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ABSTRACT

This paper reviews work on using interval arithmetic as the basis for next genera-
tion spreadsheet programs capable of dealing with rounding errors, imprecise data,
and numerical constraints. A series of ever more versatile computational models for
spreadsheets are presented beginning from classical interval arithmetic and ending
up with interval constraint satisfaction. In order to demonstrate the ideas, an actual
implementation of each model as a class library is presented and its integration with
a commercial spreadsheet program is explained.

1 LIMITATIONS OF SPREADSHEET
COMPUTING

Spreadsheet programs, such as MS Excel, Quattro Pro, Lotus 1-2-3, etc.,
are among the most widely used applications of computer science. Since the
pioneering days of VisiCalc and others, spreadsheet programs have been en-
hanced immensely with new features. However, the underlying computational
paradigm of evaluating arithmetical functions by using ordinary machine arith-
metic has remained the same. The work presented in this paper shows that
interval techniques provide a new and more versatile basis for spreadsheet com-
putations in many ways. Since exact numbers are intervals of zero width, the
generalizations proposed can be made without loosing the possibility of using
spreadsheets in the traditional way.
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The fundamental computational task performed by spreadsheets is to evaluate
a set of mutually dependent functions, i.e., a function system of the following
kind.

Definition Let S = {Y; = F;(...)} be a set of arithmetical functions and
V' the set of variables used in it. Variables Y; representing function values are
called output variables OUT. S is called function system (F'S) if there is at
most one function for each Y; € OUT. An output variable Y; that is related to
itself via a circular chain of functions

Yi:Fl(...,Yé,...),YQ:FQ(...,Yg,...),...,Yn:Fn(...,Yi,...), nZl

is called recursion variable. If R is the set of recursion variables in a F'S, then
variables in V. — OUT U R are input variables IN. If R = {}, then the F'S is
non—recursive, otherwise recursive. The task of cascaded function evaluation
in a F'S is to evaluate the output variable values when the values of input vari-
ables are given.

For example, in function system
FS={z=y>+2+3w, y=2°+e*, w=sin(zw) + 2} (1.1)

the last function is recursive and it is also mutually recursive with the first
function. The task of cascaded function evaluation is to compute output vari-
able values z, y and w when input values z, w, and z are given. Notice that
recursion variables z and w are used simultaneously as input and output.

The current computational paradigm of spreadsheets is to evaluate non—recursi-
ve (non—circular) function systems by using ordinary machine arithmetic. From
the user’s view point, this simple scheme is insufficient in various practical sit-
uations. This paper focuses on three problem areas: limitations of machine
arithmetic, exploitation of inexact data, and application to constraint solving.

1.1 Limitations of machine arithmetic

Consider the following harmless—looking spreadsheet situation:

Al = 10864
Bl = 18817 (1.2)
Cl = 9xAl"4— B1"4+2B1"2

When the system is evaluated by using MS Excel spreadsheet program, value
C1 = 2 is obtained although the correct value [44] should be C1 =1 (!). The
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problem is due to the rounding errors generated by finite precision machine
arithmetic (double precision) used by the system. This example demonstrates
that, in the general case, the spreadsheet user cannot be sure that even the
first digit in the results is correct.

Another problem of machine arithmetic is how to deal with overflowed val-
ues. For example, the value of exp(710) overflows in ordinary double precision
and generates an error in a spreadsheet program. However, in a tolerant system
it should be possible to make computations with such values when reasonable,
too. For example, consider the function system:

Al = 0
A2 exp(710) * Al
A3 2/ exp(710)

MS Excel returns error values for A2 and A3 because the value of e7!0

flows. However, a more robust system could see that

over-

A2 = exp(710) %0 0
A3 = 2/exp(710) (0,0+)

where 0+ in the open interval (0,04) denotes the smallest positive machine
number available.

1.2 Exploiting inexact data

In spreadsheet applications all data cannot always be represented by exact
numbers. For example, consider the electronic circuit of figure 1 below. The
task is to compute voltage U; by function system

p L Il
T R> + R3 (13)
U1 - RIII

when resistances Rs and R3 are given and current I; has been measured. In
real life, resistances have manufacturing tolerances and I; can be measured
only down to the accuracy of the measuring equipment used. A reliable value
for Uy cannot hence be computed by using ordinary arithmetic. However, by
using interval analysis reliable bounds for U; can be determined. Classical in-
terval arithmetic (IA) [38] alone is not necessarily applicable to this kind of
problems because it treats multiple variable instances in the functions inde-
pendently from each other (here variables Ry and Rj3; have two instances in
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Figure 1 An electronic circuit.

the first function). As a result, there is usually too much width in the results.
In spite of this difficulty, classical TA can be useful when intervals are narrow
estimates for rounding errors [33] because then the extra width accumulated
into the results often remains tolerable. However, in this paper we see interval
arithmetic in the first place as a general formalism for representing uncertain,
imprecise or missing numerical data. Intervals in such spreadsheet applications
are usually wide, even infinite, and the problem of extra width is strongly em-
phasized. In order to evaluate the actual range of an interval function in the
general case, global interval optimization techniques [43, 13] must be employed.

Another limitation of classical IA is its restricted notion of interval as a closed
finite continuum of values. This may suffice when dealing with rounding error
bounds. However, in spreadsheet computing, a notion of interval as general as
possible is preferable including open ends, infinities, and discontinuities.

1.3 Constraint solving

Spreadsheet functions are evaluated in one “direction” from input argument
values to output function values. However, the functions could be used for
more than that. For example, consider the temperature conversion formula
from Celsius (C) to Fahrenheit degrees (F):

F=18C+32 (1.4)

The formula computes F' in terms of C' but it could also be used for computing
C in terms of F with a little extra algebraic manipulation.

In ordinary spreadsheets, the distinction between input and output variables is
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rigidly made although this is not necessary from the mathematical view point.
It would often be quite useful to the user, if (s)he could set the value of a
function and see what effect this constraint has on the arguments. Actually, in
planning and designing applications the final goal of a computation (output) is
typically given (e.g., the desired profit of a financial transaction) and the prob-
lem is to find input data by which the goal can be achieved. Using spreadsheets
in such applications typically results in tedious trial-and—error sessions where
the user tries to find a feasible solution (output values) by iteratively guessing
argument values (input values).

Problems such as (1.4) can be approached by using interval constraint sat-
isfaction techniques [8, 10, 15, 17] in which function sets (or more generally
equation sets) are treated as symmetric relational constraints without commit-
ting to any input—output distinction. In addition to using the trial-and—error
scheme, interval constraint techniques can also support top—down problem solv-
ing in which a feasible solution is searched for by stepwise refining the variable
intervals of the problem until a solution emerges [16, 18].

1.4 Outline of research

In this paper it is shown how interval techniques can be used for extending
the usage of ordinary spreadsheets into the three directions discussed above.
As a demonstration of the ideas, three extensions to a commercial spreadsheet
system have been designed and implemented. MS Excel is used as the pilot
environment but the ideas and techniques developed are general and can be ap-
plied to other similar systems as well. For reasons of portability, each interval
extension is based on a general purpose interval arithmetic C++ class library
of the InC++ library family [24] that has been integrated with the spreadsheet
by an interface. The functionalities of the libraries can be incorporated into
other spreadsheet systems by rewriting this interface only.

Following chapters review the three extensions one after another. In the first
system, the spreadsheet program is provided with various interval types and
operators for them. The main limitation of the system is that of the classical
TA: the results of function evaluations may have extra width in certain situ-
ations. The second extension overcomes this problem by using algebraic and
numerical techniques for determining the actual bounds of interval functions.
In both systems functions are evaluated in one direction only. This limitation
is removed in the third extension in which spreadsheet functions are computed
by solving the corresponding interval constraint satisfaction problem.
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2 EXTENDED IA ON A SPREADSHEET

Interval arithmetic has usually been implemented by embedding it into pro-
gramming tools that include:

1. Programming languages. Most interval arithmetic implementations such as
Pascal-SC [6], Fortran—SC [5], PBasic [1], VPI [12] and BNR-Prolog [41]
can be seen as extensions or additional libraries for various programming
languages. The implementations are intended for programmers.

2. Computer algebra packages. Recently, interval extensions to various com-
puter algebra packages such as Maple and Mathematica [29] have appeared.
These implementations are intended also mainly for programmers but here
in a conceptually higher level mathematical language than in (1).

We argue that spreadsheets provide one more natural platform for making inter-
val arithmetic tools available. Here the intended users are not programmers but
rather various spreadsheet end—users, a much larger audience. Interval compu-
tations can be implemented on the spreadsheets by using the macro languages
and other programming devices provided by current spreadsheet products.

In this chapter, an interval extension called Extended Interval Arithmetic on
MS Excel (EIA Excel) [11] is presented. The primary goal of EIA Excel is to
provide the user with a notion of interval arithmetic in as versatile form as
possible. For this reason, we first review properties of the extended IA used
in the system. This arithmetic generalizes classical IA in many ways and is
employed also in the other interval spreadsheet systems of this paper.

2.1 Extended Interval Arithmetic

Open—ended intervals

In many fields of science and engineering, open and half open intervals are
widely used in addition to the closed ones considered in classical IA. Hence,
the extended IA should support all four interval types below:

[z,y] [2,y) (z,y] (z,y)

There are at least two approaches for implementing openness. One possibility is
to approximate an open—ended interval by a closed one by rounding open ends
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inwards to the next smaller machine arithmetic number. After this classical
closed A can be applied. For instance:

(—2,3) = [~1,9999....,2.9999.. ]

In this approach open ends are only syntactic sugar for representing inward
rounding. The problems of this approach are:

m  Inward rounding discards possible values at the bounds. For instance,
in the above example, ranges (—2,—1.999...) and (2.999...,3) are lost.
Discarded ranges never contain any machine numbers but can still have
effect on computations.

m  Information concerning open bounds is lost and results are always closed.

A more proper approach is to generalize TA function evaluation rules for deal-
ing with interval open ends (and with infinities £o00) by considering different
interval limit combinations separately for each arithmetic operation (see e.g.
[8]). For example, two half open intervals (a, b] can be added by rule:

(z,y]+ (u,v] = (z +u,y +v]

However, in this approach rounding errors may cause problems. For example,
when computing
(0.1,1]4 (0.2,2] = (0.3+, 3]

the open minimum, denoted by 0.3+ = 0.1 4+ 0.2 cannot be represented pre-
cisely by a machine number equal to 0.3, but must be represented by the
next one smaller (0.3—) or larger (0.3+). When using normal programming
languages, the rounding direction depends on the math library used. If the
upward rounded value 0.3+ is selected, then the result (0.34,3] is incorrect
because the correct minimum in range (0.3,0.34) is excluded. A better and
safe minimum bound is 0.3—, but then the result (0.3—,3] will contain extra
values (0.3—,0.3]. Although the distance between neighbouring machine num-
bers is tiny with small numbers (like with 0.3— and 0.3), it can be large (in
absolute value) with large numbers. As a result, more or less excess width can
be accumulated into the intervals during computations. This extra width as
well as the extra width due to using classical IA (that assumes independent
multiple variable instances) is much larger than the infinitesimal difference be-
tween an open and a closed interval bound.

There are still good reasons for introducing open ends. Firstly, the effect of
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rounding errors can usually in practice be filtered away by representing the in-
terval bounds with less digits than are used for computations. Secondly, it is not
possible to represent infinitely large and small or infinitely close bounds with-
out the notion of open interval. For example, in extended interval arithmetic
(to be presented later) interval division [_572] can be performed by considering
negative and positive values separately:

1 1 1

22] ~ 20 (02] _

(=00, =1/2]U[1/2,+00)

If [-2,0) had to be approximated by [—2,0—], where 0— is the largest negative
machine number, then the (non-representable) values (0—,0) would have no
effect on the value of division. However, in division the values of the divisor
near zero are quite important because they generate the smallest and largest
values of the function (interval limits). Thirdly, even in cases where a lot of
extra width is accumulated in the result, openness never makes harm other
than slightly complicates computations.

Complement intervals

An interval intuitively states a range of possible values. In some applications,
it may also be useful to state ranges of impossible values. For this purpose, we

introduce the notion of complement (interval). A closed complement is defined
by

lz,y[ = {ala<zora>y}

and intuitively contains values mnot in interval (a,b). Open and half open com-
plements can be accepted as well. The definitions of these variants are analo-
gous to the interval case:

)x,y( = {ala<zora>y}
Jz,y( = {ala<zora>y}
),y = {a]la<zora>y}

By using complements, TA rules can be extended for some discontinuous sit-
uations not defined in classical TA, such as division by an interval containing
zero. For example:

=]-31[
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Discontinuous intervals

The complement is a simple case of the more general notion of discontinuous
or multi—interval. A discontinuous interval X can be defined as the union of a
set of intervals and complements X;

X = {X;UX,U...UX,}

and it is represented in ordinary set notation. X; are called the constituents of
X. For example:
X ={12,20[,[7,8),6,(15,25]} (1.5)

The order of constituents is free and the elements may overlap each other.
Exact number 6 is implicitly considered interval [6,6] here. The normalized
representation of a discontinuous interval is the one in which

1. constituents are represented as ordinary intervals,
2. any two overlapping constituents X NY # {} are merged into X UY and

3. the constituents are sorted in increasing order.

It is easy to see that any discontinuous interval has a unique normalized rep-
resentation. For instance, (1.5) in normalized form is:

X = {(-,2],6,[7,8),(15,+00)}

Infinite intervals

A problem in implementing interval arithmetic by using finite precision machine
arithmetic is how to deal with infinitely large intervals and value overflows. A
solution approach to this problem is to use variable precision arithmetic [12],
in which the user can select the number of bits to be used for number represen-
tation. By using more bits, less overflows are likely to happen but the problem
still remains. The selection can also be made dynamically, like in C-XSC [30].
In many computer algebra systems [9], arbitrarily large integers and precise
rational numbers can be used. The price to be paid for such precision is of
course increase in computational complexity.

When using computationally more efficient finite precision arithmetic, too
large and too small values can be represented by special infinity values +oo
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TYPE COMMENT
Numbers
x In outward rounding mode, numbers are changed
automatically into intervals, if needed.
—00, +00 Infinities
Intervals
[z,y] Classical IA closed intervals
(z,y) Open intervals
[z,y) Half open intervals
(z,y]
(—o0,x) Infinite intervals
(_007 Z ]
(z,+00)
[z, +00)
(=00, +00)
Complement intervals
|2,y ={a|la<zora>y}
R ={ala<zora>y}
Jey( | ={ala<wora>y)
),y ={ala<worazy}
Discontinuous intervals
{} Empty interval
{X1,...,X,} || Each X; is a number, an interval, or a complement

Table 1 Summary of interval types in extended IA.

and —oo. Interval functions can then be modified by generalizing arithmetical
operators for oo. For example, interval addition

(@,9) + (u,0) = (z+u,y+0)
can be generalized by the following rules for adding +oo [8]:

—co+z = z+(—x) = -0
+oot+z = w+(+o0) = 400
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-0+ (—00) = —o0
+00 + (+00) = 400

Cleary argues that in his arithmetic system, cases —oo + (+00) and +oo +
(—o0) (and some other corresponding ill-defined cases with other operators)
“can never occur and need not be specified” (p. 146). However, in practice,
ill-defined situations may arise when subexpressions in combined expressions
evaluate overflowed intervals (or if the user is allowed to use oo as input
for operators). For example, if ANSI C double precision is used, then the
minimum and maximum of el71%720] are larger than the largest representable
machine number. Let us represent such an interval by (oco,00). This kind
of degenerated values can be useful and cannot be discarded. For instance,
if (00, 00) is multiplied by value 0, then the result should be 0. On the other
hand, if (00, 00) is divided by (oo, c0) then one can at least say that the possible

values are positive:
[710,720]

Y= o) © (0, +00)
When using large or infinitely large intervals, the results of arithmetic opera-
tions often overflow and cannot be computed or represented precisely. However,
in interval arithmetic it is possible to return as the result the closest obtainable
outer approximation of the actual result (e.g., (0,400) in the above example).
This is often useful, although one then typically loses information and gets
extra width in the result. For example, in evaluating the function

y = In(el600710])

it is not possible to get the precise result [690,710] but only [690, +00) due to
the maximum overflow in the inner exponent function call:

y = In(el%70]) ~ In([4.60 - 10%*°, +00)) ~ [690, +00)
Fortunately, from the user’s view point, the criterion for identifying an overflow

is simple:

If there is a limit +o0o in the result, then and only then a degenerating
overflow has occurred.

Non—degenerating overflows compensated by other operations during the eval-
uation, such as multiplication of [1,+0c0) by 0, make no harm as long as the
final result is finite.

A summary of the interval types discussed above is presented in table 1.
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2.2 Primitive functions

Let us denote the interval and discontinuous interval functions corresponding
to an exact value function f by f; and fg, respectively (e.g., +; means inter-
val addition). The generalized discontinuous interval function f4(D1,...,Dy)
corresponding to an interval function f;(I,...,I,) can be defined as follows:

fa(Dy,....,Dy) = U{fi(Iy,....1,) | L € Dy,...,I, € D,}  (1.6)

The definition intuitively applies the interval function with respect to every
possible combination of the constituent intervals used in the arguments. This
guarantees that the resulting discontinuous interval is the actual set of all the
possible values of the exact function. For illustration, a multiplication of two
discontinuous intervals is performed below:

{[~2,-11,[3,41} - {[2,3],[4,5]}
= [-2,-1]+[2,3]U[-2,—1]+[4,5]U[3,4][2,3]U[3,4] 4 [4,5]
= [-6,-2]U[-10,—4]U[6,12]U[12,20]
{[_107 _2]7 [6720]}

The number of constituent intervals in the resultant discontinuous interval in
(1.6) varies between 1 and kiks - - -k, where k; is the number of intervals in
discontinuous interval D;, i = 1...n. In the example above, the maximum
number 2 - 2 = 4 was reduced to 2 because two pairs of intervals were overlap-
ping and could be merged by the union operation.

A major motivation for discontinuous interval arithmetic is the possibility of
representing precisely function values even when the function has discontinuity
points. For example, the definition of interval division with closed intervals can
be generalized as follows:

( Loy (1o, 1/u), i O [u,0]

{} empty interval, if w=v=0
EXTE [(gi/]] ifu=0
L] [[ilé)] it v=0

| e
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By defining modified rules for open—ended and infinite intervals, the general
interval (and discontinuous interval) division rule can be compiled. Examples:

[—163]: [—fo>u(063] = (=00, =6]U[2,+00) =]~ 6,2]

[3,6]

(—o0,=3]U[1,400) =] —-3,1]

’

[—1,3
[—2,6
1,3

]:
} — [_276] [_276] — (—OO,+OO)

[-1,0) = (0,3]

)

In addition to interval division, there are also other important discontinuous
interval operators, such as tan(z) and cot(x).

Classical IA evaluations are computationally more demanding than exact value
computations because of the need to deal with both lower and higher bounds.
The extensions to open and infinite intervals increase the complexity further
because of the need to identify bound types and overflows. Introduction of dis-
continuity increases the complexity further. For example, applying an m:ary
function with discontinuous intervals having n interval constituents, needs n
ordinary interval evaluations. In cascaded evaluation of discontinuous func-
tions, the number of constituents in the worst case grows exponentially. How-
ever, by normalizing intermediate results the growth of constituent number in
practise usually gets smaller.

The idea of extending TA rules for the discontinuous case has been suggested
probably first [13] by Hanson [14] and Kahan [27]. Our extended IA is a full-
scale development of the idea. All interval types of table 1 can be used with
interval functions. The scheme has been implemented as C++ class library
LIA InC++ [20]. The library contains interval classes and overloads arithmetic
operators and functions for them. The library covers ordinary rational, trigono-
metric, exponential, logarithmic and many other functions. To our knowledge,
it is the only extended IA package discussed in the literature and currently
available.

2.3 Interfacing MS Excel with Extended IA

The extended TA described above has been embedded in MS Excel. From the
user’s viewpoint, the system [11] is an Add—In library of new interval functions
(such as TSUM, TSIN, TLOG, etc.) corresponding to the ordinary mathe-
matical functions of MS Excel (such as SUM, SIN, LOG, respectively). The
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functions can be loaded into the system either automatically (from the MS
Excel start—up directory) or by demand from the menu. This idea of providing
the user with loadable additional functions is widely used in MS Excel, e.g.,
in its implementations of complex arithmetic, statistical functions, etc. The
functions are used and evaluated like ordinary MS Excel functions by Excel’s
own control mechanism.

C++ Dynamic Link Library (DLL)

|
|
|
|
USER <+ » MS | \é:: :I 3 Strings | C++ ll_i:ﬁ\a:;CH
: Bxcd Interface | Interface Intervals
i ‘ 3 Special
3 Online help manua 3 functions
‘ |

,,,,,,,,,,,,,,,,,,,,,

Figure 2 EIA Excel Architecture.

Figure 2 depicts the general architecture of EIA Excel. Arrows indicate data
flows and lines internal connections between the modules. The user inputs
intervals and functions into the spreadsheet in the usual way. Intervals are
written as strings (because MS Excel does not support interval data types).
Interval functions are written as normal MS Excel functions. They accept both
numbers and interval strings as arguments; the function value is also an interval
string or a number. The functions are defined in Visual Basic, the programming
language provided for the user in MS Excel 5.0. When an interval function call
is evaluated, the Visual Basic definition passes control to the underlying DLL-
module that actually performs the computation. In the implementation, the
Object Linking and Embedding (OLE) scheme of Microsoft is used.

The Visual Basic interface defines new interval functions (IT'SUM, TSIN, etc.)
in terms of intermediate C++ functions in the C++ interface module. Only
MS Excel specific conventions for the interval functions are implemented in the
Visual Basic interface. These include the following:

m  The effect of errors encountered in earlier computations is propagated fur-
ther. For example, if A2 = 0 in function = TSUM (A1/A2,B1), the
ordinary /—function of MS Excel returns a special error value #DIV/0
that must be returned also as the value of the call to TSUM.
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m  Missing or empty arguments are skipped according to MS Excel conven-
tions. For example, the value of interval addition T'SUM (A1,2) is 2 if Al
is empty.

m  Type checks and dynamic screening on arguments are performed. For
example, the interval sinus function T'SIN does not accept MS Excel’s
array arguments that represent actually argument sets (e.g., array Al : B2
refers to cells {A1, A2, B1, B2}) but TSUM does (in the same way as
SUM). TSUM also automatically skips arguments of wrong data type,
but not error values (e.g., error value #DIV/0 above).

m  The interface is also used for implementing some miscellaneous extensions
to MS Excel functionality. For example, the hypertext—based on-line help
for EIA Excel (see figure 2) can be activated from a new entry in MS
Excel’s help menu.

The task of evaluating the interval function is passed to the C++ Interface.
This layer is needed mainly because MS Excel does not support interval data
types. The C++ interface transforms the strings and numbers of the MS Excel
cells into interval objects, applies the actual interval operation to them by the
functions of the interval library LIA InC++ and the Special Functions module,
and transforms the result back into a string or a number settable in a cell by the
Visual Basic Interface. Outward rounding is performed for primitive function
arguments (unless they are small integers that can be represented precisely in
the machine arithmetic) but the resultant is not rounded. This is not necessary
because the change is so small that it cannot be visualized on the spreadsheet,
and if the result is further used in another function as an argument, then it will
any how be rounded properly.

The Special Functions -module contains definitions of some interval operations
not defined in LIA InC++. For example, the “intelligent” formatting function
supported by EIA Excel

TF(interval,n)

prints an interval in a format in which numbers and bounds are represented
down to n digits. Intervals (and constituent intervals) are merged automatically
into numbers if the interval limits become equal at the given precision level.
For example:

T F(3.1234567, 6) —  3.12346
TF(?[2.1999999999, 2.2000000001 ], 10) = 2.2
TF(”{][0,1269],[1300,2000]}",2) — [0,2E + 03]
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The second example shows that the function is quite necessary in interval com-
putations in order to get rid of the irrelevant digits generated by outward
rounding arithmetic.

3 GLOBAL IA ON A SPREADSHEET

The main limitation of classical IA and the interval techniques discussed in the
previous section is that the function values evaluated often have more or less
extra width. For example, sheet

Al = C1 = 1
Bl = [1,2] (1.7)
B3 = (Al-B1)—(B1.-C1)

evaluates B3 = [—1,1] although the actual range of B3is B3 =1-B1—-B1-1 =
0. In the general case, the actual value range of a function F' can be evaluated
only if F' does not have multiple variable instances, or if such variables have
precise numeric values, which actually makes them non—variables [39]. The
excess width diminishes as the values of the multiple instance variables get
stricter and stricter.

This dependency problem has its incarnation also at the function set level.
For example, consider the following function set version of (1.7):

Al = C1 = 1

Bl = [1,2]

A2 = Al-B1 (1.8)
C2 = B1.C1

B3 = A2-C2

Here the actual value of each function can be computed in separation (there
are no multiple variable instances) but we still get B3 = [-1,1] (as in (1.7))
and not B3=1-B1—-B1-1=0.

Obviously, the dependency problem must be solved both at the function and at
the function sets levels in order to implement an interval spreadsheet program
capable of evaluating the actual cell values. In the following, it is first shown
how these tasks can be performed. After this, an implementation of global
interval arithmetic on top of MS Excel is presented.
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3.1 Global evaluation of an interval function

Various techniques have been developed for evaluating the actual value range of
an interval function, i.e., for its global evaluation. Best—known approaches are
the various numerical branch—and-bound algorithms discussed in depth in [42,
43, 13]. This paper considers these techniques mainly from the practical user’s
view point. We proceed by presenting a global function evaluator library GIA
InC++ [21, 24] in whose design practical issues encountered in spreadsheet—like
computations have been the main concern.

GLA InC++ IFunctiﬂ.n—uhject

cotnputational Clobal
parameters | rumerical g Value (=outer bounds),
evaluator itmer hounds

functiog, ‘

MRS I Parser| [ LIA InCer

Figure 3 Architecture of function objects (IFunction) in GIA InC++ library.

GIA provides the user with a class “IFunction” for defining, parametrizing
and evaluating an interval function. Figure 3 depicts the general architecture
of TFunction—objects. The parser transforms user given functions and inter-
val expressions (strings in ordinary mathematical notation) into an internal
representation. An algebraic extension optimizer then transforms the parsed
representation into a form optimal for global numerical interval arithmetic eval-
uation. Various computational parameters can be used for controlling both
numerical evaluation and algebraic optimization. The LIA InC++ library dis-
cussed earlier is used as the underlying basis for evaluating interval function
primitives. In the following, numerical evaluation and algebraic optimization
in GIA InC++ are discussed in some more detail.

Numerical evaluation

GIA’s numerical evaluation is based on the numerical branch-and-bound (BB)
search scheme introduced by Skelboe [46] and developed further by others
[2, 42, 43, 40]. Roughly speaking, the idea is to consider argument intervals
in ever smaller and more precise parts. Efficiency is gained by identifying and
pruning irrelevant subintervals from consideration as early as possible.
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The BB algorithms above are intended for finding an arbitrarily close lower
bound for the minimum of an interval function F. In GIA, the algorithm is
applied also to —F for getting the upper bound for the maximum. Hence, outer
bounds [mingys, mazey: | of the actual function F' values [min,maz] can be
computed. In addition, as a side effect of the computation, it is possible to
obtain also inner bounds [ min;,, max;, | for the actual F values [min,maz]
(e.g., by using the so—called midpoint—test accelerator):

[ming,, maz;, | C [min, maz] C [Mineyt, MaT oyt |

Computation is terminated based on either absolute or relative precision levels
set by the user:

Ming, — MiNy: < absolute precision
MaT,ut — Max;;, < absolute precision
MiNip — MiNgyt . .. )
— %% < relative precision, min;, # 0 (1.9)
minin
MAT oyt — MATin . ..
< relative precision, max;, 70

mazc;n

Relative criteria are useful especially when the absolute values of the interval
limits are large; absolute criteria are useful when they are around zero.

Recursive functions

In interval arithmetic spreadsheets it makes sense to accept recursive function
systems in addition to the traditional non-recursive ones. For this purpose,
GIA InC++ extends the BB scheme also to recursive functions of form:

X;=F(X1,....X;...,X,)

Mathematically, the actual range of feasible values of a recursive function is
the range of its exact value fized points:

Xi={zi|zi = f(z1,...,2,...,20),2; € X;,j =1,...,n} (1.10)

The goal of GIA InC++ is to compute safe outer bounds [ min,y:, maz .y | for
this set within user given precision levels.

When evaluating a recursive function, simple iteration by using the intersected
value FI(X1,...,X;,...,X,) NX; as the next value for X; is not enough. The
problem is that computation easily gets stuck in fixed point interval solutions.
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For example, in evaluating X = % such an iterative computation could termi-

nate at 1
X=——=[0.1,10
[0.1,10] [ ’ ]

and the actual range [1,1] within [0.1,10] is not found.

Another problem in evaluating a recursive function is that it is usually dif-
ficult to find (by the midpoint test) exact fixed points, i.e., feasible values of
the function, because f(x1,...,%;,...,x,) seldom happens to evaluate x; pre-
cisely. As a result, inner bounds of the function are difficult to determine.
Without finding such points, the BB algorithms cannot be terminated easily
(cf. the termination conditions (1.9) above).

In order to solve this difficulty, GIA InC++ slightly loosens the notion of fixed
point based on user given precision levels. Instead of bounding set (1.10) GIA
determines bounds for:

Xi=A{zi |z~ flx,...,25...,20), ¢ € Xj, j=1,...,n} (1.11)

Situation z; =~ f(z1,...,%;,...,&,) is considered a precision fized point using
the user given absolute or relative precision criteria. GIA determines the range
of precision fixed points (as an interval) instead of the range of ordinary pre-
cise fixed points. Since every ordinary fixed point is a precision fixed point,
the range (outer bound) of values determined by GIA InC++ is a superset of
the actual fixed point values (1.10). The extra width in the obtained range
approaches to zero as desired absolute and relative precision approach to zero.
With zero precision the sets of ordinary and precision fixed points are identical.

By using precision fixed points, it is easier to obtain also inner bounds for
a recursive function. However, one should remember that the inner bounds are
now determined for precision fixed points and not for ordinary fixed points.
There are not necessarily any ordinary fixed points between inner and outer
bounds, only precision fixed points. Although outer bounds in the recursive
case safely bound all possible actual fixed points (if any), the inner bounds do
not necessarily bound actual feasible values from the inside in the same sense
as in the non—recursive case. For example, consider recursive function

Y — (X5 + 15X* + 85X° + 225X 2 + 120)
274 ’

X = Y =0,X =[-100, 1]

for bounding the zeros of the polynomial

Y = X%+ 15X* +85X3 +225X2 4+ 274X + 120
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There are five ordinary fixed points (zeros) X € {—5,—4,—3,—2,—1} and the
bounds are hence X = [—5, —1]. If absolute and relative precision is 10~°, the
minimums of outer and inner bounds are after some evaluation time —5.0002.. ..
and —5.00005 . . . with no ordinary fixed points (but only precision fixed points)
in between. Unlike in the non-recursive case, existence of ordinary feasible
(fixed) points of a recursive function cannot in the general case be proved un-
less zero precision is used. Existence of ordinary fixed points implies existence
of precision fixed points but not vice versa.

The task of evaluating a recursive function X; = F(Xy,...,X;,...,X,,) is
equivalent to the problem of finding the zeros of the function:

0=F(X1,...,Xi,...,Xn) — X

An efficient technique for the latter problem is the interval Newton method
[13]. In GIA this technique can be employed by a special macro “newton” that
automatically transforms a function into the corresponding (recursive) interval
Newton operator. For example, the zeros of the above polynomial can be found
by using macro:

newton(X° 4+ 15X* + 85X3 + 225X ? + 274X + 120, X)

Algebraic optimization

Consider a real valued function y = f(x1,....,z,) and an interval valued func-
tion Y = F(Xy,...,X,,). F is called an (interval) eztension of f iff:

flxy,...,xn) = F(x1,...,2p)

The simplest extensional form is the natural extension that is obtained from
f(x1,...,x,) by simply replacing function operations by the corresponding
interval operations. The problem with the natural extension is that the extra
width accumulated is usually large. Various alternative ways for constructing
extensional forms have been proposed for evaluating stricter results [42]. GIA
uses several algebraic modes settable by the programmer. Some of them are
listed in table 2.

There is no known general solution to the problem of finding the best exten-
sional form for a function, only some heuristic guidelines. The excess width
depends both on the properties of the function and on the argument interval
values. Extension selection is, however, quite important from the practical
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MODE MEANING

Natural Use natural extension (no algebraic optimization).

Taylor Use nth order multivariable Taylor form.

Monotonicity || Use monotonicity test form [2].

Optimize Use monotonicity test form with derivatives optimized
by nth order Taylor expansions.

Table 2 Some algebraic modes used in GIA InC++.

computational view point. For example, some test evaluations of the polyno-
mial
Y = X*—10X°%+35X% — 50X +24 (1.12)

with X =[0,4] are listed in table 3. The last mode involving most algebraic
preprocessing is here clearly the best choice.

Mode Algebraic || Numerical | Monotonicity || Taylor

preproc. || evaluation test used order
Natural 0 >6-10° no -
Taylor < 10 220 no 2
Monotonicity 20 440 yes -
Optimize 50 90 yes 2

Table 3 Algebraic preprocessing and numerical evaluation times (msecs) of
(1.12) illustrating the need for algebraic optimization.

Since the average spreadsheet user is hardly interested in the peculiarities of
extensional forms, GIA has also an automatic algebraic mode (used by default).
In this mode, GIA heuristically determines for each given function an appro-
priate extensional form. As a general strategy used there, multiple instances
of variables in the expression are tried to be eliminated by using computer
algebraic techniques [9] such as polynomial canonization, symbolic rational di-
vision and a rule base for simplifying irrational expressions. Taylor expansions
are also used when they do not generate more multiple instances of variables.
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Computational parameters

A major pragmatic difference between a local interval system such as EIA Excel
and a global one is computational complexity. Global numerical evaluation of
an interval function can take an unpredictable long time, and the spreadsheet
user must be provided with a versatile set of computational parameters for
controlling the computations. In GIA, the following parameters can be used
for controlling numerical evaluations:

m  Global vs. local evaluation. The function objects can be evaluated either
globally (default mode) or locally, i.e., in ordinary (extended) IA. Local
mode is useful in situations where very fast response time is needed even
at the price of extra excess width in the result.

m  Absolute and relative precision levels. Less demand on desired precision
levels often significantly shortens evaluation time.

m  Time limit. In many applications, response times within predefined limits
must be guaranteed (e.g., in real time systems). GIA supports such appli-
cations by providing a settable time limit. If the resultant interval has not
been obtained within the limit, computation is forcibly terminated. The
difference between inner and outer bounds tells how precise the result is.

Reusing earlier computations

Computations in spreadsheets are often reactivated after a small change in only
one argument. Given the complexity of global interval evaluations, it becomes
necessary to maintain results of earlier computations and to try to reuse them
as much as possible. It is not feasible to start each evaluation from the scratch
after any small modification in some argument value.

In GIA the function objects constructed maintain computational partial re-
sults obtained during the last evaluation. When evaluated again, the object
dynamically checks changed input values with respect to the previous evalua-
tion, makes only needed updates and changes in the previous computational
results, and continues computation from this internal state on. Such reuse of
earlier work often dramatically shortens needed computational time.
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3.2 Global evaluation of an interval function
system

In [19] a technique is developed for evaluating a function system globally. The
hearth of the technique is the simple algorithm Local-Function—Evaluation
below that implements cascaded function evaluation in traditional spreadsheet
computing. Function args(Y = F(...)) denotes the set of arguments in func-
tion Y = F(...).

Algorithm: Local-Function—Evaluation

1. Initially, given is a function system S {Y; = F;(...)} and values for all
input (and recursion) variables.

2. Sort S by the following criterion: if Y; € args(Yiy1 = Fiy1(...)), put
YV,' = F,( - ) before YvH_l = Fi—i—l(- - )

3. If S is empty, go to 5. Otherwise select and remove next function ¥ =
F(...) from S.

4. EvaluateY = F(...). Go to 3.

5. Terminate.

However, this algorithm alone does not solve our problem in the interval case:
The functions are evaluated independently from each other (locally), which
means that common argument variables used in different functions are treated
as if they were different variables having the same value. Furthermore, prob-
lems of circular function chains are not considered. Proper function system
evaluation in interval arithmetic would require that the dependencies between
different variable instances in different functions are respected globally. This
dependency problem can be captured by the notions of local and global cas-
caded evaluation:

Definition Consider a function system F'S with input variables Xy,..., X,
and output variables Y7 = Fi(...),..., Y, = Fi(...). Cascaded interval evalu-
ation is local iff each output (and recursion) variable Y; gets interval value:

Y'i:{y|3$1€X17-"73$n€Xn : y:Fl(wlaaxn)}

Evaluation is global, if the value of each output (and recursion) variable Y; is
the actual range of the feasible values w.r.t. all local functions:

m:{y,‘|3$1€X1,...,3$n€Xn : yj:F](xl,,xn),]ZIk}
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The local propagation algorithm Local-Function—Evaluation can be ap-
plied for global cascaded interval evaluation if the function system is first alge-
braically globalized and then evaluated by using a global interval function eval-
uator. This scheme is summarized by algorithm Global-Function—System—
Evaluation. The algorithm evaluates values for the output variables of the
function system F'S.

Algorithm: Global-Function—System—Evaluation

1. Globalize. For each (local) function f € FS derive a global function g
by expanding f by recursively replacing function arguments by the corre-
sponding functions into a minimally large expression. The stopping crite-
rion for the minimal expansion is that no variable used in g should occur
as an argument in the remaining functions of F'S not used for deriving g.

2. Optimize algebraically. For each global function, derive algebraically an
efficient extensional form for numerical evaluation.

3. Evaluate numerically. Evaluate the global function system derived in steps
1-2 by the local propagation algorithm Local-Function—Evaluation (by
using global interval function evaluation techniques discussed in section
3.1).

For example, consider the function system:

B2 = Al- A2

Cl=Bl+ B2

C2 = B2+ A2 (1.13)
D1=C1+C2

El=D1-D2

For simplicity, the functions here are simple primitives, but could in principle
be functions of arbitrary complexity. The globalization phase (step 1) gives the
following globalized functions for the output variables shown in table 4. The
minimally expanded global functions for the output variables are given on table
4. The rightmost column gives the expansion in algebraically simplified form.

Application of the minimality criterion is important because it makes the global
functions smaller and easier to evaluate. For example, there is no need to ex-
pand the function £1 = D1 — D2 further because neither D1 nor D2 is used
as an argument in any other function. Intuitively, the global function for D1
already takes care of the problem of the multiple variable instances of A1 and
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Cell | Minimal Expansion In Simplified Form
B2 = Al1- A2 = Al1- A2

C1 =Bl + B2 =Bl + B2

Cc2 = (Al- A2) + A2 =A2-(Al1+1)

D1 = (B1+ (Al-A2)) + ((A1- A2) + A2) || = A1- A2-(B1 + A2)
E1l =D1—-D2 =D1—-D2

Table 4 Globalized functions for the output variables of (1.13).

A2, and D1 can be used as it is as the argument.

In step (2) further optimization is needed only for the function of D1 whose
simplified form contains multiple variable instances. In step (3) this function
must be evaluated by a global evaluator like GIA. For the other global functions
simple local evaluation is sufficient.

3.3 Implementation on a spreadsheet

The global cascaded evaluation scheme has been implemented as a C++ library
called CIF InC++ (Cascaded Interval Functions In C++) [22]. The library pro-
vides the user with a class “Cif” for defining, maintaining, parametrizing and
evaluating a function system. The main input of Cif-objects is functions and
argument interval values in the form of strings and numbers. A separate parser
is used for extracting the algebraic form of the functions for globalization. Af-
ter inserting a function or removing one, the global definitions are updated
automatically by a definition maintenance unit. Both algebraic globalization
and interval propagation can be tuned by a set of (optional) computational
parameters that are similar to those in GIA discussed earlier.

After its construction, the function system can be evaluated and changed vari-
able values can be read from the Cif-object.

Integrating an external global IA module such as CIF with a spreadsheet pro-
gram is more difficult than integrating LIA in EIA Excel. The main problem is
that control of computations needed for propagating values globally is different
from the local propagation scheme provided by spreadsheets. As a result, the
whole computation procedure must be run in isolation from the host spread-
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Figure 4 The architecture of function system objects (Cif) in CIF InC++.

sheet system. Furthermore, all changes made by the user to the local defini-
tions should be reported to the underlying computational mechanism in order
to make the corresponding changes at the global level.

In our implementation, each MS Excel workbook sheet is associated with a
Cif-object that contains and maintains the definitions of the sheet consistent
and performs cascaded function evaluations. The user inputs interval functions
for global evaluation by typing into a cell a call of a special Add—In function F'

= F(function)

implemented in the MS Excel macro language Visual Basic. Function F im-
plements the interface between MS Excel and the underlying computational
Cif-objects. When MS Excel evaluates a call to F, say

= F("Al + A2xC2")

in cell B1, then the following happens:

1. The function B1 = Al + A2 x C2 is inserted into the corresponding Cif—
object.

2. The current function system (Cif-object) is updated and evaluated.
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3. Changed values are read from the Cif-object and output on the sheet.

In the same manner, if the user inputs or modifies an interval value in a cell,
then the modification is made in the Cif-object and after evaluation, changed
values are updated on the sheet.

Computational parameters for global interval evaluation can be set by a di-
alog box activated from an additional MS Excel menu.

4 INTERVAL CONSTRAINT
SPREADSHEETS

Reconsider the function system (1.3):

RoR3
R = —X5
! Ry + R3
U1 - RIII

If arguments R», R3, and I; are given, the voltage U; can be computed. How-
ever, from the mathematical view point, any unknown variable in (1.3) could be
computed as a function of the others. This kind of “symmetric” computations
where any variable can be used as input or output, can be performed by using
constraint propagation techniques [47, 36].

The first spreadsheet programs using constraint propagation were released al-
ready in the early 80’s. TK!Solver [31] was a well-known commercial imple-
mentation. In [15, 17] four major problems of numerical constraint propagation
based on ordinary arithmetic were discussed:

m  The systems cannot deal with imprecise data.

m  The actual solutions cannot always be found even if this were mathemati-
cally possible. This may happen if the functions to be evaluated are locally
but not globally underconstrained.

m  Techniques for solving overconstrained problems were ad hoc.

= Although computations could be performed in any direction, input and
output variables had to be selected by the user before propagation. This
is often difficult.
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As a solution approach, interval constraint satisfaction techniques [8, 10] based
on interval arithmetic were proposed, and the approach was developed into a
new generalized computational paradigm for spreadsheet computing in [16, 18].
Other approaches to interval constraint satisfaction based on related techniques
are discussed in [28, 3, 32]. Application of interval constraints in evaluating ac-
tual function value ranges is discussed in [7].

Interval constraint spreadsheets have several attractions when compared with
ordinary spreadsheet:

m  Interval arithmetic makes it possible to deal with inexact data and round-
ing errors.

m  Infinite solution sets of underconstrained problems can be abstracted as
interval solutions.

m  Consistency techniques make it possible to compute (or at least bound)
values for any variable in a set of related functions or more generally con-
straint equations. No distinction between input variables (cells) and output
variables is needed; the type of variables is determined dynamically.

m  Top—down refinement can be used as a new problem solving paradigm. In
this scheme, a solution is found by constraining cell intervals stepwise until
exact solutions emerge. This is often more useful than the trial-and—error
scheme used in ordinary spreadsheets.

m  Interval computations are safe and sound — possible solutions are never
lost.

®  Ordinary numerical computation in spreadsheets is a special case of in-
terval constraint satisfaction. Interval techniques offer new possibilities
without giving up the possibility of using traditional exact spreadsheet
computing.

In the following, the notion of interval constraint satisfaction problem (ICSP) is
first presented and techniques for solving it are discussed. After this, problems
of incorporating interval constraint computations with a spreadsheet program
are discussed. As a test and demonstration, MS Excel has been extended for
interval constraint satisfaction.
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4.1 Interval CSPs

The general interval constraint satisfaction problem (ICSP) [17] can be formu-
lated as:
Ei,... E,

P1 = Xl,...,Pm = Xm (114)

Here E; are functions, equations (or inequalities, that can be transformed into
interval equations), P; are variables used in them, and X are real intervals (or
discontinuous real intervals). The equations constitute a constraint net that
consists of a set of variables and equational constraints connecting them. For
example:

sin(Z) =X+Y 404, eX+7Z2=-02, X-Y=2Z X<0 (1.15)
Y =1[0,1000], Z =[-100,-0.1] ’
The interval situation (called also tolerance situation) {P, := Xi,..., P, =

X} in an ICSP (1.14) refers to a set of exact value situations
{P:=x1,...,Pp =2, |z; € X;, i=1...m}.

An ICSP is feasible iff its interval situation has an exact subsituation satisfying
all constraints, i.e., the equations have a solution within the intervals:

3{P =21 € X1,..., Py =2y € Xpn} : Eq,..., E, satisfied.

A variable P; € X; is consistent iff each interpretation P; := z, ¢ € X;, can be
satisfied with respect to all constraints by some exact subsituation:

Vee X; 3{P:=x,€Xy,...,P:=x,...,Pp =2, € X} :
E,,..., E, satisfied.

We say that an interval situation is (globally) consistent, i.e., it is a (global)
solution, iff its every variable is consistent. Intuitively, an interval in a solution
should not contain “extra” values that cannot be satisfied within the given
intervals. The global solution is the tightest interval set that bounds the so-
lutions for the ICSP. For example, it turns out that equations (1.15) have a
single (global) solution

X~-125 Y ~0387, Z~ —0.485 (1.16)

within the initial situation. Hence (1.15) is feasible.

A weaker but computationally more easily obtainable and hence useful notion
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of consistency is local consistency. A variable is locally consistent iff it is con-
sistent with respect to all directly connected constraints in the constraint net.
Local consistency of an interval situation (solution) means that all variables
are locally consistent. For example, the local solution of

X+T=Y, Y+T=Z (1.17)
X=1T¢€][0,40), Y €[0,400), Z =11 ’
is T € [0,10], Y € [1,11]. Only at the global level one can determine that
actually Y must be the mean value of X and Z, i.e., that the global solution is
Y =6, T = 5. Intervals in the local solution may have extra width but always
correctly bound the global solutions.

In the general case, the solution of an ICSP may not be represented by a single
interval solution, but as a set S of them. For reasons of convenience, these
solutions can be generalized by the situation G = {P, € X3,...,P, € X,}
such that for i = 1...n, min(X;) is the minimum and max(Xj;) is the max-
imum of all values X; of P; in the solutions S. Hence, the solution G is the
most constrained situation that can be obtained by refining the tolerances from
both ends without losing exact value solutions. If discontinuous intervals are
employed, the generalized solution can be represented more accurately by a
single discontinuous interval situation.

4.2 Solving ICSPs

A solution technique for solving interval CSPs is to use Waltz filtering for re-
moving certainly infeasible regions from the variable intervals [10]. By this
technique local solutions can be found. This technique is also employed in
interval constraint implementations for logic programming such as [41, 45].
Another possibility is to generalize classical value propagation techniques [47]
for interval arithmetic, i.e., to use tolerance propagation [15, 17]. In this tech-
nique, the structure of the constraint net underlying the constraint equations is
exploited. A benefit of this approach is its extendibility from local techniques
to global problem solving by algebraic techniques. In global tolerance propa-
gation, better than local solutions can be obtained by propagating values over
several looping constraint equations at the same time.

The techniques above aim at bounding the solution set of the equations within
an initial interval box. If the actual solutions are to be generated, Interval
Newton method [13] provides a promising technique [4]. Here the number of
solutions is assumed to be finite, i.e., the problem should not be undercon-
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strained.

In our work, local and some global tolerance propagation algorithms have been
implemented as a C++ library ICE InC++ [23]. By default, this system uses
local propagation but individual constraints are solved globally. If desired, ad-
ditional global solution functions can be generated. ICE is designed to be used
as a general purpose ICSP library in C++ programming [26]. From the pro-
grammer’s view point, it is implemented as a C++ class Ice. Objects of this
class correspond to ICSPs. Communication with Ice-objects is based on simple
member functions that define ICSPs, set computational parameters, propagate
tolerances, and read changed variable values. Using Ice-object is in principle
quite similar to using IFunction—objects of GIA and Cif-objects of CIF.

The main technical contribution of ICE is to apply a combination of inter-
val analysis, computer algebra and tolerance (interval) propagation techniques
for determining local and, especially, stricter than local interval solutions in an
efficient way. Other implementations for bounding solutions, such as [41, 34,
35, 45, 3, 37] do not make use of algebraic or global interval techniques but rely
on local numerical ones.

4.3 Interval Constraint Excel

As a demonstration, a version of ICE has been integrated with MS Excel [25].
This chapter discusses modifications that need to be made in a spreadsheet
program such as MS Excel when extending it with interval constraints. Im-
portant issues are reviewed mainly from the user’s point of view and solution
approaches taken in our demonstrational implementation IC Excel (Interval
Constraint Excel) are described.

Inserting equations

Each spreadsheet is associated with an Ice-object (an instance of class Ice) that
maintains internally the ICSP corresponding to the spreadsheet definitions. In-
terval values and constraints are defined by an Excel-function I(equation) that
sends string equation to the underlying object updating its internal state ac-
cordingly. For example, when the user types I(”[2,3]”) into cell A13, the value
of variable A13 is updated in the Ice-object and the status of related constraints
and solution functions is set undetermined. These constraints will later be pro-
cessed during tolerance propagation. In the same way, I(” Al * SIN(B2) =
Al 4+ C2”) would insert the equation as a constraint and update the internal
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constraint net. After inserting/modifying constraints and values and setting
computational parameters (like desired precision levels), tolerance propagation
can be executed, and changed variable values are updated to corresponding
cells on the sheet.

In ordinary MS Excel, output cells have function definitions such as ” =
A2 + B3 4+ 77 and the function value is used and displayed as the value of
the cell. A problem here is that when an interval constraint equation is in-
serted, such as 7 A1 4+ B3 = C3 x B2”, there is no unique cell where to display
the value, but all related variable cells must be considered. In contrast to the
function case, the position of an equation in the sheet is immaterial but should
be respected as a decision of the user. IC Excel works exactly like MS Excel
when interval functions are inserted. When a constraint equation is inserted,
IC Excel shows the equation itself in the cell, unless the cell has a value, in
which case the value is shown.

Setting output cell value

In spreadsheet programs, it is not possible for the user to set the value of an
output cell, because output cell values are defined by function expressions. In
interval constraint satisfaction, it must be possible to set the value of any cell.
IC Excel extends MS Excel in the following way: when double clicking a cell, a
special DLL function gets activated and shows the value of the cell in a dialogue
box for editing. The possible formula attached to the cell remains as it was.

Control of computation

Control of tolerance propagation is quite different from the evaluation mecha-
nism used in MS Excel. As a result, all interval computations have to be done
by shifting control to the underlying Ice—object. In IC Excel, the special func-
tion I described above makes this shift possible. Function I does not activate
MS Excel’s own value propagation algorithm, but only communicates with the
underlying Ice—object.

Interrupts

Since interval computations can take an unpredictable time to be completed,
the user must be supported with an interrupt facility. In GIA InC++ library,
computation can be terminated interactively and the resulting semi-global re-
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sult used as the solution. IC Excel makes use of the facility: a lengthy compu-
tation can terminated by hitting a control key.

Relaxation

Since all cell values are user settable, the user can easily end up in an infeasible
situation. In such situations it is not always easy to see what cells should be
modified in order to make the situation feasible again. In IC Excel, a local
relaxation facility is available. In infeasible situations, computation is carried
on until all constraints have been evaluated. After this, cell values can be
enlarged locally in order to satisfy all related constraints, if demanded by the
user. Often, but not always, this suffices to make an infeasible situation feasible.

Special computational parameters

Interval computations can be controlled by a set of parameters. IC Excel makes
use of those available in GIA, such as desired absolute/relative precision and
response time limit.

Compatibility

An important motivation behind the idea of interval constraint spreadsheets
is compatibility with traditional spreadsheet computing: cascaded exact value
evaluation can be seen as a special case of constraint satisfaction.

In IC Excel, the same spreadsheet can be used simultaneously for both ordi-
nary computations and interval constraint satisfaction. When intervals change
into numbers, traditional MS Excel features like advanced graphics become
automatically available.

4.4 An example

Consider the resource allocation problem where the task is to allocate the work-
ing time of n researchers in m projects during some time period. Let us assume
that three researchers X, Y, and Z are allocated to three projects, as shown
in figure 5. By applying (local) constraint propagation the system gives the
response shown in figure 6. The user has now the possibility to constrain the
intervals. Assume that he/she demands that researcher X should not work on



34

CHAPTER 1

- T R - -
Flle FEdlit Fammuola  Format  Oata Optons Macen Windmw  [ntercal Help
EIEEEIT | 2[Ws saw s | 210 | 2]z (B ]2 [A] <] [E[=]=[=]|
3 [ [0, 1607
- PAOLKLE e
A =] c [n] E F .
I Rl
? Brojead 1 |F’r||j|—e|:l ? Prigjrudl 3 Prrsondl alkl ]
3 Mesenrcher ¥ |1 160° [C. 160] [0 1EC] =MCHEZTER
1 Researcher ¥ [0, 160 [C. 160] [0 1€c] =ML SE4"
5 Resean hur 7 [N 160 [ 16N [N 1F] ="CReCE+F 3"
[ Projecttotal |- ("C3C4 ZEN(-I{'D3 D405 -I'ES E4ES" |-I"F3 F4FE")
T =I"Fh=CE+D6+ZE"
| &
| 9 |
10 [+ ]
| | -
Fueacy | MLIk
Figure 5 The resource allocation problem. Initial values and formulas.
= Micrasoft Excel b
Fllr Fdlt Farmmula  Fnrmat  Oata Optlons Macen Windmw  Indercal  Help
EEE S | #JN5 Saus sair | ¥[10 | B[ 7 [ A< EE[EE
] [ [0, 16C]
A E C D E F +
I il
? Prujen i 1] Pujed 7 Frojend 3| Personal baal| -
3 Mesearcher = 0. 101 [0.157] 0160 [D. 480]
1 Resoarchar Y [0 160] [0, 153] 0, 160 [0. 480]
5 Resinnchur 7 [ 1AM [n.151] n1RIT [N. 4&n]
[ Projecticiol [0. 480] [0, 480] [0. 480] [0. 1440]
7 Fe=Cb+LE+ED
| & |
| 9 |
1o |
. | -
Frascy | MLk

Figure 6 The system’s response to the initial state of figure 4.1. Modified

cells are in bold font.

project 1 less than 120 weeks, i.e., C3 = [120, 160 ], and that the total resources
of project 2 are exactly 150 weeks, i.e., D6 = 150. The situation is shown in
figure 7. Notice that the formula D6 = I(” D3 + D4 + D5”) remains in force.
The system then applies again (local) constraint propagation to refine values.
The response is shown in figure 8, where the modified values are in bold font.
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Figure 8 The user has made two changes (italic font). The system’s modifi-

cations in response are shown in bold font.
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Based on the new situation, the user can then further refine the tolerances, the
system will infer necessary consequences, and so on until some exact solution
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satisfying the user’s criteria for the solution is found.

In figure 7 the user simultaneously changed one input and one output variable
(italic font). Although only two cell values were altered in this arithmetically
quite simple system, it was possible to infer eight value modifications. For the
user it is difficult to see every consequence of his/her changes immediately. In
the general case, it is possible to change any combination of cell values simul-
taneously. Furthermore, more complicated non-linear algebraic constraints are
often present in real-world problems of this type.

5 DISCUSSION

This paper reviewed work on applying interval techniques in spreadsheet com-
putations. The research and implementations discussed indicate that interval
arithmetic is a promising formalism by which the computational paradigm un-
derlying current spreadsheet programs can be extended for dealing with limita-
tions of machine arithmetic and, more importantly, for dealing with imprecise
real world data. Three natural extensions — local extended interval arithmetic,
global interval arithmetic and interval constraint arithmetic — for spreadsheet
computing were proposed and their experimental implementations embedded
in MS Excel were presented (EIA Excel, IF Excel and IC Excel, respectively).
Each extension includes the traditional spreadsheet computation mode as its
special case. The extensions can be implemented up to a reasonable level by
using the ordinary programming features provided by current spreadsheet pro-
grams. However, a more seamless and efficient implementation would require
that interval data types and techniques were embedded in the kernel of the
spreadsheet system.

Local interval arithmetic functions can be embedded fairly easily in a spread-
sheet program (EIA Excel). However, two difficult problems are encountered
when extending spreadsheets for global interval computations (IF Excel) or for
constraint solving (IC Excel). Firstly, from the programmer’s view point, con-
trol of advanced interval computations cannot be supported by ordinary spread-
sheet control mechanisms. The propagation engine must be implemented as a
separate module, which brings in problems of maintaining the spreadsheet and
the underlying computational system mutually consistent. Secondly, from the
end—user’s viewpoint, interval spreadsheet computations are time (and mem-
ory) consuming. The response times are to a large extent unpredictable de-
pending on the functions to be evaluated and argument values used. Whatever
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algorithms are used, it is always easy to come up with functions or equations
that cannot be evaluated in a reasonable time. Such complexity problems are
unknown to ordinary spreadsheets. Hence, it is of vital importance that the
user is provided with a versatile set of computational parameters, such as pre-
cision levels and the time limit feature, for controlling computations. It is
also important that (s)he can get estimates for not only function values (outer
bounds) but also for the precision of the results (inner bounds).

More information concerning the InC++ library family and the MS Excel ex-
tensions discussed can be found at WWW site

http://www.vtt.fi/tte/projects/interval/.
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