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Abstract

The Temporal Decoupling Problem (TDP) arises when
a group of agents collaborating on a set of temporally-
dependent tasks seek to coordinate their execution of those
tasks by applying additional temporal constraints sufficient
to ensure that agents working on different tasks may op-
erate independently. This paper: (1) formally defines the
TDP, (2) presents theorems that give necessary and sufficient
conditions for solutions to the TDP, (3) presents a family
of sound and complete algorithms for solving the TDP, and
(4) compares the performance of several variations of the ba-
sic algorithm. Although this work was motivated by a prob-
lem in collaborative multi-agent planning, it represents acon-
tribution to the theory of Simple Temporal Networks that is
independent of the motivating application.

Introduction
In prior work on collaborative, multi-agent systems, Huns-
berger and Grosz (2000) presented a group decision-making
mechanism based on a combinatorial auction in which
agents bid on sets of tasks in a proposed group activity.
That work focused on thewinner-determinationproblem in
which the auctioneer seeks to determine whether there is a
consistent set of bids covering all the tasks in the proposed
activity. Later work (Hunsberger 2002) focused on thebid-
ding phase in which bidders protect their private schedules
of pre-existing commitments by including temporal con-
straints in their bids. This paper addresses a third problem,
one that agents face after the awarding of bids, namely, how
agents can ensure that the network of temporal constraints
among their tasks willremainconsistent until all of the tasks
have been completed.

The following scenario illustrates some of the issues in-
volved. Bill and Sue have committed to doing tasksβ1 and
β2 subject to the temporal constraints

3:00 ≤ β1 ≤ β2 ≤ 5:00,

with Bill doing β1 and Sue doingβ2. For simplicity, assume
that these tasks have zero duration. The above constraints
are satisfied by infinitely many pairs of execution times for
β1 andβ2; however, should Bill decide to executeβ1 at 4:15
(which is consistent with the above constraints) while Sue

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

independently decides to executeβ2 at 3:45 (also consistent
with the original constraints), they will end up violating the
constraintβ1 ≤ β2. To avoid doing so, they could agree to
one of the following:
• Add further constraints (e.g.,β1 ≤ 4:25≤ β2) that would

effectively decouple their tasks; or

• Have Sue wait until Bill announces a fixed time forβ1

before she decides to fix a time forβ2.
The first approach imposes additional constraints on the con-
stituent tasks, but ensures that Bill and Sue may henceforth
operate independently (without any further communication).
The second approach gives Bill greater flexibility in that he
may operate independently, but makes Sue dependent on
Bill and requires him to communicate his choice of execu-
tion time forβ1 to her. This paper focuses on generalizing
the first approach: providing algorithms to generate addi-
tional constraints to temporally decouple the subproblems
being worked on by different agents. We leave to future
work finding algorithms that follow the second approach
(i.e., asymmetrically distributing authority for adding new
constraints).

Simple Temporal Networks
The algorithms in this paper manipulate Simple Temporal
Networks (Dechter, Meiri, & Pearl 1991). In this section, we
briefly review STNs, highlighting their relevant properties.

Definition 1 (Simple Temporal Network) (Dechter,
Meiri, & Pearl 1991) ASimple Temporal NetworkS is a
pair (T , C), whereT is a set{t0, t1, . . . , tN} of time-point
variables andC is a finite set of binary constraints on those
variables, each constraint having the formtj − ti ≤ δ
for some real numberδ. The “variable” t0 represents an
arbitrary, fixed reference point on the time-line. (In this
paper, we fixt0 to the value0 and refer to it as thezero
time-point variable, or z.)

A solutionto the STNS is a set of variable assignments

{z = 0, t1 = v1, . . . , tN = vN}

satisfying all the constraints inC. An STNS that has at least
one solution is calledconsistent.

Constraints involvingz are equivalent to unary con-
straints. For example:

Li ≤ ti ⇔ 0 − ti ≤ −Li ⇔ z − ti ≤ −Li.



Definition 2 (Distance Graph) (Dechter, Meiri, & Pearl
1991) Thedistance graphfor an STNS = (T , C) is a
weighted, directed graphGS = (VS , ES), whose vertices
correspond to the time points ofS and whose edges corre-
spond to the temporal constraints ofS, as follows:

VS = T and ES = {(ti, δ, tj) : (tj − ti ≤ δ) ∈ C}.

Thus, each constrainttj − ti ≤ δ in S is represented inGS

by a directed edge fromti to tj with weight (or length)δ.

In an STN, theexplicit constraints inC may give rise
to additionalimplicit constraints. For example, the explicit
constraintstj − ti ≤ 100 and tk − tj ≤ 200 combine to
entail the implicit constrainttk − ti ≤ 300, as follows:

tk − ti = (tk − tj) + (tj − ti) ≤ 200 + 100 = 300.

In graphical terms, the edges fromti to tj to tk form apath
of length 300 fromti to tk, as illustrated below.

ti tk

200
tj100

300

Theorem 1 (Dechter, Meiri, & Pearl 1991) An STNS is
consistent (i.e., has a solution) if and only if its distance
graph GS has no negative cycles (i.e., the path length
around any loop is non-negative).

Definition 3 (Temporal Distance) (Dechter, Meiri, &
Pearl 1991)1 The temporal distancefrom ti to tj in an
STNS is the length of theshortest pathfrom ti to tj in the
corresponding distance graphGS .

Equivalently, the temporal distance fromti to tj specifies
the strongest implicit constraintfrom ti to tj in S (where
“implicit constraints” is taken to subsume “explicit con-
straints”).

If no path exists fromti to tj in GS , then the temporal
distance is infinite, representing that the temporaldifference,
tj−ti, is unconstrained. On the other hand, if there is a nega-
tive cycle in the distance graph, then some temporal distance
is negative infinity, representing a constraint that cannotbe
satisfied.

Definition 4 (Distance Matrix) (Dechter, Meiri, & Pearl
1991)2 The distance matrixfor an STNS = (T , C) is a
matrixD such that:

D(i, j) = Temporal Distance from ti to tj in S.

Abusing notation slightly, we may writeD(ti, tj) whereti
andtj are time-point variables rather than indices.

Fact 2 (Dechter, Meiri, & Pearl 1991) The distance matrix
may be computed inO(N3) time using, for example, Floyd-
Warshall’sall-pairs shortest-pathalgorithm (Cormen, Leis-
erson, & Rivest 1990).

Fact 3 From Definitions 3 and 4, we get that the following
inequalities hold for any time-pointsti andtj in an STN:

−D(tj , ti) ≤ tj − ti ≤ D(ti, tj).

1The concept of temporal distance, implicit in Dechter et al., is
made explicit in Tsamardinos (2000).

2The concept of the distance matrix is implicit in Dechter et al.
Tsamardinos (2000) uses the termdistance array.

Typically, adding a constraint to an STN causes some en-
tries in the distance matrix to change. The following theo-
rem specifies which constraints can be added without threat-
ening the consistency of the STN.
Theorem 4 (Dechter, Meiri, & Pearl 1991) For any time-
pointsti andtj in an STNS, the new constrainttj − ti ≤ δ
will not threaten the consistency ofS if and only if δ
satisfies−D(tj , ti) ≤ δ. Furthermore, the consistent STN
S has a solution in which tj − ti = σ if and only if
σ ∈ [−D(tj , ti),D(ti, tj)].

Corollary 5 The quantityD(ti, tj)+D(tj , ti), which spec-
ifies the length of the interval[−D(tj , ti),D(ti, tj)], also
specifies the maximum amount by which the strongest im-
plicit constraint fromti to tj may betightened.
Fact 6 Given Theorem 1, the following inequality holds for
any time-pointsti andtj in a consistent STN:

D(ti, tj) + D(tj , ti) ≥ 0.

Fact 6 says that the length of the shortest path fromti to tj
and back toti is always non-negative. Corollary 5 and Fact 6
together motivate the following new definition.
Definition 5 (Flexibility) Given time-pointsti and tj in a
consistent STN, the relativeflexibility of ti and tj is the
(non-negative) quantity:

Flex (ti, tj) = D(ti, tj) + D(tj , ti).

Rigid Components. Adding a constrainttj − ti ≤ δ in
the extreme case whereδ = −D(tj , ti) (recall Theorem 4),
causes theupdateddistance matrix entries to satisfy:

−D(tj , ti) = tj − ti = D(ti, tj).

In such a case, the temporal differencetj−ti is fixed (equiv-
alently,Flex (ti, tj) = 0), andti andtj are said to berigidly
connected(Tsamardinos, Muscettola, & Morris 1998).

The following measure of rigidity will be used in the ex-
perimental evaluation section.3

Definition 6 (Rigidity) The relative rigidity of the pair of
time-pointsti andtj in a consistent STN is the quantity:

Rig(ti, tj) =
1

1 + Flex (ti, tj)
=

1

1 + D(ti, tj) + D(tj , ti)
.

TheRMS rigidity of a consistent STNS is the quantity:

Rig(S) =

√

2

N(N + 1)

∑

i<j

[Rig(ti, tj)]2 .

SinceFlex (ti, tj) ≥ 0, we have both thatRig(ti, tj) ∈ [0, 1]
and thatRig(S) ∈ [0, 1]. If ti andtj are part of a rigid com-
ponent, thenRig(ti, tj) = 1. Similarly, if S is completely
rigid, thenRig(S) = 1. At the opposite extreme, ifS has
absolutely no constraints, thenRig(S) = 0.
Fact 7 (Triangle Inequality) (Tsamardinos 2000) From
Definitions 3 and 4, we get that the following holds among
each triple of time-pointsti, tj andtk in an STN:

D(ti, tk) ≤ D(ti, tj) + D(tj , tk).

Definition 7 (Tight Edge/Constraint) (Morris & Muscet-
tola 2000) Atight constraint (or edge) is an explicit con-
straint (tj − ti ≤ δ) for which δ = D(ti, tj).

3An earlier paper (Hunsberger 2002) defines a similar measure
of rigidity.



The Temporal Decoupling Problem
This section formally defines the Temporal Decoupling
Problem and presents theorems characterizing its solutions.
To simplify the presentation, we restrict attention to the case
of partitioning an STNS into two independent subnetworks
SX andSY . The case of an arbitrary number of decoupled
subnetworks is analogous.

Definition 8 (z-Partition) If T , TX andTY are sets of time-
point variables such that:

TX ∩ TY = {z} and TX ∪ TY = T ,

then we say thatTX andTY z-partitionT .

Definition 9 (Temporal Decoupling) We say that the STNs
SX = (TX , CX) andSY = (TY , CY ) are atemporal decou-
pling of the STNS = (T , C) if:

• SX andSY are consistent STNs;
• TX andTY z-partitionT ; and
• (Mergeable Solutions Property) Merginganysolutions

for SX andSY necessarily yields a solution forS.

(We may also say thatSX andSY partitionS into tempo-
rally independent subnetworks.)

Result 8 If SX andSY are a temporal decoupling ofS, then
S is consistent.

Proof SinceSX andSY are required to be consistent, each
has at least one solution; the merging of any such solutions
yields a solution forS.

Definition 10 (The Temporal Decoupling Problem)
Given an STNS whose time-pointsT are z-partitioned by
TX and TY , find sets of constraintsCX and CY such that
(TX , CX) and(TY , CY ) temporally decoupleS.

Result 9 Any instance of the TDP in whichS is consistent
has a solution.

Proof Let S be a consistent STN whose time-
points T are z-partitioned byTX = {z, x1, . . . , xm} and
TY = {z, y1, . . . , yn}. Let

{z = 0, x1 = v1, . . . , xm = vm; y1 = w1, . . . , yn = wn}

be an arbitrary solution forS. Then the following specifies
a temporal decoupling ofS:

CX = {x1 = v1, . . . , xm = vm}
CY = {y1 = w1, . . . , yn = wn}.

We call such decouplingsrigid decouplings. One prob-
lem with rigid decouplings is that the subnetworksSX and
SY are completely rigid (i.e., completely inflexible). Below,
we provide necessary and sufficient characterizations of so-
lutions to the TDP that will point the way to TDP algorithms
that yield more flexible decoupled subnetworks.

Theorem 10 (Necessary Conditions)If the STNsSX and
SY are a temporal decoupling of the STNS, then the fol-
lowing four properties must hold:

(1) DX(xi, xj) ≤ D(xi, xj) for eachxi, xj ∈ TX ;
(2) DY (yi, yj) ≤ D(yi, yj) for eachyi, yj ∈ TY ;

(3) DX(x, z) + DY (z, y) ≤ D(x, y) for eachx ∈ TX

andy ∈ TY ; and
(4) DY (y, z) + DX(z, x) ≤ D(y, x) for eachx ∈ TX

andy ∈ TY ,

whereDX ,DY , andD are the distance matrices forSX , SY

andS, respectively.

Proof Let SX = (TX , CX) andSY = (TY , CY ) be an
arbitrary temporal decoupling of the STNS = (T , C). From
Definition 9, bothSX andSY must be consistent.

Property 1: Letxi, xj ∈ TX be arbitrary. By The-
orem 4, there is a solutionX for SX in which
xj − xi = DX(xi, xj). Let Y be an arbitrary solution
for SY . SinceSX andSY are a temporal decoupling
of S, merging the solutionsX andY must yield a so-
lution for S. In that solution (forS) we have that
xj − xi = DX(xi, xj). However, being a solution for
S also implies that:xj − xi ≤ D(xi, xj).

Property 3: Letx ∈ TX and y ∈ TY be arbitrary. Let
X be a solution forSX in which z − x = DX(x, z).
Similarly, let Y be a solution for SY in which
y − z = DY (z, y). Merging the solutionsX andY must
yield a solution forS. In that solution, we have that:
y − x = (y − z) + (z − x) = DY (z, y) + DX(x, z).
However, being a solution forS also implies that:
y − x ≤ D(x, y).

Properties 2 and 4 are handled analogously.

Theorem 11 (Sufficient Conditions) Let S = (T , C),
SX = (TX , CX) andSY = (TY , CY ) be consistent STNs
such thatTX and TY z-partition T . If Properties 1–4 of
Theorem 10 hold, thenSX andSY are a temporal decou-
pling ofS.

Proof SupposeS, SX andSY satisfy the above condi-
tions. The only part of the definition of a temporal decou-
pling (Definition 9) that is non-trivial to verify in this setting
is the Mergeable Solutions Property. Let

X = {z = 0, x1 = v1, . . . , xm = vm} and
Y = {z = 0, y1 = w1, . . . , yn = vn}

be arbitrary solutions forSX andSY , respectively. We need
to show thatX ∪ Y is a solution forS. Let E: tj − ti ≤ δ
be an arbitrary constraint inC. We need to show that the
constraintE is satisfied by the values inX ∪ Y.

Case 1: ti = xp andtj = xq are both elements ofTX .
Since X is a solution for SX , we have that:
vq − vp ≤ DX(xp, xq). Since Property 1 holds, we have
that: DX(xp, xq) ≤ D(xp, xq). Finally, sinceE is a con-
straint inC, we have that:D(xp, xq) ≤ δ. Thus,vq−vp ≤
δ (i.e.,E is satisfied byxp = vp andxq = vq).

Case 2: ti = yp andtj = yq are both elements ofTY .
Handled analogously to Case 1.

Case 3: ti = xp ∈ TX andtj = yq ∈ TY .
Sincexp = vp is part of a solution forSX , we have that:
0 − vp ≤ DX(xp, z). Similarly, wq − 0 ≤ DY (z, yq).
Thuswq −vp ≤ DX(xp, z)+DY (z, yq). Since Property 3
holds, we get that:DX(xp, z) + DY (z, yq) ≤ D(xp, yq).



Finally, since E is a constraint inC, we have that:
D(xp, yq) ≤ δ. Thus,wq − vp ≤ δ (i.e., the constraintE
is satisfied byxp = vp andyq = wq).

Case 4: ti = yq ∈ TY andtj = xp ∈ TX .
Handled analogously to Case 3.

Since the constraintE was chosen arbitrarily fromC, we
have thatX ∪ Y is a solution forS.

Toward a TDP Algorithm
Definition 11 (xy-Pairs, xy-Edges)Let TX , TY and T be
sets of time-points such thatTX andTY z-partitionT . Let
ti and tj be arbitrary time-points inT . The pair(ti, tj) is
called anxy-pair if:

(ti ∈ TX andtj ∈ TY ) or (ti ∈ TY andtj ∈ TX ).

If, in addition, neitherti nor tj is the zero time-point vari-
ablez, then(ti, tj) is called aproperxy-pair. A constraint
(or edge), (tj − ti ≤ δ), is called anxy-edgeif (ti, tj)
is an xy-pair. An xy-edge is called aproperxy-edge if the
corresponding pair is a proper xy-pair.

Definition 12 (Zero-Path-Shortfall) Let E be a tight,
proper xy-edge(tj − ti ≤ δ). Thezero-path shortfall(ZPS)
associated withE is the quantity:

ZPS(E) = [D(ti, z) + D(z, tj)] − δ.

Result 12 For any tight, proper xy-edgeE, ZPS(E) ≥ 0.

Proof Let E be a tight, proper xy-edge(tj − ti ≤ δ). Since
E is tight, we have:D(ti, tj) = δ; hence, from the Triangle
Inequality:δ = D(ti, tj) ≤ D(ti, z) + D(z, tj).

Definition 13 (Dominated by a Path through Zero) If the
ZPS value for a tight, proper xy-edge is zero, we say that
that edge isdominated by a path through zero.

Result 13 If adding a set of constraints to a consistent STN
S does not makeS inconsistent, then the ZPS values for any
pre-existing tight, proper xy-edges inS cannot increase.

Proof Adding constraints to an STN causes its shortest
paths to become shorter or stay the same, and hence its dis-
tance matrix entries to decrease or stay the same. Given that
δ is a constant, this implies that[D(ti, z) + D(z, tj)] − δ
can only decrease or stay the same.

The following lemma shows that we can restrict atten-
tion to tight, proper xy-edges when seeking a solution to an
instance of the TDP.

Lemma 14 If D(tp, z) + D(z, tq) ≤ δ holds for every
tight, properxy-edge (tq − tp ≤ δ) in a consistent STN,
thenD(ti, z) + D(z, tj) ≤ D(ti, tj) holds for every xy-pair
(ti, tj) in that STN.

Proof Suppose thatD(tp, z) + D(z, tq) ≤ δ holds for
every tight, proper xy-edge (tq − tp ≤ δ). Let (ti, tj)
be an arbitrary xy-pair in S. We must show that
D(ti, z) + D(z, tj) ≤ D(ti, tj) holds.

If ti or tj is the zero time-pointz, then the inequality holds
trivially (sinceD(z, z) = 0 in a consistent STN). Thus, sup-
pose that(ti, tj) is aproperxy-pair. Without loss of gener-
ality, supposeti ∈ TX andtj ∈ TY . Let P be an arbitrary

ti ≥ −δ1 (newtiz-constraint)

ti ≥ −D(ti, z) (old tiz-constraint)

tiz- andztj-constraints)

tj − ti ≤ δ

by newtiz- and
ztj-constraints)

tj ≤ δ2

ti

tj

(old ztj-constraint)

tj ≤ D(z, tj)

(newztj-constraint)

tj − ti ≤ D(ti, z) + D(z, tj)

(xy-edge, dominated

(constraint implied by old

Old Zero Path Shortfall

Figure 1: Reducing the zero-path shortfall for an xy-edge

shortestpath fromti to tj in S. If z is on the pathP , then the
inequality holds (since the subpaths fromti to z and fromz
to tj must also be shortest paths).

Now supposez is not onP . ThenP must contain at least
one proper xy-edgeExy of the form(y − x ≤ δxy), where
x ∈ TX andy ∈ TY . SinceExy is on a shortest path, it must
be tight; hence δxy = D(x, y). Thus, using the Triangle
Inequality: δxy = D(x, y) ≤ D(x, z) + D(z, y) holds.
But the Lemma’s premise, applied to the tight, proper xy-
edgeExy, gives us that:D(x, z) + D(z, y) ≤ δxy. Thus,
δxy = D(x, z) + D(z, y). Thus, we may replaceExy in P
by a pair of shortest paths, one fromx to z, one fromz to y,
without changing the length ofP . But then this version of
P is a shortest path fromti to tj that containsz. As argued
earlier, this implies that the desired inequality holds.

Algorithms for Solving the TDP
This section presents a family of sound and complete algo-
rithms for solving the Temporal Decoupling Problem. We
begin by presenting a preliminary TDP algorithm, directly
motivated by Theorem 11, above. The preliminary algo-
rithm is sound, but not complete: because it is not guaran-
teed to terminate. In Theorems 21 and 22, below, we specify
ways of strengthening the preliminary algorithm to ensure
that it terminates and, hence, that it is complete.

The Preliminary TDP Algorithm

The main tool of the TDP algorithm is to reduce the zero-
path shortfall for each tight, proper xy-edge,tj − ti ≤ δ, by
strengthening the correspondingtiz- and/orztj-edges. Fig-
ure 1 illustrates the case of an xy-edge’s ZPS value being
reduced to zero through the addition of edgesz − ti ≤ δ1

(i.e., ti ≥ −δ1) and tj − z ≤ δ2 (i.e., tj ≤ δ2). Adding
weaker constraints may reduce the zero-path shortfall but
not eliminate it entirely.

The preliminary algorithm is given in pseudo-code in Fig-
ure 2. It takes as input an STNS whose time-points are
z-partitioned by the setsTX andTY .

At Step 1, the algorithm checks whetherS is consistent.
If S is inconsistent, the algorithm returnsNIL and halts be-
cause, by Result 8, only consistent STNs can be decoupled.
Otherwise, the algorithm initializes the setE to the set of



Given: An STNS whose time-pointsT are z-partitioned by the
setsTX andTY .

(1) Compute the distance matrixD for S . If S is inconsistent,
returnNIL and halt; otherwise, initializeE to the set of tight,
proper xy-edges inS , and continue.

(2) Select a tight, proper xy-edgeE = (tj − ti ≤ δ) in E whose
ZPS value is positive. (If, in the process, any edges inE are
discovered that are no longer tight or that have a ZPS value of
zero, remove those edges fromE .) If no such edges exist (i.e.,
if E has become empty), go to Step 6; otherwise, continue.

(3) Pick valuesδ1 andδ2 such that:

−D(z, ti) ≤ δ1 ≤ D(ti, z),

−D(tj , z) ≤ δ2 ≤ D(z, tj), and

δ ≤ δ1 + δ2 < D(ti, z) + D(z, tj).

(4) Add the constraints,E1: z − ti ≤ δ1 and E2: tj − z ≤ δ2,
to S , updatingD to reflect the new constraints.

(5) Go to Step 2.
(6) Return: CX = {(tj − ti ≤ D(ti, tj)) : ti, tj ∈ TX};

CY = {(tj − ti ≤ D(ti, tj)) : ti, tj ∈ TY }.

Figure 2: Pseudo-code for the Preliminary TDP Algorithm

tight, proper xy-edges inS, anO(N2) computation that re-
quires checking each edge against the corresponding entries
in the distance matrix. The algorithm then iteratively oper-
ates on edges drawn fromE until each such edge is domi-
nated by a path through zero (recall Definition 13).

For each iteration, the algorithm does the following. In
Step 2, a tight, proper xy-edgeE: (tj − ti ≤ δ) with a posi-
tive zero-path shortfall is selected from the setE . In Steps 3
and 4, new constraints involving the zero time-point vari-
ablez are added toS. After propagating these constraints
(i.e., after updating the distance matrix to reflect the new
constraints), the new values ofD(ti, z) andD(z, tj) will be
δ1 andδ2, respectively, whereδ1 andδ2 are the values from
Step 3. Thus, theupdatedZPS value forE, which we denote
ζ∗, will be: ζ∗ = δ1 + δ2 − δ.

Upon adding the Step 4 edges toS, it may be that some
of the edges inE are no longer tight or no longer have posi-
tive ZPS values. However, the algorithm need not check for
that in Step 4. Instead, if any such edges are ever encoun-
tered during the selection process in Step 2, they are simply
removed fromE at that time.

If it ever happens that every tight, proper xy-edge is dom-
inated by a path through zero, as evidenced by the setE
becoming empty, then the algorithm terminates (see Steps 2
and 6). The setsCX andCY returned by the algorithm are de-
rived from the distance matrixD which has been updated to
include all of the constraints added during passes of Step 4.

Soundness of the Preliminary TDP Algorithm
The valuesδ1 and δ2 chosen in Step 3 of the algorithm
specify the strengths of the constraintsE1 and E2 added
in Step 4. It is also useful to think in terms of the amount
by which the ZPS value for the edge under consideration
is thereby reduced (call itR), as well as the fractions of

D(z, tj)

δ1 + δ2 = D(z, tj) −D(z, ti)

δ2
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0

ζ

R

δ1

δ ≤ δ1 + δ2

α

Θ
−D(tj, z)

−D(z, ti) D(ti, z)

δ1 + δ2 = D(ti, z) −D(tj, z)

R = D(z, tj) + D(tj, z)

δ1 ≤ D(ti, z)

−D(tj, z) ≤ δ2

αR ≤ D(ti, z) + D(z, ti)

Ω

δ1 + δ2 < D(ti, z) + D(z, tj)

R > 0

α ≥ 0

R ≤ ζ

(1 − α)R ≤ D(z, tj) + D(tj, z)

−D(z, ti) ≤ δ1

α ≤ 1

δ2 ≤ D(z, tj)

R = D(z, ti) + D(ti, z)

Figure 3: The regionsΩ andΘ from Lemma 16

this ZPS reduction due to the tightening of thetiz- andztj-
edges, respectively (specified byα and1 − α). Lemma 16
below gives the precise relationship between the pairs of val-
ues(δ1, δ2) and(R, α). We subsequently use the results of
Lemma 16 to prove that the preliminary TDP algorithm is
sound. Result 15 is used in Lemma 16.

Result 15 For an edgeE of the formtj−ti ≤ δ, if that edge
is tight, then the following inequalities necessarily hold:

D(ti, z) −D(tj , z) ≤ δ and D(z, tj) −D(z, ti) ≤ δ.

Proof The first inequality may be proven as follows:

D(ti, z) ≤ D(ti, tj) + D(tj , z) (Triangle Inequality)
D(ti, z) ≤ δ + D(tj , z) (SinceE is a tight edge)
D(ti, z) −D(tj , z) ≤ δ (Rearrange terms)

The second inequality follows similarly.

Lemma 16 LetE be some tight, proper xy-edgetj − ti ≤ δ
whose ZPS valueζ = ZPS(E) is positive. LetΩ be the set
of ordered pairs(δ1, δ2) satisfying the Step 3 requirements of
the preliminary algorithm (recall Figure 2). LetΘ be the set
of ordered pairs(R, α) such thatR ∈ (0, ζ] andα ∈ [0, 1].
LetT1 andT2 be the following 2-by-2 transformations:

T1:

{

δ1 = f(R, α) = D(ti, z) − αR
δ2 = g(R, α) = D(z, tj) − (1 − α)R

T2:

{

R = u(δ1, δ2) = D(ti, z) + D(z, tj) − (δ1 + δ2)

α = v(δ1, δ2) = D(ti,z)−δ1

D(ti,z)+D(z,tj)−(δ1+δ2)

ThenT1 and T2 are invertible transformations betweenΩ
andΘ (with T−1

1 = T2) such that for any pair(δ1, δ2) ∈ Ω,
the corresponding pair(R, α) ∈ Θ satisfies that:

• R is the amount by which the pair of corresponding
Step 4 constraints,E1: z−ti ≤ δ1 andE2: tj−z ≤ δ2,
reduce the ZPS value for the edgeE, and

• α and (1 − α) represent the fractions of this ZPS re-
duction due to the tightening of thetiz- andztj-edges,
respectively.

Proof The Step 3 requirements (from Figure 2) correspond
to the boundaries of the regionΩ in Figure 3. Note that the
point(D(ti, z),D(z, tj)) is notpart ofΩ due to the strict in-
equality:δ1 + δ2 < D(ti, z) + D(z, tj). Also, by Result 15,



D(ti, z) −D(tj , z) ≤ δ and D(z, tj) −D(z, ti) ≤ δ.
These inequalities ensure that the diagonal boundary ofΩ,
which corresponds to the constraintδ ≤ δ1 + δ2, lies above
and to the right of the linesD(ti, z) −D(tj , z) = δ1 + δ2

andD(z, tj) −D(z, ti) = δ1 + δ2 (shown as dashed lines
in theδ1δ2-plane in Figure 3).

The amount of reduction in the ZPS valueζ that re-
sults from adding the corresponding Step 4 constraints,
E1: z − ti ≤ δ1 andE2: tj − z ≤ δ2, is given by:

(old ZPS value) - (new ZPS value)= ζ − ζ∗

= [D(ti, z) + D(z, tj) − δ] − [δ1 + δ2 − δ]
= D(ti, z) + D(z, tj) − (δ1 + δ2)

which is precisely the valueR = u(δ1, δ2). The amount by
which thetiz-edge is strengthened is given by:

(old value) - (new value)= D(ti, z) − δ1.

Hence, the fraction of the total ZPS reduction produced by
strengthening thetiz-edge is preciselyα = v(δ1, δ2), from
which it also follows thatδ1 = f(R, α) = D(ti, z) − αR.
Similarly, the fraction of the total ZPS reduction produced
by strengthening theztj-edge is precisely(1 − α), and
δ2 = g(R, α) = D(z, tj) − (1 − α)R.

It is easy to verify that the transformationsT1 andT2 are
inverses of one another. The arrows in Figure 3 show how
the boundaries of the regionsΩ andΘ correspond.

Finally, from Theorem 4, the quantityD(z, tj)+D(tj , z)
specifies the maximum amount that theztj-edge can be
tightened without threatening the consistency of the STN.
The following establishes thatζ (i.e., the ZPS value for the
edgeE) is no more than this amount:

D(ti, z) −D(tj , z) ≤ δ (Established earlier)

⇒ D(ti, z) + D(z, tj) − δ ≤ D(z, tj) + D(tj , z)

⇒ ζ ≤ D(z, tj) + D(tj , z) (Defn. ofζ)

Thus, the entire zero-path-shortfall forE may be eliminated
by tightening only theztj-constraint. Similarly, the entire
zero-path-shortfall may be eliminated by instead tightening
only the tiz-constraint. In Figure 3, these constraints on
ζ ensure that the top horizontal boundary of the region
Θ lies below the curvesαR = D(ti, z) + D(z, ti) and
(1 − α)R = D(z, tj) + D(tj , z). Thus, the values forR
andα may be independently chosen.

Corollary 17 Let E: tj − ti ≤ δ be a tight, proper xy-
edge with ZPS valueζ > 0. LetR ∈ (0, ζ] andα ∈ [0, 1] be
arbitrary. It is always possible to chooseδ1 andδ2 satisfying
the Step 3 requirements such that the ZPS value forE will
be reduced byR and such that thetiz- andztj-edges will be
tightened by the amountsαR and(1 − α)R, respectively.

Theorem 18 SupposeS is a consistent STN and that
E: tj − ti ≤ δ is a tight, proper xy-edge whose ZPS value is
positive. Letδ1 andδ2 be arbitrary values chosen according
to the requirements of Step 3. Then adding thepair of cor-
responding Step 4 constraints (i.e.,E1 andE2 in Figure 2)
will not threaten the consistency ofS.

Proof Let ζ > 0 be the ZPS value for edgeE. Suppose
that adding the corresponding Step 4 constraintsE1 andE2

causedS to become inconsistent. Then, by Theorem 1, there

must be a loop inGS with negative path-length. By Theo-
rem 4, the first two Step 3 requirements (from Figure 2) im-
ply thatE1 andE2 are individually consistent withS. Thus,
any loop with negative path length inGS must containboth
E1 andE2. Of all such loops, letL be one that has the min-
imum number of edges.

E1
ti z

E2
z tj

L
δ2δ1

Now consider the subpath fromz (at the end ofE1) to z
(at the beginning ofE2). This is itself a loop. Since that
loop has fewer edges thanL, it must, by the choice ofL,
have non-negative path-length. But then extracting this sub-
path fromL would result in a loopL′ still having nega-
tive path-length. Since the choice ofL precludesL′ having
fewer edges thanL, it must be that the subpath fromz to
z is empty. However, part of the third Step 3 requirement
(from Figure 2) says thatδ ≤ δ1 + δ2, which implies that
the edgesE1 andE2 in L could be replaced by the edge,
tj − ti ≤ δ, resulting in a loop having negative path-length
but with fewer edges thanL, contradicting the choice ofL.
Thus, no suchL exists. Thus, adding bothE1 andE2 to S
leavesS consistent.

Theorem 19 (Soundness)If the temporal decoupling algo-
rithm terminates at Step 6, then the constraint setsCX and
CY returned by the TDP algorithm are such that(TX , CX)
and(TY , CY ) are a temporal decoupling of the input STNS.

Proof During each pass of Step 4, the TDP algorithm modi-
fies the input STN by adding new constraints. To distinguish
the input STNS from the modified STN existing at the end
of the algorithm’s execution (i.e., at Step 6), we shall refer to
the latter asS′. If C′ is the set of all Step 4 constraints added
during the execution of the algorithm, thenS′ = (T , C∪C′).
Let D′ be the distance matrix forS′. (Thus, using this no-
tation, it isD′ that is used to construct the constraint sets
CX andCY in Step 6.) Since every constraint inS is present
in S′, D′(ti, tj) ≤ D(ti, tj) for all ti, tj ∈ T .

To show thatSX andSY are a temporal decoupling ofS,
it suffices (by Theorem 11) to show thatSX andSY are each
consistent and that Properties 1–4 from Theorem 10 hold. (It
is given that the setsTX andTY z-partitionT .)

Theorem 18 guarantees thatS′ is consistent. Further-
more, since any solution forS′ must satisfy the constraints
represented inD′, which cover all the constraints inCX and
CY , bothSX andSY must also be consistent.

By construction,DX(xp, xq) = D′(xp, xq) for everyxp

andxq in TX . SinceD′(xp, xq) ≤ D(xp, xq), Property 1 of
Theorem 10 holds. Similarly, Property 2 also holds.

To prove that Property 3 holds, first notice that the
premise of Lemma 14 is equivalent to saying that ZPS≤ 0
for each tight, proper xy-edge, which is precisely what
the exit clause of Step 2 requires. Thus, the algo-
rithm will not terminate at Step 6 unless the premise of
Lemma 14 holds—with respect toS′. Hence, from the
conclusion of Lemma 14, we have that for any xy-pair in
S′: D′(ti, z) + D′(z, tj) ≤ D′(ti, tj). In the case where
ti ∈ TX and tj ∈ TY , we have thatD′(ti, z) = DX(ti, z)



andD′(z, tj) = DY (z, tj). SinceD′(ti, tj) ≤ D(ti, tj), we
get thatDX(ti, z) + DY (z, tj) ≤ D(ti, tj), which is Prop-
erty 3. Similarly, Property 4 holds.

Ensuring Completeness for the TDP Algorithm
The Step 3 requirement thatδ1 + δ2 < D(ti, z) + D(z, tj)
ensures that the ZPS value for the edge under consideration
will decrease. However, it does not ensure thatsubstantial
progress will be made. As a result, the preliminary algo-
rithm, as shown in Figure 2, is not guaranteed to terminate.
Theorems 21 and 22, below, specify two ways of strengthen-
ing the Step 3 requirements, each sufficient to ensure that the
TDP algorithm will terminate and, hence, that it is complete.
Each strategy involves a method for choosingR, the amount
by which the ZPS value for the edge currently under consid-
eration is to be reduced (recall Lemma 16). Each strategy
leaves the distribution of additional constrainedness among
thetiz andztj edges (i.e., the choice ofα) unrestricted.

Fact 20 will be used in the proofs of the theorems.

Fact 20 If an xy-edge ever loses its tightness, it cannot ever
regain it. Thus, since the algorithm never adds any proper
xy-edges, the pool of tight, proper xy-edges relevant to Step 2
can never grow. Furthermore, by Result 13, the ZPS values
cannot ever increase. Thus, any progress made by the algo-
rithm is never lost.

Theorem 21 (Greedy Strategy)If at each pass of Step 3,
the entire zero-path-shortfall for the edge under consid-
eration is eliminated—which is always possible by Corol-
lary 17—then the TDP algorithm will terminate after at most
2|TX ||TY | iterations.

Proof By Fact 20, the algorithm needs to do Step 3 pro-
cessing of each tight, proper xy-edge at most once. There
are at most2|TX ||TY | such edges.

Barring some extravagant selection process in Step 2,
the computation in each iteration of the algorithm is dom-
inated by the propagation of the temporal constraints added
in Step 4. This is no worse thanO(N3), whereN + 1 is the
number of time-points inS (recall Fact 2).

The following theorem specifies a less-greedy approach
which, although more computationally expensive than the
greedy approach, is shown in the experimental evaluation
section to result in decoupled networks that are more flexi-
ble. In this strategy, the ZPS value of the edge under consid-
eration in Step 3 is reduced by a fractional amount (unless it
is already below some threshold). Unlike the Greedy strat-
egy, this strategy requires all of the initial ZPS values to be
finite—which is always the case in practice.

Theorem 22 (Less-Greedy Strategy)Let Z be the maxi-
mum of the initial ZPS values among all the tight, proper
xy-edges inS. Let ǫ > 0 and r ∈ (0, 1) be arbitrary con-
stants. Suppose that at each pass of Step 3 in the TDP algo-
rithm, R (the amount by which the ZPS valueζ for the edge
currently under consideration is reduced) is given by:

R =

{

rζ, if ζ > ǫ
ζ, otherwise

Step 2
Choice

R Randomly choose an edge fromE .

K

Randomly select aK-item subset ofE , whereK is one of
{2, 4, 8}; choose edge from that subset whose processing in
Step 3 will result in minimal change to STN’s rigidity.

Choice
of R

G Greedy strategy
L Less-Greedy strategy wherer = 0.5 and the computation-

multiplier is either6 or 18.

Choice
of α

B Randomly chooseα from {0, 1}.
U Randomly chooseα from [0, 1] (uniform distribution).

F Randomly chooseα from [0, 1] with distribution weighted
by flexibility of tiz- andztj-edges.

Figure 4: Variations of the TDP Algorithm Tested

(Corollary 17 ensures that this is always possible.) IfZ is fi-
nite, then this strategy ensures that the algorithm will termi-

nate after at most2|TX ||TY |
[

log(Z/ǫ)
log(1/(1−r)) + 1

]

iterations.

Proof Let E0 be the initial set of tight, proper xy-edges
having positive ZPS values. LetE ∈ E0 be arbitrary. Let
ζ beE’s initial ZPS value. SupposeE has been processed
by the algorithm (in Step 3)n times so far. Given the above
strategy for choosingR, E’s current ZPS valueζ is nec-
essarily bounded above byζ0(1 − r)n and hence also by
Z(1 − r)n. If n > log(Z/ǫ)

log(1/(1−r)) , we get thatZ(1 − r)n < ǫ.

Thus, after at most
[

log(Z/ǫ)
log(1/(1−r)) + 1

]

appearances ofE in

Step 3, its ZPS valueζ will be zero. SinceE was arbitrary
and|E0| ≤ 2|TX ||TY |, the result is proven.

The factor
[

log(Z/ǫ)
log(1/(1−r)) + 1

]

specifies an upper bound

on the run-time using the Less Greedy strategy as compared
to the Greedy strategy. In practice, this factor may be kept
small by choosingǫ appropriately. For example, ifr = 0.5
andZ/ǫ = 1000, this factor is less than11.

Corollary 23 (Completeness)Using either the Greedy or
Less-Greedy strategy, the TDP algorithm is complete.

Proof Suppose a solution exists for an instance of the TDP
for an STNS. By Result 8,S must be consistent. Thus, the
TDP algorithm will not halt at Step 1. Using either of the
strategies in Theorems 21 or 22, the algorithm will eventu-
ally terminate at Step 6. By Theorem 19, this only happens
when the algorithm has found a solution to the TDP.

Experimental Evaluation
In this section, we compare the performance of the TDP al-
gorithm across the following dimensions: (1) the function
used in Step 2 to select the next edge to work on; (2) the
function used in Step 3 to determineR (i.e., the amount
of ZPS reduction); and (3) the function used in Step 3 to
determineα, which governs the distribution of additional
constrainedness among thetiz- andztj-edges. The chart in
Figure 4 shows the algorithm variations tested in the exper-
iments. Each variation is identified by its parameter settings
using the abbreviations in the chart.

Option K for the Step 2 choice function is expected to
be computationally expensive since for each edge in theK-
item subset, constraints must be propagated (and reset) and
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Figure 5: Experimental Results

the rigidity of the STN must be computed. However, it is
hypothesized that this method will result in more flexible
decouplings. Similarly, the Less-Greedy strategy, which is
computationally more expensive than the Greedy strategy, is
hypothesized to result in decouplings that are more flexible.
Regarding the choice ofα, it is hypothesized that one of the
pseudo-continuous strategies (i.e., U or F) will result decou-
plings that are more flexible than when using the discrete
strategy (i.e., B).

The first experiment tested the random Step 2 function
(R). It consisted of 500 trials, each restricted to the time-
interval[0, 100]. For each trial, the STN contained start and
finish time-points for 30 actions (i.e., 60 time-points). Half
of the actions/time-points were allocated toTX , half toTY .
Constraints were generated randomly, as follows. For each
action, a lower boundd was drawn uniformly from the inter-
val [0, 1]; an upper bound was drawn from[d, d + 1]. Also,
400 constraints among time-points inTX , 400 among time-
points inTY , and 800 xy-edges were generated, the strength
of each determined by selecting a random value from[0, F ],
whereF was 30% of the maximum amount the constraint
could be tightened.

The results of the first experiment are shown in the top
half of Figure 5. The horizontal axis measures time in sec-
onds. The vertical axis measures the rigidity of the STN
after the decoupling (as a multiple of the rigidity of the
STN before the decoupling). 95% confidence intervals are
shown for both time and rigidity, but the intervals for time
are barely visible. Both scales are logarithmic.

As hypothesized, the Greedy approach (G) is faster, but
the Less-Greedy approach (L) results in decouplings that are
substantially more flexible (i.e., less rigid). Similarly,us-
ing a larger computation-multiplier in the Less-Greedy ap-
proach (18 vs. 6), which corresponds to a smaller value of
ǫ, results in decouplings that are more flexible. The most

surprising result is the dramatic benefit from using either of
the two pseudo-continuous methods, U or F, for choosing
α. Biasing the distribution according to the flexibility in the
tiz- andztj-edges (as is done in the F method) gives con-
sistently more flexible decouplings, while taking less time
to do so. The RL(18)F variation produced decouplings that
were scarcely more rigid than the input STN.

The second experiment used only the K-item-set func-
tion (K) for the Step 2 selection function, varying the size
of the subset (2, 4 or 8). The other dimensions were fixed:
Less-Greedy approach with a computation-multiplier of 6,
together with the F method of selectingα. The experiment
consisted of 200 trials. For each trial the STN contained 40
actions (80 time-points), as well as 1600 constraints among
time-points inTX , 1600 among time-points inTY and 3200
xy-edges. The results are shown in the bottom of Figure 5.
As hypothesized, using the K-item-subset Step 2 function
can generate decoupled networks that are substantially more
flexible. However, using this method is not immune from the
Law of Diminishing Returns. In this case, using an 8-item
subset was not worth the extra computational effort.

Conclusions
In this paper, we formally defined the Temporal Decoupling
Problem, presented theorems giving necessary and sufficient
characterizations of solutions to the TDP, and gave a param-
eterized family of sound and complete algorithms for solv-
ing it. Although the algorithms were presented only in the
case of decoupling an STN into two subnetworks, they are
easily extended to the case of multiple subnetworks.
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