‘ In Proceedings of the Eighteenth National Conference on Auifil Intelligence (AAAI-2002).‘

Algorithms for a Temporal Decoupling Problem in Multi-Agent Planning

Luke Hunsberger
Department of Engineering and Applied Sciences
Harvard University
Cambridge, MA 02138
| uke@ecs. harvard. edu

Abstract independently decides to execiiieat 3:45 (also consistent
with the original constraints), they will end up violatintet

a group of agents collaborating on a set of temporally- constraint < (3. To avoid doing s, they could agree to

dependent tasks seek to coordinate their execution of those one of the following: )

tasks by applying additional temporal constraints sufficie e Add further constraints (e.g3 < 4:25< f3;) that would
to ensure that agents working on different tasks may op- effectively decouple their tasks; or

erate independently. This paper: (1) formally deflnes.the e Have Sue wait until Bill announces a fixed time f6r
TDP, (2) presents theorems that give necessary and sufficien before she decides to fix a time 6§

conditions for solutions to the TDP, (3) presents a family ] ’ o ) )
of sound and complete algorithms for solving the TDP, and The first approach imposes additional constraints on the con

(4) compares the performance of several variations of the ba  stituent tasks, but ensures that Bill and Sue may henceforth

The Temporal Decoupling Problem (TDP) arises when

sic algorithm. Although this work was motivated by a prob- operate independently (without any further communication
lem in collaborative multi-agent planning, it representea- The second approach gives Bill greater flexibility in that he
tribution to the theory of Simple Temporal Networks that is may operate independently, but makes Sue dependent on
independent of the motivating application. Bill and requires him to communicate his choice of execu-
tion time for 3; to her. This paper focuses on generalizing
Introduction the first approach: providing algorithms to generate addi-

tional constraints to temporally decouple the subproblems
being worked on by different agents. We leave to future
work finding algorithms that follow the second approach
(i.e., asymmetrically distributing authority for addingwa
constraints).

In prior work on collaborative, multi-agent systems, Huns-
berger and Grosz (2000) presented a group decision-making
mechanism based on a combinatorial auction in which
agents bid on sets of tasks in a proposed group activity.
That work focused on th&inner-determinatiomproblem in
which the auctioneer seeks to determine whether there is a Simple Temporal Networks
consistent set of bids covering all the tasks in the proposed _ ; . : .
activity. Later work (Hunsberger 2002) focused on ke The algorithms in this paper manipulate Simple Temporal

ding phase in which bidders protect their private schedules Networks (Dechter, Meiri, & Pearl 1991). In this section, we
of pre-existing commitments by including temporal con- briefly review STNs, highlighting their relevant propestie

straints in their bids. This paper addresses a third problem Definition 1 (Simple Temporal Network) (Dechter,
one that agents face after the awarding of bids, namely, how Meiri, & Pearl 1991) ASimple Temporal Networl§ is a

agents can ensure that the network of temporal constraints pair (7,C), whereT is a set{to, t1,...,ty} of time-point
among their tasks wilemainconsistent until all of the tasks ~ variables and’ is a finite set of binary constraints on those
have been completed. variables, each constraint having the fornt; —¢; < g
The following scenario illustrates some of the issues in- for some real numbed. The “variable” ¢, represents an
volved. Bill and Sue have committed to doing tagksand arbitrary, fixed reference point on the time-line. (In this
(32 subject to the temporal constraints paper, we fixty to the value0 and refer to it as thezero

) ) time-point variableor z.

300 = B = f> = 5:00, As%lutionto the STN% is a set of variable assignments
with Bill doing 8; and Sue doing,. For simplicity, assume (2=0, t, = ty = on)
that these tasks have zero duration. The above constraints . ’ T
are satisfied by infinitely many pairs of execution times for Satisfying all the constraints i. An STNS that has at least
(1 andfy; however, should Bill decide to execute at 4:15 one solution is calledonsistent.
(which is consistent with the above constraints) while Sue  Constraints involvingz are equivalent to unary con-
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Definition 2 (Distance Graph) (Dechter, Meiri, & Pearl
1991) Thedistance graptior an STNS (7,C) is a
weighted, directed graphGs = (Vs,Es), whose vertices
correspond to the time points 6fand whose edges corre-
spond to the temporal constraints8f as follows:

Vs=7 and &s= {(ti,é, tj) : (tj —t; < 6) S C}

Thus, each constraint —¢t; < J in S is represented i s
by a directed edge from to ¢; with weight (or length).

In an STN, theexplicit constraints inC may give rise
to additionalimplicit constraints. For example, the explicit
constraintst; — ¢; < 100 and t; —t; <200 combine to
entail the implicit constraint,, — ¢; < 300, as follows:

th—ti = (tp —t;)+ (t; —t;) < 200+ 100 = 300.

In graphical terms, the edges framito ¢; to ¢, form apath
of length 300 fromt; to ¢, as illustrated below.

tj

300

Theorem 1 (Dechter, Meiri, & Pearl 1991) An STI¥ is
consistent (i.e., has a solution) if and only if its distance
graph Gs has no negative cycles (i.e., the path length
around any loop is non-negative).

Definition 3 (Temporal Distance) (Dechter, Meiri, &
Pearl 1991} The temporal distancdrom ¢; to ¢; in an
STNS is the length of theshortest patfirom ¢; to ¢; in the
corresponding distance graphs.

Equivalently, the temporal distance fragto ¢; specifies
the strongest implicit constrainfrom ¢; to ¢; in S (where
“implicit constraints” is taken to subsume “explicit con-
straints”).

If no path exists fromt; to ¢; in G, then the temporal
distance is infinite, representing that the tempditi¢rence
t;—t;, isunconstrained. On the other hand, if there is a nega-
tive cycle in the distance graph, then some temporal distanc
is negative infinity, representing a constraint that caroeot
satisfied.

Definition 4 (Distance Matrix) (Dechter, Meiri, & Pearl
1991 Thedistance matriXor an STNS = (7, C) is a
matrix D such that:

D(i,j) = Temporal Distance from ¢; to ¢; in S.

Abusing notation slightly, we may writ®(¢;,¢;) wheret;
andt; are time-point variables rather than indices.

Fact 2 (Dechter, Meiri, & Pearl 1991) The distance matrix
may be computed i@(N?) time using, for example, Floyd-
Warshall'sall-pairs shortest-pathlgorithm (Cormen, Leis-
erson, & Rivest 1990).

Fact 3 From Definitions 3 and 4, we get that the following
inequalities hold for any time-pointg and¢; in an STN:

—D(tj,t;) < tj —t; < D(t;,t)).

1The concept of temporal distance, implicit in Dechter etial.
made explicit in Tsamardinos (2000).

2The concept of the distance matrix is implicit in Dechterlet a
Tsamardinos (2000) uses the tedistance array.

Typically, adding a constraint to an STN causes some en-
tries in the distance matrix to change. The following theo-
rem specifies which constraints can be added without threat-
ening the consistency of the STN.

Theorem 4 (Dechter, Meiri, & Pearl 1991) For any time-
pointst; and¢; in an STNS, the new constraint; —¢; < ¢
will not threaten the consistency & if and only if §
satisfies—D(t;,t;) < 6. Furthermore, the consistent STN
S has a solution in which t; —t; = ¢ if and only if
(S [—D(tj, ti), 'D(ti, tj)].
Corollary 5 The quantityD(t;,t;)+D(¢;,t;), which spec-
ifies the length of the interval|-D(t;,t;), D(t;, t;)], also
specifies the maximum amount by which the strongest im-
plicit constraint fromt; to ¢; may betightened
Fact 6 Given Theorem 1, the following inequality holds for
any time-points; andt; in a consistent STN:
D(ti,tj) +D(tj,ti) > 0.

Fact 6 says that the length of the shortest path ftpto ¢;
and back ta; is always non-negative. Corollary 5 and Fact 6
together motivate the following new definition.
Definition 5 (Flexibility) Given time-pointg; andt; in a
consistent STN, the relativitexibility of ¢; and t; is the
(non-negative) quantity:

Flex(t;,t;) = D(ti,t;) + D(tj,t;).

Rigid Components. Adding a constraint; — ¢t; < 4 in
the extreme case whee= —D(t;,t;) (recall Theorem 4),
causes thepdateddistance matrix entries to satisfy:

—D(tj, t;) = tj —t; = D(ti,tj).
In such a case, the temporal differenge- ¢; is fixed (equiv-
alently, Flex(t;,t;) = 0), andt; andt; are said to beigidly
connectedTsamardinos, Muscettola, & Morris 1998).
The following measure of rigidity will be used in the ex-
perimental evaluation sectich.
Definition 6 (Rigidity) Therelative rigidity of the pair of
time-pointst; andt; in a consistent STN is the quantity:
, B 1 B 1
Rag(ti ti) = 17 Flez(ti,t;) 1+ Dt ty) + Dty i)
TheRMS rigidity of a consistent STH is the quantity:
m@:¢m%32wwmv

i<j

SinceFlex(t;,t;) > 0, we have both thaRig(¢;,¢;) € [0,1]
and thatRig(S) € [0, 1]. If ¢; and¢; are part of a rigid com-
ponent, therRig(t;,t;) = 1. Similarly, if S is completely
rigid, then Rig(S) = 1. At the opposite extreme, & has
absolutely no constraints, thétig(S) = 0.
Fact 7 (Triangle Inequality) (Tsamardinos 2000) From
Definitions 3 and 4, we get that the following holds among
each triple of time-points;, ¢; and¢, in an STN:

D(ti tr) < D(ts,t;) + D(t,tk)-
Definition 7 (Tight Edge/Constraint) (Morris & Muscet-
tola 2000) Atight constraint (or edge) is an explicit con-
straint (¢; —t; <) forwhich § = D(¢;,¢;).

3An earlier paper (Hunsberger 2002) defines a similar measure
of rigidity.



The Temporal Decoupling Problem

This section formally defines the Temporal Decoupling
Problem and presents theorems characterizing its sofution
To simplify the presentation, we restrict attention to thee

of partitioning an STNS into two independent subnetworks
Sx andSy. The case of an arbitrary number of decoupled
subnetworks is analogous.

Definition 8 (z-Partition) If 7, 7x and7y are sets of time-
point variables such that:

Tx N Ty = {Z} and 7x U7y =T,

then we say thalx and7y z-partition7 .
Definition 9 (Temporal Decoupling) We say that the STNs
Sx = (7x,Cx) andSy = (7y,Cy) are atemporal decou-
pling of the STNS = (7,C) if:

e Sx andSy are consistent STNs;

e Tx and7y z-partition7; and

e (Mergeable Solutions Property) Mergiraqy solutions

for Sx andSy necessarily yields a solution fdt.

(We may also say thax and Sy partition S into tempo-
rally independent subnetworls.

Result 8 If Sx andSy are atemporal decoupling &f, then
S is consistent.

Proof SinceSx andSy are required to be consistent, each
has at least one solution; the merging of any such solutions
yields a solution folS. =

Definition 10 (The Temporal Decoupling Problem)
Given an STNS whose time-point§™ are z-partitioned by
Tx and 7y, find sets of constraintSx and Cy such that
(Tx,Cx) and (7y, Cy) temporally decouplé.

Result 9 Any instance of the TDP in whicfi is consistent
has a solution.

Proof Let S be a consistent STN whose time-

points 7 are z-partitioned byTx = {z,z1,...,2,,} and
Ty ={z,y1,...,yn}. Let
{z=0,21 =01, ., T = U Y1 = W1, ..., Yn = Wy}

be an arbitrary solution fas. Then the following specifies
a temporal decoupling &:

Cx
Cy

-5 Tm :Um}
JYn = Wy }. W

= {Il = V1.
= {y1=wi,...
We call such decouplingsgid decouplings One prob-
lem with rigid decouplings is that the subnetwotkg and
Sy are completely rigid (i.e., completely inflexible). Below,
we provide necessary and sufficient characterizations-of so
lutions to the TDP that will point the way to TDP algorithms
that yield more flexible decoupled subnetworks.

Theorem 10 (Necessary Conditions)f the STNsSx and
Sy are a temporal decoupling of the STH then the fol-
lowing four properties must hold:

(1) Dx(xi,z;) < D(x;,z;) foreachz;,z; € Tx;
(2) Dy (yi,y;) < D(yi,y;) foreachy;,y; € Ty,

(3) Dx(z,2) + Dy (z,y) < D(z,y) foreachx € Tx
andy € 7y ; and

(4) Dy (y,z) + Dx(z,z) < D(y,x) foreachx € Tx
andy € Ty,

whereDx, Dy, andD are the distance matrices fdty, Sy
ands, respectively.

Proof LetSx = (7x,Cx) andSy = (7y,Cy) be an
arbitrary temporal decoupling of the STN= (7, C). From
Definition 9, bothSx andSy must be consistent.

Property 1: Letx;,z; € 7x be arbitrary. By The-
orem 4, there is a solutiol for Sx in which
x; —x; = Dx(zi,2;). Let) be an arbitrary solution
for Sy. SinceSy andSy are a temporal decoupling
of S, merging the solution&’ and)y must yield a so-
lution for S. In that solution (forS) we have that
xj —x; = Dx(x;, ;). However, being a solution for
S also implies thatx; — z; < D(z;, x;).

Property 3: Letr € 7x andy € 7y be arbitrary. Let
X be a solution forSx in which z — z = Dx (z, 2).
Similarly, let )Y be a solution forSy in which
y — z = Dy (z,y). Merging the solution&” and) must
yield a solution forS. In that solution, we have that:
y—x=(y—2)+(z—2)=Dy(z,y) + Dx(z, 2).
However, being a solution folS also implies that:
y—x < D(z,y).

Properties 2 and 4 are handled analogounly.

Theorem 11 (Sufficient Conditions) Let S (7,C),
Sx = (7x,Cx) and Sy = (7y,Cy) be consistent STNs
such thatZy and 7y z-partition 7. If Properties 1-4 of
Theorem 10 hold, the§x and Sy are a temporal decou-
pling of S.

Proof SupposeS, Sx and Sy satisfy the above condi-
tions. The only part of the definition of a temporal decou-
pling (Definition 9) that is non-trivial to verify in this stg

is the Mergeable Solutions Property. Let

X {z=0, 21 =01, ..., Ty, = vy} and

y {z=0,y1 =w1, ..., Yo = vp}
be arbitrary solutions fofx andSy, respectively. We need
to show thatX U Y is a solution fotS. Let E: ¢; —¢; < 4§
be an arbitrary constraint ii. We need to show that the
constraintF is satisfied by the values it U ).

Case 1: t; = x, andt; = x4 are both elements dfx.
Since X is a solution for Sx, we have that:
vg — vp < Dx(xp,z4). Since Property 1 holds, we have
that: Dx (xp, z4) < D(xp, z4). Finally, sinceE is a con-
straintinC, we have thatD(z,, z,) < 6. Thus,uy—v, <
o (i.e., E is satisfied by, = v, andx, = vy).

Case 2: t; = y, andt; = y, are both elements dfy .
Handled analogously to Case 1.

Case 3:t; =z, € Ty andt; =y, € Ty.
Sincex;,, = v, is part of a solution foSx, we have that:
0—v, < Dx(zp,z). Similarly, w;—0<Dy(z,y,).
Thuswy —v, < Dx(zp, 2)+Dy (2, y,). Since Property 3
holds, we get thatDx (z,, 2) + Dy (2,yq) < D(zp, yq)-



Finally, since E' is a constraint inC, we have that:
D(xp,yq) < 0. Thus,w, — v, < 0 (i.e., the constraink
is satisfied byc, = v, andy, = wy).

Case 4:t; =y, € Ty andt; =z, € Tx.
Handled analogously to Case 3.

Since the constraink was chosen arbitrarily frond, we
have thatX U Y is a solution forS. m

Toward a TDP Algorithm

Definition 11 (xy-Pairs, xy-Edges)Let 7x, 7y and 7 be
sets of time-points such th@ly and 7y z-partition7. Let
t; andt; be arbitrary time-points irf”. The pair(¢;,¢;) is
called anxy-pairif:

(t; € Tx andt; € 7y) or (t; € Ty andt; € Tx).
If, in addition, neithert; nor ¢; is the zero time-point vari-
able z, then(t,, ¢;) is called aproperxy-pair. A constraint
(or edge), (t; —t; <9), is called anxy-edgeif (¢;,¢;)
is an xy-pair. An xy-edge is called@operxy-edge if the
corresponding pair is a proper xy-pair.
Definition 12 (Zero-Path-Shortfall) Let £ be a tight,
proper xy-edgét; — t; < §). Thezero-path shortfallZPS)
associated withE is the quantity:

ZPS(E) = [D(ti,2z) + D(z,t;)] — 6.
Result 12 For any tight, proper xy-edg&, ZPS(E) > 0.

Proof Let E be atight, proper xy-edde; — t; < J). Since
E is tight, we haveD(t,,t;) = ¢; hence, from the Triangle
Inequality:§ = D(ti, tj) < 'D(ti, z)+ D(Z, tj). |

Definition 13 (Dominated by a Path through Zero) If the

ZPS value for a tight, proper xy-edge is zero, we say that

that edge islominated by a path through zero.

Result 13 If adding a set of constraints to a consistent STN
S does not maké inconsistent, then the ZPS values for any

pre-existing tight, proper xy-edgesdhcannot increase.

Old Zero Path Shortfall

7777777777777777777777777777 i <Dzt)
Yot i ‘ J ‘ (old zt;-constraint)
ti—ti <Dty 2)+ Dty | 1 D
(constraint implied by old | k tj <oy
t;2- and.t-constraints) (new zt;-constraint)

e dtwma
tj—t;<6 ;
(xy-edge, dominated | ——
by newt;>- and i
ztj-constraints)

( t; > —¢; (newt,z-constraint)
t

i > —D(t;,2) (old¢;z-constraint)

Figure 1: Reducing the zero-path shortfall for an xy-edge

shortespath from¢; to¢; in S. If z is on the pathP, then the
inequality holds (since the subpaths froymo 2 and fromz
to t; must also be shortest paths).

Now suppose is not onP. ThenP must contain at least
one proper xy-edgé,,, of the form(y — xz < d,,), where
x € Tx andy € Ty. SinceE,, is on a shortest path, it must
be tight; hence ¢,, = D(z,y). Thus, using the Triangle
Inequality: ¢, = D(z,y) < D(z,z) + D(z,y) holds.
But the Lemma’s premise, applied to the tight, proper xy-
edgeE,,, gives us that: D(z, z) + D(z,y) < dgy. Thus,
02y = D(z,2z) + D(z,y). Thus, we may replacg,, in P
by a pair of shortest paths, one franto z, one fromz to y,
without changing the length aP. But then this version of
P is a shortest path from to ¢; that contains:. As argued
earlier, this implies that the desired inequality holds.

Algorithms for Solving the TDP

This section presents a family of sound and complete algo-
rithms for solving the Temporal Decoupling Problem. We
begin by presenting a preliminary TDP algorithm, directly
motivated by Theorem 11, above. The preliminary algo-
rithm is sound, but not complete: because it is not guaran-

Proof Adding constraints to an STN causes its sho_rtes; teed to terminate. In Theorems 21 and 22, below, we specify
paths to become shorter or stay the same, and hence its disyyays of strengthening the preliminary algorithm to ensure
tance matrix entries to decrease or stay the same. Given thatinat it terminates and, hence, that it is complete.

J is a constant, this implies thatD(¢;, z) + D(z,t;)] — ¢
can only decrease or stay the sanse.

The following lemma shows that we can restrict atten-
tion to tight, proper xy-edges when seeking a solution to an

instance of the TDP.

Lemma 14 If D(tp,z) +D(z,ty) < holds for every
tight, properxy-edge (¢, —t, < d) in a consistent STN,
thenD(¢t;, z) + D(z,t;) < D(t;,t;) holds for every xypair
(tl', tj) in that STN.

Proof  Suppose thaD(t,, z) + D(z,t,) < § holds for
every tight, proper xyedge (t, —t, <4). Let (¢;,t;)
be an arbitrary xypair in S. We must show that
D(ti, Z) + D(Z, tj) < 'D(ti,tj) holds.

If ¢; ort; is the zero time-point, then the inequality holds
trivially (sinceD(z, z) = 0 in a consistent STN). Thus, sup-
pose thatt;, t;) is aproperxy-pair. Without loss of gener-
ality, suppose; € 7Tx andt; € 7y. Let P be an arbitrary

The Preliminary TDP Algorithm

The main tool of the TDP algorithm is to reduce the zero-
path shortfall for each tight, proper xy-edgg— ¢; < 6, by
strengthening the correspondifg- and/orzt;-edges. Fig-

ure 1 illustrates the case of an xy-edge’s ZPS value being
reduced to zero through the addition of edges- ¢; < d;

(i.e., t; > —51) and tj —2< 52 (i.e., tj < 52) Addlng
weaker constraints may reduce the zero-path shortfall but
not eliminate it entirely.

The preliminary algorithm is given in pseudo-code in Fig-
ure 2. It takes as input an STH whose time-points are
z-partitioned by the setgx and7y .

At Step 1, the algorithm checks wheth®iis consistent.

If S is inconsistent, the algorithm returfb L and halts be-
cause, by Result 8, only consistent STNs can be decoupled.
Otherwise, the algorithm initializes the s&tto the set of



Given: An STN S whose time-pointg™ are z-partitioned by the
sets7x and7y .

(1) Compute the distance matri® for S. If S is inconsistent],
returnNI L and halt; otherwise, initializ€ to the set of tight
proper xy-edges i, and continue.

(2) Select atight, proper xy-edde = (t; — t; < d) in £ whose
ZPS value is positive. (If, in the process, any edge§ are
discovered that are no longer tight or that have a ZPS value of
zero, remove those edges frgh) If no such edges exist (i.e.
if £ has become empty), go to Step 6; otherwise, continue.

(3) Pick values®y; andd. such that:

_D(Z7ti) < 1 < D(ti7 2)7
—D(tj,z) < 02 < D(Z,tj), and
0 < 61 +02 < D(ti,z)+D(z7tj).

(4) Add the constraintdsi: z —t; < 61 and Es: t; — z < 02,
to S, updatingD to reflect the new constraints.
(5) Goto Step 2.
(6) Return: Cx = {(t]‘ —t; < 'D(ti,tj)) Tttt € Tx};
Cy = {(tj —t; < D(ti7tj)) : tiﬂfj S Ty}

Figure 2: Pseudo-code for the Preliminary TDP Algorithm

tight, proper xy-edges i, anO(N?) computation that re-
quires checking each edge against the corresponding®ntrie
in the distance matrix. The algorithm then iteratively eper
ates on edges drawn frofhuntil each such edge is domi-
nated by a path through zero (recall Definition 13).

For each iteration, the algorithm does the following. In
Step 2, atight, proper xy-edde: (¢; — t; < §) with a posi-
tive zero-path shortfall is selected from the §etn Steps 3
and 4, new constraints involving the zero time-point vari-
ablez are added t&. After propagating these constraints
(i.e., after updating the distance matrix to reflect the new
constraints), the new values f(¢;, z) andD(z, t,) will be
01 andd,, respectively, wheré, andj, are the values from
Step 3. Thus, thepdatedZPS value forF, which we denote
¢*,willbe: * = 61+ d2— 6.

Upon adding the Step 4 edges&oit may be that some
of the edges i€ are no longer tight or no longer have posi-
tive ZPS values. However, the algorithm need not check for

that in Step 4. Instead, if any such edges are ever encoun-
tered during the selection process in Step 2, they are simply

removed fron€ at that time.
If it ever happens that every tight, proper xy-edge is dom-
inated by a path through zero, as evidenced by thefset

becoming empty, then the algorithm terminates (see Steps 2

and 6). The setSx andCy returned by the algorithm are de-
rived from the distance matri® which has been updated to
include all of the constraints added during passes of Step 4.

Soundness of the Preliminary TDP Algorithm

The valuesd; and é, chosen in Step 3 of the algorithm
specify the strengths of the constrairfs and F»; added

5148 =D(z,t;) = Dz, 1)
R=1D(z,t;)+ Dlt;, 2)
)

(I1—a)R < D(;./,)+DU/.:]
02 01+ 05 < D(tj, 2) + D(z,t})
) R>0

01+ 03 = D(ti, z) = D(t}, 2)

R =D(z,t) +D(t;, 2
0< 01+

~D(t),

aR < D(t;, 2) + Dz 1;)

Figure 3: The region® and® from Lemma 16

this ZPS reduction due to the tightening of the- andzt;-
edges, respectively (specified byand1 — o). Lemma 16
below gives the precise relationship between the pairslef va
ues(dy,02) and(R, ). We subsequently use the results of
Lemma 16 to prove that the preliminary TDP algorithm is
sound. Result 15 is used in Lemma 16.

Result 15 For an edgeF of the form¢; —t; < 4, if that edge
is tight, then the following inequalities necessarily hold:

D(tz,z) — D(tj, Z) < 6 and D(Z,tj) — D(Z,tl) < 0.
Proof The first inequality may be proven as follows:
D(ti,z) < D(t;,t;) + D(t;,2) (Triangle Inequality)
D(t;,z) < 6+ D(t;, 2) (SinceF is a tight edge)
D(ti,z) — D(tj,2) <§ (Rearrange terms)

The second inequality follows similariya

Lemma 16 Let E be some tight, proper xy-edge— t; < 6
whose ZPS valu¢ = ZPS(F) is positive. Lef2 be the set
of ordered pairgd1, d2) satisfying the Step 3 requirements of
the preliminary algorithm (recall Figure 2). L& be the set
of ordered pairs(R, «) such thatR € (0,¢] and« € [0, 1].
LetT; andT; be the following 2-by-2 transformations:

T 61:f(R,Oé):D(ti,Z)_OCR
" 102 =9g(R,a) =D(2,t;) — (1 — )R
R = u(61, 52) = 'D(ti, Z) + D(Z, tj) — (51 + 52)
Ts: — (1.6 — D(t;,2)—61
a =0v(01,02) = D(t;,2) 1D (2:t;)— (01502

ThenT; andT;, are invertible transformations betweéh
and® (with 7, = T) such that for any pai(s;, 55) € Q,
the corresponding paifR, «) € © satisfies that:

e R is the amount by which the pair of corresponding
Step 4 constraintdy;: z—t; < §; andEs: tj—z < 0o,
reduce the ZPS value for the edgeand

e o and (1 — «) represent the fractions of this ZPS re-
duction due to the tightening of thgz- and zt;-edges,
respectively.

Proof The Step 3 requirements (from Figure 2) correspond

in Step 4. Itis also useful to think in terms of the amount to the boundaries of the regighin Figure 3. Note that the
by which the ZPS value for the edge under consideration point(D(t;, z), D(z,t;)) is notpart ofQ2 due to the strict in-
is thereby reduced (call iR), as well as the fractions of  equality:d, + d2 < D(t;, 2) + D(z,¢;). Also, by Result 15,



D(ti, Z) — D(tj, Z) <¢ and D(Z,tj) — D(Z,ti) <.
These inequalities ensure that the diagonal boundatfy, of
which corresponds to the constraing d; + ds, lies above
and to the right of the line®(¢;,z) — D(t;,z) = 61 + 2
andD(z,t;) — D(z,t;) = 61 + 2 (shown as dashed lines
in the §,02-plane in Figure 3).

The amount of reduction in the ZPS valgethat re-
sults from adding the corresponding Step 4 constraints,
Ei:z—t; <01 andEy: t; — 2z < 69, is given by:

(old ZPS value) - (new ZPS valuey ¢ — ¢*
= [D(ti, 2) + D(z,t;) — 6] — [01 + 62 — ]
= 'D(ti, Z) + D(Z, tj) — (61 + 62)
which is precisely the valu® = u(d1,d2). The amount by
which thet; z-edge is strengthened is given by:

(old value) - (new value)= D(t;, z) — 4.

Hence, the fraction of the total ZPS reduction produced by
strengthening the; z-edge is precisely = v(d1, d2), from
which it also follows that); = f(R, a) = D(t;, z) — aR.
Similarly, the fraction of the total ZPS reduction produced
by strengthening thet;-edge is preciselfl — «), and

d2 =g(R,a) =D(z,t;) — (1 — &)R.

It is easy to verify that the transformatiofis and7; are
inverses of one another. The arrows in Figure 3 show how
the boundaries of the regiofisand®© correspond.

Finally, from Theorem 4, the quanti®(z,¢;) + D(t;, z)
specifies the maximum amount that the;- edge can be
tightened without threatening the consistency of the STN.
The following establishes that(i.e., the ZPS value for the
edgeF) is no more than this amount:

D(ti,z) —D(tj,z) < § (Established earlier)
= D(tz,z)—i—D(z,tJ)—d S D(Z,tj)+D(tj,Z)
= (¢ < D(z,t;) +D(t;,z) (Defn. of¢)

Thus, the entire zero-path-shortfall fBrmay be eliminated

by tightening only thezt;-constraint. Similarly, the entire
zero-path-shortfall may be eliminated by instead tighitgni
only the t;z-constraint. In Figure 3, these constraints on
¢ ensure that the top horizontal boundary of the region
O lies below the curvesxR = D(t;,z) + D(z,t;) and

(1 - a)R =D(z,t;) + D(t;,z). Thus, the values forR
anda may be independently chosen.

Corollary 17 Let E: t; — t; < ¢ be a tight, proper xy-
edge with ZPS valué > 0. LetR € (0,¢] anda € [0, 1] be
arbitrary. Itis always possible to choosgandd, satisfying
the Step 3 requirements such that the ZPS valuefanill
be reduced by and such that the; z- and z¢ ;-edges will be
tightened by the amountsR? and (1 — «) R, respectively.

Theorem 18 SupposeS is a consistent STN and that
E: t; —t; < disatight, proper xy-edge whose ZPS value is
posmve Let); andd, be arbitrary values chosen according
to the requirements of Step 3. Then addingphée of cor-
responding Step 4 constraints (i.&; and Fs in Figure 2)
will not threaten the consistency &f

Proof Let( > 0 be the ZPS value for edge. Suppose
that adding the corresponding Step 4 constraifiteind F»
causeds to become inconsistent. Then, by Theorem 1, there

must be a loop inGs with negative path-length. By Theo-
rem 4, the first two Step 3 requirements (from Figure 2) im-
ply that £y, andE; are individually consistent witls. Thus,
any loop with negative path length (s must contairboth

FE; andFE,. Of all such loops, leL be one that has the min-
imum number of edges.

L

SR B\ . B

t; B z z Ey t]‘
Now consider the subpath from(at the end ofF;) to z
(at the beginning of’s). This is itself a loop. Since that
loop has fewer edges than it must, by the choice of.,,
have non-negative path-length. But then extracting tHis su
path from L would result in a loopL’ still having nega-
tive path-length. Since the choice bfprecluded.’ having
fewer edges thail, it must be that the subpath fromto
z is empty. However, part of the third Step 3 requirement
(from Figure 2) says thad < 6; + d2, which implies that
the edges; and E5 in L could be replaced by the edge,
t; —t; < 0, resulting in a loop having negative path-length
but with fewer edges thah, contradicting the choice of.
Thus, no such. exists. Thus, adding both; andE> to S
leavesS consistent.m

Theorem 19 (Soundness)f the temporal decoupling algo-
rithm terminates at Step 6, then the constraint gbtsand
Cy returned by the TDP algorithm are such th@tx,Cx)
and(7y, Cy) are a temporal decoupling of the input STN

Proof During each pass of Step 4, the TDP algorithm modi-
fies the input STN by adding new constraints. To distinguish
the input STNS from the modified STN existing at the end
of the algorithm’s execution (i.e., at Step 6), we shall réde
the latter asS’. If C’ is the set of all Step 4 constraints added
during the execution of the algorithm, th8h= (7,CUC’).

Let D’ be the distance matrix fa8’. (Thus, using this no-
tation, it isD’ that is used to construct the constraint sets
Cx andCy in Step 6.) Since every constraintdhis present

in Sl, D/(ti, tj) < D(ti,tj) for all ti,tj eT.

To show thatSx andSy are a temporal decoupling 6%,
it suffices (by Theorem 11) to show th&{ andSy- are each
consistent and that Properties 1-4 from Theorem 10 hold. (It
is given that the set§y and7y z-partition7.)

Theorem 18 guarantees th&t is consistent. Further-
more, since any solution fa$’ must satisfy the constraints
represented i®’, which cover all the constraints i and
Cy, bothSx andSy must also be consistent.

By constructionDx (x,, z,) = D'(zp, x,) for everyz,
andz, in Tx. SinceD’(x,, z4) < D(zp, z,), Property 1 of
Theorem 10 holds. Similarly, Property 2 also holds.

To prove that Property 3 holds, first notice that the
premise of Lemma 14 is equivalent to saying that Z2P8&
for each tight, proper xydge which is precisely what
the exit clause of Step 2 requires. Thus, the algo-
rithm will not terminate at Step 6 unless the premise of
Lemma 14 holds—with respect t§’. Hence, from the
conclusion of Lemma 14, we have that for any p@i in
S D'(t;,z) + D' (2,t)) <D'(t,t;). In the case where
t; € Tx andt; € Ty, we have thatD’'(¢;, z) = Dx (t;, 2)



andD’(z, tj) =Dy (27 tj). SinceD’(ti, tj) < D(ti, tj), we R | Randomly choose an edge frai

S Step 2 Randomly select & -item subset of, whereK is one of
get thatD.X (ti’ z) + Dy (2,1;) < D(t;, t;), which is Prop- Choice {2, 4, 8}; choose edge from that subset whose processing in
erty 3. Similarly, Property 4 holdsa K| Step 3 will result in minimal change to STN’s rigidity.

| G | Greedy strategy
Ensuring Completeness for the TDP Algorithm gfhlg'c L | Less-Greedy strategy where= 0.5 and the computation}

multiplier is either6 or 18.

Randomly choose from {0, 1}.

Randomly choose from [0, 1] (uniform distribution).
Randomly chooser from [0, 1] with distribution weighted
by flexibility of ¢;2- andzt;-edges.

The Step 3 requirement thét + 62 < D(t;, z) + D(z,t;)
ensures that the ZPS value for the edge under consideration| Choice
will decrease. However, it does not ensure thabstantial ofa
progress will be made. As a result, the preliminary algo-
rithm, as shown in Figure 2, is not guaranteed to terminate. ) o .
Theorems 21 and 22, below, specify two ways of strengthen- Figure 4: Variations of the TDP Algorithm Tested
ing the Step 3 requirements, each sufficient to ensure taat th

TDP algorithm will terminate and, hence, that it is complete o . o
Each strategy involves a method for choosiighe amount ~ (Corollary 17 ensures that this is always possible ¥ I fi-
by which the ZPS value for the edge currently under consid- Nite, then this strategy ensures that the algorithm wiliter
eration is to be reduced (recall Lemma 16). Each strategy nate after at mos|Tx || Ty | M/E)) + 1| iterations.

o | S ®

leaves the distribution of additional constrainednessramo log(1/(1=r)
thet;z andzt; edges (i.e., the choice of unrestricted. Proof Let &, be the initial set of tight, proper xy-edges
Fact 20 will be used in the proofs of the theorems. having positive ZPS values. Lét € &, be arbitrary. Let

¢ be E’s initial ZPS value. Supposf has been processed
by the algorithm (in Step 3) times so far. Given the above
strategy for choosind?, E’s current ZPS valug is nec-

Fact 20 If an xy-edge ever loses its tightness, it cannot ever
regain it. Thus, since the algorithm never adds any proper
xy-edges, the pool of tight, proper xy-edges relevant tp Ste : o \n

can never grow. Furthermore, by Result 13, the ZPS values essarily Sounded aE)(g)E/Ze/et)m(l r)" and hence flso by
cannot ever increase. Thus, any progress made by the algo- 2 (1 —7)". If n > 5=, we get thatz (1 — )" <e.

rithm is never lost. Thus, after at mosk% + 1} appearances df in

Theorem 21 (Greedy Strategy)If at each pass of Step 3,  Step 3, its ZPS valug will be zero. Sincels was arbitrary

the entire zero-path-shortfall for the edge under consid- and|&| < 2|7x||7y|, the result is provenm

eration is eliminated—which is always possible by Corol- log(Z/e) o

lary 17—then the TDP algorithm will terminate afterat most ' "€ factor[m + 1} specifies an upper bound
2|7Tx||7y | iterations. on the run-time using the Less Greedy strategy as compared

. to the Greedy strategy. In practice, this factor may be kept
Proof By Fact 20, the algorithm needs to do Step 3 pro- ¢4 by choosing appropriately. For example, if = 0.5

cessing of each tight, proper xy-edge at most once. There andZ /e = 1000, this factor is less thahl
are at mosg|7x || 7y | such edgesm ’ '

Barring some extravagant selection process in Step 2,
the computation in each iteration of the algorithm is dom-
inated by the propagation of the temporal constraints added Proof Suppose a solution exists for an instance of the TDP
in Step 4. This is no worse thai(N?), whereN + 1 is the for an STNS. By Result 8,S must be consistent. Thus, the
number of time-points i (recall Fact 2). TDP algorithm will not halt at Step 1. Using either of the

The following theorem specifies a less-greedy approach strategie_s in Theorems 21 or 22, the algori'ghm will eventu-
which, although more computationally expensive than the ally terminate at Step 6. By Theorem 19, this only happens
greedy approach, is shown in the experimental evaluation When the algorithm has found a solution to the TmP.
section to result in decoupled networks that are more flexi-
ble. In this strategy, the ZPS value of the edge under consid- Experimental Evaluation
eration in Step 3 is reduced by a fractlo.nal amount (unless it |, this section, we compare the performance of the TDP al-
is already below some threshold). Unlike the Greedy strat- grithm across the following dimensions: (1) the function
egy, this strategy requires all of the initial ZPS values¢o b ||sed in Step 2 to select the next edge to work on: (2) the

Corollary 23 (Completeness)Using either the Greedy or
Less-Greedy strategy, the TDP algorithm is complete.

finite—which is always the case in practice. function used in Step 3 to determire (i.e., the amount
Theorem 22 (Less-Greedy Strategy)et Z be the maxi- of ZPS reduc'uo_n); and (3) the fu_nct|_on _used in Step 3 to
mum of the initial ZPS values among all the tight, proper determinea, which governs the distribution of additional
xy-edges inS. Lete > 0 andr € (0,1) be arbitrary con- constrainedness among the- andzt;-edges. The chart in

stants. Suppose that at each pass of Step 3 in the TDP algo-Figure 4 shows the algorithm variations tested in the exper-
rithm, R (the amount by which the ZPS valGéor the edge iments. Each variation is identified by its parameter sg#tin

currently under consideration is reduced) is given by: using the abbreviationsin the chart.
Option K for the Step 2 choice function is expected to

R r(, if{>e be computationally expensive since for each edge inifhe
- ¢, otherwise item subset, constraints must be propagated (and reset) and
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Figure 5: Experimental Results

the rigidity of the STN must be computed. However, it is
hypothesized that this method will result in more flexible
decouplings. Similarly, the Less-Greedy strategy, which i
computationally more expensive than the Greedy strategy, i
hypothesized to result in decouplings that are more flexible
Regarding the choice af, it is hypothesized that one of the
pseudo-continuous strategies (i.e., U or F) will resultodec
plings that are more flexible than when using the discrete
strategy (i.e., B).

The first experiment tested the random Step 2 function
(R). It consisted of 500 trials, each restricted to the time-
interval [0, 100]. For each trial, the STN contained start and
finish time-points for 30 actions (i.e., 60 time-points).lHa
of the actions/time-points were allocatedZg, half to 7.
Constraints were generated randomly, as follows. For each
action, a lower bound was drawn uniformly from the inter-
val [0, 1]; an upper bound was drawn froja d + 1]. Also,

400 constraints among time-points7i, 400 among time-
points in7y-, and 800 xy-edges were generated, the strength
of each determined by selecting a random value ff@n#7,
where I’ was 30% of the maximum amount the constraint
could be tightened.

The results of the first experiment are shown in the top
half of Figure 5. The horizontal axis measures time in sec-
onds. The vertical axis measures the rigidity of the STN
after the decoupling (as a multiple of the rigidity of the
STN before the decoupling). 95% confidence intervals are
shown for both time and rigidity, but the intervals for time
are barely visible. Both scales are logarithmic.

As hypothesized, the Greedy approach (G) is faster, but
the Less-Greedy approach (L) results in decouplings tleat ar
substantially more flexible (i.e., less rigid). Similarlys-
ing a larger computation-multiplier in the Less-Greedy ap-
proach (18 vs. 6), which corresponds to a smaller value of
€, results in decouplings that are more flexible. The most

surprising result is the dramatic benefit from using eittfer o
the two pseudo-continuous methods, U or F, for choosing
«. Biasing the distribution according to the flexibility ineth
t;z- andzt;-edges (as is done in the F method) gives con-
sistently more flexible decouplings, while taking less time
to do so. The RL(18)F variation produced decouplings that
were scarcely more rigid than the input STN.

The second experiment used only the K-item-set func-
tion (K) for the Step 2 selection function, varying the size
of the subset (2, 4 or 8). The other dimensions were fixed:
Less-Greedy approach with a computation-multiplier of 6,
together with the F method of selecting The experiment
consisted of 200 trials. For each trial the STN contained 40
actions (80 time-points), as well as 1600 constraints among
time-points in7x, 1600 among time-points i, and 3200
xy-edges. The results are shown in the bottom of Figure 5.
As hypothesized, using the K-item-subset Step 2 function
can generate decoupled networks that are substantially mor
flexible. However, using this method is notimmune from the
Law of Diminishing Returns. In this case, using an 8-item
subset was not worth the extra computational effort.

Conclusions

In this paper, we formally defined the Temporal Decoupling
Problem, presented theorems giving necessary and sufficien
characterizations of solutions to the TDP, and gave a param-
eterized family of sound and complete algorithms for solv-
ing it. Although the algorithms were presented only in the
case of decoupling an STN into two subnetworks, they are
easily extended to the case of multiple subnetworks.
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