical explanation of a weaker condition on
sub-domain intersections.

We refer to this relaxation of BTP by the property we call
ETP for Extendable-Triple Property and which is described
in the next section.

ETP: Definition and Properties
The relaxation of the conditions of BTP we want while pre-
serving the existence of a polynomial time algorithm for
solving instances can be achieved using a surprising way re-
lated to a condition on broken triples which can exist in the
subsets of four variables:
Definition 2 (Extendable-Triple Property (ETP)) A bin-
ary CSP instance P satisfies the Extendable-Triple Property
(ETP) with respect to the variable ordering < if, and only
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if, for all subset of four variables (x
i

, x
j

, x
k

, x
l

) such that
i < j < k < l, there is at most one broken triple on x

l

among (x
i

, x
j

, x
l

), (x
i

, x
k

, x
l

) and (x
j

, x
k

, x
l

).

Note that a binary CSP can satisfy the ETP property while
it contains two broken triples among (x

i

, x
j

, x
k

, x
l

), one on
x
k

, and another one on x
l

, while none is possible with BTP.
An immediate consequence of this definition is given by the
next theorem where BTP and ETP denote respectively the
associated classes of instances.
Theorem 1 BTP ( ETP

To analyze the tractability of ETP , we have now to show
that the instances of this class can be recognized in polyno-
mial time:
Theorem 2 Given a binary CSP instance P = (X,D,C),
there is a polynomial time algorithm to find a variable or-
dering < such that P satisfies ETP with respect to <, or to
determine that no such ordering exists.

Proof: Like in the proof of Theorem 3.2 in (Cooper, Jeav-
ons, and Salamon 2010), we define a CSP instance P

o

which
is consistent if and only if a possible ordering exists. More
precisely, in this instance, we consider a variable o

i

with
domain {1, . . . , n} per variable x

i

of X . o
i

represents the
position of the variable x

i

in the ordering. Regarding BTP,
Cooper et al. add a constraint o

k

< max(o
i

, o
j

) when there
exists a broken triangle on x

k

with respect to x
i

and x
j

. In
similar way, we add a constraint involving {o

i

, o
j

, o
k

, o
l

}
and imposing the condition o

l

< max(o
i

, o
j

, o
k

) for each
quadruple of variables (x

i

, x
j

, x
k

, x
l

) such that there are at
least two broken triples on x

l

among (x
i

, x
j

, x
l

), (x
i

, x
k

, x
l

)
and (x

j

, x
k

, x
l

).
If P

o

has a solution, then for each quadruple of variables
(x

i

, x
j

, x
k

, x
l

), we have at most one broken triple among
(x

i

, x
j

, x
l

), (x
i

, x
k

, x
l

) and (x
j

, x
k

, x
l

). Indeed, if no con-
straint o

l

< max(o
i

, o
j

, o
k

) exists, there is no broken triple.
Otherwise, as the constraint is satisfied, x

l

cannot appear
after both x

i

, x
j

and x
k

in the ordering. Without loss of
generality, let us assume that x

l

appears before x
i

in the
ordering (i.e. o

l

< o
i

). Then only the triple (x
j

, x
k

, x
l

)
can be broken. So, if P

o

has a solution, we have an or-
dering satisfying the ETP property. Conversely, let us con-
sider an ordering satisfying the ETP property and assume
that P

o

has no solution. It means that at least one constraint
o
l

< max(o
i

, o
j

, o
k

) for a given quadruple (x
i

, x
j

, x
k

, x
l

)
is violated. So there are at least two broken triples on x

l

among (x
i

, x
j

, x
l

), (x
i

, x
k

, x
l

) and (x
j

, x
k

, x
l

) w.r.t. the
considered ordering, which is impossible since this ordering
satisfies the ETP property. Hence P

o

has a solution if and
only if P admits an ordering satisfying the ETP property.

We now consider the cost of building and solving
the instance P

o

. Finding all the broken triples can be
achieved in O(n3.d4) while defining the constraints
o
l

< max(o
i

, o
j

, o
k

) can be done in O(n4). So P
o

can be computed in O(n3.d4). Moreover, all the con-
straints of P

o

are max-closed (Jeavons and Cooper
1995). Indeed, any constraint o

l

< max(o
i

, o
j

, o
k

) of
P
o

is such that if we have v
l

< max(v
i

, v
j

, v
k

) and
v0
l

< max(v0
i

, v0
j

, v0
k

), we have necessary max(v
l

, v0
l

) <

max(max(v
i

, v0
i

),max(v
j

, v0
j

),max(v
k

, v0
k

)). As max-
closed constraints can be solved easily by establishing
generalized arc-consistency, the instance can be built and
solved in polynomial time. ⇤

We analyze now the solving of the instances of the class
ETP .

Lemma 3 A binary CSP instance P satisfies ETP with re-
spect to the variable ordering < if, and only if, for all subset
of four variables x

i

, x
j

, x
k

and x
l

such that i, j, k < l, for
all consistent assignment (u, v, w) of (x

i

, x
j

, x
k

), at least
two of the next properties are satisfied:

1. (R(c
il

)[u] ✓ R(c
jl

)[v]) or (R(c
jl

)[v] ✓ R(c
il

)[u])

2. (R(c
il

)[u] ✓ R(c
kl

)[w]) or (R(c
kl

)[w] ✓ R(c
il

)[u])

3. (R(c
jl

)[v] ✓ R(c
kl

)[w]) or (R(c
kl

)[w] ✓ R(c
jl

)[v])

Proof: By hypothesis, there is no broken triple on at least
two of the triples of variables (x

i

, x
j

, x
l

), (x
i

, x
k

, x
l

) and
(x

j

, x
k

, x
l

), which corresponds to a local satisfaction of
BTP on at least two of these triples of variables. By Lemma
1, at least two of these properties are satisfied. ⇤

Based on this lemma, we can propose a second lemma:

Lemma 4 Given a binary CSP instance P satisfying ETP
with respect to the variable ordering <, then, for all subset
of four variables x

i

, x
j

, x
k

and x
l

such that i, j, k < l, for
all consistent assignment (u, v, w) of (x

i

, x
j

, x
k

), we have
at least one of the next four possibilities (or similar proper-
ties obtained by permutation of i, j and k):

4.1. R(c
il

)[u] ✓ R(c
jl

)[v] \R(c
kl

)[w]

4.2. R(c
kl

)[w] ✓ R(c
il

)[u] ✓ R(c
jl

)[v]

4.3. R(c
jl

)[v] ✓ R(c
il

)[u] ✓ R(c
kl

)[w]

4.4. R(c
jl

)[v] \R(c
kl

)[w] ✓ R(c
il

)[u]

Proof: By Lemma 3, we know that at least two of the three
properties (1), (2) and (3) are satisfied. We must analyze
three possible cases: (1) and (2) are satisfied, (1) and (3) are
satisfied, and (2) and (3) are satisfied. Without loss of gener-
ality, since we have no hypothesis on the ordering between
x
i

, x
j

and x
k

, it is sufficient to consider only one of the three
cases, the two other ones being equivalent. So, we consider
the case such that (1) and (2) are satisfied. In this case, we
have four possibilities:

4.1. (R(c
il

)[u] ✓ R(c
jl

)[v]) and (R(c
il

)[u] ✓ R(c
kl

)[w]).
In this case R(c

il

)[u] ✓ R(c
jl

)[v] \R(c
kl

)[w].

4.2. (R(c
il

)[u] ✓ R(c
jl

)[v]) and (R(c
kl

)[w] ✓ R(c
il

)[u]).
In this case R(c

kl

)[w] ✓ R(c
il

)[u] ✓ R(c
jl

)[v].

4.3. (R(c
jl

)[v] ✓ R(c
il

)[u]) and (R(c
il

)[u] ✓ R(c
kl

)[w]).
In this case R(c

jl

)[v] ✓ R(c
il

)[u] ✓ R(c
kl

)[w].

4.4. (R(c
jl

)[v] ✓ R(c
il

)[u]) and (R(c
kl

)[w] ✓ R(c
il

)[u])
In this case R(c

jl

)[v] \R(c
kl

)[w] ✓ R(c
il

)[u]. ⇤
While cases 4.1, 4.2 and 4.3 allow to extend any consis-

tent assignment (u, v, w) of three variables x
i

, x
j

and x
k



to a fourth variable x
l

(assuming that the considered in-
stance satisfies arc-consistency), the case 4.4 does not en-
sure a consistent assignment of x

l

. Indeed, such an exten-
sion is possible only if R(c

jl

)[v] \ R(c
kl

)[w] 6= ;. A pos-
sible way to ensure that this property holds is to add to ETP
an additional condition related to the satisfaction of path-
consistency (Montanari 1974). If such a consistency holds,
necessarily, the tuple (v, w) will be supported a least by one
value in D

xl . And thus, this value will necessarily be in-
cluded in R(c

jl

)[v] \R(c
kl

)[w], ensuring that this intersec-
tion will not be empty. So, to ensure the tractability of the
class ETP , we consider this additional condition. We will
consider instances satisfying arc and path-consistency, that
is Strong-Path-Consistency (Freuder 1982), which is gener-
ally denoted SPC.

Theorem 3 A binary CSP instance P satisfying SPC and
ETP with respect to the variable ordering < is consistent
and a solution can be found in polynomial time.

Proof: We consider an ordering for variable assignments
corresponding to the ordering <. As the instance sat-
isfies SPC, it satisfies arc-consistency and thus, no do-
main is empty and each value has a support in each do-
main. Moreover, as the instance satisfies SPC, it also
satisfies path-consistency, and thus we assume that we
have a consistent assignment on the three first variables.
Now, and more generally, suppose that we have a con-
sistent assignment (u1, u2, . . . ul�1, ul

) for the l first vari-
ables x1, x2, . . . xl�1, xl

in the ordering, with 3  l < n.
We show that this assignment can be consistently extended
to the variable x

l+1. To show this, we must prove that
\1il

R(c
il+1)[ui

] 6= ;, that is there is at least one value
in the domain of x

l+1 which is compatible with the assign-
ment (u1, u2, . . . ul�1, ul

).
We first prove this for l = 3. Consider the consistent

assignment (u
i

, u
j

, u
k

) on the three first variables x
i

, x
j

and
x
k

. Consider a fourth variable x
l+1 appearing later in the

ordering. By Lemma 4, we have four possibilities:

4.1. R(c
il+1)[ui

] ✓ R(c
jl+1)[uj

]\R(c
kl+1)[uk

]. Since the
instance satisfies arc-consistency, R(c

il+1)[ui

] 6= ; and
then there exists at least one value u

l+1 2 R(c
il+1)[ui

]
and this value is compatible with u

j

and u
k

.

4.2. R(c
kl+1)[uk

] ✓ R(c
il+1)[ui

] ✓ R(c
jl+1)[uj

]. Since
the instance satisfies arc-consistency, R(c

kl+1)[uk

] 6=
;. Thus, there is at least one value u

l+1 2 R(c
kl+1)[uk

]
and this value is compatible with u

i

and u
j

.

4.3. R(c
jl+1)[uj

] ✓ R(c
il+1)[ui

] ✓ R(c
kl+1)[uk

]. Since
the instance satisfies arc-consistency, R(c

jl+1)[uj

] 6=
;. Thus, there is at least one value u

l+1 2 R(c
jl+1)[uj

]
and this value is compatible with u

i

and u
k

.

4.4. R(c
jl+1)[uj

] \ R(c
kl+1)[uk

] ✓ R(c
il+1)[ui

]. Since
the instance satisfies path-consistency, the pair
(u

j

, u
k

) has at least one support u
l+1 which be-

longs to the domain of x
l+1, and then, necessarily,

u
l+1 2 R(c

jl+1)[uj

] \ R(c
kl+1)[uk

]. Moreover, this
value u

l+1 is compatible with u
i

. Thus, the consistent
assignment (u

i

, u
j

, u
k

) can be extended by the value

u
l+1 to the variable x

l+1.

Note that this proof holds for all variables u
i

, u
j

, u
k

and
x
l+1 such that x

l+1 appears later in the ordering <, not only
for the variables x1, x2, x3 and x4.

Now, we prove the property for l with 3 < l < n. That is,
we show that a consistent assignment (u1, u2, . . . ul�1, ul

)
can be extended to a (l + 1)th variable, which is equivalent
to prove that \1il

R(c
il+1)[ui

] 6= ;. As induction
hypothesis, we assume that every consistent assignment
on l � 1 variables can be extended to a lth variable,
which appears later in the considered ordering <. So,
if (u

i1 , ui2 , . . . uil�1) is a partial (consistent) assignment
included in (u1, u2, . . . ul�1, ul

), with i1, i2, . . . il�1 < m
with l + 1  m  n, we have \1jl�1R(c

ijm)[u
ij ] 6= ;.

In particular, we have \1jl�1R(c
ij l+1)[uij ] 6= ;.

Consider a consistent assignment (u1, u2, . . . ul�1, ul

)
on the l first variables. By the induction hypothe-
sis, each partial assignment (u

i1 , ui2 , . . . uil�1) of
(u1, u2, . . . ul�1, ul

) can be extended to a consistent
assignment (u

i1 , ui2 , . . . uil�1 , ul+1). In other words, we
have \1jl�1R(c

ij l+1)[uij ] 6= ;, and in particular, we
have \1il�1R(c

il+1)[ui

] 6= ;. We show now that we
have \1il�1R(c

il+1)[ui

] \R(c
ll+1)[ul

] 6= ;.

Consider the assignment (u
j

, u
k

, u
l

) with 1  j, k < l.
As above, by Lemma 4, we have four kinds of possibilities
for the relations between the three sets R(c

jl+1)[uj

],
R(c

kl+1)[uk

] and R(c
ll+1)[ul

]. We enumerate them,
knowing that i1, i2 and i3 which are pairwise different, can
be j, k or l:

4.1. R(c
i1l+1)[ui1 ] ✓ R(c

i2l+1)[ui2 ] \R(c
i3l+1)[ui3 ].

First, as the instance satisfies arc-consistency,
R(c

i1l+1)[ui1 ] 6= ;. We have two possibilities since
either l 6= i1, or l = i1. We analyze these two cases.

If l 6= i1, we have R(c
jl+1)[uj

] ✓ R(c
ll+1)[ul

],
or R(c

kl+1)[uk

] ✓ R(c
ll+1)[ul

], and thus
\1il�1R(c

il+1)[ui

] ✓ R(c
ll+1)[ul

]. Then, we have
\1il�1R(c

il+1)[ui

] \ R(c
ll+1)[ul

] 6= ;, and also
\1il

R(c
il+1)[ui

] 6= ;.

Otherwise, we have l = i1 (and j = i2 or j = i3), that is
R(c

ll+1)[ul

] ✓ R(c
jl+1)[uj

] \ R(c
kl+1)[uk

]. By induction
hypothesis, we know that the partial assignment including u

l

but without u
j

, that is (u1, u2, . . . uj�1, uj+1, . . . ul�1, ul

)
can be extended to the variable x

l+1.
This is equivalent to
(\1ij�1R(c

il+1)[ui

]) \ (\
j+1il

R(c
il+1)[ui

]) 6= ;.
But as R(c

ll+1)[ul

] ✓ R(c
jl+1)[uj

], we have
(\1ij�1R(c

il+1)[ui

]) \ (\
j+1il

R(c
il+1)[ui

]) ✓
R(c

jl+1)[uj

]
and thus
(\1ij�1R(c

il+1)[ui

]) \ R(c
jl+1)[uj

] \



(\
j+1il

R(c
il+1)[ui

]) 6= ;, which is equivalent to
\1il

R(c
il+1)[ui

] 6= ;.

Finally in every cases we have \1il

R(c
il+1)[ui

] 6= ;.

4.2. (and 4.3.) The cases 4.2 and 4.3 can be analyzed
simultaneously since they correspond to one sole case that
can be denoted:

R(c
i3l+1)[ui3 ] ✓ R(c

i1l+1)[ui1 ] ✓ R(c
i2l+1)[ui2 ].

First, as the instance satisfies arc-consistency,
R(c

i3l+1)[ui3 ] 6= ;. The different possibilities can be
reduced to two cases, either l 6= i3, or l = i3. We analyze
these two cases.

If l 6= i3, assume that j = i3. So, we
have R(c

jl+1)[uj

] ✓ R(c
ll+1)[ul

], and thus
\1il�1R(c

il+1)[ui

] ✓ R(c
ll+1)[ul

]. So we have
\1il�1R(c

il+1)[ui

] \ R(c
ll+1)[ul

] 6= ;, which is equiv-
alent to \1il

R(c
il+1)[ui

] 6= ;. Note that if k = i3, we
apply the same reasoning, but interchanging j and k.

Now, if l = i3, assume that j = i1 and k = i2. Thus, we
have R(c

ll+1)[ul

] ✓ R(c
jl+1)[uj

] ✓ R(c
kl+1)[uk

], and
then also R(c

ll+1)[ul

] ✓ R(c
jl+1)[uj

] \ R(c
kl+1)[uk

]. So,
by the same reasoning than in the case 4.1 for l = i1, we
have \1il

R(c
il+1)[ui

] 6= ;. Note that if j = i2 and
k = i1, we apply the same reasoning, but interchanging j
and k.

Finally, in every cases, we have \1il

R(c
il+1)[ui

] 6= ;.

4.4. R(c
i2l+1)[ui2 ] \R(c

i3l+1)[ui3 ] ✓ R(c
i1l+1)[ui1 ].

First, as the instance satisfies arc-consistency,
R(c

i2l+1)[ui2 ] 6= ; and R(c
i3l+1)[ui3 ] 6= ;. The dif-

ferent possibilities can be reduced to two cases, either
l = i1 or l 6= i1. We analyze these two cases.

If l = i1, we have \1il�1R(c
il+1)[ui

] ✓ R(c
ll+1)[ul

]
and thus \1il�1R(c

il+1)[ui

] \ R(c
ll+1)[ul

] 6= ;, which
is equivalent to \1il

R(c
il+1)[ui

] 6= ;.

Now, if l = i2 (it is the same proof for l = i3). Assume
that j = i1 and k = i3 (it is the same proof for j = i3
and k = i1, interchanging j and k). In this case, we have
R(c

ll+1)[ul

] \ R(c
kl+1)[uk

] ✓ R(c
jl+1)[uj

]. So, by the
same reasoning than in the case 4.1 for l = i1, we have
\1il

R(c
il+1)[ui

] 6= ;.

So, in every cases, we have \1il

R(c
il+1)[ui

] 6= ;.
Thus, every consistent assignment (u1, u2, . . . ul�1, ul

) on
(x1, x2, . . . xl�1, xl

) can be extended to a (l+1)th variable,
for all l with 3 < l < n. And more generally, we have
shown that every consistent assignment on l variables, not
necessarily consecutive in the ordering (as are the l first
variables), can be extended to a consistent assignment for
every (l+1)th variable which appears after these l variables

in the ordering < associated to ETP. Thus, the induction
hypothesis holds for the next step.

Note that this proof also shows that an instance which
satisfies SPC and ETP is consistent.

Finally, given the ordering <, we show that finding a
solution can be done in polynomial time. Given a consistent
assignment (u1, u2, . . . ul

) with l < n, finding a compat-
ible value u

l+1 for the next variable x
l+1 is feasible by

searching in its domain whose the size is at most d. For
each value, we need to verify the constraints connecting
the variable x

l+1 which can be done in O(e
l+1) if the next

variable x
l+1 has e

l+1 neighbors in the previous variables.
Since ⌃1l<n

e
l+1 = e, the total cost to find a solution is

O((n+ e).d). ⇤

As a consequence of theorems 2 and 3, the class of in-
stances satisfying ETP and which are SPC is a tractable
class. Moreover, we can extend Theorem 1:
Theorem 4 If ETP -SPC (resp. BTP -SPC) denotes the
class of instances satisfying ETP (resp. BTP) and SPC, then
• BTP -SPC ( ETP -SPC ( ETP

• BTP -SPC ( BTP ( ETP .
One of the most interesting properties of the tractable

class BTP is the fact that the instances of this class can be
solved in polynomial time using classical algorithms (such
as MAC or RFL) implemented in most solvers. The next
properties establishes that a similar result holds for ETP .
Indeed, the proof of Theorem 3 allows to show that an algo-
rithm such as BT (Backtracking) can solve any instance of
the class ETP -SPC in polynomial time:
Theorem 5 If a binary CSP instance P satisfies SPC and
ETP with respect to a variable ordering <, the algorithm
BT finds a solution of the instance P in polynomial time.
Proof: As the instance satisfies SPC, BT using the order-
ing < for the variable assignment can find a consistent
assignment on x1, x2 and x3. Moreover, it is shown
that a consistent assignment (u1, u2, . . . ul�1, ul

) on
x1, x2, . . . xl�1 and x

l

can be extended to a (l + 1)th

variable, that is on x
l+1. To find the assignment of x

l+1,
we need to look for a compatible value in its domain.
This is feasible in O(e

l+1.d) assuming that x
l+1 has e

l+1

neighbors in the previous variables. So, as for the proof of
Theorem 3, finding a solution of P is globally feasible in
O((n+ e).d). ⇤

Note that by the same reasoning, we can show that a solu-
tion of a binary CSP instance satisfying SPC and ETP can be
found in O(n.(n+ e).d2), using the same variable ordering,
by the algorithms MAC and RFL, where the additional cost
is due to the arc-consistency filtering performed after each
variable assignment.
Corollary 1 If a binary CSP instance P satisfies SPC and
ETP with respect to a variable ordering <, the algorithms
MAC and RFL find a solution of the instance P in polyno-
mial time.



Nevertheless, a question remains open concerning the use
of an ordering which does not satisfy ETP for the variable
assignment for algorithms MAC or RFL while these algo-
rithms execute in polynomial time (despite the use of a dif-
ferent order) for the instances of the class BTP .

In the next section, we discuss the interest of the class
ETP from a practical viewpoint We will analyze in par-
ticular its presence in the instances, but also we will check
whether the instances need to verify SPC to be efficiently
solved in practice.

Experimentations
Now, we wonder whether some instances usually exploited
as benchmarks for solver comparisons satisfy the ETP prop-
erty. With this aim in view, we consider 2,260 binary bench-
marks of the CSP 2008 Competition3.

Among these 2,260 instances, we have observed that the
ETP property occurs more frequently than the BTP one. In-
deed, 41 instances satisfy the ETP property while only 13
satisfy the BTP property. However, only two instances sat-
isfy both ETP and SPC because, generally, for the other in-
stances, some of their values make them arc-inconsistent or
path-inconsistent. In order to avoid this problem and in the
same spirit as the hidden tractable classes introduced in (El
Mouelhi, Jégou, and Terrioux 2014), a natural solution con-
sists in achieving an AC or SPC filtering as pre-processing
step. When enforcing AC, 236 instances are detected as
inconsistent and so for them, BTP and ETP hold trivially.
Among the other instances, for 50 instances, the obtained
simplified instance satisfies the ETP property (against 46 for
BTP). For 36 of them, it is also path-consistent and so be-
longs to the tractable class ETP -SPC. Table 1 provides
the some instances which are BTP and/or ETP before or af-
ter the application of the AC filtering. Now, if we enforce
SPC, 628 instances are detected as inconsistent and so are
trivially BTP and ETP. For 76 instances, the obtained sim-
plified instance satisfies ETP against 71 for BTP. These in-
stances highlight the status of hybrid class. Indeed, 8 in-
stances (e.g. hanoi-3 ext or graph12-w0) belong to ETP -
SPC thanks to their particular structure (i.e. their constraint
graph is acyclic) while the others like domino-100-100 be-
long to ETP -SPC due to their particular relations. More-
over, we can also note the diversity of these instances (aca-
demic, random or real-world instances).

Regarding the solving, we have established in the pre-
vious section that MAC and RFL are able to solve the in-
stances of the class ETP -SPC in polynomial time if they
exploit the variable ordering used in the ETP property. In
practice, all the instances satisfying the ETP property (which
belong or not to the class ETP -SPC) are solved in a back-
track free-manner by MAC and RFL with the dom/wdeg
heuristic (Boussemart et al. 2004) or a random variable or-
dering.

More generally, we found 198 other binary instances
which are not detected as inconsistent by AC and are solved
in a backtrack free manner by MAC (we make a simi-
lar observation for RFL). In order to provide information

3See http://www.cril.univ-artois.fr/CPAI08 for more details.

about these instances, we consider the notion of backdoor
(Williams, Gomes, and Selman 2003). A backdoor is a set of
variables defined w.r.t. a particular algorithm such that once
the backdoor variables are assigned, the problem becomes
easy under that algorithm. This particular algorithm can
be, for instance, any algorithm which solves the instances
of a given tractable class in polynomial time. If we con-
sider the binary instances which have an acyclic constraint
graph, MAC is able to solve them in polynomial time with-
out any additional processing. Then, MAC is also known
to implicitly exploit cycle-cutsets (i.e. a particular case of
backdoor) (Sabin and Freuder 1997). A cycle-cutset is a
subset X

CC

of variables such that the subproblem induced
by X

CC

4 has an acyclic constraint graph. After having as-
signed some variables (i.e. the variables of a cycle-cutset
of the constraint graph), the remaining part of the problem
becomes acyclic and so MAC solves this part in polynomial
time. Unlike the Cycle-Cutset method (Dechter 1990), for
which the cycle-cutset is generally computed before running
the algorithm, MAC is able to exploit such a set implicitly
during the search. For an instance P of the ETP class, we
can have the same reasoning with a subset X 0 of variables
such that once removed thanks to variable assignments, the
problem P|X0 has the ETP property. Computing the small-
est subset X 0 such that P|X0 has the ETP property is NP-
hard (the proof is similar to one for BTP (Cooper, Jeavons,
and Salamon 2010)). But, here, this is not a problem, since
we do not have to compute such a smallest subset. Indeed,
by assigning variables, MAC will implicitly discover a sub-
problem P

X

0 which is ETP. The subset X 0 corresponds then
to the subset of the variables assigned by MAC. Of course,
we cannot have any guarantee about the optimality of the
subset X 0 discovered by MAC. In order to assess the size of
these subsets, we run MAC by checking at each step whether
the ETP property holds for the remaining part of the prob-
lem. We performed the same test for BTP and for both ETP
and SPC. As these experimentations are very time expen-
sive, we focus our study on 102 instances among the 198
instances which are consistent and not ETP.

We first observe that the size of the subset is generally
smaller for ETP than for BTP. Such a result was foresee-
able since ETP generalizes BTP. In most cases, the size of
the subset for ETP and SPC is close to the one for ETP and
smaller than the one for BTP. Table 2 gives the number of
variables which must be assigned by MAC before the re-
maining part of the problem is BTP, ETP or both ETP and
SPC for some instances. The selected instances are repre-
sentative of the observed trends. For 32 instances (respec-
tively 20), MAC requires to assign less than the third of
the variables in order that the remaining part of the prob-
lem is ETP (resp. ETP and SPC) while the same result for
BTP is only observed for 12 instances. Furthermore, for
12 instances (resp. 8), after at most the third assignment,
the remaining part of the problem becomes ETP (resp. ETP

4The subproblem of an instance P = (X,D,C) induced by a
subset X 0 of X is the instance P|X0 = (X � X

0
, D

0
, C

0) where
D

0 = {D
xi 2 D|x

i

2 X � X

0} and C

0 = {c 2 C|S(c) ✓
X �X

0}.
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Instance BTP ETP BTP ETP
before AC after AC

crossword-m1-uk-puzzle01 no no yes yes
domino-100-100 no yes yes yes
fapp17-0300-4 no yes no yes

graph12-w0 yes yes yes yes
hanoi-3 ext yes yes yes yes

pigeons-50-ord yes yes yes yes

Table 1: Some instances which are BTP and/or ETP before
or after the application of the AC filtering.

Instance n BTP ETP ETP-SPC
2-insertions-3-4 37 17 1 1

anna-11 138 36 29 29
bqwh-15-106-35 ext 106 90 33 90

mug100-25-4 100 45 3 3
myciel3-4 11 4 1 1

super-os-taillard-4-11 32 24 20 21

Table 2: Number of variables which must be assigned by
MAC before the remaining part of the problem is BTP, ETP
or both ETP and SPC for some instances.

and SPC). So, in such a case, we can consider that the pres-
ence of the ETP property inside the instances may mainly
explain the good efficiency of the MAC algorithm on these
instances. In contrast, if many variables must be assigned
in order to make the remaining part of the problem ETP, we
have to study in a deeper manner the behavior of MAC in
order to provide explanations of its practical efficiency.

Conclusion
We have defined a new property called ETP, which con-
stitutes a generalization of the Broken Triangle Property
(BTP). Thanks to ETP, we have introduced a new tractable
class of CSPs called ETP -SPC, defined by instances
which satisfy both ETP and Strong-Path-Consistency. This
work seems useful because BTP is one of the most impor-
tant tractable class in the state of the art of CSPs. This new
class has the same type of desirable properties as BTP , in
particular it can be solved in polynomial time, directly by
solvers using standard algorithms such as MAC or RFL. In
addition to the theoretical contribution of this work, we have
experimentally shown the presence of this class among the
benchmark instances of the CSP community. We have also
shown the potential interest of its use for the solving of any
instances thanks to the notion of backdoors. A first possi-
ble extension of this work would be to relax the required
satisfaction of path-consistency to ensure the tractability of
the instances satisfying the ETP property. For example, di-
rectional path consistency is an immediate relaxation but we
think to less powerful local consistencies than ones based on
path consistency. Moreover, we naturally think of extending
this tractable class to CSPs with constraints of any arity. It
would also be useful to analyze the relationships of this class
with other tractable classes of CSPs.
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