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1. INTRODUCTION 

Functional [S], multivalued [7, 191, and the more general join dependencies [16] 
are fundamental in relational database theory [5]. In [9] it was postulated that 
in real-world databases the structure can he expressed hy a set of functional 
dependencies together with only one join dependency. Here we are not concerned 
with functional dependencies, and therefore we consider relations on which a 
single join dependency is defined. 

Unfortunately, integrity checking for join dependencies (jds), that is, checking 
whether the relation still satisfies the constraint after an update, turns out to he 
NP-complete in general. However, integrity checking can be avoided, since the 
presence of a jd is a necessary and sufficient condition to decompose a relation 
into a set of smaller relations, one for each edge of the jd. When this approach is 
followed (which is most common in practice), we must only verify whether the 
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subrelations still represent the information of one common relation each time an 
update is performed on the subrelations. This is called consistency checking. 
Unfortunately, consistency checking too is NP-complete in general. 

However, there exist polynomial algorithms for integrity and consistency 
checking in the case where only acyclic join dependencies are involved. It is well 
known that the so-called acyclic join dependencies are those jds that can be 
decomposed into a set of multivalued dependencies (mvds) [2, 3, 8, 9, lo]. An 
mvd is essentially a join dependency with two edges. Because of these desirable 
properties, we often try to design a database in such a way that the jd describing 
it is acyclic. In many cases, however, the initial design produces cyclic join 
dependencies. Several techniques have been proposed to “change” these cyclic 
jds into acyclic ones (e.g., attribute splitting [9]), but these techniques may have 
undesirable side effects (e.g., the loss of the close relationship between split 
attributes). In this paper we want to point out that it is not necessary to reject 
all cyclic jds in database design. Indeed, some cyclic jda can also be decomposed 
into a set of “less complicated” join dependencies, as is illustrated by the following 
example. Consider the join dependency: 

J:ob w ac w bd w cd w de w dfw eg w fg. 
A possible decomposition of J is 

(&de w df m eg w fg, abed m defg, ab m a~ m cd m bdefg). 

Other cyclic jds are not decomposable at all in this sense, such as 

ab m bc m cd m de m ef m fg m ga. 

This suggests that some cyclic jds are “more cyclic” than other cyclic jds, that is, 
that there exist several levels of cyclicity for jds of which acyclicity is only the 
“lowest” one (apart from the trivial jds). 

If we look at this problem from the point of view of integrity checking, we see 
that replacing a jd by a decomposition can make integrity checking more efficient, 
since the jds in a decomposition have by definition fewer edges than the original 
jd. It is important to make the number of edges of the join dependencies of the 
decomposition we wish to use to perform integrity checking as small as possible, 
since the time complexity of making a join is first and foremost determined by 
the number of relations that have to be joined. Therefore, we define the degree 
of cyclicity of a join dependency J as the minimum overall decompositions of J 
of the number of edges of the largest join dependency in that decomposition. In 
particular, we show that this minimum in each decomposition can be obtained 
with the method introduced in [lo]. Hence the decompositions thus obtained are 
optimal in this respect. 

The degree of cyclicity also seems a natural tool to classify join dependencies 
in the sence we discussed above. We therefore say that a jd is n-cyclic if its degree 
of cyclicity is at most n. In this way we get a hierarchical classification of jds in 
which acyclic jds appear for n = 2. We show that integrity checking can be 
performed in polynomial time provided only n-cyclic jds are considered for a 
fixed value of n, not necessarily 2. 
ACM Transactions on Database system. Vol. 11. NO. 1. March 1986. 
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As said before, in practical situations, the presence of a jd will be used to 
decompose the relation on which it is defined in a set of smaller relations. With 
this approach, the problem of integrity checking is replaced by the problem of 
consistency checking. In the case of an acyclic jd, consistency checking can be 
performed in polynomial time since acyclicity is equivalent with “pair-wise 
consistency implies global consistency” [2, 3, 8, 91. The notion of n-cyclicity of 
which acyclicity is a special case for n = 2 suggests e generalization of this result. 
We show here that n-cyclicity is indeed equivalent to “n-wise consistency implies 
global consistency.” As a consequence, checking e decomposed database for global 
consistency can be done in polynomial time if one allows only n-cyclic join 
dependencies, for a fixed level of cyclicity n, which may be greater than 2. Hence 
in database design we have to restrict the jds that may occur to jds of a certain 
level of cyclicity, but not necessarily to acyclic jds. 

This paper is organized es follows. In Section 2 we give some basic notions 
about join dependencies and their hypergraph representations, which we use 
extensively throughout this paper. Essential to our decomposition methodology 
is the notion of e hinge. A hinge is e set of edges of e hypergraph that satisfies 
certain properties. We define this notion in Section 3, in which we also describe 
our decomposition methodology. In Section 4 we give en overview of the most 
important properties of this decomposition methodology discussed in earlier 
papers. In Section 5 we define the degree of cyclicity of e join dependency and 
characterize this notion in terms of the structure of the join dependency itself. 
Again the notion of a hinge turns out to be important in this characterization. 
We show that our decomposition minimizes the number of components in its 
largest element. We also introduce n-cyclicity, and we show that integrity 
checking ten be performed in polynomial time, provided only n-cyclic jds ere 
considered, for a fixed value of n. Finally, in Section 6, we prove that n-cyclicity 
is equivalent to “n-wise consistency implies global consistency” and show that, 
es a consequence, consistency checking can he done in polynomial time, provided 
only n-cyclic jds are considered, for e fixed value of n. 

2. NOTATION AND TERMINOLOGY 

In this paper we consider a universal relation scheme R(Q) (or R if no ambiguity 
is possible) consisting of e set a of attributes, each associated with a domain of 
values. We essume that each domain is infinitely denumerahle (e.g., the set of 
nonnegative integers). In the sequel we denote single attributes by small letters, 
whereas sets of attributes are denoted by capital letters. If X and Y are sets of 
attributes, we write XY for X U Y. If a, b, c, are attributes, we write abc . . 
for (a, b, c, . .I. In particular, we do not distinguish between the attribute a and 
the set {a). 

Let X C 0. A tuple t over X is a mapping that associates with each attribute a 
of R e value of its corresponding domain. An instance r over X is a set of tuples 
over X. Let Y C X and let t be a tuple over X. The projection oft onto Y, denoted 
t[ Y], is obtained by restricting t to the attributes of Y. If r is an instance over X, 
the set obtained by projecting each tuple of r onto Y is said to be the projection 
of r onto Y, denoted Q(T). 

ACM T.ansaction. on DatabaseSystems, “0,. II, No. 1, March 1986. 
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L&X, ,..., XhCQ.Wesaythat(r, ,..., rk)isaninstanceover(X, ,..., Xh) 
if ri is an instance over X, for all i = 1, . , k. 

In most cases instances must obey certain constraints to be admissible. The 
constraints we consider here are the join dependencies. 

Definition 2.1 111. Let R(R) be a relation scheme. Let X1, . . , Xh C Q and let 
(Q, , ra) be an instance over (XI, , Xa). We define the join of rI, , ra, 
denoted r, w , w ra as the union of all relation instances s over Uf,, Xi 
satisfying Q<(S) C r:, for all i = 1, . . , k. 

The join of r,, , ra is therefore the “largest” relation instance over Up, Xi, 
of which the projections onto XI,. , Xa are contained in rl, , ra, respectively. 

Definition 2.2 [16]. Let R(Q) be a relation scheme. A (n-embedded) join 
dependency (jd) J over R is an expression of the form X, w W Xa with 
X,, . . . . Xa C R. X,, . . . . X, are called the edges of J. Let X = Uk Xi. Let 
r be a relation instance over R. r satisfies the jd X, W w Xk if xx(r) = 
rrx,(r) w w am. If X = Cl, we say that J is a full join dependency. 

A jd that consists of only two edges is called a (n-embedded) multiualued 
dependemy (mvd) [7,19]. 

Although we are mainly concerned with full jds and decompositions of full jds 
into full jds, we do not exclude embedded jds from our discussions wherever this 
restriction is not necessary. 

Join dependencies can be described in hypergraphs [2,3,8,9] in a very elegant 
way. We use this formalism very intensively further on in this paper. 

Definition 2.3. A hypergraph .?‘(M, 6?) is a pair consisting of a set of nodes Jy 
and a set of edges g satisfying iZ’ C 2/. 

In the following definitions we give some basic notions and terminology about 
hypergraphs. 

Definition 2.4. Let x’(H, Z) be a hypergraph and let &?I C S?. 
Suppose F, G E E\Z?’ (where I‘\” stands for set difference). 

- A sequence El, , E, of edges is a path from F to G with respect to g ’ if 

(1) El = F 
(2) Eq = G 
(3)E;nE,+,gu~’ forall i=l,...,q-1. 

A path from F to G is a path from F to G with respect to 8. 
- F and G are connected (with respect to 6%’ ’ ) if there exists a path from F to G 

(with respect to Z ’ ). 

LetYCZ\g’,F#!3. 

- F is connected (with respect to 8”) if every two edges of 9 are connected 
(with respect to E ’ ). 

- 9 is called disconnected (with respect to E? ’ ) if it is not connected (w.r.t 8 ’ 1. 
- .Z’ is called a connected hypergraph if &?’ is connected. 
- Y is a connected component (with respect to g’) if it is connected, and for 

any .F C g ( \Z ’ ) with F E .F, .F is disconnected (with respect to Z? ’ ). 

ACM Transactions 0” natabase Systems, Vol. 11, No. 1, March 1986. 
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Clearly, the connected components (with respect to 8’) of a hypergraph 
.z’ (JV, Z) form a partition of @Y ( \Z ’ ), since connectedness of edges (with respect 
to Z’ ) is an equivalence relation. 

Definition 2.5. Let Z(M, Z?) be a hypergraph. The reduction of .Z is the 
hypergraph obtained from Z? by deleting every edge that is properly contained 
in another edge. A hypergraph is called reduced if it equals its reduction. 

With a jd we can associate a hypergraph, and vice-versa, in the following way: 

Definition 2.6. Let R(Q) be a relation scheme. 
Let J :X1 w w Xa be a jd over R. The hypergraph iF;(N, G?) associated 

with J is defined by 

JY=R 
8= = IX,, . . , Xk}. 

Let Z’ (Jv, kF) be a hypergraph and suppose that N is a set of attributes, N C R. 
Let~=lEl,...,E~J.ThejdJaoverRassociatedwith~isElW ... WE,. 

Example 2.1. The jd ab w oc w bd w cd W de W df W eg W fg, already mentioned 
in the Introduction, can be represented by the following hypergraph (if we assume 
a = abcdefg ): 

Since there exists a very natural relationship between hypergraphs and jds, we 
often use the terminology designated for hypergraphs also for jds. We say that a 
jd is reduced or connected if the hypergraph associated with that jd is reduced or 
connected. In the sequel we often assume that the jds we consider are reduced 
and connected. It can easily he seen that this is not a real restriction. 

In most cases the presence of a number of constraints in a relation scheme 
automatically implies that several other constraints must be satisfied as well. We 
therefore introduce the following definitions. 

Definition 2.7. Let R be a relation scheme and let .P be a set of jds over R. We 
define by SAT (9) the set of all relation instances over R that satisfy all the jds 
of .!P. 

Definition 2.8. Let R be a relation scheme. Let z@’ and&be sets of jds over R. 

- 9 implies &‘, denoted 9 =a @, if SAT(P) c SAT(&). 
- 9 is equivalent to @, denoted .F’ t) &, if 9 =a (B and @ =+ 9, that is, if 

SAT(P) = SAT(&). 
We can now define the following: 

Definition 2.9 [2, 3, 8, 91. A join dependency is acyclic if it is equivalent to a 
set of multivalued dependencies. A hypergraph is acyclic if its associated jd is 
acyclic. 
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In this paper we are primarily concerned with decompositions of join depend- 
encies. Indeed, a jd can he equivalent to a set of other, smaller jds. The knowledge 
of such a set of jds can teach us much about the structure of a jd [lo, 11, 121. 
Essential for a set of jds to be a decomposition of a given jd is that the set be 
equivalent to the original jd, that it contain more than one element and that 
each jd of that set be “smaller” than the given jd. To avoid misunderstandings, 
we now define the notion of decomposition of a jd in a more formal way. 

Definition 2.10. Let R be a relation scheme. Let J be a jd over R and .Y = 
( J,, , J.1 be a set of jds over R. Then we say that { J1, , J#) is a 
decomposition of J if 

- Jo(J,,...,J.J; 
- each J, has strictly fewer edges than J; and 
-S>l. 

We say that J is decomposable if there exists a decomposition of J. 

Note that we do not exclude embedded jds in the above definition. Furthermore, 
the third condition follows from the second one if we assume J to be reduced. 
We now illustrate Definitions 2.9 and 2.10 with an example. 

Example 2.2. It can be verified that 

{&de w df w eg w fg, abed w defg, ab w ac w cd w bdefg) 

is a decomposition of 

a6 w ac w bd w cd w de w df w eg w fg 

as was claimed in the Introduction. It can also be checked that 

ab w bc w cd w de w ef w fg w ga 

is indeed undecomposable (see Example 4.1). As is shown later on (Examples 5.1 
and 5.5), both jds above are cyclic. 

Consider now the jd: 

ab w be w cd w de m ef m fg. 

A decomposition of this jd is 

(ab m bcdefg, abc m cdefg, abed m defg, &de m efg, abcdef m fg). 

Hence this jd is acyclic. 

In the following section we will see how decompositions of jds can be generated 
in a constructive way. We conclude this section with the following observation. 

THEOREM 2.1. Suppose that [J,, , J,I is a decomposition of the jd J and 
that ( X1, , Jl.,] is a decomposition of 51. Then ( Jn, . . , J,s,, 52, . , J.) is a 
decomposition of J. 

3. HINGES AND DECOMPOSITIONS OF A JD 

Join dependencies are very important in relational database theory. In [9] it is 
conjectured that a real-world database can be described using one full jd and a 
ACM Transactions on Dstabese Systems, Vol. 11, No. 1, March 1986. 
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number of functional dependencies. In this paper we only consider the jd. The jd 
can be used to check the integrity of a current state of the database or to 
decompose the database into smaller relations. In the latter case, the consistency 
of the database must be verified each time the database is updated. Unfortunately, 
both problems are NP-complete in general. Therefore, it is desirable to have 
acyclic jds [2,3,8,9]. Since acyclic jds are equivalent to a set of mvds (Definition 
2.9), both integrity checking (in the case that the database is not decomposed) 
as well as consistency checking (in the other case) can be done in polynomial 
time. Initial design however often produces cyclic jds, as in the following 
example [9]: 

Its cyclicity stems from the existence of the “cycle” Bank-Loan-Customer- 
Account. (This example suggests that cyclicity is a “local” property, i.e., that it 
is possible to distinguish cyclic parts in a jd 1151.) Cyclicity of a jd often implies 
that some attributes are “overloaded” (i.e., that they have too many functions in 
the database scheme). In the previous example the attribute Customer has the 
meaning of both a borrower and a depositor. A way of dealing with the cyclicity 
of the jd in the previous example is to split the attribute Customer into two new 
attributes, Borrower and Depositor, which produces the following acyclic jd: 

Ace. - Dep. - Dep.Addr. 

/ 
Back 

\ 
Loan - Bon. - Barr.Addr. 

Attribute-splitting, however, will not always be desirable, due to the close 
relationship between the new attributes. In some cases it can be more interesting 
to keep the original (cyclic) jd. The fact that the desirable properties of acyclic 
jds are due to the equivalence of these jds to a set of mvds, suggests looking in 
the case of cyclic jds for more general decompositions, in order to “separate” the 
various parts in the jd that are “really” cyclic. 

It is therefore important to have a methodology to decompose a given jd as far 
as possible into a set of jds with fewer edges. Such an algorithm was introduced 
in [lo]. In this section we give a brief description of this decomposition meth- 
odology. The crucial notion in this algorithm is that of a hinge in a hypergraph. 

A hinge is a set of edges of a hypergraph that satisfies certain properties. 
Informally, for a set of edges to be a hinge, all the connected components with 
respect to that set must intersect that set within one of its edges. For instance, 
lab, ae, bd, cd, de} is a hinge of the hypergraph in Example 2.1. Hinges turn out 
to be very important in the theory of the decomposition of jds. The presence of 
a hinge in the hypergraph representation of a jd, for example, is a necessary and 
sufficient condition for that jd to be decomposable [lo, 12,131. In [ 111 it is shown 

ACM Transactionll on Database Systems, Vol. 1 I, No. 1, March 1986. 
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that for a special class of jds, defined using the notion of hinge, there exists only 
one decomposition that can he characterized entirely in terms of the hinge 
structure of the hypergraph associated with the original jd. And in [12] it is 
shown that a slight generalization of the notion of hinge provides a very elegant 
characterization for an embedded jd to he implied by a full jd. We are now going 
to define a hinge more formally. 

Definition 3.1. Let z(JV, E) be a reduced connected hypergrapb. Let g’ E Z, 
(&?‘)>landletZ?,,..., ZFP be the connected components of 5Y with respect to 
8”. E’ is a hinge of Z if for each Z?i, i = 1, , p there exists E; E 8’ such that 
(U ??J fI (U g ‘) C I$. EC is called a separating edge corresponding to Zi. 

A hinge that is not contained within another hinge is called a maximal hinge. 
A hinge that contains no other hinges is called a minimal hinge. 

Example 3.1. Consider again the jd represented hy the following hypergrapb 
Z(“N, E’): 

The hinges of this hypergmph are {de, dj, eg, fg), {cd, de, df, eg, fg}, (bd, de, df, 
eg, fgl, lab, ac, bd, cdl, I& m, bd, cd, de), lab, ac, bd, cd, dfl, Icd, de), (cd, df I, 
{bd, de], and {bd, df). The second, the third, the fifth, and the sixth are maximal 
hinges; the others are minimal hinges. 

In [13] it is shown that there exists a polynomial time algorithm to detect a 
hinge in a hypergraph. This observation turns out to be very important in the 
sequel. We now show that every hinge of a hypergraph generates a decomposition 
of the jd associated with that hypergraph. 

THEOREM 3.1 [lo]. Let R(Q) be a relation dwne and let Z (Jv, 8;) be a reduced 
connected hypergraph with N C Q and let 8“ be a hinge of 2’. L.et 81, . . , gP be 
the connected components of Z with respect to Z’ and let E,, , En be 
corresponding separating edges. Let M; = U Z;. We define the following hyper- 
graphs: 

zw, zi u IU WZi”i)l) for i = 1, , p. 

Then I Js-0, Jx,, , Jxn) is a decomposition of Jx. 

Informally, &“,, is obtained from Z by considering every connected component 
of &” with respect to Z”, together with its separating edge, as one edge. ;U,, 1 5 i 
5 p, is obtained by considering all the edges not in 8; together as one edge. So in 
Z. only the structure of the hinge is preserved, whereas in 57; only the structure 
of 8; is preserved. 
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The Hinge Decomposition Algorithm. We propose to decompose a join-depend- 
ency Jn (using the notation introduced above): 

(1’) Search for a hinge in X’. If there is more than one hinge, choose one 
(arbitrary for the time being). If there is no hinge, we cannot decompose Jr 
by the hinge decomposition algorithm. 

(2”) Apply Theorem 3.1 and obtain JxO, , JrJ. 
(3”) Apply the algorithm recursively on Jzo, , Jx9. 

Finally, use Theorem 2.1 to obtain the desired result. 

Note that whenever the jd we started with is full, the decomposition we obtain 
also consists of full jds only. 

Example 3.2. Consider the hypergraph X?‘(M, 8) of Example 3.1. From Ex- 
ample 3.1 we know that {de, df, eg, fg) is a hinge. There is only one connected 
component with respect to {de, df, eg, fg}, namely, {a6, oc, bd, cdl. de is a 
separating edge corresponding to it (df 1s another one). The second step of the 
hinge decomposition algorithm gives us the following hypergraphs: 

20 (iv, lab& % eg, fg I ) XI W, lab, UC, cd, bd, defg 1) 

Theorem 3.1 asserts that { Jr*, Jx,] is a decomposition of Jx. Since Z?,, does 
not contain any hinges, Ja, cannot be decomposed any further with the hinge 
decomposition algorithm. X1, however, contains a hinge, namely, {a6, oc, bd, cd] 
with cd as a separating edge corresponding to the only connected component 
(defgJ with respect to this hinge. This gives rise to the hypergraphs: 

Both X10 and .Z“,, contain no hinges, so Jx, and Jr,, are not decomposable any 
further by the hinge decomposition algorithm. [ Jx,,, Jz,,) is a decomposition of 
Ja,. Finally, Theorem 2.1 states that { J xO, Jx,,, Jx,,] is a decomposition of Jx. 

In the following section we give an overview of some properties of the hinge 
decomposition algorithm, most of which were proved in earlier work. 

4. PROPERTIES OF THE HINGE DECOMPOSITION ALGORITHM 

In this section we give an overview of some properties of the hinge decomposition 
algorithm, most of which were shown in earlier work. Some of these properties 
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are included to illustrate the strength of the hinge decomposition algorithm, 
whereas others will he needed in Sections 5 and 6, which contain the main results 
of this paper. 

The first result we want to mention characterizes the presence of a hinge and, 
at the same time, demonstrates the importance of this notion: 

THEOREM 4.1 [IO, 121. Let R be a relation scheme and J be a reduced and 
connected jd. Then the followingproperties are equivalent: 

(1”) J is decomposobk; 
(2’) Z?J contains a hinge; 
(3”) There exists E E Z., such that gJ\(E) is not a connected subset with respect 

to (Ej. 

Example 4.1. Clearly, a jd that contains hinges is decomposable (by means of 
the hinge decomposition algorithm). Theorem 4.1 also claims the converse. This 
allows to check for decomposability by looking at the hinges. Consider the jd: 

ab w bc w cd w de w ef w fg w ga. 
It can easily be seen that this jd does not contain a hinge, either by a straight- 
forward verification or by using the implication (2”) + (3’) of the previous 
theorem. Hence the above jd is undecomposahle, which proves what was already 
claimed in the Introduction and in Example 2.2 

In order to phrase some important properties of decompositions generated by 
the hinge decomposition algorithm? we need to introduce some additional ter- 
minology concerning decompositions. 

Definition 4.1. Let J be a jd and suppose that I J,, , J.) is a decomposition 
of J. This decomposition is said to be final if none of the J:, i = 1, . . . , s 
is decomposable. This decomposition is said to he nonredundant if for each 
i = 1, , s, ( J1, . . , Jim,, Ji+,, . . , Ja) =#a J;. 

Clearly, getting a final and nonredundant decomposition is an important 
property of a decomposition methodology. We have the following: 

THEOREM 4.2 [lo]. Every decomposobk reduced and connected jd can be decom- 
posed with the hinge decomposition algorithm into a final and nonredundant 
decomposition. 

Example 4.2. Consider again the jds and hypergraphs of Example 3.2. We 
know already that ( Jx., Ja,,, J1;,) is a decomposition of Jz. By Theorem 4.2, 
this decomposition is also final and nonredundant. The first claim already follows 
from Theorem 4.1; the second one implies that none of the three jds in the 
decomposition can be omitted. 

Furthermore, it is possible to generate decompositions with the hinge decom- 
position algorithm in a time that is polynomial in the size of the input: 

THEOREM 4.3 [13]. Let R(Q) be o relation scheme with 1 R 1 = m and kt J be (I 
jd ouer R with k edges. Let n = km. Then it is possible to generate a final 
decomposition of J with the hinge decomposition algorithm in O(n3) time. 
ACM nm%aetions on “alnbase systems, “0,. 11, No. 1. March ,986. 
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Furthermore, a final decomposition obtained with the hinge decomposition algo- 
rithm contains at most k - 1 jds. 

PROOF. The proof of the first claim in Theorem 4.3 uses characterization (3’) 
of Theorem 4.1 for the presence of hinge..Since the proof is too long to include 
in this paper, we refer to [13] for further details. We now show the second part 
of Theorem 4.3. Let (51, . . , J.) be a decomposition (not necessarily final) 
obtained after a number of steps of the hinge decomposition algorithm. Let (r be 
the sum of the numbers of edges of J1, . , J.. Then it can be easily shown by 
induction on the number of steps needed to obtain the decomposition that 

o=k+s-1. (1) 

Since each jd in the decomposition contains at least two edges, we have that 

Substitution of (2) in (1) yields 

CT 2 2s. (2) 

In particular, this equation also holds for a final decomposition obtained with 
the hinge decomposition algorithm. 0 

It follows from Theorem 4.3 that an scyclic jd with k edges is equivalent to a 
set of k - 1 mvds, since the inequality (2) becomes an equality in that case. 

Since hinges play a crucial role in the hinge decomposition algorithm, we may 
expect that there exists a close relationship between the jds of a decomposition 
obtained with the hinge decomposition algorithm and the “hinge-structure” of 
the jd that was decomposed. This relationship is expressed in Theorem 4.4, below. 
In order to prove this theorem, we need some lemmas. The first lemma was 
proved in [lo]. 

LEMMA 4.1. Every final decomposition of a jd obtained with the hinge decom- 
position algorithm can also be obtained by using only maximal hinges. In this way 
we obtain in each step of the decomposition process exactly two jds of which at 
least one is decomposable. 

Example 4.3. Consider again the decomposition obtained in Example 3.2. We 
show that this decomposition can also be obtained by using only maximal hinges. 
We know from Example 3.1 that lab, oc, bd, cd, de} is a maximal hinge of Z. An 
application of Theorem 3.1 with this hinge gives us also the hypergraphs .Zs and 
/Ml, but in the opposite order. Furthermore, (ab, ac, bd, cd} is a maximal hinge 
of .z,. We often represent a decomposition process using only maximal hinges 
by a binary tree. The decomposition process in this example is represented by 

LEMMA 4.2. Let R be (I relation scheme and let J be a jd ouer R. Let Z?’ be a 
maximal hinge of ZJ. Then ZJ\Z ’ is connected. Let E be a separating edge of $ ’ 
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corresponding to 87.~. Then (gJ\Z?“) U (EJ is also a hinge of Z., and E is o 
separating edge of this hinge corresponding to every connected component with 
respect to that hinge. Finally, if JO and 5, are the jds in the decomposition defined 
by W’ (according to Theorem 3.1), then J, and JO eon be obtained from J by 
replacing the edges of iZ ’ respectively, (e;\8 ’ ) U (E) by their union. 

PROOF. A straightforward verification shows that gJ\8 ’ is connected. (Other- 
wise, 8’ would not he a maximal hinge.) We show that (Z?J\~‘) U (E) is a hinge 
of gJ of which E is a separating edge corresponding to every connected component 
with respect to it. This follows from the fact that each edge not in (~J\Z’) U 
(E) necessarily belongs to Z? ’ and that E is a separating edge of Z ’ corresponding 
to ~J\Z’. The remaining part of the lemma follows from a simple look at the 
hypergraphs in Theorem 3.1. 13 

Example 4.4. In Example 4.3 we pointed out that Jx, and Jx. can be obtained 
from Jn by a decomposition using the maximal hinge (ab, ac, bd, cd, de]. Clearly, 
de is the only separating edge of this hinge corresponding to (df, eg, fg}, which is 
connected to (ab, oc, bd, cd, de). A straightforward verification shows that (df, eg, 
fg, de] is also a hinge and that de is a separating edge of this hinge corresponding 
to the (only) connected component (ab, oc, bd, cd) with respect to it. Clearly, 
JzO is obtained from Jx by replacing (ab, oc, bd, cd, de) by its union, whereas 
Jz-~ is obtained from JX by replacing (df, eg, fg, de) by its union. 

LEMMA 4.3. Let R be o relation scheme and J: X, w w Xk o reduced and 
connected jd over R. Let { J,, , J.) be a final decomposition of J obtained by 
using hinges. Let, for i = 1, . . , s, J, be the jd Y;, w . w Y;+ Then, for all 
i = 1, . , s and for ollj = 1, . . , kc, there exists 1 5 to _C k with X,, G Y;j and 
Yij:,n(U(Y~;l~l~kinndl#jJ)~X~jj. 

PROOF. We can assume that the above decomposition is obtain by using 
maximal hinges only (Lemma 4.1). Let 

.I JO.1 50.2 - - - JO,,., - JO,,-, = J. 

be a tree representing the decomposition of J into ( J1, . . . , J.) as in Example 
4.3. We prove by induction on their depth in the tree that all the jds in that tree 
satisfy the property of Lemma 4.3. 

On depth 0, we have only J itself, and, for J, Lemma 4.3 is trivially satisfied. 
Suppose now that all jds in the above tree until depth m satisfy the property of 
Lemma 4.3. Let J’: Y, w w Yp be a jd in this tree on depth m + 1. For 
notational convenience, we prove that there exists 1 5 t c p with X, c Y, and 
Y, n (Yz U U Y,) C X,. Let J”: Y; w w Y;, (p’ >p) be the father of 
J ‘. We distinguish two possible cases: 

Case 1. YI is an edge of J”. Without loss of generality we can assume that 
YI = YI’. By induction there exists 1 5 t I s with X, C Y; and Yi f~ 
(Y;U...UY,‘,)cX,.Clearly,X,CYI,and 

Y~n(Y,U.-.UY,)=Yin(Y;U...UY6,)rX,. 
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Case 2. YI is not an edge of J “. Then, according to Lemma 4.2, there exists a 
hinge of &4r- such that Y, is the union of that hinge. Without loss of generality, 
let {Y; , , Y; }, q < p ’ be that hinge. Also, this hinge contains a separating 
edge corresponding to all the connected components with respect to that hinge. 
We can assume that this separating edge is Y;. Now let X, be as in Case 1. 
Then 

Y,ll(Y2U’.. uY,)=(Y;u... uY,‘)n(Y;+lu.~~uY;.) 
cy;n(y;+,u...u~;~) 
c Y; n (y; u u y;,) 
c x,. 

This completes the proof. 0 

Example 4.5. We know from Example 3.2 that 

J+ &de w df w eg w fg 
Jz,.: ab w oc w bd w cdefg 

Jx,,: obcd w defg 

is a decomposition of 

Jx: ab w oc w bd w cd w de w df w eg w fg. 

The edges of J.v satisfying the conditions of Lemma 4.3 are, as is easily verified, 
(in the same order as above) 

for JxO: de, df, eg and fg; 

for JzIO: ob, oc, bd and cd; 

for J,v~,: bd (or cd) and de (or df ). 

We can now prove the actual theorem. 

THEOREM 4.4. Let R be a relation scheme and J: X, w m Xa be II reduced 
and connected jd over R. Let { J,, . . , J.) be (I final decomposition of J obtained 
with the hinge decomposition algorithm. Suppose, for i = 1, . , s, that Ji is the jd 
Yi, m m Yik.. Then there exist 1 5 t,,, . , thi s k such that 

- for all j = 1, , k;, P$,L Y;j (and hence all the X, ore different); 
- IX,,, , X,,) is a nmrml hinge of .ZJc.; 
- for all j = 1, , k;, Y;j is the union of Xto and all the edges of some connected 

components &; with respect to IX,,, . . , X,) for which Xt, is a corresponding 
separating edge. 

PROOF. Choose X,,, , X, as in Lemma 4.3. Then, for 1 I I # m 5 k;, we 
have that Yti n Y:,,, C X, n X,_: Hence Y, and Yti are disconnected with respect 
to IX,,, . , X,,). Furthermore, we have that 

k;, n (x+, u u x+,) C yil n (x,, u Yi2 u u Yik) 
c x,, u (Yil n (yi2 u u yai)) 
L x,, 

and mutah mutan& for the other indices, 

Yij n (x,, u u Xt%) G X,. 
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Hence IX,,, . . , Xt*} is a hinge satisfying the first and third conditions of 
Theorem 4.4. It remains to show that this hinge is minimal. Suppose this would 
not be the case. Then, after a possible renaming of indices, let IX,,, . . , Xt,), 
p < k; be a maximal hinge of IX,,, , X+1 with X,, as separating edge 
corresponding to (Xti,+,), . . . , Xt*l. Then 

(Y;1 u ... u Y,) n (Y;cp+,, u ... u Y*J 
=U~Y~nY,,;l~l~p,p+lcm_ckjj 
c u (X, r-l x,; 1 I I 5 p, p + 1 5 m 5 kc{ 
= (Xtt, u “. u xt*, n (xtt(,,, u ‘.’ u x**, 
c xq, 
L Yi,. 

Consequently, ( Yi,, . , Y,) is a hinge of Z+ in contradiction with our decom- 
position being final (cf. Theorem 4.2). So IX,,, . . , Xtyj is indeed a minimal 
hinge of ZJ. 0 

We conclude this section with an illustration of the previous theorem. 

Example 4.6. Consider again the hypergraph .? of Example 3.1 and the 
decomposition of Jx obtained in Example 3.2. Minimal hinges of .%?’ satisfying 
Theorem 4.4 for the various jds of this decomposition are 

- for 20: we, df, eg, fgl; 
- for Z,o: (ab, (IL‘, bd, cd 1; 
- for .?‘,I: {cd, de!. 

For the last jd, we could also have taken {cd, dj], (bd, de{ or (bd, df). 

5. THE COMPLEXITY OF INTEGRITY CHECKING 

An important reason for replacing a join dependency by a decomposition is 
making integrity checking less time consuming. Indeed, performing a join requires 
a time exponential in the number of edges that are to he joined. It therefore is 
important to minimize the size of the largest jd to be taken into account. This 
leads us to the definition of the degree of cyclicity of a jd, which is stated in 
Definition 5.2. (A very similar definition has also been stated independently in 
[la].) We then characterize the degree of cyclicity of a jd in terms of the jd itself 
and show that our decomposition methodology generates decompositions that 
satisfy the above minimality criterion. Finally, we define n-cyclic jds as jds whose 
degree of cyclicity is at most n and we show that for a fixed value of n, integrity 
checking can be performed in polynomial time, provided only n-cyclic jds are 
considered. 

We first establish some notations. 

Definition 5.1. Let R be a relation scheme and J be a reduced and connected 
jd over R. Then 

- DEC( J) is the set of all decompositions of J augmented with J itself; 
- MINHIN( J) is the set of all minimal hinges of &;; and 
- 1 J I is the number of edges of J. 
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Definition 5.2. Let R be a relation scheme and J be a reduced and connected 
jd over R. We define the degree of cyclicity of J, denoted dgr( J), as 

dgr( J) = min(max( 1 J’ 1, J’ E 81, / E DEC( J)). 

In words, the degree of cyclicity of a jd is the minimum over DEC( J) of the 
number of edges of the largest jd in an element of DEC( J). From the definition 
of “decomposition of a jd” (Definition 2.10), it immediately follows: 

LEMMA 5.1. Let R be a relation scheme and J a jd ooer R. Then dgr( J) c 1 J I. 
Furthermore, dgr( J) = 1 J 1 if and only if J is undecomposable. 

Observe that a (nontrivial) jd is acyclic if and only if its degree of cyclicity 
equals 2. Indeed, a jd is acyclic if and only if it is equivalent with a set of 
multivalued dependencies. Obviously, it is impossible to find a “better” decom- 
position. 

Example 5.1. Consider the jd ab w bc w cd w de w ejw fg w go. In Example 4.1 
we proved that this jd is undecomposable. Hence its degree of cyclicity equals 7. 
In particular, this jd is cyclic. 

Now consider again the jd JX of Example 3.1. Using one of the many charac- 
terizations for acyclicity (see, e.g., [2, 3, 8, 9]), it can be shown that Jr is cyclic 
(we prove this in Example 5.5). Taking into account the above observation, it 
follows that the degree of cyclicity of JX is at least 3. Since the largest jd in the 
decomposition of Jr constructed in Example 3.2 has size 4, it follows that 
dgr( Jz) is at most 4. Later on, we shall see how we can calculate the precise 
degree of cyclicity of a jd. 

Although Definition 5.2 seems a very natural way to define the complexity of 
a jd, it does not provide an efficient way to calculate the degree of cyclicity of a 
jd, as was pointed out in the previous example. Therefore, we are now going to 
show that the degree of cyclicity of a decomposable jd equals the size of the 
largest minimal hinge of its associated hypergraph. Hence we characterize the 
notion “degree of cyclicity of a jd” in terms of the jd itself. 

We first prove that the degree of cyclicity of a decomposable jd is at least the 
size of the largest minimal hinge of its associated hypergraph. We therefore need 
some lemmas. 

We first show that equivalence of jds is “inherited” if we “restrict” each jd to 
a subset of the set of attributes that is involved. We therefore define the “trace” 
of a jd. 

Definition 5.3. Let R(O) be a relation scheme and let J: X, w w X, be a jd 
over R and let X c R. The trace of J with respect to X, denoted trx( J), is the 
reductionofX1nXW wX~~X. 

Example 5.2. Consider again the jd Jn of Example 3.1. Let X = &de. Then 
trx( Ja) = ab w ac w bd w cd W de. 

LEMMA 5.2. Let R be a relation scheme and let J be a reduced and connected jd 
ouer R. Suppose that 8’ = (E,, . . , E,J is a hinge of;uJ. Then tr,a,( J) = El w 

w E,. 
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PROOF. Let E be an arbitrary edge of J not in Z?‘. Since, by definition, there 
exists 1 _c ; _c 1 such that E n (U 6? ’ ) G Ej, Lemma 5.2 follows. 

Example 5.3. Consider again the jd Jx of Example 3.1. In that example we 
saw that (ab, oc, bd, cd, de{ is a hinge Z’. From Example 5.2 it follows that 
tra( Jx) = ab W oc w bd W cd w de, in accordance with Lemma 5.2. Note that 
the condition in Lemma 5.2 that g’ is a hinge cannot be arbitrarily removed 
(though it can be weakened). Indeed, consider the set (ab, ac, cd, de]. This set is 
not a hinge of &“, but has the same set of nodes as (ab, ac, bd, cd, de}. Hence 
tr~(J,)=abwacwbdwcdwde#abwnewcdwde. 

LEMMA 5.3. Let R(O) be a relation scheme and let J, 5,, , J. be ja!s ouer R 
andsrrpposeJo(J1,...,J,}.LetX~R.Thentrx(J)~~Itr,(J*),...,tr,(J,)}. 

PROOV. The proof uses the chase technique [14]. Consider the implication 
“t”. Consider tableaux for J and for trx( J). Each time a jd Ji, 1 5 i 5 s is 
applied to the tableau for J, we can apply trx( JA in a similar way to the tableau 
for trx( J). Since the chase for [ J,, . , J,) =+ J is successful, it follows that the 
constructed chase for {trx( JI), . . , trx( J.)) =+ trx( J) is successful too. The 
implication “q” can be shown in the same way. 0 

Example 5.4. Consider again the jd Jx of Example 3.1 and its decomposition 
{ JxO, Jx,,, JK1lJ constructed in Example 3.2. Let X = abdeg. Then 

trx(Jx)= abwbdwdeweg; 
trx( Ja,) = abde w eg; 
trx( J,,,) = ab w bd W deg; 
trx( Jx,,, = abd w deg. 

According to Lemma 5.3, we have that ab w bd w de w eg w {abd w de w eg, 
ab w bd w deg, nbd w deg]. Note that the right-hand side of this equivalence is 
neither final nor nonredundant. 

We can now prove 

LEMMA 5.4. Let R be a relation scheme and let J, J1, , J. be jds ouer R with 
Jreducedandconnected.SupposeJo(J,,...,J,).~t~”=~E,,...,E,Jbea 
minimal hinge of &;. Then there exists 1 5 i 5 s with 1 J; 1 2 18 ’ I. 

PROOF. Let J’ be El w w & From Lemma 5.2 and Lemma 5.3 we know 
that J’ * ltrVg. ( J,), . , tr,g, ( J,)}. Since .YJ, does not contain hinges (because 
Z? ’ is minimal), it follows from Theorem 4.1 that J ’ is ondecomposable. Hence 
thereexists1~i~swithItrUg..(Ji)I~IJ’I.Clearly,IJ’)=I~‘IandIJ;I 
2 I tr,,s, ( J;) I, from which the desired inequality follows. 0 

As an immediate corollary of Lemma 5.4, we obtain 

COROLLARY 5.1. Let R be a relation scheme and let J be a decomposable reduced 
and connected jd ouer R. Then dgr( J) 2 maxi I g’ I, 8” E MINHIN( J)). 

Example 5.5. Consider again the jd J, of Example 3.1. From Example 3.1 it 
follows that the size of the largest minimal hinge of Jx equals 4. Hence, by 
Corollary 5.1, dgr( J) > 4. In particular, this result proves that Ja is cyclic. Since 
we already know (Example 5.1) that dgr( J) 5 4, it follows that dgr( J) = 4. 
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To prove that the inequality in Corollary 5.1 is actually an equality, it suffices 
to construct for e given decomposable jd a decomposition of which the largest 
element contains at most as many edges as there are edges in the largest minimal 
hinge of the hypergraph associated with the given jd. It turns out that the 
decompositions obtained with the hinge decomposition algorithm satisfy this 
criterion: 

LEMMA 5.5. Let R be a relation scheme and let J be a decomposable reduced 
and connected jd out-r R. Then dgr( J) 5 max( 1 Z ’ I, i? ’ E MINHIN( J) ). 

PROOF. According to Theorem 4.4, the number of edges of a final decomposi- 
tion of a given decomposable jd obtained with the hinge decomposition algorithm 
equals the number of edges of some minimal hinge of the original jd. The 
statement of the lemma immediately follows from this observation. 0 

If we combine Corollary 5.1, Lemma 5.5, and Theorem 4.3, we immediately 
get: 

THEOREM 5.1. Let R be a relation scheme and let J be a decomposable reduced 
and connected jd wer R. Then dgr( J) = maxi 1 Z?’ I, ?7’ E MINHIN( J) ). 
Furthermore, for each decomposition f of J obtained by using hinges we have that 
dgr( J = max( ) J’ ) ; J ’ E .f ). Hence each decomposition obtained by our method 
minimizes the number of edges of its largest component. 

Example 5.6. We already showed for the jd J.v of Example 3.1 that dgr( Jx) 
= 4. We therefore look at another example. Consider the jd J ’ : ab w ac w bd w 
cd w ce w dj w ef. This jd can be represented by the hypergraph: 

The above hypergraph contains two hinges, (ab, ac, bd, cd) and (cd, ce, df, ef), 
which are both minimal and maximal. Hence dgr( J ’ ) = 4. Note that this result 
is obtained without looking at decompositions of J’. 

We now use the degree of cyclicity as a tool to classify join dependencies 
according to their complexity. 

Definition 5.4. Let R be a relation scheme and let J be a reduced and connected 
jd over R. Let n be a positive integer. J is said to be n-cyclic if its degree of 
cyclicity is at most n. 

In this way we obtain e hierarchical classification of join dependencies. Ac- 
cording to a previous remark, 2-cyclicity is the same es acyclicity. It is well 
known [2, 3, 6, 91 that integrity checking for acyclic jds can be performed in 
polynomial time. We now extend this result. 

THEOREM 5.2. Let n > 1 be a fixed integer. Let R(O) be a relation scheme and 
let J be an n-cyclic reduced and connected jd ouer R with k edges. Let m be the 
number of attributes in Cl. Then checking an instance r ouer R for integrity can be 
done in a time that is polynomial in m, k, and 1, where 1= ) r ) 
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PROOF. By Theorem 4.3, we can obtain a decomposition of J with the hinge 
decomposition algorithm on O(k3m3) time. Also by Theorem 4.3, this decompo- 
sition consists of at most k - 1 jds. By Theorem 5.1, each of these jds has at 
most n edges. Hence checking whether such a jd holds can be done in O(l”+‘m) 
time, as can be shown by straightforward calculation. This means that, using the 
decomposition, checking whether J holds can be done in O(k3m3 + kml”+‘) 
time. [3 

Hence integrity checking can be done in polynomial time provided only 
n-cyclic jds are considered for a fixed value of n. 

6. THE COMPLEXITY OF CONSISTENCY CHECKING 

Instead of using a jd to check a relation instance for consistency after each 
update, we could also decompose the relation scheme according to the jd, and 
thus work with smaller relations. If this approach is followed-which is usually 
the case-the problem of integrity checking is eliminated, since the join of the 
various “subrelations” by definition satisfies the jd. Nevertheless, we have to 
make sure that all our subrelations are the projections of a common relation 
instance over the original relation scheme. In other words, we may not lose tuples 
by first making the join of all the subrelations and then projecting back onto the 
edges of the jd. So we have to check our decomposed database for consistency 
after each update of a subrelation. 

A very important advantage of a jd describing the structure of a decomposed 
database being acyclic is that checking a database instance for consistency can 
be performed in polynomial time, because acyclicity is equivalent with “pair-wise 
consistency implies global consistency.” Pair-wise consistency means that every 
two subrelations are the projections of a common relation instance, and this 
property can easily be verified in polynomial time. In this section we generalize 
this result by proving that n-cyclicity is equivalent with “n-wise consistency 
implies global consistency.” Thus checking for (global) consistency remains 
solvable in polynomial time if we restrict ourselves to n-cyclic jds for a fixed 
value of n. 

We first recall some well-known basic facts about consistency and introduce 
the necessary notation. We then prove the two lemmas we need to show that 
“n-wise consistency implies global consistency” is a sufficient condition for 
n-cyclicity. We then prove that it is also a necessary condition. Finally, we show 
that checking for (global) consistency can be performed in polynomial time, 
provided we restrict ourselves to n-cyclic jds for a fixed value of n. 

Definition 6.1. Let R(Q) be a relation scheme and let X,, . , Xa C Q. Let 
(rl, , Q) be an instance over (X1, . . , Xa). Let n be a positive integer. 

- If n 5 k, then (rl, , rh) is called n-wise consistent if for each subsequence 
il, , in of 1, , k there exists an instance r over X, U U Xi” satisfying 
7r+(r) = ri, for all t = 1, . , n. 

- (rl, , ra) is called globally consistent if it is k-wise consistent. 
- If n > k, then (r, , . , rk) is called n-wise consistent if it is globally consistent. 

We can now make some straightforward observations: 

LEMMA 6.1. Let R(n) be (I relation scheme and kt X,, .., X, C n. Let 
(r,, , n,) be an instance ouer (Xl, . , X,). Let n be a positive integer. Let 
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m 5 n. If (r,, , rk) is n-wise consi.stent, then it is also m-wise consistent. Suppose 
n 5 k. Then (r,, . . , ra) is n-wise consistent if and only if for each subsequence i,, 
. . , i,ofl,..., kandforallt=l,..., II we kaue that Q$(“, w w Ti”) = ri,. 

LEMMA 6.2. Let R(Q) be a relation scheme and let X1, , X, C 0, k > 2. Let 
1 < 1 < k. (rl, , rh) is a globally consistent instance ouer (XI, , XJ if and 
only if (r,, , r,) is globally consistent ouer (XI, . , X,) and (rI w w r~, r~+,, 

, ra) is glob&y consistent ouer (Ufx, Xi, X,+1, , Xd. 

The last observation concerning Definition 6.1 we want to make here deals 
with Z-wise consistency, which is usually called pair-wise consistency. It can be 
easily seen that pair-wise consistency can be checked in the following way: 

LEMMA 6.3. LA R be a relation scheme and let XI, , Xa C Cl. Let 
(rl, . , rk) be an instance over (X,, , X,). (r,, , Q,) is pair-wise con.sistent 
if 

Vl 5 i #j 5 k: rxjnxj(r.) = rxinxi(rj), 

We illustrate the notion of consistency with the following example: 

Example 6.1. Let R(a) be a relation scheme and let Q = abc. Let (r,, rz, r3) be 
the following instance over (ab, be, ac): 

ab bc ac 
11 13 43 
41 52 ‘12 
15 

Clearly, the projections of r, and r2 onto b = ab n bc both equal 

b 
1 
5 

The projections of rz and r3 onto c = bc fl ac both equal 

and the projections of r, and r3 onto a = ob n ac both equal 

a 
1 
4 

Hence, by Lemma 6.3, (rl, r2, ra) is pair-wise consistent. Calculating rl w rz W r3 
gives 

abc 
413 
152 

Clearly, rd(rl W rz w rJ # r,. Thus, by Lemma 6.1, (r,, rz, r3) is not globally 
consistent. 
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We are now going to prove that a n-cyclicity is implied by “n-wise consistency 
implies global consistency.” We therefore need two technical lemmas (Lemmas 
6.5 and 6.6). In view of the assumptions we made in Section 2, we can assume 
without loss of generality that all the domains involved contain the set of all 
nonnegative integers and all pairs of nonnegative integers. We introduce the 
following notation, which is needed in Lemma 6.5. 

Definition 6.2. Let R(R) be a relation scheme and let XC R. Let (Y,, , Yl) 
be a partition of X and let i,, . , i, be nonnegative integers or pairs of nonnegative 
integers. Then iI,,> il, denotes the tuple over X that associates the value k 
with each attribute of Yj for each j = 1, . . . , 1. 

Example 6.2. Let 0 = X = abcdefg. Let Y, = abc, Y2 = de, and Y3 = fg. Then 
Oy,2y,(2, 3h, denotes the tuple 

abcde f g 
0 0 0 2 2 (2, 3) (2, 3) . 

Using this notation we can easily calculate the projection of a tuple: 

LEMMA 6.4. Let R(a) be a relation scheme and let Z L XC a. Let {Y,, . , Y,) 
be a partition ofX and let i,, . , i, be nonnegative integers or pairs of nonnegatiue 
integers. LA 

ilyl i, 

be a tupk over X. Then the projection of this tupk onto Z is 

G,nz ... i,“@. 

The proofs of both Lemma 6.5 and Lemma 6.6 are notationally rather involved. 
Therefore, we give here only the main constructions of these proofs. The reader 
can find further details in the Appendix. The constructions made in these lemmas 
are subsequently illustrated by examples (Examples 6.3 and 6.4). We advise the 
reader to consult these examples while examining the lemmas and their proofs. 

LEMMA 6.5. Let R(0) be a relation scheme and kt X;, . . , X* C 0, k > 2. Let 
X = U?=, XC. Suppose J : Xl w . w X, is a reduced and connected undecomposabk 
jd without attributes occurring in only one edge. Define the instance (rl, , ra) 
OLJW (X,, , X,) a.3 folhJs: 

?I = lox,1 U 10x,nxjk jh,\q; 2 5 j Z t 5 kj; 
c = 10~,n~,n~,t~~,n~j,\~,(t, i )x,+ 2 5 i Z t 5 kl, i + 1. 

Then (r,, ra) is k - l-wise consistent, but not globally consistent. 

PROOF. To show that (rl, , rJ is k - l-wise consistent, it suffices to 
construct relation instances r, over X, 1 = 1, . . , k satisfying r; = nxj(r’) for 
1# i. Therefore, define 

r’ = 10x,nx.tx.\x,(t, j)x\+; 2 5 j # t 5 k); I I 
r’ = ~ox,lx\x,l u rl, 1 # 1. 

A straightforward verification using Lemma 6.4 shows that for 1 5 i # 1~ k we 
have it indeed that rx,(r’) = r:. Thus (r,, , ra) is k - l-wise consistent. The 
ACM Transactions on Database Systems, Vol. I,, No. 1, March ,986. 
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proof that (r,. , ra) is not k-wise (globally) consistent can be found in the 
Appendix. 0 

Example 6.3. Let Q = X = abed. Let X, = ab, X, = bc, X, = cd, and X, = da. 
Then rL, r2, r3, and r, are, respectively, 

b 
i 0 

b 
0 i ( i = 2. t = 3) 

(3.2) 0 (j=2,t=3) 0 4 i) = 21 t = 4j 
(4,2) 0 (j=2,t=4) (2,3) 2 (j=3,t=2) 
(2,3) (2,3) (j=3,t=2) (4,3) 4 (j=3,t=4) 
(4, 3) (4, 3) (j = 3, t = 4) (2, 4) (2, 4) (j = 4, t = 2) 

0 (2,4) (j=4,t=2) (3,4) (3,4) (j=4,t=3) 
0 (3, 4) (j = 4, t = 3) 

i (3d2) (j = 2, t = 3) (3f2) (3p2) (j = 2, t = 3) 
(4, 2) (i = 2, t = 4) (4, 2) (4, 2) (j = 2, t = 4) 

2 (J=&t=2) 2 (2, 3) (j = 3, t = 2) 
4 (j=3 t=4) 

(2:4) 2 (j=4:t=2) 
(4, 3) (j = 3, t = 4) 

0 (j = 4, t = 2) 
(3,4) 3 (j=4,t=3) 3 0 (j=4,t=3) 

The relation r’ in this example is 

b 
(3% 0 i (3f2) (j = 2 t = 3) 
(4, 2) 0 4 (4, 2) (j = 2: t = 4) 
(2, 3) (2, 3) 2 2 (j = 3, t = 2) 
(4, 3) (4, 3) 4 4 (j = 3, t = 4) 

0 (2, 4) (2, 4) 2 (j = 4, t = 2) 
0 (3, 4) (3, 4) 3 (j = 4, t = 3) 

r* equals r’ augmented with the tuple 

a b c d 
0 0 2 2’ 

r3 equals Y’ augmented with 

a b c d 
0 0 3 3’ 

and r’ equals r’ augmented with 

a b c d 
0 0 4 4 

It is a straightforward verification that for i, 1 = 1, . . . , 4, i # I it holds that 
r.rj(r’) = 7;. Hence (rl, r2, r3, r4) is 3-wise consistent. It is also easy to verify that 
rl W r~ W r3 W rr = r’. Since OX, B I,, TX,@, w r2 w r3 w r,) # r,. Hence 
(r,, rz, r3, r,) is not globally consistent, in accordance with Lemma 6.5. 
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LEMMA 6.6. Let R(R) be a relation scheme and let Xl, ., Xh C R. 
Suppose that J: X, w w X, is a reduced and connected jd ouer R and let g’ = 
~X,,...,X1},1<kbeahingeof~~.LetnsIandsuppose(r,,...,r~)isann- 
wise consistent instance ouer (X,, , Xl). Then (rl, , r,) can be extended to 
an n-wise con.sistent instance (r,, . , rk) ouer (X,, . , Xd. 

PROOF. Choose for each connected component of .ZJ with respect to SY”’ a 
fixed corresponding separating edge of SY ‘. For 1+ 1 5 j I k, we denote with X/ 
the separating edge corresponding to the connected component to which Xj 
belongs. Suppose 1+ 1 5 j 5 k. Let r; he the instance in {r,, , rl] defined over 
X; and let rj be the instance over Xj defined as 

rj = (tl3t’ E r;: t[xj n x;] = t’[Xj n Xi] & va E x,\x;: t(a) = 0). 

Then (r,, . . , rk) is an n-wise consistent instance of (XI, , Xh). (Details of 
the proof can be found in the Appendix. 0 

The constructions made in the proof of the previous lemma are illustrated in 
Example 6.4, below. 

Example 6.4. Let XI w w X6 be represented by the following hypergraph 
z: 

Clearly, {XI, X,, X3} is a hinge of Z. Let (rl, ~2, ~5) be the following 
over (X,, X2, X3): 

abf bc ac 
111 12 12 
212 11 21 
112 11 

Clearly, (r,, r2, ~3) is (3-wise) consistent because r,, rz, and r3 are the projections 
onto XI, X,, and X,, respectively, of, for instance, 

a b c f 
1 1 2 1 
2 1 1 2 
1 1 1 1 
1 1 1 2 

We are now going to extend (r,. r~, r3) to a 3-wise consistent instance 
(rl, . . , r6) over (X,, , X,). We first have to assign fixed separating edges to 
the connected components of Z with respect to 8”. Therefore, we choose X2 as 
a separating edge corresponding to IX,, X51. Clearly, X, is the only separating 



Complexity of Join Dependencies * 103 

edge corresponding to IX,). Using the notation introduced in the proof of Lemma 
6.6, we have X; = X2, X; = X,, X; = X,, r; = 1.2, r; = rz, and r; = r,. 

According to the definition given in the proof of Lemma 6.6, r,, q,, and rs ere, 
respectively, 

cd de bfg 
20 00 110 
10 120 

(rl, , rs) is 3.wise consistent, as can be verified in a straightforward manner 
(e.g., by using Lemma 6.1). 

We can now prove that n-cyclicity is implied by “n-wise consistency implies 
global consistency.” 

THEOREM 6.1. Let R(O) be a relation scheme and let X,, . , Xa C R. Let J: 
X1 w w X, be a reduced and connected jd over R. Let n 2 2. If each n-wise 
con.swtent in.stance (r,, . , ra) over (X,, , X,) is ah globally consistent, then 
J is n-cyclic. 

PROOF. Suppose Theorem 6.1 is false. Then let J: X, w w X, be a 
counterexample to Theorem 6.1. that is minimal, first with respect to the number 
of edges and, second, with respect to the number of attributes. Clearly, k > n. 
We distinguish two cases. 

Case 1. J is decomposable. Then, by Definition 5.4 and Theorem 5.1, Z., 
contains a minimal hinge of size 1, n < 1< k, say {XI, . , X(1. Suppose now that 
(rI, , r,) is an n-wise consistent instance over (X,, , X,). By Lemma 6.6, 
(rl, . , R) can be extended to an n-wise consistent instance (r,, , ra) over 
(X,, , X,). By assumption, (rI, , rk) is also globally consistent. Hence 
(r,. , rl) is globally consistent over (X,, . . , Xi). Since {XI, , X,1 is a 
minimal hinge of ZJ, it follows that the hypergraph representation of J ’ : X, w 

w XI does not contain hinges. So, by Theorem 4.1, J’ is undecomposable, 
and hence not n-cyclic, since 1> n (Lemma 5.1). Thus J’ is also a counterexample 
to Theorem 6.1, in contradiction with the minimality of J with respect to the 
number of edges. Therefore Case 1 cannot occur, and hence we ere in Case 2. 

Case 2. Jis undecomposable. Clearly, the conditions of Lemma 6.5 are satisfied. 
Thus there exists an instance (rl, , rh) over (XI, , X,) that is k - l-wise 
consistent, and hence n-wise consistent (Lemma 6.1), but not globally consistent, 
in contradiction with the assumption of J being a counterexample to Theorem 
6.1. Hence our initial assumption is false and Theorem 6.1 holds. 0 

The converse of Theorem 6.1 also holds. 

THEOREM 6.2. Let R(O) be a relation scheme and let X,, , X, C n. Let J: 
X1 w w Xa be a reduced and connected jd over R. Let n > 1 and suppose J is 
n-cyclic. Let (r,, , r*) be an instance ouer (XI,. , X*) that i.9 n-wise consistent. 
Then (r,, . , ra) is also globally consistent. 

PROOF. Without loss of generality, we can assume n c k. We prove the theorem 
by induction on ( J I. Fork = n, the theorem is obviously true. Therefore, suppose 
that k > n and that the theorem holds for all J’ with 1 J’ 1 < k. Since J is 
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n-cyclic, there exists a minimal hinge of &4r, say (X1, , Xl1 with 15 n. By the 
induction hypothesis, 

? = r, w w r, 

sat&es I = ri for all L = 1, , 1. We stdl have to show that (r, rr+l, , d 
is n-wise consistent over (Ut=, Xi, XL+,, . . . , X,). Since (Uf=, XC) W Xl+, W 
w X, is clearly also n-cyclic, the induction hypothesis and Lemma 6.2 will then 
yield the desired result. Therefore, choose for each connected component of ir; 
with respect to IX,, , Xl) a fixed corresponding separating edge and let, for 
1 5 i 5 I, 9; he the set of all the edges of connected components for which Xi 
is chosen as corresponding separating edge. Now take n instances out of i, R+I, 
. . . . Q. We may assume that i is among those n instances, since in the other 
case the proof of their being consistent is trivial. For the sake of simplicity of 
notation, suppose that those n mstances are r, r~+,, , ri+,-,. Again, without 
loss of generality, (hy rearranging indices) we can assume that 9, # 9 and that 
91 = I-%+*, t, X,) with 1+ 15 t I 1+ n - 1. Define 

s = r,+, w t w rt. 

Clearly, because of the assumptions, xxi(s) = rj for all j = 1, . , t. Note that by 
Lemma 6.2 (r, , s) is a pair-wise consistent instance over 

since (Q, rl+,, . . . , rt) is globally consistent over (X,, X,,,, . . . , X,) by the 
n-wise consistency of (r,. , rh) over (XI, . . , X,). Now 

*c~.,x.r”,&.,xj~m = %“,L&x,,(~) (hy definition of 9,) 

= ~,“,ti&&,,h,(a 
= ~X,“W~+,&,h) 

= ~x~“,u!!.lxJd (by (*) and Lemma 6.3) 

= wJ,ntL$~*,xj,(s) (by definition of F1). 

Hence by Lemma 6.3, 

1 

?r&&(i w s) = i 

“ti*,x,(i w s) = s 

and hence by Lemma 6.2, 

s,(i w s) = ri for i = 1, . ( t. 

Note that i w s = rl w w rt. By continuing the above argument we eventually 
get 

l 

q&&.(i w r,+, w w Ii+,-,) = i 
sxc(rl W W rr+.-,) = r; for i = 1, . , 1 + n - 1 

This completes the proof. 0 
ACM Tmnenctiona on Database Systems, Vol. 11. No. 1. March ,986. 



Complexity of Join Dependencies - 105 

Theorems 6.1 and 6.2 can be summarized as follows. 

THEOREM 6.3. LA R(0) be a relation scheme and let X,, , X, C 0. Let J: 
XI w w X, be a reduced and connected jd ouer R. Let n 2 2. Then J is n-cyclic 
ijand only if each n-wise con&tent instance (r~, . , rk) ouer (XI, . . , XA) is also 
globally consistent. 

Theorem 6.3 generalizes the well-known result that acyclicity is equivalent 
with “pair-wise consistency implies global consistency.” From Theorem 6.3 we 
can derive an important corollary, as follows: 

COROLLARY 6.1. Let n > 1 be a fixed integer ati kt R(R) be a relation scheme 
and kt X,, , Xa L R. LA J : X, w w X, be an n-cyclic reduced and connected 
jd ouer R. Let m be the number of attributes in a. Then checking an instance 
(r,, , ra) ouer (X,, , X,) for global corwistency can be done in a time that is 
polynomialinm,k,and1,where1=max~)r~~;i=1,...,kJ. 

PROOF. Because of J being n-cyclic, it suffices to check (Q, , rk) for n-wise 
consistency. Let rf,, , r,” be n relations out of rl, , rh. Making the join 
r+ w w rI, can be done in O(l”m) time. Checking rti & Q$~~ w w rtn) 
can be done in O(l”+’ m) time. Hence, to check this for all i = 1, , n, we need 
O(1”” m) time, since n is fixed. Since we can choose n relations out of k in 
(2) 5 k” ways, we obtain a total time complexity of O(mk”l”+‘). 0 

Corollary 6.1 says that checking for global consistency remains polynomial if 
we restrict the complexity of the jds we allow, but not necessarily to acyclicity. 

APPENDIX 

Here we include the details of the proofs of the technical Lemmas 6.5 and 6.6. 
For the convenience of the reader, we also recall the statements of the lemmas. 

LEMMA 6.5. Let R(a) be a relation scheme and kt X,, ) X* L 0, k > 2. Let 
X = L&, X,. Suppose J : X, w w X* is D reduced and connected undecomposabk 
jd without attributes occurring in only one edge. Define the instance (r,, . , r*) 
ouer (Xl, , Xa) a.3 follows: 

r, = (OX,] U {O,,,+(t, j)x,\x,; 2 5 j # t 5 kl; 

r; = 10x,nx.n~it(x.nxj)\x,(t, i )x,w,; 2 5 j Z t I kl, i # 1. 

Then (r,, . , ra) is k - l-wise consistent, but not globally consistent. 

PROOF. Recall that the constructions made in this lemma are illustrated in 
Example 6.3. We already showed that (Q, , Q) is k - l-wise consistent. Hence 
it suffices here to show that they are not k-wise consistent. 

Suppose that (r,, , Q+) is globally consistent. Then there exists T E r, w 
w rk with 7[X,] = OX, and r[XJ E ri for i # 1. Therefore we can denote 7[X,] 

for i # 1 as 
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We distinguish two possible cases: 

Case 1. There exists i # 1 with Xi # Xjj. Suppose 2 c r # ji 5 k. Since J is 
undecomposable, we have, by Theorem 4.1, that ZJ\(Xj:) is connected with 
respect to {X,1. Hence there exists a sequence X,,, . , X, with 

X”, = x;; 
x, = x,; 

Consider 

+c8J = 0, ,nx,n~trz,cx,nx,,\x, (t ‘) u,, Ju, AG,,\&,. 

Since X, I-I (X,,\X,) # p, it follows that necessarily (t*, j,) = (t;, jJ and 

TIX,] = Ox,nx,nx,~t.(x,\xj~)\x,(t,, ii)x,\+ 

since this is the only tuple in r, containing the value (t., ji). By continuing this 
argument we eventually obtain 

+Cl = Ox,nx,nxi,ti(x,nx,,\x,(ti. iLip,, 
and this holds for 2 5 r # ji 5 k. Since r[XI] = Ox,, it follows that 

va E x,: 7(a) = 0; 
Va E U ((X, fl Xjs)\X, 12 5 r # ji 5 kj: T(Q) = t;; 

Va E U (X,\Xji 12 5 r # j; 5 kj: ~(a) = (ti, ii). 

By assumption (no attributes occurring in only one edge), we have that 
u IX,; 15 r # ji 5 kJ = X. Hence X\XI = U (X,; 2 5 r # j; c k}\Xl. This gives 
us that 

((u (X,; 2 5 r # J; 5 k)) n X,)\X, = Xj;\X,. 

Since X, U (X,\X,) U (X\(X, U Xjt)) = X, it follows that 

7 = Ox,4x,Gx,\x, (ti, ji)ncx,ux~i~, 

and hence X\(X, U Xji) = (U IX,; 2 5 r # j; s k))\Xj;. Thus 

X1 = X1 n (U IX,; 2 I r 5 k}) 
C (X, n X,) u (X, n (u IX,; 2 5 r f j; 5 kl)) 

C X, u (Xl n ((u {X,; 2 5 r # j; 5 k))\Xji)) 

= x, u (x, n (x\(x, u x,))) 

= x,. 

This is clearly in contradiction with our assumption of J being reduced. Hence 
we are in the second case. 

Case 2. For all 2 5 i c k, Xi = X,. This means that for i # 1 we have 

d-G1 = %“xhx,,x,. 



Complexity of Join Dependencies * 107 

Since, by Theorem 4.1, 1x2, , X+.1 is connected with respect to {X1), we can 
deduce as in Case 1 that for 2 I i, j c k we have that ti = tj. Let us call this value 
t. Since U IX;; i # 1) = X, we have that 

This implies 
7 = ox,tx\x,. 

4Gl = ox,“x,b,\x,. 
This tuple, however, is not in rf. Hence our assumption is false and (rl, . . . , rk) 
is not globally consistent. This completes the proof. 0 

LEMMA 6.6. Let R(a) be a relation scheme and let X,, . . . . X, C a. 
Suppose that J: X1 w w X, is a reduced and connected jd ouer R and let 
8’ 1x1, . ..) X,1, 1 < k be a hinge of 2~. Let n 5 1 and suppose (r,, , r,) is 
an n-wise consistent instance ouer (X,, . . , X,). Then (rl, , r,) can be extended 
to an n-wise consistent instance (r,, , rk) over (XI, . . , Xa). 

PROOF. We recall that we chose for each connected component of iy, with 
respect to Z? ’ a fixed corresponding separating edge of +? ‘. For 1+ 1 I j 5 k, we 
denoted with Xi the separating edge corresponding to the connected component 
to which Xj belongs and with r; the instance in (rl, . . , riJ defined over X/ 
Finally, for 1+ 1 5 j 5 k, the instance rj over Xj was defined as 

r, = ItI 3t’ E r;: t[x, n xi] = tf[xj n x:1 & VQ E x,1x;: t(a) = 0). 
It remains to prove that (r,, . , r.J is indeed an n-wise consistent instance over 
(Xl,. , Xd. 

First, let us put for 1 5 j 5 I: 

rj = rj. 

Suppose rt,, , rts are n instances out of r,, , ra. We show that r+(rt, w 
w rtJ = r+ for 1 5 j 5 n. It suffices to show the inclusion from the right to the 
left, because the other one is obvious. We distinguish two cases. 

Case 1. 1 5 tj I 1. Let T ’ E rti. Because of the n-wise consistency of r,. , r,, 
there exists i E ri w w r; with i[X,] = 7 ‘. Now define 7 over U;=, X, by 

Let 1 5 j’ 5 n. If 1 5 tj, 5 1, clearly, r[X+] = i[X,.] E r+. Suppose now that 
I + 1 5 tj, 5 k. Then T[X+ n X4] = i[X,. n X4], and for all c E X,]\X4, 7(o) 
= 0. Hence, by definition, T[X,] E rt;. Thus, for all 1 5 j’ 5 n, we have that 
r[X,] E rl;, and hence 7 E rt, w w rln. In particular, r[X,] = 7’. This 
completes the proof in Case 1. 

Case 2. 1 + 1 5 tj c k. Let 7’ E rt,. Then there exists T” E r{ such that 
- ’ [X, n X4] = T y [X, n Xl:]. and for all a E X,\X;, T ‘(a) = 0. As in Case 1, 
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there exists i E r; w w r: with ?[X&] = 7”. The construction of T and the 
rest of the proof for Case 2 goes as in Case 1. 0 
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