
A Filtering Process for General Constraint-Satisfaction Problems :
Achieving Pairwise-Consistency Using an Associated Binary Representation

P. Janssen P. Jegou B. Nouguier M.C. Vilarem

Centre de Recherche en Informatique de Montpellier
860, Rue de Saint Priest, 34100 Montpellier FRANCE

(33) 67 63 04 60 Fax : (33) 67 54 30 79 Email : CRIM@FRMOPll.BITNET Tel :

ABSTRACT
In this paper, we are interesting in using a partial consistency,
issued from relational databases theory, within the Constraint-
Satisfaction Problems (CSPs) framework : pairwise-
consistency. This partial consistency concerns general CSPs
(i.e. CSPs the constraints of which may involve more than two
variables). We provide a polynomial algorithm for achieving it;
then we can extend the class of polynomially solvable CSPs.
This algorithm is based on a minimal binary representation of a
general CSP, of which presents some properties we give.

Key words : Coi'straint-Satisfaction Problems (CSP), partial
consistency, arc-consistency, pairwise-consistency, qual graph.

consistency, pairwise-consistency, for general CSPs, and a
polynomial algorithm to process it; this allows us to extend the
class of polynomially solvable CSPs. The basic idea is to
represent a general CSP by a binary CSP, while preserving
structural properties.
In this paper, we first recall CSPs definition and main results.
Then we define pairwise-consistency and its properties; we
provide also a polynomial algorithm to achieve pairwise-
consistency. This algorithm is based on an equivalent binary
representation for the general CSP. There can be several similar
representations; therefore, in the last part, we give an algorithm
to find a minimal one, the properties of which allow the
extension of Freuder's theorem [9] to a-acyclic CSPs 121.

* this work was supported by GS DIALR

Constraint-satisfaction problems (CSPs) involve the assignment
of values to variables which are subject to a set of constraints.
Examples of CSPs are map coloring, conjunctive queries in a
database [2], line drawings understanding [17] [19] [22], pattern
matching in production rules systems [20], combinatorial
puzzles, peptidic synthesis [13] ... In the general case, finding a
solution or testing if a CSP admits a solution is a NP-complete
problem. Therefore, different levels of consistency have been
introduced. The methods to achieve these local consistencies are
considered as filtering algorithms : they may lead to problem
simplifications, without changing the solution set. They have
been used as well to improve the representation prior the search,
as to improve backtrack during the search [101. They have also
been used in the framework of dynamic CSPs [111.
Most of these consistencies deal only with binary CSPs (CSP
with only binary constraints). We propose here another partial

A CSP involves a set X of n variables Xi,X2, ... Xn having
domains D1,D2 ,... Dn and a set C of m constraints C1, ... Cm.

Each Di defines the set of values that variable Xi may assume. D
is the set of all domains. A constraint Ci is defined on a set of
variables (Xil,. . . XijJ by a subset of the Cartesian product
Dilx ... Diji; we note this subset Pi (Pi is the set of value

arrangements satisfying the constraint q). P is the set of all Pi,
fo r i =l..m.
In this paper, we will write a CSP iP as P=(X,D,C,P).
A CSP solution is a value assignment for all variables, such that
all the constraints are satisfied. For a CSP P, the hypergraph
(X,C) is called the constraint hypergraph. If all constraints
involve at most two variables, the CSP is a binary CSP, and
(X,C) is a graph (generally called constraint graph). For a given
CSP. the problem is either to find all solutions or a solution, or
to know if there exists any solution. All these problems are

420 1984/89E0000/042&$01.00 Q 1989 IEEE

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 25, 2009 at 20:13 from IEEE Xplore. Restrictions apply.

known to be NP-complete.

+
a, ,c

Figure 1 : this is a CSP with variables X = (X1.X2,X3,Xq, Xg,Xg.X7);

the constraints are the arcs of the grapk each variable domain is given by

the set of associated letters. The constraints are defined by non strict
lexicographic ordering : for example, the constraint 0[2,X4) is defined by

the set ((b.b),(b.c),(c.c)). This problem has several solutions; the

assignment (a,b.a,b,b,d,e) to X is one of them.

CSPs are nomally solved by different versions of backtrack
search. Consequently, many works try to improve the search
efficiency. They mainly deal with binary CSPs. Freuder,
considering the problem of finding one solution, gives a
preprocessing procedure for selecting a good variable ordering
prior to running the search. One of his main results is a
sufficient condition for backtrack-free search [9]. This condition
concerns on one hand a structural property of the constraint
graph, and on the other hand more or less local consistencies.
Roughly speaking, we could express the idea as : "the more the
constraint graph is connected, the higher the level of the
consistency must be". Nevertheless, one can use this theorem
only for simple cases : consistency verification is easy only for
low level consistencies. Moreover, in the other cases, achieving
consistency leads to a structural modification of the constraint
graph. As an outcome, Freuder [9]. Pearl and Dechter [6] give
two classes of polynomially solvable CSPs. See for example :

Corollary 2.1 [9] : if the constraint graph is acyclic, then
there is a polynomial algorithm to find a solution.

To solve the general problem, various efforts have been made to
improve backtracks performance; they can be classified along
the two following dimensions :
- improving backtrack during search (see [41 161 [lo] [183)
- improving the representation prior to search : these techniques

are mainly based either on some decomposition of the problem
(cycle-cutset method [SI or tree-clustering method [7]), or on the
obtention of some partial consistencies [8] [14] [19] [22].
Here, we develop here the last approach, more precisely arc-
consistency [22], also known as domain-filtering. To verify the
arc-consistency, any value dj of a variable Xi needs to be
compatible with any constraint involving Xi.

Definition : a domain Di is arc-consistent iff Di f 0
and V di E Di , VCj 3 Xi , di~Pj[Xi], where Pj[Xi] is the
restriction of Pj to Xi. A CSP is arc-consistent if each one of
the variables domains is arc-consistent.

Property 2.2 [9] : if a binary CSP is arc-consistent, and if its
constraint graph is acyclic, then the CSP admits a solution and
there is a backtrack-free search order.

Nevertheless, in the general case, an arc-consistent CSP does
not necessarily admit a solution. If the given CSP is not arc-
consistent, we can still transform it in a CSP P' : the domains
D'i of P' are obtained by deleting the values of D i when the arc-
consistency condition is not true. If one of the D'i is empty, P
does not admit a solution, else '63' is arc-consistent. P' is called
the arc-consistent-closure of P . It presents the following
properties :

P and P' have the same solution set.
P' and P have the same constraint hypergraph.
P' is somehow simpler than '6) : V i, Di' G Di .

So, processing the arc-consistent-closure is a filtering process
deleting values which cannot belong to any solution. In 1161, it
is shown that arc-consistency can be achieved by a linear
algorithm.

1 x-

Figure 2 : figure 2.1 CSP arc-consistent closure. Note for example that
value e has been deleted in D1 because it does not exist any value in

compatible with it for the constraint C=(Xl,X2).

42 I

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 25, 2009 at 20:13 from IEEE Xplore. Restrictions apply.

TENCY

Here, we present a new form of partial consistency within the
CSP framework : the pairwise-consistency.

Only one partial consistency has been studied within the
framework of general CSPs : arc-consistency. The results are
quite similar to those obtained in the case of binary CSPs :
generalization of the property 2.2 [13] and linear algorithms for
the processing of the arc-consistent closure [13] [15]. These
results led to the following corollary.

Corollary 3.1. [131 : if the constraint hypergraph is Berge-
acyclic, there exists a polynomial algorithm to find a solution.

The cycle definition used in this corollary is given in [13. In the
following chapters we use another definition, proposed in [2]
and called a-cycle. We do not report it here, knowing the
following properties is sufficient : (1) any a-cycle is a Berge
cycle; the converse is false [2], and (2) there is a linear algorithm
to test if a hypergraph is a-acyclic [21].

(b)

Figure 3 : cyclicity and hypergraphs : the hypergraph (a) is Berge-acyclic
and a-acyclic, (b) is Berge-cyclic but a-acyclic, and (c) is both Berge-cyclic
et a-cyclic.

We define the pairwise-consistency, basing on works
concerning relational databases [2]. It allows to extend the
corollary 3.1 to a-acyclic hypergraphs. Whereas arc-consistency
is a local consistency between variables domains and
constraints, pairwise-consistency defines a consistency between
constraints.

Definition : a CSP '65 = (X,D,C,P) is pairwise-consistent
iff

V Ci, V Cj / CinCj z 0 , Pi[CinCj] = Pj[CinCjl and

pi[cincj] z 0
V Pi, Pi z 0

(the expression Pi[CinCj] represents the restriction of Pi to the
variables of C,nCj).

There is no direct link between arc and pairwise-consistency : a
pairwise-consistent CSP may be not arc-consistent, and
reciprocally (example 1).

A database result [2] has pointed out the link between pairwise-
consistency and a constraint hypergraph property. In terms of
CSPs, this result is the following :

Property 3.1 : If a CSP is pairwise-consistent and if its
constraint hypergraph is a-acyclic, then it admits a solution
which can be obtained in a polynomial time.

As for arc-consistency, it is possible to obtain from painvise-
consistency a filtering operation on general CSPs. To this aim,
we associate to each CSP '65 a CSP, noted Pp, called pairwise-
consistent closure of P defied below :

Definition : let P = (X,D,C,P) a CSP. The pairwise-
consistent closure of P is the CSP '65P = (X,D,C,Q) defined
by :
- V i Q, C Pi.
- PP is pairwise-consistent
- PP is maximal in the following sense : there is no CSP P' =

(X,D,C,R) such as V i Qi C Ri C Pi , P' pairwise-
consistent and Q # R.

422

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 25, 2009 at 20:13 from IEEE Xplore. Restrictions apply.

It can be underlined that the pairwise-consistent closure of a
CSP P does not necessarily exist. Thus, the single CSP P'
which verifies the property (V Ci, V C j / CiflCj # 0 ,
Qi[CinC,]=Qj[CiflC,]) may be such that, for some i,
Q,[CinC,] = 0, i. e. Q, = 0. In this case P has no solution.

Property 3.2 : When the pairwise-consistent closure of a
CSP exists, it is unique.

Proof : suppose that P I = (X,D,C,Q) and P2 = (X,D,C,R)
are two distinct pairwise consistent closures of a CSP P =
(X,D,C,P). Let us build the CSP P' = (X,D,C,T) the
following way : Ti = Ri U Qi ; one can easily see that
'65' is pairwise-consistent and therefore P 1 and P2 are not
maximal.

V i

Property 3.3 : If P p exists, then P and P p have the same
set of solutions.

Proof : let S be a solution of '6) = (X,D,C,P), S is pairwise-
consistent; if S is not a solution of P p = (X,D,C,Q) then 3 i :
S[Ci] Q; let P' = (X,D,C,R) the CSP defined by V i,
Ri=Qi U S[Ci]. S and P P being pairwise-consistent, P' is

pairwise-consistent and therefore P p is not maximal. H

Example 2 : pairwise-consistent closure of the CSP '6) 1 shown by

example 1 : Let 3'2 = (X,D,C,Q) be the painvise-consistent closure of Pi.

we have : Q1 = [(a,a,b), (a,b,a) I . Q2 = [(a,b,a), @.a$) I and Q3 = [(a.a)l.
It may be seen that P2 is not arc-consistent since b s D1 does not belong
to any tuple in Q1.

Another interesting property concerns the links between arc and
pairwise-consistency. Although pairwise-consistency does not
act on the variables domains, it is easy from a pairwise-
consistent CSP to get an arc-consistent CSP.

Property 3.4. : let P = (X,D,C,P) be a CSP; let a CSP Ppac
= (X,D',C,P) defined by : v Xi D'i = Pk[xi] where c k is any
constraint involving Xi. If P is pairwise-consistent then PPac
is arc and pairwise-consistent.

Proof : showing that Ppac is arc-consistent is sufficient : let
Xi be a variable, and di E D'i; from Ppc definition, we have :
3 c k 3 Xi With di E Pk[Xi]. Since P is pairwise-consistent,
V ch3xi : Pk[Ch n Ck] = Ph[Ch n Ck] and therefore, as
XiECh n c k , 'd Ch 3 xi , Pk[Xi] = Ph[xi]. SO 'd xi E x,

v di€D'i , v c h 3 xi , di E ph[xil.
Consequently, Wac is arc-consistent.

Using this property, it is easy to define a closure based on these
two partial consistencies. This way, we obtain another filtering
process by achieving first pairwise-consistency, and then arc-
consistency.

Example 3 : Let P 3 = (X.D',C,Q) be the arc-consistent closure of P2
(example 2); it is the arc-pairwise-consistent closure of P 1. We have
Di=(a),D2= h, D g =D3 andD4 = (a 1.

Pairwise-consistency is thus a new partial consistency suitable
for general CSPs, possibly associated with arc-consistency. We
give below an efficient algorithm to achieve it.

To this aim, we associate to every general CSP PH a binary
CSP PGOI) so that achieving pairwise-consistency on PH
consists in achieving arc-consistency on PGOI).

u-Quu"

Definition 131 : let H = (X,C) a hypergraph. A qual graph
of H is a graph G(H) = (C,E,v), where v is an edge labelling
such that :
O E S F = ((Ci.Cj) C C / i # j a n d q n C , # 0) ,

0 V Ci, Cj E C if Ci n C, # 0 , then there is in G(H) a chain
(Ci=CO,CI ,..., C,= C,) such that V kE[O,q-l] , Ci f l Cj c
v((CkrCk+l))

0 v((ci ,cj)) = ci n cj

There may be several qual graphs for the same hypergraph
(figure 4). We can notice that the representing graph [11 of H
(C,F,v), sometimes called intersection graph, is the greatest
element of the qual graphs set.

Given a general CSP PH, and one of its qual graphs G(H), let
us define the associated binary CSP PG(H) :

Definition : Let PH = (X,D,C,P) a CSP and H = (X,C) its
constraint hypergraph. PGCH) = (C,P,E,R) with :

(C,E,v) = G(H),
C = (C1, ... Cm) a variables set with a domains set P =

(P1. ... Pm) 9

423

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 25, 2009 at 20:13 from IEEE Xplore. Restrictions apply.

if Ek E E / Ek = (c i , c j) , then Rk = [(pi,pj) E PiXPj /
pi[V(Ek)] = p,[V(Ek)]) (e.g. value pi for ci and Vdue Pj for cj
are compatible if the variables of Ci n Cj have the same values).

A PG(H) solution is an assignment to the variables of C
satisfying all the constraints defined by E and R.

c1 (x2) c4

Figure 4 : a hypergraph and two of its qual graphs

Property 4.1. : Let PH = (X,D,C,P) a general, CSP, and
P G (H) = (C,P,E,R) an associated binary CSP, then : PH
pairwise-consistent e P G ~ arc-consistent.

Corollary 4.1. : if (C,Pac,E,R) is the arc-consistent closure
of P ~ (~ 1 , then the pairwise-consistent closure of P H is

Pi=(X,D,C,PaC).

Proof: obvious.

4.2 A c h l e v l n g w i s e - c w u h t e n c v of a CSE

Method : To achieve pairwise-consistency of a CSP PH we

may consider an associated qual graph G(H) = (C,E,v) and use
the corollary 4.1 : achieving arc-consistency of PG(H) i.e.

P~&=(c,P~c,E,R) allows to get PK = OC,D,C,P~C).

This can be made using the linear algorithm AC4 [16] on
P~JG(H). AC4 does not require the explicit building of PG(H) : it
only requires the ability of testing, for any constraint, two values
compatibility, and therefore the explicit construction of R is
needless.

Algorithm evaluation :
the problem parameters are the following ones :
- n = 1x1 counts the variables of PH,
- m = IC1 is the number of constraints in PH,
- e = IEl the number of G(H) edges,
- k = max [lPil/ Pi E P), the size of the domains in PG(H) (or
the size of the constraints in PH),
- a = max [lCil/ Ci E C), maximal arity of the PH constraints.

Property 4.2. : Achieving pairwise-consistency can be done
in polynomial time.

Proof : The complexity of AC4 on a given G(H) is O(eak2)
(complexity of AC4 is O(ek2) and factor a is issued from an
elementary test cost). Besides, the intersection graph can be
obtained in O(am2) . The whole complexity is thus
O(ea@+am2). W

For a given constraint hypergraph, the intersection graph is the
qual graph having the maximal number of edges. Therefore, we
might take advantage of using another qual graph with less
edges, so that we could reduce the factor e in O(eak2 + am2).

424

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 25, 2009 at 20:13 from IEEE Xplore. Restrictions apply.

There can be several qual graphs of very different sizes (see
figure 4) associated to a hypergraph. So, in this part, we
propose an algorithm to find minimal qual graphs.

Definition : Let H = (X,C) be a hypergraph; G,(H) is a
minimal qual graph for H if G,(H) = (C,E,,vm) is a qual
graph, and E, is minimal (i.e. no one of the partial graphs of
G,(H) is a qual graph for H).

Example 4 : qual graph (c) of figure 4 is a minimal qual graph for

h w w w h (a).

There can be several minimal qual graphs associated to a
hypergraph. We show that they have the same number of edges.

Notations : given H = (X,C) and G(H) = (C,E,v), let us
define the following notations:
9 =(CinCj / CinCj * 0).
F o r A s $, $ ~ = (c i E c / A E C,]

Let Ai, A2 ,...... Ah be a numbering defining a total order on 9
compatible with 3 (i.e. V Ak, Ai Q 9 / Ai 3 Ak -$ i < k)
Ek = [e E E/v(e) = Ai, i S k 1 and EAi = (e e E/v(e) =Ai).
G'($A,) is the subgraph of (C,Ei) induced by $ A ~ .

NbCC(G) denotes the number of connected components of G.

We consider below a hypergraph (X,C) and a total order on ti
compatible with 3.

Proof : Ai V((Ck,Ck+l))=A, and by the total order
definition r I i; so, [Ck,Ck+l]E Ei.

Lemme 5.2. : G = (C,E,v) is a qual graph CJ V i E [1, h 1,
G~(sA~) is connected.

Proof :
+ V Cil , Ci2 e SA^ , Cil n Ci2 = Aj ;z Ai , and there is a

chain in G, (c o = C i l , , Ck, ... Cq= Ci2) such that :

- v k a [0, q], Aj c c k , then c k

consequently, the considered chain appears in @($A~)
v Cil , Ci2 / Cil I-7 Ci2 = Ai , there is a chain in

G'($A~), (co=cil,, c k ,... cq= Ciz) such that : '# k e [o,q-l],
Ai c v((ck,ck+l)); Since Gi($&) is a partial subgraph of G,

SA, $Ai

- v k E [0, q-1 1, (ck,ck+l) E (lemma 5.1.) and c Ei;

this chain also appears in G.

Lemma 5.3. : if G and G' are two qual graphs, then
N~cc(G~($A~+~) = N ~ C C (G i (S ~ i + l)

Proof : it is sufficient to prove : Cil, Ci2connected in
G ~ (S A ~ + ~) 9 Cil, Ci2connected in G"($A~+~). If Cil and Ci2
are connected in G i (S ~ i + l) , there is a chain (Co=Cil, ..., Q,
... Cq=CiZ)suchthat: V kE [l ,q - l] , 3r< i /v ((Ck ,Ck+l))
= A,. Then Ck , c k + l $A,, and by lemma 5.2., c k and ck+ l

are connected in G"($A,), and furthermore in G'i($~i+l) since
E T C E i and $ A ~ C S~i+ l .

Lemma 5.4. : let G = (C,E,v) be a minimal qual graph,
thenVi E [0, h-1 1, IEA;+~I = NbCC(Gi(S~i+l))-l

Proof: by lemma 5.2., G'+'('§A~+~) is connected. If S ~ i + l

is not connected in Gi , the edges connecting it in Gi+l belong to
 EA^+^. The minimum number of these edges is
(NbCC(Gi($Ai+l)) -1) and any additional edge would be
redundant (its deletion would not disconnect G'+ ' ($A~+~)).

Since G is minimal: IE~i+l l= (NbCC(Gi (5~ i+ l)) -1).

Property 5.1. : let H = (X,C) be a hypergraph, let
G=(C,E,v) and G' = (C,E,v') be two minimal qual graphs for
H. then IEl = IEI.

Proof : by lemmas 5.3. and 5.4., V i E [1, h 1. l E ~ ~ l = IE'A~I,
so IEl = IE'I. a

The proof of property 5.1 gives the idea of the algorithm :
starting with the graph Go=(C,Eo) where Eo = 0 , each element
of g is processed in order Ai, &,..Ah. At step k, we add edges
such that the resulting graph Gk = (C,Ek) has the following
properties :
(i) V e E Ek, v(e) E (Ai,..&).
(ii) V j, 1 -< j I k, SA^) is connected

(iii) let G'=(C,E,v') be a minimal qual graph, then lEkl = IEkl.

425

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 25, 2009 at 20:13 from IEEE Xplore. Restrictions apply.

Property (iii) ensures the final graph minimality, while property
(ii) is equivalent to the qual graph condition (lemma 5.2.).

Algorithm :
Eo<- 0
for k c- 1 to h do

(@ (&k) has nk connected components;for eachone
of them, we select one vertex; let C n l, c n k be the
resulting set}
Ek C- Ek-1 U (nk - 1 edges which connect Cnl,.., C,,)
{ i f@I(&k) is already connected, Ek = Ek-1,

roc
Gm(H)<- Gh;

Proof : by induction on k :
fork = 1, properties (i), (ii), (iii) hold
suppose (i), (ii), (iii) hold for j, j = 1, ... k-1.

(i) is true for Gk : actually, every added edge e connects two
vertices of $Ak , then Ak t v(e); so, from definition of the total

order on g , v(e) E (Ai,.&)
(ii). V j I k-1, SA^) is connected. At step k, there is no
edge deletion; consequently, Gj($A,) remains connected. The
purpose of step k is to connect Gk-l($Ak), then @($Ak) is

aCtUdy COMeCted.

(iii) the Of added edges iS = (NbCC(Gk-'($Ak))-1)
(lemma 5.4); this number is equal to IEAkI (lemma 5.3 and

5.4).
Property (ii) holds in Gm(H). which consequently is a qual
graph; moreover, by property (iii), Gm(H) has the same number
of edges as a minimal qual graph (property 5.1), therefore
Gm(H) is minimal. w

Complexity :
With a, m and n as in 4.2. and h = 191, f = IF1 the number of
edges in the representing graph of H, and em = lEml the number
of edges in a minimal qual graph for H.

9 ordering computation : O(n.f + f.a.log(h)).
Comparing two members of 9 requires O(a) time. We can
represent 9 by an array indexed by cardinality of g members; the
ih member of this array is a tree encoding Aj'S of cardinality i.
Building this structure requires O(n.f+f.a.log(h)) time.
Finding a total ordering on 9 is achieved in O(h).

Gm construction : O(h(m + em))
Step k : O(I$,qJ + lEkl)

searching connected components of Gk-l($ Ak) runs in

The overall complexity is O(h(m + em)) time because I $ & \ < m

and lEkl I em.

o(I$Akl+ IEk-'l) h e EAk building iS ill o(lEAkl)

The total cost of this algorithm is O(n.f + f.a.log(h) + h(m+em))
time ; this expression can be overestimated by O(n.m2.10g(m2)
+ m4).

When implemented on a minimal qual graph, the process of
painvise-consistent-closure requires O(nm210g(m2)+m4+~~&2)
time. This complexity seems greater with respect to the previous
one : O(am2+eak2) (see 4.2.). Nevertheless, we have to
consider all the factors : let d be max IDil, then k I da; thus,
finding Gm can be advantageous when em CC e. This is often
the case in practice, especially when the size of the hypergraph
(factors m and n) is small with regard to the constraints size
(factors d and k). Furthermore, in the framework of dynamic
CSPs we have to solve a sequence of CSPs with only local
changes [111. In many cases, we may very quickly obtain the
minimal graph of a new CSP from the previous one. So, the
total cost may be less than expected.

We can link a constraint hypergraph and its minimal qual graphs
by the following property.

Property 5.2 : H a-acyclic (connected) a Gm(H) is a tree

Proof : It has been shown in [2] that H is a-acyclic iff H
admits a join-tree G (acyclic qual graph). It is enough to notice
that G is minimal since no partial graph of G is a qual graph.

Besides, we have shown PH and PG(H) are equivalent, in the
sense that there is a bijection between their solution sets [121.
This result leads to a generalization of Freuder's corollary 2.1 to
a-acyclic CSPs.

Property 5.3. :
then there exists a polynomial algorithm to fmd a solution.

let PH be a general CSP. If H is a-acyclic

Proof : from property 5.2, we can associate to P H an
equivalent binary CSP PG~(H), the graph of which is acyclic.

This can be polynomially done. In addition, we can
polynomially find a solution to PG~(H) (Corollary 2.1). W

426

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 25, 2009 at 20:13 from IEEE Xplore. Restrictions apply.

From the previous property, we can notice two points:

- the class of the polynomially solvable CSPs i s extended,
- even if H i s not a-acyclic, P G ~ (H) may be considered as an

equivalent binary representation of P H . The main advantage o f

such a representation is the ability o f using binary CSPs results.

Nevertheless this requires that the transformation maintains

polynomially solvability and that the corresponding cost i s not

too high : acyclicity conservation i s a partial answer to the f i t

point .

Pairwise-consistency i s a partial consistency on general CSPs; in

the framework o f relational databases, Been & all. have shown

i t i s a necessary condition for a solution to exist. We showed

that achieving i t consists in a new filtering process; its

complexity i s polynomial and we gave a bound for it. In

addition, for an already pairwise-consistent CSP, i t i s easy to

process arc-consistency. The algorithm presented here is based

on a binary representation o f general CSPs : we associate to any

constraint hypergraph a set of graphs : the qual graphs set, any

element of which i s a binary representation of the given CSP.

We studied the minimal elements in the qual graphs set, i.e.

graphs with a minimum number o f edges. We proposed a

polynomial algorithm to find one o f them. One can use these

results to improve the efficiency o f achieving pairwise-

consistency. Moreover, we showed that any minimal qual graph

of an acyclic hypergraph i s also acyclic. Consequently, we can

extend Freuder's theorem to general CSPs. This representation

might be studied in further works, in order to take advantage o f

the numerous studies concemig binary CSPs .

R E F E R E N C E S

C. Berge, "Graphes et hypergraphes," Dunod (France), 1970.

C.Beeri, R. Faain, D. Maier & M.Yannakakis. "On the
desirability of acyclic database schemes," J. Assoc. Comput.,
vol. 30, p. 479,1983.

P.A. Bernstein, N.Goodman, "The power of natural semijoins"
SIAM J. of computing 10,4,1981.

R. Dechter, "Constraints processing incorporating,
b ac kju m p i ng , I e a r n i n g and cuts et -deco m po sit i o n , "
Proceedings Forth IEEE Conference on AI Applications. San
Diego, CA, p. 312, 1988.

R. Dechter & J. Pearl, "The cyclecutset method for improving
search performance in AI applications," Proceedings Third
IEEE Conference on AI applications, Orlando, p. 224,1987.

R. Dechter & J. Pearl, "Network-based heuristics for
constraint-satisfaction problems," Artificial Intelligence, vol. 34
p. 1, 1988.

R. Dechter & J. Pearl, "Tree-clustering schemes for
constraints-processing," Proceedings AAA1 88, St Paul, p.
150, 1988.

E.C. Freuder, "Synthesizing constraint expressions," Comm.
ACM, vol. 21, p. 958, 1978.

E.C. Freuder. "A sufficient condition for backtrack-free
search," ACM, vol. 29 (l) , p. 24, 1982.

R.M. Haralidc & G.L. Elliot, "Increasing tree search efficiency for
constraint-satisfaction problems," Artificial Intelligence vol. 14
p. 263, 1980.

P. Janssen, P. JBgou, B. Nouguier, M.C. Vilarem, "Problbmes
de conception : une approche basee sur la satisfaction de
contraintes," Les systemes experts et leurs applications,
9*mes Journees Internationales, Avignon, p. 71, 1989.

P. Janssen, P. JBgou, B. Nouguier, M.C. Vilarem, "Une
operation de filtrage pour les CSP generaux : un calcul de la
fermeture paire-consistante base sur une representation
binaire des CSP n-aires," R.R. C.R.I.M. no 69,1989.

P. Janssen & M.C. Vilarem, "Problbmes de satlsfaction de
contraintes : techniques de resolution et application a la
synthese de peptides," R.R. C.R.I.M. no 54,1988.

A.K. Macworth & E.C. Freuder, "The complexity of some
polynomial network consistency algorithms for Constraint
satisfaction problems," Artificial Intelligence 25, p. 65, 1985.

R. Mohr & G. Masini, "Good old discrete relaxation," ECAI 89,
Munich, p. 651, 1989.

R. Mohr & T.C. Henderson, "Arc and path consistency
revisited," Artificial Intelligence, vol. 28 (2), 1986.

U. Montanari, "Networks of constraints : fundamental
properties and applications to picture processing," Information
Sciences, vol. 7, 1974.

B.A. Nadel, "Three consistent labelling algorithms and their
complexities : search-order dependent and effectively
instance-specific results," Report DCS-TR-171, Computer Sc.
Dept. Rutgers University New Brunswick, NJ, 1986.

A. Rosenfeld, R. Hummel & S. Zucker, "Scene labeling by
relaxation operations," IEEE Trans. Systems Man Cybernet.
vol. 6. p. 420, 1976.

G. Sabatier, "Optimisation du pattern matching pour un
systeme du type SNARK," 6' Congrbs AFCET INRIA
Reconnaissance des formes et intelligence artificielle,
Antibes, Fr.. p. 799, 1987.

R.E. Tarjan & M. Yannakakis, "Simple linear-time algorithms to
test chordality of graphs, test acyclicity of hypergraphs, and
selectively reduce acyclic hypergraphs," SIAM J Comput., vol.
13,3, p. 566, 1984.

D.L. Waltz, "Understanding line drawings of scenes with
shadows." P.H.Winston (Editor), The Psychology of Computer
Vision, Mc Graw-Hill , New-York, p. 19, 1975.

427

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 25, 2009 at 20:13 from IEEE Xplore. Restrictions apply.

