
New Improvements in Optimal Rectangle Packing

Eric Huang and Richard E. Korf

Computer Science Department

University of California, Los Angeles

Los Angeles, CA 90095

ehuang@cs.ucla.edu, korf@cs.ucla.edu

Abstract

The rectangle packing problem consists of find-
ing an enclosing rectangle of smallest area that can
contain a given set of rectangles without overlap.
Our algorithm picks the x-coordinates of all the
rectangles before picking any of the y-coordinates.
For the x-coordinates, we present a dynamic vari-
able ordering heuristic and an adaptation of a prun-
ing algorithm used in previous solvers. We then
transform the rectangle packing problem into a per-
fect packing problem that has no empty space, and
present inference rules to reduce the instance size.
For the y-coordinates we search a space that models
empty positions as variables and rectangles as val-
ues. Our solver is over 19 times faster than the pre-
vious state-of-the-art on the largest problem solved
to date, allowing us to extend the known solutions
for a consecutive-square packing benchmark from
N=27 to N=32.

1 Introduction

Given a set of rectangles, our problem is to find all enclosing
rectangles of minimum area that will contain them without
overlap. We refer to an enclosing rectangle as a bounding
box. The optimization problem is NP-hard, while the prob-
lem of deciding whether a set of rectangles can be packed in
a given bounding box is NP-complete, via a reduction from
bin-packing [Korf, 2003]. The consecutive-square packing
benchmark is a simple set of increasingly difficult bench-
marks for this problem, where the task is to find the bounding
boxes of minimum area that contain a set of squares of sizes
1x1, 2x2, ..., up to NxN [Korf, 2003]. For example, Figure 1
is an optimal solution for N=32. We use this benchmark here
but none of the techniques introduced in this paper are spe-
cific to packing squares as opposed to rectangles.

Rectangle packing has many practical applications. It ap-
pears when loading a set of rectangular objects on a pallet
without stacking them, and also in VLSI design where rect-
angular circuit components must be packed onto a rectangu-
lar chip. Various other cutting stock and layout problems also
have rectangle packing at their core.

Figure 1: An optimal solution for N=32 with a bounding box
of 85x135.

511

Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI-09)



(a) Compulsory part of a 5x2 at
x=[0,2]

(b) Assigning a 4x2 to [0,2].

Figure 2: Examples of compulsory parts and intervals.

2 Previous Work

Korf [2003] divided the rectangle packing problem into two
subproblems: the minimal bounding box problem and the
containment problem. The former finds a bounding box of
least area that can contain a given set of rectangles, while the
latter tries to pack the given rectangles in a given bounding
box. The algorithm that solves the minimal bounding box
problem calls the algorithm that solves the containment prob-
lem as a subroutine.

2.1 Minimal Bounding Box Problem

A simple way to solve the minimal bounding box problem
is to find the minimum and maximum areas that describe
the set of feasible and potentially optimal bounding boxes.
Bounding boxes of all dimensions can be generated with ar-
eas within this range, and then tested in non-decreasing order
of area until all feasible solutions of smallest area are found.
The minimum area is the sum of the areas of the given rectan-
gles. The maximum area is determined by the bounding box
of a greedy solution found by setting the bounding box height
to that of the tallest rectangle, and then placing the rectangles
in the first available position when scanning from left to right,
and for each column scanning from bottom to top.

2.2 Containment Problem

Korf’s [2003] absolute placement approach modeled rectan-
gles as variables and empty locations in the bounding box
as values. Moffitt and Pollack’s [2006] relative placement ap-
proach used a variable for every pair of rectangles to represent
the relations above, below, left, and right. Absolute place-
ment was faster than relative placement [Korf et al., 2009],
which in turn was faster than the methods of Clautiaux et al.
[2007] and Beldiceanu et al. [2008].

Simonis and O’Sullivan [2008] used Clautiaux et al.’s
[2007] variable order with additional constraints from
Beldiceanu et al. [2008] to greatly outperform Korf et al.’s
solver [2009]. They used Prolog’s backtracking engine to
solve a set of constraints which they specified prior to the
search effort. They first assigned the x-coordinates of all
the rectangles before any of the y-coordinates. Since we use
some of these ideas, we review them here.

Simonis and O’Sullivan [2008] used two sets of redundant
variables for the x-coordinates. The first set of N variables
correspond to “intervals” where a rectangle is assigned an
interval of x-coordinates. Interval sizes are hand-picked for
each rectangle prior to search, and they induce a smaller rect-
angle representing the common intersecting area of placing

the rectangle in any location in the interval [Beldiceanu et
al., 2008]. Larger intervals result in weaker constraint prop-
agation (less pruning) but a smaller branching factor, while
smaller intervals result in stronger constraint propagation but
a larger branching factor.

As shown in Figure 2b, a 4x2 rectangle assigned an x-
interval of [0,2] consumes 2 units of area at each x-coordinate
in [2,3], represented by the doubly-hatched area. This “com-
pulsory profile” [Beldiceanu et al., 2008] is a constraint com-
mon to all positions x ∈ [0, 2] of the original 4x2 rectan-
gle. If there were no feasible set of interval assignments, then
the constraint would save us from having to try individual x-
values. However, if we do find a set of interval assignments,
then we must search for a set of single x-coordinate val-
ues. Simonis and O’Sullivan [2008] used a total of 4N vari-
ables, assigning (in order) x-intervals, single x-coordinates,
y-intervals, and finally single y-coordinates.

3 Overall Search Strategy

We separate the containment problem from the minimal
bounding box problem, and use Korf et al.’s [2009] al-
gorithm to solve the latter problem. Like Simonis and
O’Sullivan [2008], we assign all x-coordinates prior to any y-
coordinates, and use interval variables for the x-coordinates.
We set a rectangle’s interval size to 0.35 times its width,
which gave us the best performance. Finally, we do not use
interval variables for the y-coordinates. All of the remaining
ideas presented in this paper are our contributions.

Although we use some ideas used by Simonis and
O’Sullivan [2008], we do not take a constraint programming
approach in which all constraints are specified to a general
purpose solver like Prolog, prior to the search effort. Instead,
we have implemented our program from scratch in C++, al-
lowing us to easily choose which constraints and inferences to
use at what time, and giving us more flexibility during search.
For example, as we will explain later, we make different in-
ferences depending on the partial solution.

We implemented a chronological backtracking algorithm
with dynamic variable ordering and forward checking. Our
algorithm works in three stages as it goes from the root of the
search tree down to the leaves:

1. It first works on the x-coordinates in a model where
variables are rectangles and values are x-coordinate lo-
cations, using dynamic variable ordering by area and a
constraint that detects infeasible subtrees.

2. For each x-coordinate solution found, it conducts a per-
fect packing transformation, applies inference rules to
reduce the transformed problem size, and derives conti-
guity constraints between rectangles.

3. It then searches for a set of y-coordinates in a model
where variables are empty corners and values are rect-
angles.

4 Assigning X-Coordinates

For the x-coordinates, we propose a dynamic variable order
and a constraint adapted from Korf’s [2003] wasted-space
pruning heuristic. For a bounding box of size WxH we use

512



an array of size W representing the amount of available space
in the column at each x-coordinate (i.e., H minus the sum of
the heights of all rectangles overlapping x). The array allows
us to quickly test if a rectangle can fit in any given column.

4.1 Variable Ordering By Area

Our variable order is based on the observation that placing
rectangles of larger area is more constraining than placing
those of smaller area. At all times the variable ordering
heuristic chooses from among the interval and the single co-
ordinate variables. Figure 2a shows the compulsory part in-
duced by assigning a 5x2 rectangle the x-interval [0,2]. At
this point, we can either assign a single x-coordinate to the
5x2, or assign an interval to another rectangle and place its
compulsory part. We always pick the variable whose assign-
ment consumes the most area. For example, assigning a sin-
gle x-coordinate to the 5x2 rectangle would force the con-
sumption of 4 more units of area compared to Figure 2a. We
also require that a rectangle’s interval assignment be made
before we consider assigning its single x-coordinate.

Although our benchmark has an ordering of squares from
largest to smallest, we also must consider interval assign-
ments that induce non-square compulsory parts. Further-
more, during search we may rule out some single values of
an interval already assigned, increasing the area of the com-
pulsory part, so a variable order by area must be dynamic.

4.2 Pruning Infeasible Subtrees

The pruning heuristic that we describe below is a constraint
that captures the pruning behavior of Korf’s [2003] wasted-
space pruning algorithm, adapted to the one-dimensional
case. Given a partial solution, Korf’s algorithm computed a
lower bound on the amount of wasted space, which was then
used to prune against an upper bound. In our formulation,
we don’t compute any bounds and instead detect infeasibility
with a single constraint.

As rectangles are placed in the bounding box, the remain-
ing empty space gets chopped up into small, irregular regions.
Soon the empty space is segmented into small enough chunks
that they cannot accommodate the remaining unplaced rect-
angles, at which point we may prune and backtrack. Assume
in Figure 2a we chose x-coordinates for a 3x2 rectangle in a
6x3 bounding box. Without any y-coordinates yet, we only
know that 2 units of area have been consumed in each of the
columns where the 3x2 rectangle has been placed. We track
how much empty space can fit rectangles of a specific height.
Here, there are 9 empty cells (units of area of empty space)
that can fit exactly items of height 3, and 3 empty cells that
can fit exactly items of height 1.

For every given height h, the amount of space that can ac-
commodate rectangles of height h or greater must be at least
the cumulative area of rectangles of height h or greater. As-
sume we still have to pack a 2x3 and a 2x2 rectangle. Thus,
the total area of rectangles of height two or greater is 10. The
empty space available that can accommodate rectangles of
height two or greater is 9. Therefore we can prune and back-
track. If we picked a height of 1 instead of 2, we wouldn’t
violate the constraint, so we must check all possible heights

for constraint violations. We check this constraint after every
x-coordinate assignment.

5 Perfect Packing Transformation

For every x-coordinate solution, we transform the problem
instance into a perfect packing instance before working on
the y-coordinates. A perfect packing problem is a rectan-
gle packing problem with the property that the solution has
no empty space. This property makes perfect packing much
easier since faster solution methods exist [Korf, 2003]. For
example, by modeling empty locations as variables and rect-
angles as values, space is quickly broken up into regions that
can’t accommodate any rectangles. Since no empty space is
allowed to fill these regions in perfect packing, this frequently
results in pruning close to the root of the search tree.

We transform rectangle packing instances to perfect pack-
ing instances by adding to the original set of rectangles a
number of 1x1 rectangles equal to the area of empty space in
the original instance. Since we know how much empty space
there is at each x-coordinate after assigning the x-coordinates
of the original rectangles, we can assign the x-coordinates for
each of the new rectangles accordingly.

Although the new 1x1 rectangles increase the problem size,
the hope is that the ease of solving perfect packing will offset
the difficulty of packing more rectangles. Next we describe
inference rules to immediately reduce the problem size, and
follow with a description of our search space for perfect pack-
ing. As we will show, our methods rely on the perfect packing
property of having no empty space.

5.1 Composing Rectangles and Subset Sums

Occasionally we may represent multiple rectangles with a
single rectangle. This occurs if we can show that two rectan-
gles must be horizontally next to each other and have the same
height and y-coordinate, or vertically stacked and have the
same width and x-coordinate. In these cases, we can replace
the rectangles with a single larger one, reducing the number
of rectangles we have to pack.

The inference rules that we now describe for inferring con-
tiguity between rectangles rest on a natural consequence of
having no empty space: The right side of every rectangle must
border the left side of other rectangles or the bounding box.
We refer to this as the bordering constraint.

Assume in Figure 3a we have a 4x5 bounding box, and a
set of rectangles whose x-coordinates have been determined.
We don’t know their y-coordinates yet, so we just arbitrarily
lay them out so no two rectangles overlap on the y-axis. Now
consider all rectangles whose right or left sides fall on x=3,
indicated by the dotted line. We only have the 1x2 on the left
and two 1x1s on the right. Due to the bordering constraint, the
1x2 must share its right border with the 1x1s. Furthermore,
this border forces the two 1x1s to be vertically contiguous,
which we define to mean that the x-axis projections of these
rectangles must overlap and the top of one must touch the bot-
tom of the other. Since the two 1x1s are vertically contiguous
and they have the same width, we can replace them with a
1x2 rectangle as in Figure 3b.

In Figure 3b, we have two 1x2s whose left and right sides
fall on x=3. Due to the bordering constraint, the 1x2 on the

513



(a) Vertical composi-
tion.

(b) Horizontal com-
position.

(c) Subset sums. (d) Horizontal com-
position.

(e) Vertical composi-
tion.

(f) One of several
packing solution.

Figure 3: Examples of composing rectangles and subset sums.

left must border the 1x2 on the right and have the same y-
coordinate values. Since they also have the same heights, we
can compose them together into a 2x2 rectangle. The same
applies to the rectangles bordering the line at x=1. The result
of these two horizontal compositions is shown in Figure 3c.

In Figure 3c the rectangles whose left and right sides fall
on x=3 are {2x3, 2x1} on the left and {2x2, 2x2} on the
right. Unlike previous cases, since we have more than one
rectangle on each side, we can’t immediately conclude verti-
cal contiguity unless we show that the 4x1 can never separate
the other rectangles vertically. Assume for the sake of con-
tradiction that the 2x3 and the 2x1 were separated vertically.
Then by the bordering constraint there is some subset from
{2x2, 2x2} that borders the 2x1 with a height of 1. How-
ever, there is no such subset! Thus, the 2x3 and 2x1 must
be vertically contiguous, as are the two 2x2s. Finally, since
the vertically contiguous rectangles have the same widths, we
can compose them together as shown in Figure 3d.

Using the same inference rules, we can replace the two
2x4s in Figure 3d with the 4x4 in Figure 3e. Finally, the last
two rectangles in Figure 3e may be also composed together if
we consider the sides of the bounding box as a single border.
Since we keep track of the order of rectangle compositions,
we can extract one of many packing solutions, as shown in
Figure 3f. In this example we inferred the y-coordinates with-
out any search, but in general, some search may be required.

6 Assigning Y-Coordinates

Now we present redundant and partial sets of variables that
will be considered simultaneously in order to assign the y-
coordinates. During search, from among all variables in all
models, we choose to assign next the variable with the fewest
possible values. We use forward checking to remove val-
ues that would overlap already-placed rectangles, and then
prune on empty domains or as required by Korf’s [2003] two-
dimensional wasted-space pruning rule. Finally, we use a 2D
bitmap to draw in placed rectangles to test for overlap.

Figure 4: An example of the empty corner model.

6.1 Empty Corners Model

An alternative to asking “Where should this rectangle go?”
is to ask “Which rectangle should go here?” In the former
model, rectangles are variables and empty locations are val-
ues, whereas in the latter, empty locations are variables and
rectangles are values. We search the latter model.

In all perfect packing solutions, every rectangle’s lower-left
corner fits in some lower-left empty corner formed by other
rectangles, sides of the bounding box, or a combination of
both. In this model, we have one variable per empty corner.
Since each rectangle goes into exactly one empty corner, the
number of empty corner variables is equal to the number of
rectangles in the perfect packing instance. The set of values
is just the set of unplaced rectangles.

This search space has the interesting property that variables
are dynamically created during search because the x and y-
coordinates of an empty corner are known only after the rect-
angles that create it are placed. Furthermore, placing a rect-
angle in an empty corner assigns both its x and y-coordinates.

Note that the empty corner model can describe all perfect
packing solutions. Given any perfect packing solution, we
can list a unique sequence of rectangles by scanning left to
right, bottom to top for the lower-left corners of the rectan-
gles.

We use four sets of redundant variables, as this better al-
lows us to choose the variable with the fewest values. Each

514



Size Optimal Wasted Boxes KMP Simonis08 FixedOrder PerfectPack Huang09
N Solution Space Tested Time Time Time Time Time

20 34×85 0.69% 14 1:32 :02
21 38×88 0.99% 20 9:54 :07 :03 :18 :03
22 39×98 0.71% 17 37:03 :51 :02 :03 :02
23 64×68 0.64% 19 3:15:23 3:58 :14 :14 :12
24 56×88 0.58% 19 10:17:02 5:56 :40 :43 :37
25 43×129 0.40% 17 2:02:58:36 40:38 2:27 2:15 2:14
26 70×89 0.47% 21 8:20:14:51 3:41:43 10:25 9:45 9:39
27 47×148 0.37% 22 34:04:01:03 11:30:02 1:08:55 35:12 35:12

74×94 0.37%
28 63×123 0.45% 30 2:18:12:13 4:39:31 4:39:31
29 81×106 0.36% 27 8:05:36 8:06:03
30 51×186 0.33% 21 2:17:34:12 2:17:32:52
31 91×110 0.33% 30 4:16:05:08 4:16:03:42
32 85×135 0.31% 36 33:11:36:23

Table 1: Minimum-area bounding boxes containing all consecutive squares from 1x1 up to NxN .

set of variables corresponds to a different right-angle rotation
of the empty corner. For example, in Figure 4, after placing
rectangles r1 and r2, we now have six empty corner variables
c1, c2, ..., c6. c1 and c6 are lower-left empty corner variables,
while the other variables correspond to other orientations of
an empty corner. Forward checking then removes rectangles
with x-coordinates inconsistent with the empty corner’s x-
coordinates as well as remove rectangles that would overlap
other rectangles when placed in the corner.

6.2 Using Vertical Contiguity During Search

Recall that in Figure 3, we composed vertically contiguous
rectangles when they had equal widths. Even if we can’t
compose rectangles due to their unequal widths, vertical con-
tiguity is still useful. During the search for y-coordinates, if
we place a rectangle in an empty corner, then we can choose
to place its vertically contiguous partner either immediately
above or below, giving us a branching factor of two. This
effectively represents another set of variables, each with two
possible values. We only infer vertical contiguity for certain
pairs of rectangles, so this is only a partial model, but our dy-
namic variable order considers these variables simultaneously
with those in the empty corner model.

7 Experimental Results

Table 1 compares the CPU runtimes of five solvers on the
consecutive-square packing benchmark. The first column
refers to the instance size. The second specifies the dimen-
sions of the optimal solution’s bounding box. The third is the
percentage of empty space in the optimal solution. The fourth
specifies the total number of bounding boxes the program
tested. The remaining columns specify the CPU times re-
quired by various algorithms to find all the optimal solutions
in the format of days, hours, minutes, and seconds. When
there are multiple boxes of minimum area as in N=27, we
report the total time required to find all bounding boxes.

Huang09 includes all of our improvements and Simonis08
refers to the previous state-of-the-art solver [Simonis and

O’Sullivan, 2008]. The largest problem previously solved
was N=27 and took Simonis08 over 11 hours. We solved the
same problem in 35 minutes and solve five more open prob-
lems up to N=32. KMP refers to Korf et al.’s [2009] absolute
placement solver. FixedOrder assigns all x-intervals before
any single x-coordinates, but includes all of our other ideas.
Huang09’s dynamic variable ordering for the x-coordinates
was an order of magnitude faster than FixedOrder by N=28.
The order of magnitude improvement of FixedOrder over Si-
monis08 is likely due to our use of perfect packing for as-
signing the y-coordinates. We do not include the timing for a
solver with perfect packing disabled because it was not com-
petitive (e.g., N=20 took over 2.5 hours).

In PerfectPack we use only the lower-left corner when as-
signing y-coordinates and also turn off all inference rules re-
garding rectangle composition and vertical contiguity. Notice
that the running time of this version differs only very slightly
from the running time of Huang09, which includes all of our
optimizations. This suggests that nearly all of the perfor-
mance gains can be attributed to just using our x-coordinate
techniques and the perfect packing transformation with the
lower-left corner for the y-coordinates.

We benchmarked our solvers in Linux on a 2GHz AMD
Opteron 246 with 2GB of RAM. KMP was benchmarked
on the same machine, so we quote their results [Korf et al.,
2009]. We do not include data for their relative placement
solver because it was not competitive. Results for Simo-
nis08 are also quoted [Simonis and O’Sullivan, 2008], ob-
tained from SICStus Prolog 4.0.2 for Windows on a 3GHz
Intel Xeon 5450 with 3.25GB of RAM. Since their machine
is faster than ours, these comparisons are a conservative esti-
mate of our relative performance.

In Table 2 the second column is the number of complete x-
coordinate assignments our solver found over the entire run
of a particular problem instance. The third is the total time
spent in searching for the x-coordinate. The fourth is the total
time spent in performing the perfect packing transformation
and searching for the y-coordinates. Both columns represent

515



Size X-Coordinate Seconds Seconds Ratio
N Solutions in X in Y X:Y

20 15 0.1 0.0 2.6
21 665 0.8 2.4 0.3
22 283 2.1 0.4 5.6
23 391 14.1 0.6 22.7
24 870 42.0 2.3 18.6
25 193 160.9 0.3 564.5
26 1,026 688.5 2.8 242.5
27 244 2,524.4 0.6 4,376.6
28 2,715 19,867.5 6.8 2,919.4
29 11,129 34,839.7 33.1 1,052.4
30 10,244 277,087.0 29.2 9,478.9

Table 2: CPU times spent searching for x and y-coordinates.

the total CPU time over an entire run for a given problem
instance. The last column is the ratio of time in the third col-
umn to that of the fourth. Interestingly, almost all of the time
is spent on the x-coordinates as opposed to the y-coordinates,
which suggests that if we could efficiently enumerate the x-
coordinate solutions, we could also efficiently solve rectangle
packing. This is confirmed by the few x-coordinate solutions
that exist even for large instances. The data in Table 2 was
obtained on a 3GHz Pentium 4 with 2GB of RAM in a sepa-
rate experiment from that of Table 1, which is why N=31 and
N=32 are missing from Table 2.

8 Future Work

The alternative formulation of asking “What goes in this lo-
cation?” to “Where does this go?” is not limited to rectangle
packing. For example, humans solve jigsaw puzzles by both
asking where a particular piece should go, as well as asking
what piece should go in some empty region. It would be inter-
esting to see how applicable this dual formulation is in other
packing, layout, and scheduling problems.

Our algorithm currently only considers integer values for
rectangle sizes and coordinates. While this is generally ap-
plicable, the model breaks down with rectangles of high-
precision dimensions. For example, consider doubling the
sizes of all items in a problem instance in both dimensions to
get the instance 2x2, 4x4, ..., (2N)x(2N), and then substitute
the 2x2 for a 3x3 rectangle. The new instance shouldn’t be
harder than the original, but now we must consider twice as
many single x-coordinate values, resulting in a much higher
branching factor than the original problem. The solution to
this problem may require a different representation and many
changes to our techniques, and so it remains future work.

9 Conclusion

We have presented several new improvements over the previ-
ous state-of-the-art in rectangle packing. Within the schema
of assigning x-coordinates prior to y-coordinates, we intro-
duced a dynamic variable order for the x-coordinates, and
a constraint that adapts Korf’s [2003] wasted-space pruning
heuristic to the one-dimensional case. For the y-coordinates

we work on the perfect packing transformation of the original
problem, by using a model that assigns rectangles to empty
corners, and inference rules to reduce the model’s variables
and derive vertical contiguity relationships.

Our improvements in the search for y-coordinates help us
solve N=27 over an order of magnitude faster than the pre-
vious state-of-the-art, and our improvements in the search for
x-coordinates also gave us an order of magnitude speedup by
N=28 compared to leaving those optimizations out. With all
our techniques, we are over 19 times faster than the previ-
ous state-of-the-art on the largest problem solved to date, al-
lowing us to extend the known solutions for the consecutive-
square packing benchmark from N=27 to N=32.

All of the techniques presented to pick y-coordinates are
tightly coupled with the dual view of asking what must go
in an empty location. Furthermore, while searching for x-
coordinates, our pruning rule is based on the analysis of irreg-
ular regions of empty space, and our dynamic variable order
also rests on the observation that less empty space leads to a
more constrained problem. The success of these techniques in
rectangle packing make them worth exploring in many other
packing, layout, or scheduling problems.

10 Acknowledgments

This research was supported by NSF grant No. IIS-0713178
to Richard E. Korf.

References

[Beldiceanu et al., 2008] Nicolas Beldiceanu, Mats Carls-
son, and Emmanuel Poder. New filtering for the cumu-
lative constraint in the context of non-overlapping rect-
angles. In Laurent Perron and Michael A. Trick, editors,
CPAIOR, volume 5015 of Lecture Notes in Computer Sci-
ence, pages 21–35. Springer, 2008.

[Clautiaux et al., 2007] Franois Clautiaux, Jacques Carlier,
and Aziz Moukrim. A new exact method for the two-
dimensional orthogonal packing problem. European Jour-
nal of Operational Research, 183(3):1196 – 1211, 2007.

[Korf et al., 2009] Richard Korf, Michael Moffitt, and
Martha Pollack. Optimal rectangle packing. To appear
in Annals of Operations Research, 2009.

[Korf, 2003] Richard E. Korf. Optimal rectangle packing:
Initial results. In Enrico Giunchiglia, Nicola Muscettola,
and Dana S. Nau, editors, ICAPS, pages 287–295. AAAI,
2003.

[Moffitt and Pollack, 2006] Michael D. Moffitt and
Martha E. Pollack. Optimal rectangle packing: A
meta-csp approach. In Derek Long, Stephen F. Smith,
Daniel Borrajo, and Lee McCluskey, editors, ICAPS,
pages 93–102. AAAI, 2006.

[Simonis and O’Sullivan, 2008] Helmut Simonis and Barry
O’Sullivan. Search strategies for rectangle packing. In
Peter J. Stuckey, editor, CP, volume 5202 of Lecture Notes
in Computer Science, pages 52–66. Springer, 2008.

516


	IJCAI-09 CD
	Home
	Contents
	Index
	IJCAI Website




