
1INTERVAL COMPUTATIONSON THE SPREADSHEETEero Hyv�onen and Stefano De PascaleVTT Information TechnologyP.O. Box 1201, 02044 VTTFINLANDfeero.hyvonen, stefano.depascaleg@vtt.�ABSTRACTThis paper reviews work on using interval arithmetic as the basis for next genera-tion spreadsheet programs capable of dealing with rounding errors, imprecise data,and numerical constraints. A series of ever more versatile computational models forspreadsheets are presented beginning from classical interval arithmetic and endingup with interval constraint satisfaction. In order to demonstrate the ideas, an actualimplementation of each model as a class library is presented and its integration witha commercial spreadsheet program is explained.1 LIMITATIONS OF SPREADSHEETCOMPUTINGSpreadsheet programs, such as MS Excel, Quattro Pro, Lotus 1{2{3, etc.,are among the most widely used applications of computer science. Since thepioneering days of VisiCalc and others, spreadsheet programs have been en-hanced immensely with new features. However, the underlying computationalparadigm of evaluating arithmetical functions by using ordinary machine arith-metic has remained the same. The work presented in this paper shows thatinterval techniques provide a new and more versatile basis for spreadsheet com-putations in many ways. Since exact numbers are intervals of zero width, thegeneralizations proposed can be made without loosing the possibility of usingspreadsheets in the traditional way. 1



2 Chapter 1The fundamental computational task performed by spreadsheets is to evaluatea set of mutually dependent functions, i.e., a function system of the followingkind.De�nition Let S = fYi = Fi(: : :)g be a set of arithmetical functions andV the set of variables used in it. Variables Yi representing function values arecalled output variables OUT . S is called function system (FS) if there is atmost one function for each Yi 2 OUT . An output variable Y1 that is related toitself via a circular chain of functionsY1 = F1(: : : ; Y2; : : :); Y2 = F2(: : : ; Y3; : : :); : : : ; Yn = Fn(: : : ; Y1; : : :); n � 1is called recursion variable. If R is the set of recursion variables in a FS, thenvariables in V � OUT [ R are input variables IN . If R = fg, then the FS isnon{recursive, otherwise recursive. The task of cascaded function evaluationin a FS is to evaluate the output variable values when the values of input vari-ables are given.For example, in function systemFS = fx = y2 + z + 3w; y = z3 + ez; w = sin(xw) + zg (1.1)the last function is recursive and it is also mutually recursive with the �rstfunction. The task of cascaded function evaluation is to compute output vari-able values x, y and w when input values z, w, and x are given. Notice thatrecursion variables x and w are used simultaneously as input and output.The current computational paradigm of spreadsheets is to evaluate non{recursi-ve (non{circular) function systems by using ordinary machine arithmetic. Fromthe user's view point, this simple scheme is insu�cient in various practical sit-uations. This paper focuses on three problem areas: limitations of machinearithmetic, exploitation of inexact data, and application to constraint solving.1.1 Limitations of machine arithmeticConsider the following harmless{looking spreadsheet situation:A1 = 10864B1 = 18817 (1.2)C1 = 9 �A1^4�B1^4 + 2B1^2When the system is evaluated by using MS Excel spreadsheet program, valueC1 = 2 is obtained although the correct value [44] should be C1 = 1 (!). The



Interval Computations on the Spreadsheet 3problem is due to the rounding errors generated by �nite precision machinearithmetic (double precision) used by the system. This example demonstratesthat, in the general case, the spreadsheet user cannot be sure that even the�rst digit in the results is correct.Another problem of machine arithmetic is how to deal with overowed val-ues. For example, the value of exp(710) overows in ordinary double precisionand generates an error in a spreadsheet program. However, in a tolerant systemit should be possible to make computations with such values when reasonable,too. For example, consider the function system:A1 = 0A2 = exp(710) �A1A3 = 2= exp(710)MS Excel returns error values for A2 and A3 because the value of e710 over-ows. However, a more robust system could see thatA2 = exp(710) � 0 = 0A3 = 2= exp(710) = (0; 0+)where 0+ in the open interval (0; 0+) denotes the smallest positive machinenumber available.1.2 Exploiting inexact dataIn spreadsheet applications all data cannot always be represented by exactnumbers. For example, consider the electronic circuit of �gure 1 below. Thetask is to compute voltage U1 by function systemR1 = R2R3R2 +R3U1 = R1I1 (1.3)when resistances R2 and R3 are given and current I1 has been measured. Inreal life, resistances have manufacturing tolerances and I1 can be measuredonly down to the accuracy of the measuring equipment used. A reliable valuefor U1 cannot hence be computed by using ordinary arithmetic. However, byusing interval analysis reliable bounds for U1 can be determined. Classical in-terval arithmetic (IA) [38] alone is not necessarily applicable to this kind ofproblems because it treats multiple variable instances in the functions inde-pendently from each other (here variables R2 and R3 have two instances in
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Figure 1 An electronic circuit.the �rst function). As a result, there is usually too much width in the results.In spite of this di�culty, classical IA can be useful when intervals are narrowestimates for rounding errors [33] because then the extra width accumulatedinto the results often remains tolerable. However, in this paper we see intervalarithmetic in the �rst place as a general formalism for representing uncertain,imprecise or missing numerical data. Intervals in such spreadsheet applicationsare usually wide, even in�nite, and the problem of extra width is strongly em-phasized. In order to evaluate the actual range of an interval function in thegeneral case, global interval optimization techniques [43, 13] must be employed.Another limitation of classical IA is its restricted notion of interval as a closed�nite continuum of values. This may su�ce when dealing with rounding errorbounds. However, in spreadsheet computing, a notion of interval as general aspossible is preferable including open ends, in�nities, and discontinuities.1.3 Constraint solvingSpreadsheet functions are evaluated in one \direction" from input argumentvalues to output function values. However, the functions could be used formore than that. For example, consider the temperature conversion formulafrom Celsius (C) to Fahrenheit degrees (F ):F = 1:8 C + 32 (1.4)The formula computes F in terms of C but it could also be used for computingC in terms of F with a little extra algebraic manipulation.In ordinary spreadsheets, the distinction between input and output variables is



Interval Computations on the Spreadsheet 5rigidly made although this is not necessary from the mathematical view point.It would often be quite useful to the user, if (s)he could set the value of afunction and see what e�ect this constraint has on the arguments. Actually, inplanning and designing applications the �nal goal of a computation (output) istypically given (e.g., the desired pro�t of a �nancial transaction) and the prob-lem is to �nd input data by which the goal can be achieved. Using spreadsheetsin such applications typically results in tedious trial{and{error sessions wherethe user tries to �nd a feasible solution (output values) by iteratively guessingargument values (input values).Problems such as (1.4) can be approached by using interval constraint sat-isfaction techniques [8, 10, 15, 17] in which function sets (or more generallyequation sets) are treated as symmetric relational constraints without commit-ting to any input{output distinction. In addition to using the trial{and{errorscheme, interval constraint techniques can also support top{down problem solv-ing in which a feasible solution is searched for by stepwise re�ning the variableintervals of the problem until a solution emerges [16, 18].1.4 Outline of researchIn this paper it is shown how interval techniques can be used for extendingthe usage of ordinary spreadsheets into the three directions discussed above.As a demonstration of the ideas, three extensions to a commercial spreadsheetsystem have been designed and implemented. MS Excel is used as the pilotenvironment but the ideas and techniques developed are general and can be ap-plied to other similar systems as well. For reasons of portability, each intervalextension is based on a general purpose interval arithmetic C++ class libraryof the InC++ library family [24] that has been integrated with the spreadsheetby an interface. The functionalities of the libraries can be incorporated intoother spreadsheet systems by rewriting this interface only.Following chapters review the three extensions one after another. In the �rstsystem, the spreadsheet program is provided with various interval types andoperators for them. The main limitation of the system is that of the classicalIA: the results of function evaluations may have extra width in certain situ-ations. The second extension overcomes this problem by using algebraic andnumerical techniques for determining the actual bounds of interval functions.In both systems functions are evaluated in one direction only. This limitationis removed in the third extension in which spreadsheet functions are computedby solving the corresponding interval constraint satisfaction problem.



6 Chapter 12 EXTENDED IA ON A SPREADSHEETInterval arithmetic has usually been implemented by embedding it into pro-gramming tools that include:1. Programming languages . Most interval arithmetic implementations such asPascal{SC [6], Fortran{SC [5], PBasic [1], VPI [12] and BNR{Prolog [41]can be seen as extensions or additional libraries for various programminglanguages. The implementations are intended for programmers.2. Computer algebra packages . Recently, interval extensions to various com-puter algebra packages such as Maple and Mathematica [29] have appeared.These implementations are intended also mainly for programmers but herein a conceptually higher level mathematical language than in (1).We argue that spreadsheets provide one more natural platform for making inter-val arithmetic tools available. Here the intended users are not programmers butrather various spreadsheet end{users, a much larger audience. Interval compu-tations can be implemented on the spreadsheets by using the macro languagesand other programming devices provided by current spreadsheet products.In this chapter, an interval extension called Extended Interval Arithmetic onMS Excel (EIA Excel) [11] is presented. The primary goal of EIA Excel is toprovide the user with a notion of interval arithmetic in as versatile form aspossible. For this reason, we �rst review properties of the extended IA usedin the system. This arithmetic generalizes classical IA in many ways and isemployed also in the other interval spreadsheet systems of this paper.2.1 Extended Interval ArithmeticOpen{ended intervalsIn many �elds of science and engineering, open and half open intervals arewidely used in addition to the closed ones considered in classical IA. Hence,the extended IA should support all four interval types below:[x; y ] [x; y) (x; y ] (x; y)There are at least two approaches for implementing openness. One possibility isto approximate an open{ended interval by a closed one by rounding open ends



Interval Computations on the Spreadsheet 7inwards to the next smaller machine arithmetic number. After this classicalclosed IA can be applied. For instance:(�2; 3) � [�1; 9999 : : : ; 2:9999 : : :]In this approach open ends are only syntactic sugar for representing inwardrounding. The problems of this approach are:Inward rounding discards possible values at the bounds. For instance,in the above example, ranges (�2;�1:999 : : :) and (2:999 : : : ; 3) are lost.Discarded ranges never contain any machine numbers but can still havee�ect on computations.Information concerning open bounds is lost and results are always closed.A more proper approach is to generalize IA function evaluation rules for deal-ing with interval open ends (and with in�nities �1) by considering di�erentinterval limit combinations separately for each arithmetic operation (see e.g.[8]). For example, two half open intervals (a; b] can be added by rule:(x; y ] + (u; v ] = (x + u; y + v ]However, in this approach rounding errors may cause problems. For example,when computing (0:1; 1 ] + (0:2; 2 ] = (0:3�; 3 ]the open minimum, denoted by 0:3� = 0:1 + 0:2 cannot be represented pre-cisely by a machine number equal to 0:3, but must be represented by thenext one smaller (0:3�) or larger (0:3+). When using normal programminglanguages, the rounding direction depends on the math library used. If theupward rounded value 0:3+ is selected, then the result (0:3+; 3 ] is incorrectbecause the correct minimum in range (0:3; 0:3+) is excluded. A better andsafe minimum bound is 0:3�, but then the result (0:3�; 3 ] will contain extravalues (0:3�; 0:3 ]. Although the distance between neighbouring machine num-bers is tiny with small numbers (like with 0:3� and 0:3), it can be large (inabsolute value) with large numbers. As a result, more or less excess width canbe accumulated into the intervals during computations. This extra width aswell as the extra width due to using classical IA (that assumes independentmultiple variable instances) is much larger than the in�nitesimal di�erence be-tween an open and a closed interval bound.There are still good reasons for introducing open ends. Firstly, the e�ect of



8 Chapter 1rounding errors can usually in practice be �ltered away by representing the in-terval bounds with less digits than are used for computations. Secondly, it is notpossible to represent in�nitely large and small or in�nitely close bounds with-out the notion of open interval. For example, in extended interval arithmetic(to be presented later) interval division 1[�2;2] can be performed by consideringnegative and positive values separately:1[�2; 2 ] = 1[�2; 0) [ 1(0; 2 ] = (�1;�1=2 ][ [1=2;+1)If [�2; 0) had to be approximated by [�2; 0�], where 0� is the largest negativemachine number, then the (non{representable) values (0�; 0) would have noe�ect on the value of division. However, in division the values of the divisornear zero are quite important because they generate the smallest and largestvalues of the function (interval limits). Thirdly, even in cases where a lot ofextra width is accumulated in the result, openness never makes harm otherthan slightly complicates computations.Complement intervalsAn interval intuitively states a range of possible values. In some applications,it may also be useful to state ranges of impossible values. For this purpose, weintroduce the notion of complement (interval). A closed complement is de�nedby ]x; y [ = fa j a � x or a � ygand intuitively contains values not in interval (a; b). Open and half open com-plements can be accepted as well. The de�nitions of these variants are analo-gous to the interval case:)x; y ( = fa j a < x or a > yg]x; y ( = fa j a � x or a > yg)x; y [ = fa j a < x or a � ygBy using complements, IA rules can be extended for some discontinuous sit-uations not de�ned in classical IA, such as division by an interval containingzero. For example: [3; 6][�1; 3] = ]� 3; 1[



Interval Computations on the Spreadsheet 9Discontinuous intervalsThe complement is a simple case of the more general notion of discontinuousor multi{interval . A discontinuous interval X can be de�ned as the union of aset of intervals and complements XiX = fX1 [X2 [ : : : [Xngand it is represented in ordinary set notation. Xi are called the constituents ofX . For example: X = f] 2; 20 [; [ 7; 8); 6; (15; 25 ]g (1.5)The order of constituents is free and the elements may overlap each other.Exact number 6 is implicitly considered interval [ 6; 6 ] here. The normalizedrepresentation of a discontinuous interval is the one in which1. constituents are represented as ordinary intervals,2. any two overlapping constituents X \ Y 6= fg are merged into X [ Y and3. the constituents are sorted in increasing order.It is easy to see that any discontinuous interval has a unique normalized rep-resentation. For instance, (1.5) in normalized form is:X = f(�1; 2 ]; 6; [ 7; 8); (15;+1)gIn�nite intervalsA problem in implementing interval arithmetic by using �nite precision machinearithmetic is how to deal with in�nitely large intervals and value overows. Asolution approach to this problem is to use variable precision arithmetic [12],in which the user can select the number of bits to be used for number represen-tation. By using more bits, less overows are likely to happen but the problemstill remains. The selection can also be made dynamically, like in C{XSC [30].In many computer algebra systems [9], arbitrarily large integers and preciserational numbers can be used. The price to be paid for such precision is ofcourse increase in computational complexity.When using computationally more e�cient �nite precision arithmetic, toolarge and too small values can be represented by special in�nity values +1



10 Chapter 1
TYPE COMMENTNumbersx In outward rounding mode, numbers are changedautomatically into intervals, if needed.�1, +1 In�nitiesIntervals[x; y ] Classical IA closed intervals(x; y) Open intervals[x; y) Half open intervals(x; y ](�1; x) In�nite intervals(�1; x ](x;+1)[x;+1)(�1;+1) Complement intervals]x; y [ = fa j a � x or a � yg)x; y ( = fa j a < x or a > yg]x; y ( = fa j a � x or a > yg)x; y [ = fa j a < x or a � ygDiscontinuous intervalsfg Empty intervalfX1; : : : ; Xng Each Xi is a number, an interval, or a complementTable 1 Summary of interval types in extended IA.and �1. Interval functions can then be modi�ed by generalizing arithmeticaloperators for �1. For example, interval addition(x; y) + (u; v) = (x+ u; y + v)can be generalized by the following rules for adding �1 [8]:�1+ x = x+ (�1) = �1+1+ x = x+ (+1) = +1



Interval Computations on the Spreadsheet 11�1+ (�1) = �1+1+ (+1) = +1Cleary argues that in his arithmetic system, cases �1 + (+1) and +1 +(�1) (and some other corresponding ill{de�ned cases with other operators)\can never occur and need not be speci�ed" (p. 146). However, in practice,ill{de�ned situations may arise when subexpressions in combined expressionsevaluate overowed intervals (or if the user is allowed to use �1 as inputfor operators). For example, if ANSI C double precision is used, then theminimum and maximum of e[710;720] are larger than the largest representablemachine number. Let us represent such an interval by (1;1). This kindof degenerated values can be useful and cannot be discarded. For instance,if (1;1) is multiplied by value 0, then the result should be 0. On the otherhand, if (1;1) is divided by (1;1) then one can at least say that the possiblevalues are positive: y = e[ 710;720 ](1;1) � (0;+1)When using large or in�nitely large intervals, the results of arithmetic opera-tions often overow and cannot be computed or represented precisely. However,in interval arithmetic it is possible to return as the result the closest obtainableouter approximation of the actual result (e.g., (0;+1) in the above example).This is often useful, although one then typically loses information and getsextra width in the result. For example, in evaluating the functiony = ln(e[ 690;710 ])it is not possible to get the precise result [ 690; 710 ] but only [ 690;+1) due tothe maximum overow in the inner exponent function call:y = ln(e[ 690;710 ]) � ln([ 4:60 � 10299;+1)) � [ 690;+1)Fortunately, from the user's view point, the criterion for identifying an overowis simple:If there is a limit �1 in the result, then and only then a degeneratingoverow has occurred.Non{degenerating overows compensated by other operations during the eval-uation, such as multiplication of [ 1;+1) by 0, make no harm as long as the�nal result is �nite.A summary of the interval types discussed above is presented in table 1.



12 Chapter 12.2 Primitive functionsLet us denote the interval and discontinuous interval functions correspondingto an exact value function f by fi and fd, respectively (e.g., +i means inter-val addition). The generalized discontinuous interval function fd(D1; : : : ; Dn)corresponding to an interval function fi(I1; : : : ; In) can be de�ned as follows:fd(D1; : : : ; Dn) = [ffi(I1; : : : ; In) j I1 2 D1; : : : ; In 2 Dng (1.6)The de�nition intuitively applies the interval function with respect to everypossible combination of the constituent intervals used in the arguments. Thisguarantees that the resulting discontinuous interval is the actual set of all thepossible values of the exact function. For illustration, a multiplication of twodiscontinuous intervals is performed below:f[�2;�1 ]; [ 3; 4 ]g �d f[ 2; 3 ]; [ 4; 5 ]g= [�2;�1 ] �i [ 2; 3 ] [ [�2;�1 ] �i [ 4; 5 ] [ [ 3; 4 ] �i [ 2; 3 ] [ [ 3; 4 ] �i [ 4; 5 ]= [�6;�2 ] [ [�10;�4 ][ [ 6; 12 ] [ [ 12; 20 ]= f[�10;�2 ]; [ 6; 20 ]gThe number of constituent intervals in the resultant discontinuous interval in(1.6) varies between 1 and k1k2 � � � kn where ki is the number of intervals indiscontinuous interval Di, i = 1 : : : n. In the example above, the maximumnumber 2 � 2 = 4 was reduced to 2 because two pairs of intervals were overlap-ping and could be merged by the union operation.A major motivation for discontinuous interval arithmetic is the possibility ofrepresenting precisely function values even when the function has discontinuitypoints. For example, the de�nition of interval division with closed intervals canbe generalized as follows:
[x; y ][u; v ] = 8>>>>>>>>>>>>><>>>>>>>>>>>>>:

[x; y ] � [ 1=v; 1=u ]; if 0 =2 [u; v ]fg empty interval; if u = v = 0[x; y ](0; v ] ; if u = 0[x; y ][u; 0) ; if v = 0[x; y ][u; 0) [ [x; y ](0; v ] ; otherwise



Interval Computations on the Spreadsheet 13By de�ning modi�ed rules for open{ended and in�nite intervals, the generalinterval (and discontinuous interval) division rule can be compiled. Examples:6[�1; 3 ] = 6[�1; 0) [ 6(0; 3 ] = (�1;�6 ] [ [ 2;+1) = ]� 6; 2 [[ 3; 6 ][�1; 3 ] = (�1;�3 ] [ [ 1;+1) = ]� 3; 1 [[�2; 6 ][�1; 3 ] = [�2; 6 ][�1; 0) [ [�2; 6 ](0; 3 ] = (�1;+1)In addition to interval division, there are also other important discontinuousinterval operators, such as tan(x) and cot(x).Classical IA evaluations are computationally more demanding than exact valuecomputations because of the need to deal with both lower and higher bounds.The extensions to open and in�nite intervals increase the complexity furtherbecause of the need to identify bound types and overows. Introduction of dis-continuity increases the complexity further. For example, applying an m:aryfunction with discontinuous intervals having n interval constituents, needs nmordinary interval evaluations. In cascaded evaluation of discontinuous func-tions, the number of constituents in the worst case grows exponentially. How-ever, by normalizing intermediate results the growth of constituent number inpractise usually gets smaller.The idea of extending IA rules for the discontinuous case has been suggestedprobably �rst [13] by Hanson [14] and Kahan [27]. Our extended IA is a full{scale development of the idea. All interval types of table 1 can be used withinterval functions. The scheme has been implemented as C++ class libraryLIA InC++ [20]. The library contains interval classes and overloads arithmeticoperators and functions for them. The library covers ordinary rational, trigono-metric, exponential, logarithmic and many other functions. To our knowledge,it is the only extended IA package discussed in the literature and currentlyavailable.2.3 Interfacing MS Excel with Extended IAThe extended IA described above has been embedded in MS Excel. From theuser's viewpoint, the system [11] is an Add{In library of new interval functions(such as TSUM , TSIN , TLOG, etc.) corresponding to the ordinary mathe-matical functions of MS Excel (such as SUM , SIN , LOG, respectively). The



14 Chapter 1functions can be loaded into the system either automatically (from the MSExcel start{up directory) or by demand from the menu. This idea of providingthe user with loadable additional functions is widely used in MS Excel, e.g.,in its implementations of complex arithmetic, statistical functions, etc. Thefunctions are used and evaluated like ordinary MS Excel functions by Excel'sown control mechanism.
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Figure 2 EIA Excel Architecture.Figure 2 depicts the general architecture of EIA Excel. Arrows indicate dataows and lines internal connections between the modules. The user inputsintervals and functions into the spreadsheet in the usual way. Intervals arewritten as strings (because MS Excel does not support interval data types).Interval functions are written as normal MS Excel functions. They accept bothnumbers and interval strings as arguments; the function value is also an intervalstring or a number. The functions are de�ned in Visual Basic, the programminglanguage provided for the user in MS Excel 5.0. When an interval function callis evaluated, the Visual Basic de�nition passes control to the underlying DLL{module that actually performs the computation. In the implementation, theObject Linking and Embedding (OLE) scheme of Microsoft is used.The Visual Basic interface de�nes new interval functions (TSUM , TSIN , etc.)in terms of intermediate C++ functions in the C++ interface module. OnlyMS Excel speci�c conventions for the interval functions are implemented in theVisual Basic interface. These include the following:The e�ect of errors encountered in earlier computations is propagated fur-ther. For example, if A2 = 0 in function = TSUM(A1=A2; B1), theordinary ={function of MS Excel returns a special error value #DIV=0that must be returned also as the value of the call to TSUM .



Interval Computations on the Spreadsheet 15Missing or empty arguments are skipped according to MS Excel conven-tions. For example, the value of interval addition TSUM(A1; 2) is 2 if A1is empty.Type checks and dynamic screening on arguments are performed. Forexample, the interval sinus function TSIN does not accept MS Excel'sarray arguments that represent actually argument sets (e.g., array A1 : B2refers to cells fA1; A2; B1; B2g) but TSUM does (in the same way asSUM). TSUM also automatically skips arguments of wrong data type,but not error values (e.g., error value #DIV=0 above).The interface is also used for implementing some miscellaneous extensionsto MS Excel functionality. For example, the hypertext{based on{line helpfor EIA Excel (see �gure 2) can be activated from a new entry in MSExcel's help menu.The task of evaluating the interval function is passed to the C++ Interface.This layer is needed mainly because MS Excel does not support interval datatypes. The C++ interface transforms the strings and numbers of the MS Excelcells into interval objects, applies the actual interval operation to them by thefunctions of the interval library LIA InC++ and the Special Functions module,and transforms the result back into a string or a number settable in a cell by theVisual Basic Interface. Outward rounding is performed for primitive functionarguments (unless they are small integers that can be represented precisely inthe machine arithmetic) but the resultant is not rounded. This is not necessarybecause the change is so small that it cannot be visualized on the spreadsheet,and if the result is further used in another function as an argument, then it willany how be rounded properly.The Special Functions -module contains de�nitions of some interval operationsnot de�ned in LIA InC++. For example, the \intelligent" formatting functionsupported by EIA Excel TF (interval; n)prints an interval in a format in which numbers and bounds are representeddown to n digits. Intervals (and constituent intervals) are merged automaticallyinto numbers if the interval limits become equal at the given precision level.For example:TF (3:1234567; 6) =) 3:12346TF ("[ 2:1999999999; 2:2000000001 ]"; 10) =) 2:2TF ("f[ 0; 1269 ]; [ 1300; 2000 ]g"; 2) =) [ 0; 2E + 03 ]



16 Chapter 1The second example shows that the function is quite necessary in interval com-putations in order to get rid of the irrelevant digits generated by outwardrounding arithmetic.3 GLOBAL IA ON A SPREADSHEETThe main limitation of classical IA and the interval techniques discussed in theprevious section is that the function values evaluated often have more or lessextra width. For example, sheetA1 = C1 = 1B1 = [ 1; 2 ] (1.7)B3 = (A1 �B1)� (B1 � C1)evaluates B3 = [�1; 1 ] although the actual range of B3 is B3 = 1 �B1�B1 �1 =0. In the general case, the actual value range of a function F can be evaluatedonly if F does not have multiple variable instances, or if such variables haveprecise numeric values, which actually makes them non{variables [39]. Theexcess width diminishes as the values of the multiple instance variables getstricter and stricter.This dependency problem has its incarnation also at the function set level.For example, consider the following function set version of (1.7):A1 = C1 = 1B1 = [ 1; 2 ]A2 = A1 � B1 (1.8)C2 = B1 � C1B3 = A2� C2Here the actual value of each function can be computed in separation (thereare no multiple variable instances) but we still get B3 = [�1; 1 ] (as in (1.7))and not B3 = 1 � B1�B1 � 1 = 0.Obviously, the dependency problem must be solved both at the function and atthe function sets levels in order to implement an interval spreadsheet programcapable of evaluating the actual cell values. In the following, it is �rst shownhow these tasks can be performed. After this, an implementation of globalinterval arithmetic on top of MS Excel is presented.



Interval Computations on the Spreadsheet 173.1 Global evaluation of an interval functionVarious techniques have been developed for evaluating the actual value range ofan interval function, i.e., for its global evaluation. Best{known approaches arethe various numerical branch{and{bound algorithms discussed in depth in [42,43, 13]. This paper considers these techniques mainly from the practical user'sview point. We proceed by presenting a global function evaluator library GIAInC++ [21, 24] in whose design practical issues encountered in spreadsheet{likecomputations have been the main concern.
Figure 3 Architecture of function objects (IFunction) in GIA InC++ library.GIA provides the user with a class \IFunction" for de�ning, parametrizingand evaluating an interval function. Figure 3 depicts the general architectureof IFunction{objects. The parser transforms user given functions and inter-val expressions (strings in ordinary mathematical notation) into an internalrepresentation. An algebraic extension optimizer then transforms the parsedrepresentation into a form optimal for global numerical interval arithmetic eval-uation. Various computational parameters can be used for controlling bothnumerical evaluation and algebraic optimization. The LIA InC++ library dis-cussed earlier is used as the underlying basis for evaluating interval functionprimitives. In the following, numerical evaluation and algebraic optimizationin GIA InC++ are discussed in some more detail.Numerical evaluationGIA's numerical evaluation is based on the numerical branch{and{bound (BB)search scheme introduced by Skelboe [46] and developed further by others[2, 42, 43, 40]. Roughly speaking, the idea is to consider argument intervalsin ever smaller and more precise parts. E�ciency is gained by identifying andpruning irrelevant subintervals from consideration as early as possible.



18 Chapter 1The BB algorithms above are intended for �nding an arbitrarily close lowerbound for the minimum of an interval function F . In GIA, the algorithm isapplied also to �F for getting the upper bound for the maximum. Hence, outerbounds [minout;maxout ] of the actual function F values [min;max ] can becomputed. In addition, as a side e�ect of the computation, it is possible toobtain also inner bounds [minin;maxin ] for the actual F values [min;max ](e.g., by using the so{called midpoint{test accelerator):[minin;maxin ] � [min;max ] � [minout;maxout ]Computation is terminated based on either absolute or relative precision levelsset by the user:minin �minout � absolute precisionmaxout �maxin � absolute precisionminin �minoutminin � relative precision; minin 6= 0maxout �maxinmaxin � relative precision; maxin 6= 0 (1.9)Relative criteria are useful especially when the absolute values of the intervallimits are large; absolute criteria are useful when they are around zero.Recursive functionsIn interval arithmetic spreadsheets it makes sense to accept recursive functionsystems in addition to the traditional non{recursive ones. For this purpose,GIA InC++ extends the BB scheme also to recursive functions of form:Xi = F (X1; : : : ; Xi; : : : ; Xn)Mathematically, the actual range of feasible values of a recursive function isthe range of its exact value �xed points:Xi = fxi j xi = f(x1; : : : ; xi; : : : ; xn); xj 2 Xj ; j = 1; : : : ; ng (1.10)The goal of GIA InC++ is to compute safe outer bounds [minout;maxout ] forthis set within user given precision levels.When evaluating a recursive function, simple iteration by using the intersectedvalue F (X1; : : : ; Xi; : : : ; Xn) \Xi as the next value for Xi is not enough. Theproblem is that computation easily gets stuck in �xed point interval solutions.



Interval Computations on the Spreadsheet 19For example, in evaluating X = 1X such an iterative computation could termi-nate at X = 1[ 0:1; 10 ] = [ 0:1; 10 ]and the actual range [ 1; 1 ] within [ 0:1; 10 ] is not found.Another problem in evaluating a recursive function is that it is usually dif-�cult to �nd (by the midpoint test) exact �xed points, i.e., feasible values ofthe function, because f(x1; : : : ; xi; : : : ; xn) seldom happens to evaluate xi pre-cisely. As a result, inner bounds of the function are di�cult to determine.Without �nding such points, the BB algorithms cannot be terminated easily(cf. the termination conditions (1.9) above).In order to solve this di�culty, GIA InC++ slightly loosens the notion of �xedpoint based on user given precision levels. Instead of bounding set (1.10) GIAdetermines bounds for:Xi = fxi j xi � f(x1; : : : ; xi; : : : ; xn); xj 2 Xj ; j = 1; : : : ; ng (1.11)Situation xi � f(x1; : : : ; xi; : : : ; xn) is considered a precision �xed point usingthe user given absolute or relative precision criteria. GIA determines the rangeof precision �xed points (as an interval) instead of the range of ordinary pre-cise �xed points. Since every ordinary �xed point is a precision �xed point,the range (outer bound) of values determined by GIA InC++ is a superset ofthe actual �xed point values (1.10). The extra width in the obtained rangeapproaches to zero as desired absolute and relative precision approach to zero.With zero precision the sets of ordinary and precision �xed points are identical.By using precision �xed points, it is easier to obtain also inner bounds fora recursive function. However, one should remember that the inner bounds arenow determined for precision �xed points and not for ordinary �xed points.There are not necessarily any ordinary �xed points between inner and outerbounds, only precision �xed points. Although outer bounds in the recursivecase safely bound all possible actual �xed points (if any), the inner bounds donot necessarily bound actual feasible values from the inside in the same senseas in the non{recursive case. For example, consider recursive functionX = Y � �X5 + 15X4 + 85X3 + 225X2 + 120�274 ; Y = 0; X = [�100;�1 ]for bounding the zeros of the polynomialY = X5 + 15X4 + 85X3 + 225X2 + 274X + 120



20 Chapter 1There are �ve ordinary �xed points (zeros) X 2 f�5;�4;�3;�2;�1g and thebounds are hence X = [�5;�1 ]. If absolute and relative precision is 10�6, theminimums of outer and inner bounds are after some evaluation time �5:0002 : : :and �5:00005 : : : with no ordinary �xed points (but only precision �xed points)in between. Unlike in the non{recursive case, existence of ordinary feasible(�xed) points of a recursive function cannot in the general case be proved un-less zero precision is used. Existence of ordinary �xed points implies existenceof precision �xed points but not vice versa.The task of evaluating a recursive function Xi = F (X1; : : : ; Xi; : : : ; Xn) isequivalent to the problem of �nding the zeros of the function:0 = F (X1; : : : ; Xi; : : : ; Xn)�XiAn e�cient technique for the latter problem is the interval Newton method[13]. In GIA this technique can be employed by a special macro \newton" thatautomatically transforms a function into the corresponding (recursive) intervalNewton operator. For example, the zeros of the above polynomial can be foundby using macro:newton(X5 + 15X4 + 85X3 + 225X2 + 274X + 120; X)Algebraic optimizationConsider a real valued function y = f(x1; : : : :; xn) and an interval valued func-tion Y = F (X1; : : : ; Xn). F is called an (interval) extension of f i�:f(x1; : : : ; xn) = F (x1; : : : ; xn)The simplest extensional form is the natural extension that is obtained fromf(x1; : : : ; xn) by simply replacing function operations by the correspondinginterval operations. The problem with the natural extension is that the extrawidth accumulated is usually large. Various alternative ways for constructingextensional forms have been proposed for evaluating stricter results [42]. GIAuses several algebraic modes settable by the programmer. Some of them arelisted in table 2.There is no known general solution to the problem of �nding the best exten-sional form for a function, only some heuristic guidelines. The excess widthdepends both on the properties of the function and on the argument intervalvalues. Extension selection is, however, quite important from the practical
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MODE MEANINGNatural Use natural extension (no algebraic optimization).Taylor Use nth order multivariable Taylor form.Monotonicity Use monotonicity test form [2].Optimize Use monotonicity test form with derivatives optimizedby nth order Taylor expansions.Table 2 Some algebraic modes used in GIA InC++.computational view point. For example, some test evaluations of the polyno-mial Y = X4 � 10X3 + 35X2 � 50X + 24 (1.12)with X = [ 0; 4 ] are listed in table 3. The last mode involving most algebraicpreprocessing is here clearly the best choice.Mode Algebraic Numerical Monotonicity Taylorpreproc. evaluation test used orderNatural 0 > 6 � 105 no -Taylor < 10 220 no 2Monotonicity 20 440 yes -Optimize 50 90 yes 2Table 3 Algebraic preprocessing and numerical evaluation times (msecs) of(1.12) illustrating the need for algebraic optimization.Since the average spreadsheet user is hardly interested in the peculiarities ofextensional forms, GIA has also an automatic algebraic mode (used by default).In this mode, GIA heuristically determines for each given function an appro-priate extensional form. As a general strategy used there, multiple instancesof variables in the expression are tried to be eliminated by using computeralgebraic techniques [9] such as polynomial canonization, symbolic rational di-vision and a rule base for simplifying irrational expressions. Taylor expansionsare also used when they do not generate more multiple instances of variables.



22 Chapter 1Computational parametersA major pragmatic di�erence between a local interval system such as EIA Exceland a global one is computational complexity. Global numerical evaluation ofan interval function can take an unpredictable long time, and the spreadsheetuser must be provided with a versatile set of computational parameters forcontrolling the computations. In GIA, the following parameters can be usedfor controlling numerical evaluations:Global vs. local evaluation. The function objects can be evaluated eitherglobally (default mode) or locally, i.e., in ordinary (extended) IA. Localmode is useful in situations where very fast response time is needed evenat the price of extra excess width in the result.Absolute and relative precision levels . Less demand on desired precisionlevels often signi�cantly shortens evaluation time.Time limit . In many applications, response times within prede�ned limitsmust be guaranteed (e.g., in real time systems). GIA supports such appli-cations by providing a settable time limit. If the resultant interval has notbeen obtained within the limit, computation is forcibly terminated. Thedi�erence between inner and outer bounds tells how precise the result is.Reusing earlier computationsComputations in spreadsheets are often reactivated after a small change in onlyone argument. Given the complexity of global interval evaluations, it becomesnecessary to maintain results of earlier computations and to try to reuse themas much as possible. It is not feasible to start each evaluation from the scratchafter any small modi�cation in some argument value.In GIA the function objects constructed maintain computational partial re-sults obtained during the last evaluation. When evaluated again, the objectdynamically checks changed input values with respect to the previous evalua-tion, makes only needed updates and changes in the previous computationalresults, and continues computation from this internal state on. Such reuse ofearlier work often dramatically shortens needed computational time.



Interval Computations on the Spreadsheet 233.2 Global evaluation of an interval functionsystemIn [19] a technique is developed for evaluating a function system globally. Thehearth of the technique is the simple algorithm Local{Function{Evaluationbelow that implements cascaded function evaluation in traditional spreadsheetcomputing. Function args(Y = F (: : :)) denotes the set of arguments in func-tion Y = F (: : :).Algorithm: Local{Function{Evaluation1. Initially, given is a function system S fYi = Fi(: : :)g and values for allinput (and recursion) variables.2. Sort S by the following criterion: if Yi 2 args(Yi+1 = Fi+1(: : :)), putYi = Fi(: : :) before Yi+1 = Fi+1(: : :).3. If S is empty, go to 5. Otherwise select and remove next function Y =F (: : :) from S.4. Evaluate Y = F (: : :). Go to 3.5. Terminate.However, this algorithm alone does not solve our problem in the interval case:The functions are evaluated independently from each other (locally), whichmeans that common argument variables used in di�erent functions are treatedas if they were di�erent variables having the same value. Furthermore, prob-lems of circular function chains are not considered. Proper function systemevaluation in interval arithmetic would require that the dependencies betweendi�erent variable instances in di�erent functions are respected globally. Thisdependency problem can be captured by the notions of local and global cas-caded evaluation:De�nition Consider a function system FS with input variables X1; : : : ; Xnand output variables Y1 = F1(: : :); : : : ; Yk = Fk(: : :). Cascaded interval evalu-ation is local i� each output (and recursion) variable Yi gets interval value:Yi = fy j 9 x1 2 X1; : : : ; 9 xn 2 Xn : y = Fi(x1; : : : ; xn)g:Evaluation is global, if the value of each output (and recursion) variable Yi isthe actual range of the feasible values w.r.t. all local functions:Yi = fyi j 9 x1 2 X1; : : : ; 9 xn 2 Xn : yj = Fj(x1; : : : ; xn); j = 1 : : : kg:



24 Chapter 1The local propagation algorithm Local{Function{Evaluation can be ap-plied for global cascaded interval evaluation if the function system is �rst alge-braically globalized and then evaluated by using a global interval function eval-uator. This scheme is summarized by algorithm Global{Function{System{Evaluation. The algorithm evaluates values for the output variables of thefunction system FS.Algorithm: Global{Function{System{Evaluation1. Globalize. For each (local) function f 2 FS derive a global function gby expanding f by recursively replacing function arguments by the corre-sponding functions into a minimally large expression. The stopping crite-rion for the minimal expansion is that no variable used in g should occuras an argument in the remaining functions of FS not used for deriving g.2. Optimize algebraically. For each global function, derive algebraically ane�cient extensional form for numerical evaluation.3. Evaluate numerically. Evaluate the global function system derived in steps1{2 by the local propagation algorithm Local{Function{Evaluation (byusing global interval function evaluation techniques discussed in section3.1).For example, consider the function system:B2 = A1 � A2C1 = B1 +B2C2 = B2 +A2D1 = C1 + C2E1 = D1�D2 (1.13)For simplicity, the functions here are simple primitives, but could in principlebe functions of arbitrary complexity. The globalization phase (step 1) gives thefollowing globalized functions for the output variables shown in table 4. Theminimally expanded global functions for the output variables are given on table4. The rightmost column gives the expansion in algebraically simpli�ed form.Application of the minimality criterion is important because it makes the globalfunctions smaller and easier to evaluate. For example, there is no need to ex-pand the function E1 = D1 �D2 further because neither D1 nor D2 is usedas an argument in any other function. Intuitively, the global function for D1already takes care of the problem of the multiple variable instances of A1 and
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Cell Minimal Expansion In Simpli�ed FormB2 = A1 �A2 = A1 �A2C1 = B1 +B2 = B1 +B2C2 = (A1 � A2) +A2 = A2 � (A1 + 1)D1 = (B1 + (A1 �A2)) + ((A1 �A2) +A2) = A1 �A2 � (B1 +A2)E1 = D1�D2 = D1�D2Table 4 Globalized functions for the output variables of (1.13).A2, and D1 can be used as it is as the argument.In step (2) further optimization is needed only for the function of D1 whosesimpli�ed form contains multiple variable instances. In step (3) this functionmust be evaluated by a global evaluator like GIA. For the other global functionssimple local evaluation is su�cient.3.3 Implementation on a spreadsheetThe global cascaded evaluation scheme has been implemented as a C++ librarycalled CIF InC++ (Cascaded Interval Functions In C++) [22]. The library pro-vides the user with a class \Cif" for de�ning, maintaining, parametrizing andevaluating a function system. The main input of Cif{objects is functions andargument interval values in the form of strings and numbers. A separate parseris used for extracting the algebraic form of the functions for globalization. Af-ter inserting a function or removing one, the global de�nitions are updatedautomatically by a de�nition maintenance unit. Both algebraic globalizationand interval propagation can be tuned by a set of (optional) computationalparameters that are similar to those in GIA discussed earlier.After its construction, the function system can be evaluated and changed vari-able values can be read from the Cif{object.Integrating an external global IA module such as CIF with a spreadsheet pro-gram is more di�cult than integrating LIA in EIA Excel. The main problem isthat control of computations needed for propagating values globally is di�erentfrom the local propagation scheme provided by spreadsheets. As a result, thewhole computation procedure must be run in isolation from the host spread-
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Figure 4 The architecture of function system objects (Cif) in CIF InC++.sheet system. Furthermore, all changes made by the user to the local de�ni-tions should be reported to the underlying computational mechanism in orderto make the corresponding changes at the global level.In our implementation, each MS Excel workbook sheet is associated with aCif{object that contains and maintains the de�nitions of the sheet consistentand performs cascaded function evaluations. The user inputs interval functionsfor global evaluation by typing into a cell a call of a special Add{In function F= F (function)implemented in the MS Excel macro language Visual Basic. Function F im-plements the interface between MS Excel and the underlying computationalCif{objects. When MS Excel evaluates a call to F , say= F ("A1 +A2 � C2")in cell B1, then the following happens:1. The function B1 = A1 + A2 � C2 is inserted into the corresponding Cif{object.2. The current function system (Cif{object) is updated and evaluated.



Interval Computations on the Spreadsheet 273. Changed values are read from the Cif{object and output on the sheet.In the same manner, if the user inputs or modi�es an interval value in a cell,then the modi�cation is made in the Cif{object and after evaluation, changedvalues are updated on the sheet.Computational parameters for global interval evaluation can be set by a di-alog box activated from an additional MS Excel menu.4 INTERVAL CONSTRAINTSPREADSHEETSReconsider the function system (1.3):R1 = R2R3R2 +R3U1 = R1I1If arguments R2, R3, and I1 are given, the voltage U1 can be computed. How-ever, from the mathematical view point, any unknown variable in (1.3) could becomputed as a function of the others. This kind of \symmetric" computationswhere any variable can be used as input or output, can be performed by usingconstraint propagation techniques [47, 36].The �rst spreadsheet programs using constraint propagation were released al-ready in the early 80's. TK!Solver [31] was a well{known commercial imple-mentation. In [15, 17] four major problems of numerical constraint propagationbased on ordinary arithmetic were discussed:The systems cannot deal with imprecise data.The actual solutions cannot always be found even if this were mathemati-cally possible. This may happen if the functions to be evaluated are locallybut not globally underconstrained.Techniques for solving overconstrained problems were ad hoc.Although computations could be performed in any direction, input andoutput variables had to be selected by the user before propagation. Thisis often di�cult.



28 Chapter 1As a solution approach, interval constraint satisfaction techniques [8, 10] basedon interval arithmetic were proposed, and the approach was developed into anew generalized computational paradigm for spreadsheet computing in [16, 18].Other approaches to interval constraint satisfaction based on related techniquesare discussed in [28, 3, 32]. Application of interval constraints in evaluating ac-tual function value ranges is discussed in [7].Interval constraint spreadsheets have several attractions when compared withordinary spreadsheet:Interval arithmetic makes it possible to deal with inexact data and round-ing errors.In�nite solution sets of underconstrained problems can be abstracted asinterval solutions.Consistency techniques make it possible to compute (or at least bound)values for any variable in a set of related functions or more generally con-straint equations. No distinction between input variables (cells) and outputvariables is needed; the type of variables is determined dynamically.Top{down re�nement can be used as a new problem solving paradigm. Inthis scheme, a solution is found by constraining cell intervals stepwise untilexact solutions emerge. This is often more useful than the trial{and{errorscheme used in ordinary spreadsheets.Interval computations are safe and sound | possible solutions are neverlost.Ordinary numerical computation in spreadsheets is a special case of in-terval constraint satisfaction. Interval techniques o�er new possibilitieswithout giving up the possibility of using traditional exact spreadsheetcomputing.In the following, the notion of interval constraint satisfaction problem (ICSP) is�rst presented and techniques for solving it are discussed. After this, problemsof incorporating interval constraint computations with a spreadsheet programare discussed. As a test and demonstration, MS Excel has been extended forinterval constraint satisfaction.



Interval Computations on the Spreadsheet 294.1 Interval CSPsThe general interval constraint satisfaction problem (ICSP) [17] can be formu-lated as: E1; : : : ; EnP1 := X1; : : : ; Pm := Xm (1.14)Here Ei are functions, equations (or inequalities, that can be transformed intointerval equations), Pj are variables used in them, and Xj are real intervals (ordiscontinuous real intervals). The equations constitute a constraint net thatconsists of a set of variables and equational constraints connecting them. Forexample:sin(Z) = X + Y + 0:4; eX + Z = �0:2; X � Y = Z; X � 0Y = [ 0; 1000 ]; Z = [�100;�0:1 ] (1.15)The interval situation (called also tolerance situation) fP1 := X1; : : : ; Pm :=Xmg in an ICSP (1.14) refers to a set of exact value situationsfP1 := x1; : : : ; Pm := xm j xi 2 Xi; i = 1 : : :mg:An ICSP is feasible i� its interval situation has an exact subsituation satisfyingall constraints, i.e., the equations have a solution within the intervals:9 fP1 := x1 2 X1; : : : ; Pm := xm 2 Xmg : E1; : : : ; En satis�ed:A variable Pi 2 Xi is consistent i� each interpretation Pi := x, x 2 Xi, can besatis�ed with respect to all constraints by some exact subsituation:8x 2 Xi 9 fP1 := x1 2 X1; : : : ; Pi := x; : : : ; Pm := xm 2 Xmg :E1; : : : ; En satis�ed:We say that an interval situation is (globally) consistent, i.e., it is a (global)solution, i� its every variable is consistent. Intuitively, an interval in a solutionshould not contain \extra" values that cannot be satis�ed within the givenintervals. The global solution is the tightest interval set that bounds the so-lutions for the ICSP. For example, it turns out that equations (1.15) have asingle (global) solutionX � �1:25; Y � 0:387; Z � �0:485 (1.16)within the initial situation. Hence (1.15) is feasible.A weaker but computationally more easily obtainable and hence useful notion



30 Chapter 1of consistency is local consistency. A variable is locally consistent i� it is con-sistent with respect to all directly connected constraints in the constraint net.Local consistency of an interval situation (solution) means that all variablesare locally consistent. For example, the local solution ofX + T = Y; Y + T = ZX = 1; T 2 [ 0;+1); Y 2 [ 0;+1); Z = 11 (1.17)is T 2 [ 0; 10 ], Y 2 [ 1; 11 ]. Only at the global level one can determine thatactually Y must be the mean value of X and Z, i.e., that the global solution isY = 6, T = 5. Intervals in the local solution may have extra width but alwayscorrectly bound the global solutions.In the general case, the solution of an ICSP may not be represented by a singleinterval solution, but as a set S of them. For reasons of convenience, thesesolutions can be generalized by the situation G = fP1 2 X1; : : : ; Pn 2 Xngsuch that for i = 1 : : : n, min(Xi) is the minimum and max(Xi) is the max-imum of all values Xi of Pi in the solutions S. Hence, the solution G is themost constrained situation that can be obtained by re�ning the tolerances fromboth ends without losing exact value solutions. If discontinuous intervals areemployed, the generalized solution can be represented more accurately by asingle discontinuous interval situation.4.2 Solving ICSPsA solution technique for solving interval CSPs is to use Waltz �ltering for re-moving certainly infeasible regions from the variable intervals [10]. By thistechnique local solutions can be found. This technique is also employed ininterval constraint implementations for logic programming such as [41, 45].Another possibility is to generalize classical value propagation techniques [47]for interval arithmetic, i.e., to use tolerance propagation [15, 17]. In this tech-nique, the structure of the constraint net underlying the constraint equations isexploited. A bene�t of this approach is its extendibility from local techniquesto global problem solving by algebraic techniques. In global tolerance propa-gation, better than local solutions can be obtained by propagating values overseveral looping constraint equations at the same time.The techniques above aim at bounding the solution set of the equations withinan initial interval box. If the actual solutions are to be generated, IntervalNewton method [13] provides a promising technique [4]. Here the number ofsolutions is assumed to be �nite, i.e., the problem should not be undercon-



Interval Computations on the Spreadsheet 31strained.In our work, local and some global tolerance propagation algorithms have beenimplemented as a C++ library ICE InC++ [23]. By default, this system useslocal propagation but individual constraints are solved globally. If desired, ad-ditional global solution functions can be generated. ICE is designed to be usedas a general purpose ICSP library in C++ programming [26]. From the pro-grammer's view point, it is implemented as a C++ class Ice. Objects of thisclass correspond to ICSPs. Communication with Ice{objects is based on simplemember functions that de�ne ICSPs, set computational parameters, propagatetolerances, and read changed variable values. Using Ice{object is in principlequite similar to using IFunction{objects of GIA and Cif{objects of CIF.The main technical contribution of ICE is to apply a combination of inter-val analysis, computer algebra and tolerance (interval) propagation techniquesfor determining local and, especially, stricter than local interval solutions in ane�cient way. Other implementations for bounding solutions, such as [41, 34,35, 45, 3, 37] do not make use of algebraic or global interval techniques but relyon local numerical ones.4.3 Interval Constraint ExcelAs a demonstration, a version of ICE has been integrated with MS Excel [25].This chapter discusses modi�cations that need to be made in a spreadsheetprogram such as MS Excel when extending it with interval constraints. Im-portant issues are reviewed mainly from the user's point of view and solutionapproaches taken in our demonstrational implementation IC Excel (IntervalConstraint Excel) are described.Inserting equationsEach spreadsheet is associated with an Ice{object (an instance of class Ice) thatmaintains internally the ICSP corresponding to the spreadsheet de�nitions. In-terval values and constraints are de�ned by an Excel{function I(equation) thatsends string equation to the underlying object updating its internal state ac-cordingly. For example, when the user types I("[2; 3]") into cell A13, the valueof variable A13 is updated in the Ice{object and the status of related constraintsand solution functions is set undetermined. These constraints will later be pro-cessed during tolerance propagation. In the same way, I("A1 � SIN(B2) =A1 + C2") would insert the equation as a constraint and update the internal



32 Chapter 1constraint net. After inserting/modifying constraints and values and settingcomputational parameters (like desired precision levels), tolerance propagationcan be executed, and changed variable values are updated to correspondingcells on the sheet.In ordinary MS Excel, output cells have function de�nitions such as " =A2 + B3 + 7" and the function value is used and displayed as the value ofthe cell. A problem here is that when an interval constraint equation is in-serted, such as "A1 + B3 = C3 �B2", there is no unique cell where to displaythe value, but all related variable cells must be considered. In contrast to thefunction case, the position of an equation in the sheet is immaterial but shouldbe respected as a decision of the user. IC Excel works exactly like MS Excelwhen interval functions are inserted. When a constraint equation is inserted,IC Excel shows the equation itself in the cell, unless the cell has a value, inwhich case the value is shown.Setting output cell valueIn spreadsheet programs, it is not possible for the user to set the value of anoutput cell, because output cell values are de�ned by function expressions. Ininterval constraint satisfaction, it must be possible to set the value of any cell.IC Excel extends MS Excel in the following way: when double clicking a cell, aspecial DLL function gets activated and shows the value of the cell in a dialoguebox for editing. The possible formula attached to the cell remains as it was.Control of computationControl of tolerance propagation is quite di�erent from the evaluation mecha-nism used in MS Excel. As a result, all interval computations have to be doneby shifting control to the underlying Ice{object. In IC Excel, the special func-tion I described above makes this shift possible. Function I does not activateMS Excel's own value propagation algorithm, but only communicates with theunderlying Ice{object.InterruptsSince interval computations can take an unpredictable time to be completed,the user must be supported with an interrupt facility. In GIA InC++ library,computation can be terminated interactively and the resulting semi{global re-



Interval Computations on the Spreadsheet 33sult used as the solution. IC Excel makes use of the facility: a lengthy compu-tation can terminated by hitting a control key.RelaxationSince all cell values are user settable, the user can easily end up in an infeasiblesituation. In such situations it is not always easy to see what cells should bemodi�ed in order to make the situation feasible again. In IC Excel, a localrelaxation facility is available. In infeasible situations, computation is carriedon until all constraints have been evaluated. After this, cell values can beenlarged locally in order to satisfy all related constraints, if demanded by theuser. Often, but not always, this su�ces to make an infeasible situation feasible.Special computational parametersInterval computations can be controlled by a set of parameters. IC Excel makesuse of those available in GIA, such as desired absolute/relative precision andresponse time limit.CompatibilityAn important motivation behind the idea of interval constraint spreadsheetsis compatibility with traditional spreadsheet computing: cascaded exact valueevaluation can be seen as a special case of constraint satisfaction.In IC Excel, the same spreadsheet can be used simultaneously for both ordi-nary computations and interval constraint satisfaction. When intervals changeinto numbers, traditional MS Excel features like advanced graphics becomeautomatically available.4.4 An exampleConsider the resource allocation problem where the task is to allocate the work-ing time of n researchers in m projects during some time period. Let us assumethat three researchers X , Y , and Z are allocated to three projects, as shownin �gure 5. By applying (local) constraint propagation the system gives theresponse shown in �gure 6. The user has now the possibility to constrain theintervals. Assume that he/she demands that researcher X should not work on
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Figure 5 The resource allocation problem. Initial values and formulas.

Figure 6 The system's response to the initial state of �gure 4.1. Modi�edcells are in bold font.project 1 less than 120 weeks, i.e., C3 = [ 120; 160 ], and that the total resourcesof project 2 are exactly 150 weeks, i.e., D6 = 150. The situation is shown in�gure 7. Notice that the formula D6 = I("D3 +D4 +D5") remains in force.The system then applies again (local) constraint propagation to re�ne values.The response is shown in �gure 8, where the modi�ed values are in bold font.
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Figure 7 Changing the total time for the resources of Project 2 to 150 weeks.

Figure 8 The user has made two changes (italic font). The system's modi�-cations in response are shown in bold font.Based on the new situation, the user can then further re�ne the tolerances, thesystem will infer necessary consequences, and so on until some exact solution



36 Chapter 1satisfying the user's criteria for the solution is found.In �gure 7 the user simultaneously changed one input and one output variable(italic font). Although only two cell values were altered in this arithmeticallyquite simple system, it was possible to infer eight value modi�cations. For theuser it is di�cult to see every consequence of his/her changes immediately. Inthe general case, it is possible to change any combination of cell values simul-taneously. Furthermore, more complicated non{linear algebraic constraints areoften present in real{world problems of this type.5 DISCUSSIONThis paper reviewed work on applying interval techniques in spreadsheet com-putations. The research and implementations discussed indicate that intervalarithmetic is a promising formalism by which the computational paradigm un-derlying current spreadsheet programs can be extended for dealing with limita-tions of machine arithmetic and, more importantly, for dealing with imprecisereal world data. Three natural extensions | local extended interval arithmetic,global interval arithmetic and interval constraint arithmetic | for spreadsheetcomputing were proposed and their experimental implementations embeddedin MS Excel were presented (EIA Excel, IF Excel and IC Excel, respectively).Each extension includes the traditional spreadsheet computation mode as itsspecial case. The extensions can be implemented up to a reasonable level byusing the ordinary programming features provided by current spreadsheet pro-grams. However, a more seamless and e�cient implementation would requirethat interval data types and techniques were embedded in the kernel of thespreadsheet system.Local interval arithmetic functions can be embedded fairly easily in a spread-sheet program (EIA Excel). However, two di�cult problems are encounteredwhen extending spreadsheets for global interval computations (IF Excel) or forconstraint solving (IC Excel). Firstly, from the programmer's view point, con-trol of advanced interval computations cannot be supported by ordinary spread-sheet control mechanisms. The propagation engine must be implemented as aseparate module, which brings in problems of maintaining the spreadsheet andthe underlying computational system mutually consistent. Secondly, from theend{user's viewpoint, interval spreadsheet computations are time (and mem-ory) consuming. The response times are to a large extent unpredictable de-pending on the functions to be evaluated and argument values used. Whatever
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