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Abstract

We compare tractable classes of constraint satisfaction problems (CSPs). We first give a
uniform presentation of the major structural CSP decomposition methods. We then intro-
duce a new class of tractable CSPs based on the concept ofhypertree decompositionre-
cently developed in Database Theory, and analyze the cost ofsolving CSPs having bounded
hypertree-width. We provide a framework for comparing parametric decomposition-based
methods according to tractability criteria and compare themost relevant methods. We show
that the method of hypertree decomposition dominates the others in the case of general
CSPs (i.e., CSPs of unbounded arity). We also make comparisons for the restricted case
of binary CSPs. Finally, we consider the application of decomposition methods to the dual
graph of a hypergraph. In fact, this technique is often used to exploit binary decomposi-
tion methods for nonbinary CSPs. However, even in this case,the hypertree-decomposition
method turns out to be the most general method.
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1 Introduction and Summary of Results

The efficient solution ofConstraint Satisfaction Problems (CSPs)has been for
many years an important goal of AI research. Constraint satisfaction is a central
issue ofproblem solvingand has an impressive spectrum of applications [23]. A
constraint(Si; Ri) consists of aconstraint scopeSi, i.e., a list of variables and
an associatedconstraint relationri containing the legal combinations of values.
A CSP consists of a setf(S1; r1); (S2; r2); : : : ; (Sq; rq)g of constraints whose vari-
ables may overlap (for a precise definition, see Section 2). Asolution to a CSP
consists a of an assignment of values to all variables such that all constraints are si-
multaneously satisfied. Bysolvinga CSP we mean detemining whether the problem
has a solution at all (i.e., checking forconstraint satisfiability), and, if so, compute
one solution.

Constraint satisfiability is equivalent to various database problems [4,18,7,21], e.g.,
to the problem of conjunctive query containment [21], or to the problem of eval-
uatingBoolean conjunctive queriesover a relational database [22] (for a discus-
sion of this and other equivalent problems, see [15]). Actually, evaluating Boolean
conjunctive queries, and deciding constraint satisfaction can be also recast as the
same fundamental algebraic problem of deciding whether, given two finite rela-
tional structuresA andB, there exists a homomorphismf : A! B [21].

Constraint satisfiability in its general form is well-knownto be NP-hard. Much
effort has been spent by both the AI and database communitiesto identify tractable
classesof CSPs. Both communities have obtained deep and useful results in this
direction. The various successful approaches to obtain tractable CSP classes can be
divided into two main groups [23]:

Tractability due to restricted structure. This includes all tractable classes of CSPs
that are identified solely on the base of the structure of the constraint scopesfS1; : : : Sqg, independently of the actual constraint relationsr1; : : : ; rq.

Tractability due to restricted constraint relations. This includes all classes that
are tractable due to particular properties of the constraint relationsr1; : : : ; rq.

This paper deals with tractability due to restricted structure. There are several
papers proposing polynomially tractable classes of constraints based on different
structural properties of the constraint scopes. Usually, these properties can be for-
malized as graph-theoretic properties of theconstraint graphin case of binary con-
straints, or of theconstraint hypergraphin the general case. The constraint hy-
pergraph of a CSP is the hypergraph whose vertices are the variables of the CSP
and whose hyperedges are the sets of all those variables which occur together in a
constraint scope.

It is well known that CSPs withacyclic constraint hypergraphs are polynomially
solvable [7]. The known structural properties that lead to tractable CSP classes are
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all (explicitly or implicitly) based on some generalization of acyclicity. In partic-
ular, each method defines some concept ofwidth which can be interpreted as a
measure of cyclicity of the underlying constraint (hyper)graph such that, for each
fixed width k, all CSPs of width bounded byk are solvable in polynomial time.
There is a plethora of proposed methods based on various different measures of
cyclicity, but little was known so far on the relative strength of the different meth-
ods. A comparison of the main methods is called for.

In this paper we establish a framework for uniformly definingand comparing struc-
tural CSP decomposition methods. Within this framework we compare the main
methods that have been published so far. In particular, we deal with the following
methods (which are reviewed in detail in Section 4): Cycle Cutset [7], Tree Cluster-
ing [9], Treewidth [24], Hinge Decomposition [18,19], Hinge Decomposition with
Tree Clustering [18], Cycle Hypercutset, and Hypertree Decomposition [16].

We first point out that every considered CSP-decomposition methodD gives rise
to an infinite hierarchy of CSP classes:C(D; 1) � C(D; 2) � � � � � C(D; i); � � � � � �
such that the CSPs of each classC(D; k) are solvable in time bounded by a poly-
nomial. In particular, for each CSPC belonging to classC(D; k) there exists a
decompositionof width � k, i.e., a data structure witnessing thatC can be trans-
formed in polynomial time into an equivalent acyclic CSP.

For each CSP-decomposition methodD, the classC(D; k) is a tractable class of
CSPs because the following important tasks are tractable:

(1) Checking membership of a CSPC in C(D; k), and computing a correspond-
ing CSP decomposition forC.

(2) Solving the CSPC. In turn, this task usually consists of the following two
subtasks:� Transforming C in polynomial time into an equivalent acyclic CSPC 0, and� solvingC 0 in polynomial time by using well-known algorithms.

In this paper we compare only those methods that are tractable in the above sense.
In fact, there are methods for solving CSPs, reported in the literature, for which only
one of the two tasks (1) and (2) above is tractable, while the other one is NP-hard.
For instance, task (1) is NP-complete for the method ofbounded query decom-
positionsdefined by Chekuri and Rajaraman [6] (see [16] for an NP-completeness
proof), while task (2) is intractable for an early method proposed by Freuder [10,11]
(see Section 4 for an NP-completeness proof).

For a pair of decomposition methodsD1 andD2, we define the following compar-
ison criteria:
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Generalization. D2 generalizesD1 if there exists a constantÆ such that, for each
level k, C(D1; k) � C(D2; k + Æ) holds. In practical terms, this means that
whenever a classC of constraints is tractable according to methodD1, it is also
tractable according toD2. Moreover, the worst case runtime upper bound guar-
anteed by methodD2 is polynomially bounded by the worst case upper bound
guaranteed by methodD1; more precisely, the overhead ofD2 with respect toD1 is at mostnÆ, wheren is the size of the input CSP. Note that for all pairs
of methods compared in this paper,Æ is at most1. This means thatthere is no
significant loss of efficiencywhen replacing methodD1 with the more general
methodD2.

Beating. D2 beatsD1 if there exists an integerk such thatC(D2; k) is not con-
tained in classC(D1; m) for anym. Intuitively, this means that some classes of
problems are tractable according toD2 but not according toD1. For such classes,
usingD2 is thus better than usingD1.

Strong generalization. D2 strongly generalizesD1 if D2 generalizesD1 andD2
beatsD1. This means thatD2 is really the more powerful method, given that,
wheneverD1 guarantees polynomial runtime for constraint solving, then alsoD2
guarantees tractable constraint solving, but there are classes of constraints that
can be solved in polynomial time by usingD2 but are not tractable according toD1.

Equivalence. D1 andD2 areequivalentif D1 generalizesD2 andD2 generalizesD1. Intuitively, this means that the methods are polynomial onthe same classes
of CSPs and do not differ significantly from each other.

In this paper we completely classify all above-mentioned decomposition methods
according to these criteria. The result of the classification is given in Figure 1. This
figure, in addition mentions another method (!�) which is known to be equivalent
to the tree-clustering method [9].

An arrow from a methodD1 to a methodD2 in Figure 1 indicates thatD2 is strongly
more general thanD1. Since this relationship is transitive, also a directed path be-
tween two methods indicates the same relationship. The picture iscompletein the
sense that there is a directed path from methodD1 to methodD2 if and only ifD2
strongly generalizesD1. On the other hand, whenever two methods are not related
by a directed path, then they areincomparablewith respect to the generalization
relation, and, moreover, each of the two methods beats the other.

Figure 1 shows that the method of Hypertree Decompositions dominates all other
methods, as it is strongly more general than the other decomposition methods. This
method was originally introduced in the database field for identifying a large class
of tractable conjunctive queries [16]. In this paper we adapt this notion to the set-
ting of constraints and we show that constraints of bounded hypertree-width are
polynomially solvable, providing a precise complexity analysis. In particular, we
show that CSPs of hypertree widthk can be solved in timeO(nk+1 � logn).
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Hypertree Decomposition

Cycle Cutset

Figure 1. Constraint Tractability Hierarchy

Hypertree width is a measure of cyclicity specifically designed forhypergraphs. It
is interesting to see how the situation changes in the special case ofgraphs, i.e., of
binary CSPs. To answer this question, we have compared all considered method in
the binary case (in Section 8; see Figure 25). Again, it turnsout that the method of
Hypertree Decomposition dominates the others, but this time in a slightly weaker
sense to be explained in Section 8.

It was recently asked1 whether the method of Hypertree Decompositions can be
explained in terms of simpler and well-known graph cyclicity measures. To every
hypergraphH one defines thedual graphofH by taking as vertices the hyperedges
of H and by connecting two vertices by an edge if their corresponding hyperedges
intersect. The question arose whether the hypertree width of a hypergraph coincides
with the treewidth or TCLUSTER width of the dual graph ofH (See Section 9
for definitions). We study this interesting question in Section 9 and give a nega-
tive answer. More generally, we show that the method of hypertree decompositions
strongly generalizesall relevant binary methods based on the dual graph of a given
hypergraph.

This paper is organized as follows. Section 2 contains preliminaries on CSPs. In
Section 3 we discuss tractability of CSPs due to restricted structure. In Section 4 we
review well-known CSP decomposition methods. In Section 5 we describe the new
method ofhypertree decompositionsand analyze the cost of solving CSPs having
bounded hypertree-width. In Section 6 we explain our comparison criteria and in
Section 7 we present the comparison results for general CSPs. The case of binary
CSPs is briefly discussed in Section 8. In Section 9 we consider the application of
“binary” methods to the dual graph of a hypergraph. Finally,in Section 10, we draw
our conclusions.1 Rina Dechter, personal communication at IJCAI’99.
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2 Constraint Satisfaction Problems

An instance of aconstraint satisfaction problem (CSP)(alsoconstraint network)
is a triple I = (Var ; U; C), whereVar is a finite set of variables,U is a finite
domain of values, andC = fC1; C2; : : : ; Cqg is a finite set of constraints. Each
constraintCi is a pair(Si; ri), whereSi is a list of variables of lengthmi called the
constraint scope, andri is anmi-ary relation overU , called theconstraint relation.
(The tuples ofri indicate the allowed combinations of simultaneous values for the
variablesSi). A solutionto a CSP instance is a substitution# : Var �! U , such
that for each1 � i � q, Si# 2 ri. The problem of deciding whether a CSP instance
has any solution is calledconstraint satisfiability (CS). (This definition is taken
almost verbatim from [20].)

Many well-known problems in Computer Science and Mathematics can be formu-
lated as CSPs.

Example 1 The famousgraph three-colorability (3COL)problem, i.e., deciding
whether the vertices of a graphG = (Verti
es;Edges) can be colored by three
colors (say: red, green, blue) such that no edge links two vertices having the same
color, is formulated as follows as a CSP. The setVar contains a variableXv for each
vertexv 2 Verti
es. For each edgee = fv; wg 2 Edges, wherev < w according
to some ordering onVertices, the setC contains a constraintCe = (Se; re), whereSe = (Xv; Xw) andre is the relationr 6= consisting of all pairs of different col-
ors, i.e.,r 6= = fhred ; greeni, hred ; bluei, hgreen; redi, hgreen; bluei, hblue; redi,hblue; greenig.

For instance, the set of constraints for the graphG1 in Figure 2 is the followingC = f((A;B); r 6=), ((A;D); r 6=), ((A;G); r 6=), ((B;C); r6=), : : :, ((G;H); r6=)g.

b c

d e

f
g

h

a

Figure 2. The graphG1
Example 2 Figure 3 shows a combinatorial crossword puzzle, which is a typical
CSP [7,23]. A set of legal words is associated to each horizontal or vertical array
of white boxes delimited by black boxes. A solution to the puzzle is an assignment
of a letter to each white box such that to each white array is assigned a word from
its set of legal words.

This problem is represented as follows. There is a variableXi for each white box,
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and a constraintC for each arrayD of white boxes. (For simplicity, we just write
the indexi for variableXi.) The scope ofC is the list of variables corresponding
to the white boxes of the sequenceD; the relation ofC contains the legal words
for D. For the example in Figure 3, we haveC1H = ((1; 2; 3; 4; 5); r1H), C8H =((8; 9; 10); r8H),C11H = ((11; 12; 13); r11H),C20H = ((20; 21; 22; 23; 24; 25; 26); r20H),C1V = ((1; 7; 11; 16; 20); r1V ),C5V = ((5; 8; 14; 18; 24); r5V ),C6V = ((6; 10; 15; 19; 26); r6V ),C13V = ((13; 17; 22); r13V ). SubscriptsH andV stand for “Horizontal” and “Verti-
cal,” respectively, resembling the usual naming of definitions in the crossword puz-
zles. A possible instance for the relationr1H isfhh; o; u; s; ei; h
; o; i; n; si; hb; l; o; 
; kig.

1 2 3 4 5 6

7 8 9 10

11 12 13 14 15

16 17 18 19

20 21 22 23 24 25 26

Figure 3. A crossword puzzle

It is well-known and easy to see that Constraint Satisfiability is an NP-complete
problem. Membership in NP is obvious. NP-hardness follows,e.g., immediately
from the NP hardness of 3COL [13].

3 Tractable classes of CSPs

Much effort has been spent by both the AI and database communities to indentify
tractable classesof CSPs. Both communities have obtained deep and useful results
in this direction. The various successful approaches to obtain tractable CSP classes
can be divided into two main groups [23]:1: Tractability due to restricted structure. This includes all tractable classes of
CSPs that are identified solely on the base of the structure ofthe constraint scopesfS1; : : : Sqg, independently of the actual constraint relationsr1; : : : ; rq.2: Tractability due to restricted constraints. This includes all classes that are
tractable due to particular properties of the constraint relationsr1; : : : ; rq.
The present paper deals with tractability due to restrictedstructure.

The structureof a CSP is best represented by its associatedhypergraphand by
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the correspondingprimal graph, defined as follows. To any CSP instanceI =(Var ; U; C), we associate a hypergraphHI = (V;H), whereV = Var , andH =fvar(S) j C = (S; r) 2 Cg, wherevar(S) denotes the set of variables in the
scopeS of the constraintC. Figure 4 shows the hypergraphH
p associated to the
crossword puzzle of Example 2.

1 5

20 25

432

7

11 12

21 23 24 26

16

8 9 10

14

18

15

19

13

17

22

6

6V
5V

20H

13V

11H1V

1H

8H

Figure 4. HypergraphH
p of the crossword puzzle in Example 2

Since in this paper we always deal with hypergraphs corresponding to CSPs in-
stances, the vertices of any hypergraphH = (V;H) can be viewed as the variables
of some constraint satisfaction problem. Thus, we will often use the termvariable
as a synonym for vertex, when referring to elements ofV . Moreover, for the hyper-
graphH = (V;H), var(H) andedges(H) denote the setsV andH, respectively.

Let HI = (V;H) be the constraint hypergraph of a CSP instanceI. The primal
graphof I is a graphG = (V;E), having the same set of variables (vertices) asHI
and an edge connecting any pair of variablesX; Y 2 V such thatfX; Y g � h for
someh 2 H.

Note that if all constraints of a CSP are binary, then its associated hypergraph is
identical to its primal graph.

The most basic and most fundamental structural property considered in the context
of CSPs (and conjunctive database queries) isacyclicity. It was recognized indepen-
dently in AI and in database theory thatacyclicCSPs are polynomially solvable. A
CSPI is acyclic if its primal graphG is chordal (i.e., any cycle of length greater
than 3 has a chord) and the set of its maximal cliques coincidewith edges(HI) [2].

A join treeJT (H) for a hypergraphH is a tree whose vertices are the edges ofH
such that, whenever the same variableX 2 V occurs in two edgesA1 andA2 of H,
thenA1 andA2 are connected inJT (H), andX occurs in each vertex on the unique
path linkingA1 andA2 in JT (H). In other words, the set of vertices in whichX
occurs induces a (connected) subtree ofJT (H). We will refer to this condition as
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theConnectedness Conditionof join trees.

Acyclic hypergraphs can be characterized in terms of join trees: A hypergraphH
is acyclic iff it has a join tree [3,2,22]. There exist various equivalent characteriza-
tions of acyclic hypergraphs [2,14,22]. Checking the satisfiability of acyclic CSPs
(or, equivalently, evaluating acyclic conjunctive queries) is not only tractable but
also highly parallelizable. In fact, as shown in [15], this problem is complete for
the complexity class LOGCFL, a very low class contained in the parallel classes
AC1 and NC2.
Many CSPs arising in practice are not acyclic but are in some sense or another
close to acyclic CSPs. In fact, the hypergraphs associated with many naturally
arising CSPs contain either few cycles or small cycles, or can be transformed to
acyclic CSPs by simple operations (such as, e.g., lumping together small groups of
vertices). Consequently, CSP research in AI and in databasetheory concentrated
on identifying, defining, and studying suitable classes ofnearly acyclicCSPs, or,
equivalently, decomposition methods, i.e., techniques for decomposingcyclic CSPs
into acyclic CSPs [23,7].

4 Decomposition Methods

In order to study and compare various decomposition methods, we find it useful to
introduce a general formal framework for this notion.

Let H be a hypergraph. For any set of edgesH 0 � edges(H), let var(H 0) =Sh2H0 h. Without loss of generality, we assume thatvar(H ) = var(H), i.e., every
variable invar(H) occurs in at least one edge ofH, and hence, any hypergraph
can be simply represented by the set of its edges. Moreover, we assume without
loss of generality that all hypergraphs under consideration are bothconnected, i.e.,
their primal graph consists of a single connected component, andreduced, i.e., no
hyperedge is contained in any other hyperedge. All our definitions and results easily
extend to general hypergraphs.

Let HS be the set of all (reduced and connected) hypergraphs. Adecomposition
method(short: DM) D associates to any hypergraphH 2 HS a parameterD-
width(H), called theD widthof H.

The decomposition methodD ensures that, for fixedk, every CSP instanceI whose
hypergraphHI hasD-width � k is polynomially solvable, i.e., it is solvable inp(kIk) = O(kIkO(1)) time, wherekIk denotes the size ofI. For any CSP instanceI, the size ofI is defined in the standard way, i.e., as the number of bits needed for
encodingI by listing, for each constraint inI, its constraint scope and all tuples
occurring in its constraint relation.

9



For anyk > 0, thek-tractable classC(D; k) of D is defined byC(D; k) = fH j D-width(H) � kg:
Thus,C(D; k) collects the set of CSP instances which, for fixedk, are polynomially
solvable by using the strategyD. Typically, the polynomialp(k I k) depends on
the parameterk. In particular, for eachD, there exists a functionf such that, for
eachk, each instanceI 2 C(D; k) can be transformed in timeO(kIkO(f(k))) into
an equivalentacyclic CSP instance. (It follows that all problems inC(D; k) are
polynomially solvable.)

Every DMD is complete with respect toHS, i.e.,HS = Sk�1C(D; k). Note that,
by our definitions, it holds thatD-width(H) = minfk j H 2 C(D; k)g.

All tractable classes based on restricted structure that wehave studied in the litera-
ture fit into this framework. We next describe how the notion of width is defined in
the decomposition methods we shall compare in this paper. Detailed descriptions
of these methods can be found in the corresponding reference(see below) and in
many surveys on this subject, e.g., [23,7].

4.1 Biconnected Components (short:BICOMP) [11]

Let G = (V;E) be a graph. A vertexp 2 V is a separating vertexfor G if, by
removingp fromG, the number of connected components ofG increases. A bicon-
nected component ofG is a maximal set of verticesC � V such that the subgraph
of G induced byC is connected and remains connected after any one-vertex re-
moval, i.e., has no separating vertices.

It is well known that, from any graphG, we can compute in linear time a vertex-
labeled treehT; �i, where the labeling function� is a bijective function that asso-
ciates to each vertex of the treeT a set of verticesS of G, such thatS is either
a biconnected component ofG, or a singleton containing a separating vertex forG. There is an edgefp; qg in the treeT , if �(p) is a biconnected component ofG
and�(q) contains a separating vertex forG belonging to the component�(p), i.e.,�(q) � �(p), holds. We say thathT; �i is theBICOMP decomposition ofG.

For a hypergraphH, theBICOMP decomposition ofH is theBICOMP decomposition
of its primal graph, and thebiconnected widthofH, denoted byBICOMP-width(H),
is the maximum number of vertices over the biconnected components of the primal
graph ofH.

Example 3 Figure 5.a shows a hypergraphHb and Figure 5.b its primal graph. The
verticesG;C;D, andE are the separating vertices of this primal graph. Note that
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the maximum number of vertices over its biconnected components is3, and thusBICOMP-width(H) = 3. Figure 6 shows theBICOMP decomposition ofHb.
C
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A B

N O

E

P Q
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I

H

B
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P

(a) (b)

Figure 5. (a) The hypergraphHb, and (b) its primal graph
{G}

{C, G, F}

{C}{A, B, C}

{G, H, I} {G, L, M}

{C, D, E}

{D}

{D, N, O}

{E}

{E, P, Q}

Figure 6. TheBICOMP decomposition of the hypergraphHb in Example 3

4.2 Tree Clustering (short:TCLUSTER) [9]

Thetree clusteringmethod is based on a triangulation algorithm which transforms
the primal graphG = (V;E) of any CSP instanceI into a chordal graphG0. The
acyclic hypergraphH(G0) having the same set of vertices asG0 and the maximal
cliques ofG0 as its hyperedges is aTCLUSTER decomposition ofHI . Intuitively,
the hyperedges ofH(G0) are used to build the constraints of an acyclic CSPI 0
equivalent toI. The width of theTCLUSTER decompositionH(G0) is the maximum
cardinality of its hyperedges. Thetree-clustering width(short:TCLUSTER width) ofHI is 1 if HI is an acyclic hypergraph; otherwise, it is equal to the minimum width
over theTCLUSTER decompositions ofHI .
Example 4 Consider the hypergraphHt
 shown in Figure 7.a. Figure 7.b shows its
primal graph.
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X5X2 X4X6X3X1
X6X3

X1 X4 X5X2
(a) (b)

Figure 7. (a) The hypergraphHt
, and (b) its primal graph

This graph can be triangulated as shown in Figure 8.a. If we associate a hyperedge
to each maximal clique of this triangulated graph, we get theacyclic hypergraph
shown in Figure 8.b. This acyclic hypergraph is aTCLUSTER decomposition ofHt

of width 3. Moreover, it is easy to see that there is noTCLUSTER decomposition forHt
 having a smaller width, and hence theTCLUSTER width ofHt
 is 3.

X6X3
X1 X4 X5X2 X3X1 X6X4 X5X2

(a) (b)

Figure 8. (a) A triangulation of the primal graph ofHt
, and (b) aTCLUSTER decomposition
ofHt

4.3 Treewidth (TREEWIDTH) [24]

A tree decompositionof a graphG = (V;E) is a pairhT; �i, whereT = (N;F ) is
a tree, and� is a labeling function associating to each vertexp 2 N a set of vertices�(p) � V , such that the following conditions are satisfied:

(1) for each vertexb of G, there existsp 2 N such thatb 2 �(p);
(2) for each edgefb; dg 2 E, there existsp 2 N such thatfb; dg � �(p);
(3) for each vertexb of G, the setfp 2 N j b 2 �(p)g induces a (connected)

subtree ofT .

The width of the tree decompositionhT; �i is maxp2N j�(p) � 1j. The treewidth
of G is the minimum width over all its tree decompositions. TheTREEWIDTH of
a hypergraphH is 1 if H is an acyclic hypergraph; otherwise, it is equal to the
treewidth of its primal graph. As pointed out below,TREEWIDTH andTCLUSTER
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are two equivalent methods.

Example 5 Consider again the hypergraphHt
 in Example 4. Figure 9 show a tree
decomposition ofHt
 having width2. It follows that the treewidth ofHt
 is 2 as
only hypergraphs having acyclic primal graphs have treewidth 1.fX1; X3; X6gfX1; X4; X6gfX1; X2; X3g fX4; X5; X6g

Figure 9. A tree decomposition of hypergraphHt
 in Example 4

4.4 Hinge Decompositions (short:HINGE) [18,19]

LetH be a hypergraph,H � edges(H), andF � edges(H)�H. ThenF is called
connected with respect to Hif, for any two edgese; f 2 F , there exists a sequencee1; :::; en of edges inF such that(i) e1 = e; (ii) for i = 1; :::; n � 1, ei \ ei+1
is not contained in

Sh2H h; and(iii) en = f . The maximal connected subsets ofedges(H) � H with respect toH are called theconnected components ofH with
respect toH. It is easy to see that the connected components ofH with respect toH form a partition ofedges(H)�H.

Let H 2 HS and letH be eitheredges(H) or a proper subset ofedges(H) con-
taining at least two edges. LetC1; :::; Cm be the connected components ofH with
respect toH. Then,H is ahingeif, for i = 1; :::; m, there exists an edgehi 2 H
such thatvar(edges(Ci)) \ var(H )) � hi. A hinge isminimal if it does not
contain any other hinge.

A hinge decompositionof H is a treeT such that all the following conditions hold:
(1) the vertices ofT are minimal hinges ofH; (2) each edge inedges(H) is con-
tained in at least one vertex ofT ; (3) two adjacent verticesA andB of T share
precisely one edgeL 2 edges(H); moreover,L consists exactly of the variables
shared byA andB (i.e.,L = var(A) \ var(B)); (4) the variables ofH shared by
two vertices ofT are entirely contained within each vertex on their connecting path
in T .

It was shown in [19] that, for any CSP instanceI, the cardinality of the largest
vertex of any hinge decomposition ofHI is an invariant ofHI , and is equal to the
cardinality of the largest minimal hinge ofHI . This number is called thedegree of
cyclicityof HI . We will also refer to it as theHINGE widthof HI .
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Figure 10. (a) HypergraphHhg, and (b) a hinge-tree decomposition ofHhg
Example 6 Consider a CSP instanceIhg having the following constraint scopes:s1(X1; X10; X11); s2(X1; X2; X3); s3(X1; X4); s4(X3; X6); s5(X4; X5; X6);s6(X4; X7); s7(X5; X8); s8(X6; X9); s9(X2; X3; X10; X11):
Figure 10 shows the corresponding hypergraphHhg, which is clearly cyclic. The
minimal hinges ofHhg areH1 = fs1; s2; s9g, H2 = fs2; s3; s4; s5g,H3 = fs5; s6g,H4 = fs5; s7g,H5 = fs5; s8g,H6 = fs3; s6g, andH7 = fs4; s8g, wheresi denotes
the set of variables occurring in the scopesi, for 1 � i � 9.

Since the cardinality of the largest minimal hinge ofHhg (hingeH2) is 4, it follows
that theHINGE width of Hhg is 4. Figure 10.b shows aHINGE decomposition ofHhg.
4.5 Hinge Decomposition + Tree Clustering (short:HINGETCLUSTER) [18]

It has been observed [18] that the minimal hinges of a hypergraph can be fur-
ther decomposed by means of the triangulation technique of the above-described
tree-clustering method. This leads to a new decomposition method, that we call
HINGETCLUSTER, which combinesHINGE andTCLUSTER and can be formally defined
as follows. LetT = (N;E) be a hinge tree of a hypergraphH. For any hingeH 2 N , letw(H) be the minimum of the cardinality ofH and theTCLUSTER width
of the hypergraph(var(H); H). TheHINGETCLUSTER width of H with respect toT
is maxH2Nfw(H)g. A HINGETCLUSTER decomposition ofH with respect toT is an
acyclic hypergraphH0 having the same set of vertices asH, and whose set of edges
is obtained fromT andH as follows. For each hingeH 2 N , if w(H) = jHj, thenH0 contains an edgevar(H); otherwise,H0 contains the edges of anyTCLUSTER
decomposition of the (sub)hypergraph(var(H); H) having widthw(H).
TheHINGETCLUSTER width of H is the minimumHINGETCLUSTER width over all its
HINGETCLUSTER decompositions.
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Figure 11. AHINGETCLUSTER decomposition of hypergraphHhg in Example 6

Example 7 Consider again the constraint scopes of Example 6 and the hinge-tree
decomposition for the hypergraphHhg shown in Figure 10.b. From this hinge-tree
decomposition, we construct aHINGETCLUSTER decompositionH0hg of Hhg.
Consider the sub-hypergraph(var(H1); H1) corresponding to the minimal hingeH1 occurring in this hinge-tree decomposition. The primal graph of the hypergraph(var(H1); H1) is a clique containing the verticesX1; X2; X3; X10, andX11, thus
it is easy to see that theTCLUSTER width of this hypergraph is5. However, the
hingeH1 contains three edges, hence we getw(H1) = 3, and theHINGETCLUSTER
decompositionH0hg contains the edgefX1; X2; X3; X10; X11gwith all the variables
occurring inH1.
A different situation concerns the sub-hypergraph(var(H2); H2) corresponding
to the minimal hingeH2. This hypergraph is identical to hypergraphHt
 in Ex-
ample 4. We observed thatHt
 has TCLUSTER width 3, which is smaller thanjH2j = 4, and hencew(H2) = 3 holds. This means that, in this case, it is con-
venient to further decompose(var(H2); H2) using theTCLUSTER decomposition
method, and theHINGETCLUSTER decompositionH0hg contains all the edges belong-
ing to theTCLUSTER decomposition ofHt
 = (var(H2); H2) shown in Figure 7.

Similarly, for i 2 f4; 5; 6g, the sub-hypergraphs(var(Hi); Hi) corresponding to
the other hinges occurring in the hinge-tree decompositionat hand are acyclic hy-
pergraphs. Therefore,w(Hi) = 1 holds, because theTCLUSTER width of acyclic
hypergraphs is1.

The resultingHINGETCLUSTER decompositionH0hg of Hhg is the acyclic hypergraph
shown in Figure 11. The thickest edges in this figure come fromthe TCLUSTER
decomposition of(var(H2); H2). Recall that bothw(H1) andw(H2) are3, which
is the maximum value over the hinges occurring in the givenHINGE decompo-
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sition of Hhg. Thus, the width ofH0hg is 3, and it is easy to verify that there is
no otherHINGETCLUSTER decomposition having smaller width. It follows that the
HINGETCLUSTER width ofHhg is 3.

4.6 Cycle Cutset (short:CUTSET) [7]

A cycle cutsetof a hypergraphH is a setS � var(H) such that the subgraph of the
primal graph ofH (vertex-)induced byvar(H)�S is acyclic. That is, after deleting
the vertices inS, the primal graph ofH becomes acyclic. TheCUTSET width ofH
is 1 if H is acyclic; otherwise, it is the minimum cardinality over all its possible
cycle cutsets.

Example 8 The hypergraphHb shown in Figure 5.a hasCUTSET width 4. Indeed,fG;C;D;Eg is a cycle cutset of this hypergraph, and any smaller set of vertices
does not allow to break all the cycles in its primal graph (seeFigure 5.b). As another
example, consider the hypergraphHt
 shown in Figure 7. TheCUTSET width ofHt

is 2, because there is no cycle cutset of cardinality1, while there are cycle cutsets
of cardinality2, e.g., the setfX1; X4g.

4.7 Cycle Hypercutset (short:HYPERCUTSET)

This is a simple modification of theCUTSETmethod where the cutset is composed
of (hyper)edges rather than vertices of the given hypergraph. A cycle hypercutsetof
a hypergraphH is a setĤ � edges(H) such that the subhypergraph ofH induced
by var(H)� var(Ĥ) is acyclic. TheHYPERCUTSET width ofH is 1 if H is acyclic;
otherwise, it is the minimum cardinality over all its possible cycle hypercutsets.

Example 9 The hypergraphHb shown in Figure 5.a hasHYPERCUTSET width2. In-
deed, the set containing the two edgesfF;G;Cg andfC;D;Eg is a hypercutset of
this hypergraph, as deleting these edges it becomes acyclic. Moreover, by deleting
any single edge, we cannot achieve acyclicity. Instead, thehypergraphHhg shown
in Figure 10 hasHYPERCUTSET width 1. Indeed, e.g., by just deleting fromHhg the
edgefX4; X5; X6g we get an acyclic hypergraph.

4.8 Solving CSPs using decomposition methods

For each of the above decomposition methodsD, it was shown (or it is easy to see)
that, for any fixedk, given a CSP instanceI, deciding whether a hypergraphHI
hasD-width(HI) at mostk is feasible in polynomial time and that solving CSPs
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whose associated hypergraph is of width at mostk can be done in polynomial time.
In particular,D consists of two phases. Given a CSP instanceI,

(1) the (k-bounded)D widthw of HI along with a corresponding decomposition
is computed;

(2) exploiting this decomposition,I is then solved in timeO(nw+1 logn), wheren is the size ofI plus the size of the given decomposition (for most methods
this phase consists of the solution of an acyclic CSP instance equivalent toI).

Actually, for these methods it is always possible to give thedecompositions in
suitable forms without redundancies. Thus, the cost above reduces toO(kI kw+1log kIk), i.e., it depends only on the CSP instance, and does not depend on the size
of the decomposition. For a detailed analysis, see Section 5, where we study the
complexity of evaluating bounded-width CSPs according to anew decomposition
method, based on hypertree decompositions [16].

The cost of the first phase is independent on the constraint relations ofI; in fact,
it is O(kHIk
1k+
2), wherekHIk is the size of the hypergraphHI , and
1, 
2 are
two constants relative to the methodD (0 � 
1; 
2 � 3 for the methods above). As
usual, the size of hypergraphHI is defined as the number of bits needed for encod-
ing all the edges ofHI as lists of variables. Clearly, the size ofHI is always smaller
than thankIk, because the encoding ofI includes the encoding of its constraint re-
lations, too. Observe also that computing theD-widthw of a hypergraph in general
(i.e., without the constant boundw � k) is NP-hard for most methods, while it is
feasible in polynomial time forHINGE, and even in linear time forBICOMP.

Remark 10 The above complexity bounds, given as functions of the totalsize of
the CSP instance, are appropriate for all considered decomposition methods for
generalCSP instances. Of course, if one considers some restricted cases, e.g., CSP
instances with a fixed constant domain size, some finer analysis may be useful. In
fact, by exploiting additional information, more accuratecomplexity bounds may
be found in order to choose a method that is better tailored for such a special case.

4.9 Freuder width and adaptive width

Further interesting methods, that do not explicitly generalize acyclic hypergraphs,
are based on a different notion of width, that we callFreuder width[10,11]. If �
is a total ordering of the vertices of a graphG = (V;E), then the�-width of G
is defined byw�(G) = maxv2V jf fv; wg 2 E s.t. w � vgj. The Freuder width
of G is the minimum of all�-widths over all possible total orderings� of V . For
each fixed constantk, it can be determined in polynomial time whether a graph is
of Freuder widthk. The graphG1 shown in Figure 2 has Freuder width 3. This
width can be obtained taking the orderingb � d � e � a � g � h � 
 � f .
Freuder observed that many naturally arising CSPs have a very low width [10]. He
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showed that a CSP of widthk whose relations enjoy the property ofk0-consistency,
wherek0 > k, can be solved in a backtrack-free manner, and thus in polynomial
time [10,11]. Clearly, since the consistency condition on the constraint relations
must be satisfied, we cannot define a purely structural decomposition method based
on Freuder width. In fact, the following theorem pinpoints that the structural prop-
erty of bounded Freuder width does not make the CSP problem any easier.

Theorem 11 Constraint solvability remains NP-complete even if restricted to CSPs
whose primal graph has Freuder width bounded by 4.

PROOF. 3COL remains NP-complete even for graphs of degree 4 (cf. [13]). Such
graphs, however, have width at most4. By the encoding of 3COL as a CSP, as given
in Section 2, the theorem follows.2
One can try to enforce a suitable level of consistency on the constraint relations
of a given CSP instance. However, the algorithms used to increase the level of
consistency in the data also increase the Freuder width of the instance [25,8]. Of
course, one can think of devising a more powerful procedure to find an equivalent
CSP instance whose Freuder width stays below a fixed bound. However, from the
above theorem, if P6= NP, such a procedure cannot run in polynomial time.

Dechter and Pearl subsequently introduced the notion ofinduced widthw� [8],
which is – roughly – the smallest Freuder widthk of any graphG0 obtained by tri-
angulation methods from the primal graphG of a CSP such thatG0 ensuresk + 1-
consistency. Graphs having induced width at mostk can be also characterized as
partial k-trees[12] or, equivalently, as graphs having treewidth at mostk [1]. It
follows that, for fixedk, checking whetherw� � k is feasible in linear time [5]. Ifw� is bounded by a constant, a CSP is solvable in polynomial time. The approach
to CSPs based onw� is referred to as thew�-Tractability method [7]. Note that this
method is implicitly based on hypergraph acyclicity, giventhat the used triangula-
tion methods enforce chordality of the resulting graphG0 and thus acyclicity of the
corresponding hypergraph. It was noted [9,7] that, for any cyclic CSP instanceI,
TCLUSTER width(HI) = w�(HI) + 1.

5 Hypertree Decompositions of CSPs

A new class of tractable conjunctive database queries, which generalizes the class
of acyclic queries, has recently been identified [16]. This is the class of queries
having a bounded-width hypertree decomposition [16]. Deciding whether a given
query has this property is feasible in polynomial time and even highly paralleliz-
able. In this section we first adapt the notion of hypertree decomposition, previously
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defined in the database context, to the general framework of hypergraphs. Then,
we show how to employ this notion in order to define a new CSP decomposition
method we will refer to asHYPERTREE.

A hypertree for a hypergraphH is a triplehT; �; �i, whereT = (N;E) is a rooted
tree, and� and� are labeling functions which associate to each vertexp 2 N two
sets�(p) � var(H) and�(p) � edges(H). If T 0 = (N 0; E 0) is a subtree ofT , we
define�(T 0) = Sv2N 0 �(v). We denote the set of verticesN of T by verti
es(T ),
and the root ofT by root(T ). Moreover, for anyp 2 N , Tp denotes the subtree ofT rooted atp.

Definition 12 A hypertree decompositionof a hypergraphH is a hypertreeHD =hT; �; �i for H which satisfies all the following conditions:

(1) for each edgeh 2 edges(H), there existsp 2 verti
es(T ) such thatvar(h) ��(p) (we say thatp coversh);
(2) for each variableY 2 var(H), the setfp 2 verti
es(T ) j Y 2 �(p)g induces

a (connected) subtree ofT ;
(3) for eachp 2 verti
es(T ), �(p) � var(�(p));
(4) for eachp 2 verti
es(T ), var(�(p)) \ �(Tp) � �(p).

Note that the inclusion in Condition 4 is actually an equality, because Condition 3
implies the reverse inclusion.

An edgeh 2 edges(H) is strongly coveredin HD if there existsp 2 verti
es(T )
such thatvar(h) � �(p) andh 2 �(p). In this case, we say thatp strongly coversh.

A hypertree decompositionHD of hypergraphH is a complete decompositionofH if every edge ofH is strongly covered inHD.

The width of a hypertree decompositionhT; �; �i is maxp2verti
es(T )j�(p)j. The
HYPERTREE width hw(H) of H is the minimum width over all its hypertree de-
compositions. A
-width hypertree decomposition ofH is optimalif 
 = hw(H).
The acyclic hypergraphs are precisely those hypergraphs having hypertree width
one. Indeed, any join tree of an acyclic hypergraphH trivially corresponds to a
hypertree decomposition ofH of width one. Furthermore, if a hypergraphH0 has
a hypertree decomposition of width one, then, from this decomposition, we can
easily compute a join tree ofH0, which is therefore acyclic [16].

Remark 13 From any hypertree decompositionHD of H, we can easily compute
a complete hypertree decomposition ofH having the same width. For any “miss-
ing” edgeh, choose a vertexq of T such thatvar(h) � �(q) (such a vertex must
exist by Condition 1), and create a new vertexp as a child ofq with �(p) = h and�(p) = var(h). Assuming the use of suitable data structures, this computation can
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be done inO(kHk � kHDk) time, wherekHDk denotes the size of a hypertree de-
composition, i.e., the number of bits needed for encodingHD (that is, for encoding
the rooted tree ofHD and, for each vertexv of this tree, the labelings� and� forv, encoded as a list of variables and a list of edge identifiers,respectively).

Intuitively, if H is a cyclic hypergraph, the� labeling selects the set of variables
to be fixed in order to split the cycles and achieve acyclicity; �(p) “covers” the
variables of�(p) by a set of edges.

Example 14 Figure 12 shows a hypertree decomposition of width 2 of the hyper-
graphH
p of the crossword puzzle in Example 2 (see Figure 4). Each boxb in this
figure represents a vertexv of the hypertree decomposition ofH
p. The two sets de-
picted in the boxb are the labelings�(v) and�(v). The hypergraphH
p is clearly
cyclic, thereforehw(H
p) > 1 (as only acyclic hypergraphs have hypertree width
1). Thus, it follows that theHYPERTREE width ofH
p is 2.

{8, 9, 10, 6, 15, 19, 26}     {8H, 6V}{11, 12, 13, 17, 22}     {11H, 13V}

{5, 8, 14, 18, 24, 26}     {5V, 20H}{1, 7, 11, 16, 20, 22}     {1V, 20H} 

{1, 2, 3, 4, 5, 20, 21, 22, 23, 24, 25, 26}      {1H, 20H}

Figure 12. A hypertree decomposition of width 2 of hypergraphH
p in Example 2

fX0; Y 0; F; F 0; Z0g fj; fgfX;Y;C;C0; Zg fj; 
g fX0; Z0g fgg fY 0; Z0g fhgfX;Zg fdg
fX;X0; Y; Y 0; S; C;C0; F; F 0g fa;bgfJ;X; Y;X0; Y 0g fjg

fY;Zg feg
Figure 13. A 2-width hypertree decomposition ofH1

Example 15 Consider the following constraint scopes:j(J;X; Y;X 0; Y 0); a(S;X;X 0; C; F ); b(S; Y; Y 0; C 0; F 0);
(C;C 0; Z); d(X;Z); e(Y; Z); f(F; F 0; Z 0); g(X 0; Z 0); h(Y 0; Z 0):
LetH1 be their corresponding hypergraph. SinceH1 is cyclic,hw(H1) > 1 holds.
Figure 13 shows a (complete) hypertree decomposition ofH1 having width 2, hencehw(H1) = 2.
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a(S;X;X0; C; F ); b(S;Y; Y 0; C0; F 0)j(J;X; Y;X0; Y 0)
e(Y;Z)j( ;X; Y; ; ); 
(C;C0; Z) j( ; ; ;X0; Y 0); f(F; F 0; Z0)d(X;Z) g(X0; Z0) h(Y 0; Z0)

Figure 14. Hyperedge representation of hypertree decomposition HD5
In order to help the intuition of what a hypertree decomposition is, we also present
an alternative representation, calledhyperedge representation. (Also, “atom repre-
sentation,” in the conjunctive-queries framework.) Figure 14 shows the hyperedge
representation of the hypertree decompositionHD1 of H1. Each nodep in the tree
is labeled by a set of hyperedges representing�(p); �(p) is the set of all variables,
distinct from ‘ ’, appearing in these hyperedges. Thus, the anonymous variable ‘ ’
replaces the variables invar(�(p))� �(p).
Using this representation, we can easily observe an important feature of hyper-
tree decompositions. Once an hyperedge has been covered by some vertex of the
decomposition tree, any subset of its variables can be used freely in order to decom-
pose the remaining cycles in the hypergraph. For instance, the variables in the hy-
peredge corresponding to constraintj in H1 are jointly included only in the root of
the decomposition. If we were forced to take all the variables in every vertex wherej occurs, it would not be possible to find a decomposition of width 2. Indeed, in this
case, any choice of two hyperedges per vertex yields a hypertree which violates the
connectedness condition for variables (i.e., Condition 2 of Definition 12).

Let k be a fixed positive integer. We say that a CSP instanceI hask-boundedHYPERTREE width if hw(HI) � k, whereHI is the hypergraph associated toI.
From the results in [16], it follows thatk-bounded hypertree width is efficiently
decidable, and that a hypertree decomposition of widthk can be efficiently com-
puted (if any).

Example 16 Consider again the CSP instanceIhg in Example 6. Figure 15 shows
the hyperedge representation of a width 2 hypertree decomposition of its hyper-
graphHhg. It follows that hw(Hhg) = 2, becauseHhg is cyclic. Thus,Ihg has
2-boundedHYPERTREE width and, more generally,k-boundedHYPERTREE width
for any integerk > 1.

Let H be a hypergraph, and letV � var(H) be a set of variables andX; Y 2var(H). ThenX is [V ]-adjacent toY if there exists an edgeh 2 edges(H) such
thatfX; Y g � h�V . A [V ]-path� fromX toY is a sequenceX = X0; : : : ; X` =Y of variables such thatXi is [V ]-adjacent toXi+1, for eachi 2 [0:::`-1℄. A set
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s3(X1; X4); s5(X4; X5; X6)s1(X1; X10; X11); s9(X2; X3; X10; X11)s2(X1; X2; X3); s4(X3; X6)
s8(X6; X9)s7(X5; X8)s6(X4; X7)

Figure 15. A hypertree decomposition of hypergraphHhg in Example 6W � var(H) of variables is [V ]-connected if, for allX; Y 2 W , there is a [V ]-path
from X to Y . A [V ]-componentis a maximal [V ]-connected non-empty set of
variablesW � var(H) � V . For any [V ]-componentC, let edges(C) = fh 2edges(H) j h \ C 6= ;g.

LetHD = hT; �; �i be a hypertree forH. For any vertexv of T , we will often usev as a synonym of�(v). In particular, [v]-
omponent denotes [�(v)]-
omponent;
the term [v]-path is a synonym of [�(v)]-path; and so on. We introduce a normal
form for hypertree decompositions.

Definition 17 ([16]) A hypertree decompositionHD = hT; �; �i of a hypergraphH is in normal form(NF) if, for each vertexr 2 verti
es(T ), and for each childs
of r, all the following conditions hold:1: there is (exactly) one [r]-
omponent Cr such that�(Ts) = Cr [ (�(s)\�(r));2: �(s) \ Cr 6= ;, whereCr is the [r]-component satisfying Condition 1;3: var(�(s)) \ �(r) � �(s).
Intuitively, each subtree rooted at a child nodes of some noder of a normal form
decomposition tree serves to decompose precisely one [r]-
omponent.
Proposition 18 ([16]) For eachk-width hypertree decomposition of a hypergraphH there exists ak-width hypertree decomposition ofH in normal form.

This normal form theorem immediately entails that, for eachoptimal hypertree
decomposition of a hypergraphH, there exists an optimal hypertree decomposition
of H in normal form.

The fact that no redundancies occur in hypertree decompositions in normal form
allows us to give a precise bound on the number of vertices in such hypertree de-
compositions.

Lemma 19 LetHD = (T; �; �) be a hypertree decomposition in normal form of a
hypergraphH. Moreover, letn be the number of vertices of the decomposition treeT , andm the number of strongly covered edges ofH in HD. Then,n � m holds.

PROOF. Let s be some vertex inT . We say that a variableX 2 �(s) (respectively,
an edgeH � �(s))) is “first covered” ins if X 62 �(verti
es(T )� verti
es(Tp))
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(resp.,H 6� �(verti
es(T )� verti
es(Tp))); otherwise,X (resp.,H) is said to
be “previously covered.” By Condition 2 of Definition 17 and by Condition 2 of
Def. 12, it follows that, for any vertexp of T , there exists at least a variableX
in var(H) which is “first covered” inp. SinceX 2 �(p), from Condition 3 of
Definition 12, it follows that there is an edgeH of H such thatX 2 H andH 2�(p). Moreover, from Condition 4 of Definition 12, it follows thatevery variable
belonging toH and not covered in some vertex inverti
es(T )� verti
es(Tp) must
be first covered inp, and belongs to�(p).
Moreover, sinceHD is in normal form, it satisfies Condition 3 of Definition 17.
(i.e., var(�(s)) \ �(r) � �(s)). It follows that, in fact, any previously-covered
variableY belonging toH must belong to�(p). Indeed, since the variableX was
not previously covered, the edgeH cannot be previously covered, and thus there
exists some vertexp0 in the subtreeTp such thatH � �(p0), in order to fulfill
Condition 1 of Definition 12. Assume that the variableY 2 H does not belong to�(p). SinceH is strongly covered byp0, Y 2 �(p0). Moreover, by the choice ofY ,
this variable is previously covered with respect top. It follows thatY violates the
connectedness condition, a contradiction.

Thus, all the variables inH belong to�(p). Recall thatH 2 �(p), too. It follows
that at least one edge ofH is first covered in vertexp and strongly covered byp,
and, in general, that each vertex inT first and strongly covers some edge ofH. This
entails that the cardinality of the set of vertices in the decomposition treeT of HD
is less than or equal to the numberm of the strongly covered edges in the normal
form hypertree decompositionHD of H. 2
A polynomial time algorithmopt-k-decompwhich, for a fixedk, decides whether
a hypergraph hask-bounded hypertree width and, in this case, computes an opti-
mal hypertree decomposition in normal form is described in [17]. As for many other
decomposition methods, the running time of this algorithm to find the hypergraph
decomposition is exponential in the parameterk. More precisely,opt-k-decomp
runs inO(m2kv2) time, wherem andv are the number of edges and the number of
vertices ofH, respectively.

We next show that any CSP instanceI is efficiently solvable, given ak-bounded
complete hypertree-decompositionHD of HI . To this end, we define an acyclic
CSP instance which is equivalent toI and whose size is polynomially bounded by
the size ofI.

For each vertexp of the decompositionHD, we define a new constraint scope
whose associated constraint relation is the projection on�(p) of the join of the re-
lations in�(p). This way, we obtain a join-treeJT of an acyclic hypergraphH�.H� corresponds to a new CSP instanceI� over a set of constraint relations of sizeO(nk), wheren is the input size (i.e.,n =kI k) andk is the width of the hyper-
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tree decompositionHD. By construction,I� is an acyclic CSP, and we can easily
show that it is equivalent to the input CSP instanceI. Thus, all the efficient tech-
niques available for acyclic CSP instances [9,7], or for anyproblem equivalent to
CSP [26,21,15], can be employed for the evaluation ofI�, and hence ofI.

Remark 20 According to our definition, any hypertree is a labeledrooted tree.
The rooting is necessary for technical reasons concerning the notion of hypertree
decomposition only, but has no impact on the actual evaluation of the given CSP
instance. In fact, the above discussion describes how to compute from a hypertree
decomposition and a CSP instanceI a join treeJT of an acyclic instanceI� that is
equivalent toI. This construction does not use the fact that the hypertree is rooted.
Moreover, note that the acyclic instanceI� can be evaluated rooting the join treeJT at any vertex.

The following theorem provides a detailed analysis of the complexity of evaluating
a CSP given a hypertree decomposition for it.

Theorem 21 Given a CSPI and ak-width hypertree decompositionHD0 ofHI in
normal form,I is solvable inO(kIkk+1 log kIk) time.

PROOF. Let I be a CSP instance andHD0 = (T 0; �0; �0) a k-width hypertree
decomposition ofHI in normal form. We proceed as follows.

Step 1 We compute fromHD0 a complete hypertree decompositionHD = (T; �; �)
of HI .

Step 2 We compute fromHD and I an acyclic instanceI� equivalent toI, as
described above.

Step 3 We evaluate the acyclic instanceI� employing any efficient technique for
solving acyclic CSPs.

Letm be the number of edges ofHI . The following statements hold:

Claim 1. The decomposition tree of the complete hypertree decompositionHD has
at mostm vertices.This immediately follows from the construction ofHD and
from Lemma 19, since in Step 1 above we just add to the decomposition treeT
those edges ofHI that are not strongly covered inHD0.

Claim 2. Step 1 is feasible inO(kHIk2). As observed in Remark 13, this computa-
tion takesO(kHD0k � kHIk) time. From Lemma 19, it easily follows thatkHD0k
is O(k kHIk) = O(kHIk), because the number of vertices inT 0 is at most the
number of edges ofHI , and the number of edge-labels of each vertex ofT 0 is
bounded by the constantk.

Claim 3. kI�k= O(kIkk), and computingI� from I takes timeO(kIkk). Consider
a constraintC = (S
; r
) in the acyclic instanceI�. As described above, the rela-
tion r
 is obtained as the natural join of at mostk relations occurring in the input
instanceI. One of these input relations, sayri, – in fact, its constraint scopeSi –
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is covered by some vertexp in the decomposition tree ofHD which corresponds
to C in the acyclic instanceI�. (In particular, its scopeSi corresponds to some
edgehi 2 edges(HI) such thathi 2 �(p), andhi � �(p).) Let rmax be the con-
straint relation having the maximum sizekrmaxk over all the constraint relations
occurring in the input instanceI. Then,kr
k� (krmaxkk�1 � krik). Recall that
the instanceI� has at mostm constraints. Considering all the constraints inI,
we get the following upper bound for the size of the whole CSPI�:kI�k� (krmaxkk�1 � kr1k + � � �+ krmaxkk�1 � krmk)
and hence kI�k�krmaxkk�1 �(kr1k + � � �+ krmk) �krmaxkk�1 � kIk
It follows that kI�k�kI kk. Moreover, the effectivecomputationof I� from I
takes timeO(kIkk). Indeed, computing the natural join of two relationsr1 andr2 takes timeO(kr1k � kr2k), which is exactly the same bound that we have for
the size of the result of this join operation. Thus, by applying the same line of
reasoning as used for the space bound, we get that the computation of the acyclic
instanceI� is feasible inO(kIkk) time.

From claims 1–3 and from the well-knownO(m� kI�k � log kI�k) complexity of
evaluating the acyclic CSPI� (see. e.g., [7,9]), it follows that the overall cost of
this evaluation procedure isO(kIk � kIkk � log kIkk) + O(kHIk2) = O(kIkk+1� log kIk), becausek is fixed,kHIk�kIk, andk � 1. 2
It is worthwhile noting that the crucial difference betweentheHYPERTREEmethod
and theTCLUSTER method is the objective function to be minimized in order to
obtain the most convenient acyclic decomposition of a givenCSP instance. The
HYPERTREEmethod minimizes the number of hyperedges ofHI associated to any
vertex of the acyclic equivalent instance, thus exploitingthe fact that one hyperedge
“covers” many variables at once. TheTCLUSTER method minimizes the number
of variables occurring in any vertex of the equivalent acyclic instance, as evidenced
by the following example.

Example 22 For anym > 0, letT (m) be the hypergraph having them+ 3 hyper-
edgesfh1; h2; h3; e1; e2; : : : ; emg defined as follows:� h1 = fX1; : : : ; Xm; Y1; : : : ; Ym; Ag;� h2 = fY1; : : : ; Ym; Z1; : : : ; Zm; Bg;� h3 = fZ1; : : : ; Zm; X1; : : : ; Xm; Cg;� ei = fXi; Yi; Zig, 81 � i � m.

TheTCLUSTER width of T (m) is 3m, because its primal graph is chordal and its
maximal cliqueC = fX1; : : : ; Xm; Y1; : : : ; Ym; Z1; : : : ; Zmg has cardinality3m. In
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fact, according to theTCLUSTERmethod, we have to solve a subproblem involving
every hyperedgeei (1 � i � m).

On the other hand, for anym > 0, theHYPERTREE width of T (m) is 2. It is
worthwhile noting that the number of variables occurring inthe largest vertex of
this decomposition is3m + 2. Hence, the equivalent acyclic instance we obtain
according toHYPERTREE is not “optimal” according to theTCLUSTER method, be-
cause its associated primal graph has a clique of cardinality 3m+ 2. Nevertheless,
the constraint relation associated to this vertex is computable very easily as the join
of the constraint relationsr1 andr2 corresponding toh1 andh2, respectively.

A simple way to get decomposition methods which in some way exploit the power
of hyperedges is using the dual graph associated to a CSP. We give a detailed anal-
ysis of these approaches and of their relationships with theHYPERTREE method in
Section 9. It turns out that even such methods do not exploit the full power of hy-
peredges, and are less general thenHYPERTREE, according to a strong notion of
generalization, formally defined in the next section.

6 Comparison Criteria

For comparing decomposition methods we introduce the relations�, �, and��
defined as follows:D1 � D2 (in words,D2 generalizesD1) if there existsÆ � 0 such that, for everyk > 0, C(D1; k) � C(D2; k + Æ). Thus,D1 � D2 implies that every class of CSP
instances which is tractable according toD1 is also tractable according toD2.
Note that the constantÆ above allows us to get rid of small differences among
tractability classes that should be irrelevant in the comparison. E.g., it is known
(see discussion in Section 4.9) thatTCLUSTER andTREEWIDTH are equivalent meth-
ods and one would expectTCLUSTER to generalizeTREEWIDTH (as well as vice
versa). However, for anyk > 1, C(TREEWIDTH; k) 6� C(TCLUSTER; k), because
the treewidth is defined through the cardinality of the vertex-labeling minus one.
Rather,C(TREEWIDTH; k) � C(TCLUSTER; k+1) holds. Thus, by takingÆ = 1, we
easily getTREEWIDTH � TCLUSTER.D1 �D2 (D1 beatsD2) if there exists an integerk such that, for everym; C(D1; k) 6�C(D2; m). To prove thatD1 �D2, it is sufficient to exhibit a class of hypergraphs
contained in someC(D1; k) but in noC(D2; j) for everyj � 0.

Intuitively, D1 � D2 means that, at least on some class of CSP instances,D1 out-
performsD2 with respect to tractability, because these instances are tractable ac-
cording toD1, but not according toD2. For such classes, usingD1 is thus better
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than usingD2.D1 �� D2 if D1 � D2 andD2�D1. In this case we say thatD2 strongly generalizesD1.
This means thatD2 is really the more powerful method, given that, wheneverD1 guarantees polynomial runtime for constraint solving, then alsoD2 guarantees
tractable constraint solving, but there are classes of constraints that can be solved
in polynomial time by usingD2 but are not tractable according toD1.
Mathematically,� is apreorder, i.e., it is reflexive, transitive, but not antisymmet-
ric. We say thatD1 is�-equivalent toD2, denotedD1 � D2, if bothD1 � D2 andD2 � D1 hold. Note that, on the other hand,�� is transitive and antisymmetric,
but not reflexive.

The decomposition methodsD1 andD2 arestrongly incomparableif bothD1�D2
andD2 � D1. Note that, ifD1 andD2 are strongly incomparable, then they are
incomparable with respect to the relations� and��, too.

7 Comparison Results

In this section we present a complete comparison of the decomposition methods
described in Section 4, according to the above criteria. Figure 1 (reproduced here
as Figure 16 with the acronyms of decomposition methods for the reader’s conve-
nience) shows a representation of the hierarchy of decomposition methods deter-
mined by the�� relation. Each element of the hierarchy represents one decompo-
sition method, apart from that containingTree Clustering,w�, andTreewidthwhich
are grouped together because they are�-equivalent as easily follows from the ob-
servations in Section 4.

Theorem 23 For each pairD1 andD2 of decompositions methods represented in
Figure 16, the following holds:� There is a directed path fromD1 toD2 if and only ifD1 �� D2, i.e., if and only

if D2 strongly generalizesD1.� D1 andD2 are not linked by any directed path if and only if they are strongly
incomparable.

Hence, Fig. 16 gives a complete picture of the relationshipsholding among the
different methods.

The following lemmas, together with the transitivity of therelations defined in Sec-
tion 6, prove Theorem 23.

27



w� � TREEWIDTHTCLUSTER �HINGETCLUSTER HYPERCUTSET
BICOMP CUTSETHINGE

HYPERTREE

Figure 16. Constraint Tractability Hierarchy

For anyn > 2 andm > 0, let Circle(n;m) be the hypergraph havingn edgesfh1; : : : ; hng defined as follows:� hi = fX1i ; : : : ; Xmi ; X1i+1; : : : ; Xmi+1g 81 � i � n� 1;� hn = fX1n; : : : ; Xmn ; X11 ; : : : ; Xm1 g.

n

n-1h

h2h1

h

Figure 17. The hypergraphCircle(n; 2)
Figure 17 shows the hypergraphCircle(n; 2), for somen > 8. Form = 1, Circle(n; 1)
is a graph consisting of a simple cycle withn edges (like a circle). Note that, for
anyn > 2 andm > 0, Circle(n;m) has hypertree width 2. A width 2 hypertree
decomposition ofCircle(n;m) is shown in Figure 18. It follows that the (infinite)
class of hypergraphs

Sn>2;m>0fCircle(n;m)g is included in the tractability classC(HYPERTREE; 2).
For anyn > 0, let triangles(n) be the graph(V;E) defined as follows. The set of
verticesV contains2n+1 verticesp1; : : : ; p2n+1. For each even indexi, 2 � i � 2n,fpi; pi�1g, fpi; pi+1g, andfpi�1; pi+1g are edges inE. No other edge belongs toE.
Figure 19 shows the graphtriangles(n). TheHYPERTREE width of triangles(n)
is 2. Indeed, a hypertreehT; �; �i, whereT is a simple chain ofn verticesv1; : : : ; vn
and, for eachvi (1 � i � n), �(vi) = fp2i�1; p2i; p2i+1g and�(vi) contains the
two edgesfp2i�1; p2ig andfp2i; p2i+1g, is a width 2HYPERTREE decomposition oftriangles(n).
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fX12 ; : : : ;Xm2 ;X13 ; : : : ;Xm3 ;X1n; : : : ; Xmn g fh2;hngfX11 ; : : : ;Xm1 ;X12 ; : : : ;Xm2 ;X1n; : : : ; Xmn g fh1;hng

fX1n�1; : : : ;Xmn�1;X1n; : : : ;Xmn g fhn�1gfX1n�2; : : : ;Xmn�2;X1n�1; : : : ;Xmn�1; X1n; : : : ;Xmn g fhn�2;hng
Figure 18. 2-width hypertree decomposition ofCircle(n;m)
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Figure 19. The graphtriangles(n)
For anyn > 0, let book(n) be a graph having2n+2 vertices and3n+1 edges that
form n squares (pages of the book) having exactly one common edgefX; Y g. It is
easy to see that theHYPERTREE width of book(n) is 2. Figure 20 shows the graph
book(4).
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Figure 20. The graphbook(4)
Lemma 24 CUTSET �� HYPERCUTSET.

PROOF. HYPERCUTSET clearly generalizesCUTSET. Moreover,HYPERCUTSET�CUTSET. Indeed,
Sn>2;m>0 fCircle(n;m)g 6� C(CUTSET; k) holds for anyk > 0;

while,
Sn>2;m>0fCircle(n;m)g � C(HYPERCUTSET; 1), as deleting any edge of

Circle(n;m) yields an acyclic hypergraph.2
Lemma 25 BICOMP � HYPERCUTSET.
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PROOF. Consider the graphtriangles(n) for somen > 0. It is easy to see that
theHYPERCUTSET width of triangles(n) is dn=3e, while its BICOMP width is3. Hence,

Sn>1ftriangles(n)g � C(BICOMP; 3), while,
Sn>1ftriangles(n)g 6�C(HYPERCUTSET; k) holds for everyk > 0. 2

Lemma 26 BICOMP andCUTSET are strongly incomparable.

PROOF. (BICOMP� CUTSET.) Follows from Lemma 25 and Lemma 24.

(CUTSET�BICOMP.) Consider the graphbook(n) for somen > 0. The whole graph
book(n) is biconnected. Thus, itsBICOMP width is2n + 2. On the other hand, the
setfX; Y g is a cycle cutset ofbook(n). Thus,

Sn>1fbook(n)g � C(CUTSET; 2)
holds. 2
Lemma 27 BICOMP �� HINGE.

PROOF. In [18], it was shown thatBICOMP� HINGE. Thus, it suffices to prove
thatHINGE� BICOMP: Consider the graphbook(n) defined above, for somen > 0.
As observed above, theBICOMPwidth of book(n) is 2n+2, while itsHINGEwidth
is 4. Indeed, the minimal hinges ofbook(n) correspond to the pages of the book,
and each of them has cardinality 4.2
Lemma 28 BICOMP �� TCLUSTER.

PROOF. In [7], it was observed thatBICOMP� TCLUSTER. (In fact, BICOMP
was compared withw�, which is�-equivalent toTCLUSTER.) Furthermore,TCLUSTER�BICOMP follows from CUTSET � BICOMP and from the fact, observed in [7], thatTCLUSTER generalizesCUTSET, i.e.,CUTSET � TCLUSTER. 2
Lemma 29 CUTSET �� TCLUSTER.

PROOF. As mentioned above,CUTSET � TCLUSTER [7]. Moreover,TCLUSTER �CUTSET follows fromBICOMP � CUTSET andBICOMP � TCLUSTER. 2
Lemma 30 CUTSET � HINGE.

PROOF. Every graph in
Sn>2fCircle(n; 1)g hasCUTSET width 1, because delet-

ing any vertex of the graph we get an acyclic graph. However, for anyn > 2, the
degree of cyclicity ofCircle(n; 1) is n [18]. 2
Lemma 31 HINGE andTCLUSTER are strongly incomparable.
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PROOF. (HINGE � TCLUSTER). Let S = fCircle(3; m) j m > 1g. For anym >1, the primal graphG of Circle(3; m) is a clique of3m variables. Thus,G does
not need any triangulation, because it is a chordal graph. The TCLUSTER width of
Circle(3; m) is clearly3m; while itsHINGE width is 3, because every hypergraph
in S has only three (hyper)edges.

(TCLUSTER� HINGE). Follows fromCUTSET�HINGE andCUTSET � TCLUSTER. 2
Lemma 32 HINGE�� HINGETCLUSTER andTCLUSTER�� HINGETCLUSTER.
PROOF. It is easy to see that bothHINGE� HINGETCLUSTER andTCLUSTER�
HINGETCLUSTER hold. Furthermore,HINGETCLUSTER� HINGE follows fromTCLUSTER�
HINGETCLUSTER andTCLUSTER � HINGE; andHINGETCLUSTER � TCLUSTER follows
from HINGE� HINGETCLUSTER andHINGE� TCLUSTER. 2
Lemma 33 HINGETCLUSTER� HYPERTREE.

PROOF. LetH be a hypergraph, andH0 be aHINGETCLUSTER decomposition ofH
of width k. We show that there exists a hypertree decomposition forH of widthk. We will use as a running example the hypergraphHhg in Example 6. Figure 11
shows the width 3HINGETCLUSTER decompositionH0hg of Hhg, described in Exam-
ple 7.

Recall that, by construction, theHINGETCLUSTER decompositionH0 is an acyclic hy-
pergraph. Note that, in general,H0 is not a reduced hypergraph. For instance,H0hg
is not reduced, as the edgefX1; X2; X3g, coming from theTCLUSTER decomposi-
tion of the hingeH2, is a subset offX1; X2; X3; X10; X11g, which comes from the
hingeH1.
LetH00 be the reduced and acyclic hypergraph obtained fromH0 deleting each edge
that is a subset of some other edge of the hypergraph. Therefore, e.g.,H00hg contains
all the edges ofH0hg, but the edgefX1; X2; X3g.

We partition the edges ofH00 into three setsAE, HE, andTE defined as follows.

The setAE contains all edges ofH00 that come from theTCLUSTER decomposition
of some hingeHi of H such that the subgraph(var(Hi); Hi) is acyclic. In the
running example, this property holds for hingesH4, H5, andH6. Recall that, in
this case,w(Hi) = 1 holds, and the decomposition of this hinge is just the acyclic
hypergraph(var(Hi); Hi). E.g., forH00hg,AE contains the edges corresponding to
the constraint scopess5, s6, s7, ands8, i.e.,fX4; X5; X6g, fX4; X7g, fX5; X8g,
andfX6; X9g, respectively.

The setTE contains all edges inedges(H00) � AE that come from theTCLUSTER
decomposition of some hingeHi of H such that the subgraph(var(Hi); Hi)
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is cyclic. Since theTCLUSTER decomposition of this hypergraph is bounded byk, it follows that each edge inTE contains at mostk variables. In our running
example,TE contains two edgesfX1; X3; X6g andfX1; X4; X6g that we callte1 andte2, respectively.

The setHE contains all those edges inedges(H00)�AE�TE that come from some
hinge ofH. Thus, any edgeh in HE is the union of at mostk edges belonging to
some hingeHi of H. We denote the hingeHi corresponding toh by hinge(h).
In our running example,HE contains one edgefX1; X2; X3; X10; X11g that
we call he1 and comes from the hingeH1 = fs1; s2; s9g of Hhg. Therefore,hinge(he1) = fs1; s2; s9g.

LetJT be a jointree of the acyclic hypergraphH00. Recall that each vertex of the treeJT is an edge ofH00 and vice versa, and that the connectedness condition holds,i.e.,
the subgraph ofJT induced by any variable ofH0 is connected. Figure 21 shows a
jointree ofH00hg.

s8(X6; X9)s7(X5; X8)s6(X4; X7) s5(X4 ; X5; X6)te2(X1; X4; X6)
he1(X1; X2; X3; X10; X11)te1(X1; X3; X6)

Figure 21. A jointree of the hypergraphH00hg
FromJT , we define a hypertree decompositionHD = hT; �; �i, where the treeT
has the same shape asJT , and the labelings� and� are defined through the fol-
lowing procedure. For each vertexh of JT , denote byph the corresponding vertex
in the treeT of H.

(1) for each edgeh of AE, label the corresponding vertexph as follows:�(ph) =h and�(ph) = fhg.
(2) for each edgeh of HE, label the corresponding vertexph as follows:�(ph) =h and�(ph) = hinge(h).
(3) for each edgeh of TE, label the corresponding vertexph as follows:�(ph) =h and�(ph) = ;. For the running example, Figure 22 shows the hypertree

obtained after these three steps.

fX4; X7g fs6g fX4; X5; X6g fs5gfX5; X8g fs7g fX6; X9g fs8gfX1; X3; X6g fg fX1; X4; X6g fg
fX1; X2; X3; X10; X11g fs1; s2; s9g

Figure 22. The hypertree for the running example in the proofof Lemma 33 after steps 1,
2, and 3
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(4) for each edge�h of the hypergraphH such that there is no vertexq in T with�h 2 �(q), choose a vertexh of JT such that�h � h andh 2 TE, and add�h to
the� labeling of the corresponding vertexph in T (i.e.,�(ph) := �(ph)[f�hg).
In our running example, we add the edges3, whose variables areX1 andX4,
to the� labeling of the hypertree’s root, and the edges4, whose variables areX4 andX6, to the� labeling of the left child of the root, as shown in Figure 23.

fX4; X7g fs6g fX4; X5; X6g fs5gfX5; X8g fs7g fX6; X9g fs8gfX1; X3; X6g fs4g fX1; X4; X6g fs3g
fX1; X2; X3; X10; X11g fs1; s2; s9g

Figure 23. The hypertree for the running example in the proofof Lemma 33 after Step 4

(5) While there is a vertexp in T such that�(p) contains a variableX not covered
by �(p) (i.e.,X 2 �(p)� var(�(p))), proceed as follows.
(A) Find a path� in T linking p to a vertexq such that (i)X 2 var(�(q))

and, (ii)X 62 var(�(s)) for every vertexs in � � fqg.
(B) Choose an edgeh 2 �(q) such thatX 2 h.
(C) Addh to both�(s) and�(s), for every vertexs 2 � � fqg (i.e.,�(s) :=�(s) [ h, and�(s) := �(s) [ fhg).
In the running example, the root contains the variableX6 that is not covered
by the edges3 (see Figure 23). Then, we choose the path connecting the root
and its right child, becauseX6 occurs in some edge belonging to its� labeling,
namely in the edges5. Thus, we adds5 to the� labeling of the root, and the
covering ofX6 is done. Similarly, the variableX1 occurring in the left child of
the root is covered by adding to its� labeling the edges1, which occurs in its
child. Figure 24 shows the final hypertree obtained for the running example.

fX4; X7g fs6g fX4; X5; X6g fs5gfX5; X8g fs7g fX6; X9g fs8gfX1; X3; X6g fs4; s1gfX1; X4; X6g fs3; s5g
fX1; X2; X3; X10; X11g fs1; s2; s9g

Figure 24. The final hypertree for the running example in the proof of Lemma 33

Note that, after steps 1, 2, and 3, the connectedness condition (i.e., Condition 2 of
Definition 12) clearly holds inHD because it holds in the jointreeJT . However, for
any vertexph of T corresponding to a vertexh 2 TE of JT , Step 3 only provides
the� labeling forph. Thus, in Step 4, we select the edges ofH that cover these
variables in the vertexph of the decompositionHD, i.e., we define the� labeling
for ph.

Since the connectedness condition is preserved in Step 3 above, it is easy to verify
that, at the end of the procedure,HD is a hypertree decomposition ofH. Moreover,
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its HYPERTREE width is at mostk. Indeed, by the above construction, it follows
that for each vertexh 2 HE, j�(ph)j = jhinge(h)j � k, and, for each vertexh0 2 TE, j�(ph)j � jhj � k. 2
Lemma 34 HINGETCLUSTER�� HYPERTREE.

PROOF. From Lemma 33,HINGETCLUSTER� HYPERTREE holds. We next show
that HYPERTREE � HINGETCLUSTER. Consider the cyclic hypergraphCircle(n;m),
for anyn > 2; m > 0. This hypergraph has a unique hinge containing all its edges,
and therefore itsHINGE width is n. Moreover, its primal graph contains maximal
cliques of cardinality at least2m, and thus itsTCLUSTER width is at least2m. It
follows that

Sn>2;m>0 fCircle(n;m)g 6� C(HINGETCLUSTER; k) holds for anyk >0. However, forHYPERTREE,
Sn>2;m>0fCircle(n;m)g � C(HYPERTREE; 2) holds.

(See Figure 18 for a hypertree decomposition ofCircle(n;m) of width 2.) 2
Lemma 35 HINGETCLUSTER andHYPERCUTSET are strongly incomparable.

PROOF. HINGETCLUSTER � HYPERCUTSET follows from BICOMP � HYPERCUTSET
andBICOMP � HINGETCLUSTER.HYPERCUTSET�HINGETCLUSTER. Indeed,

Sn>2;m>0 fCircle(n;m)g 6�C(HINGETCLUSTER; k)
holds for anyk > 0; while,

Sn>2;m>0fCircle(n;m)g � C(HYPERCUTSET; 1). 2
Lemma 36 HYPERCUTSET �� HYPERTREE.

PROOF. We have thatHYPERTREE � HYPERCUTSET because, from Lemma 25,BICOMP � HYPERCUTSET, andBICOMP � HYPERTREE.

We next prove thatHYPERCUTSET � HYPERTREE. LetH be a hypergraph andH �edges(H) a cycle hypercutset ofH. Let k be the cardinality ofH. Let H0 be the
subhypergraph ofH induced byvar(H)� var(H), i.e., the hypergraph having an
edgeh0(h) = h� var(H) for each edgeh 2 edges(H) such thath� var(H) 6= ;.
Note that, in general,H0 is not connected. By definition of cycle hypercutset,H0 is
acyclic. Thus, there exists a join forest forH0, i.e., a set of jointreesJT1; : : : ; JT`
corresponding to thes connected components ofH0.
We show that there exists a hypertree decompositionHD = hT; �; �i of H having
width k + 1. The rootr of T is labeled by the cycle hypercutsetH, i.e.,�(r) = H,
and�(r) = var(H). The rootr has` childrenfp1; : : : ; p`g corresponding to thè
jointreesJT1; : : : ; JT`. In particular, each subtreeTpi rooted at a childpi (1 � i � `)
has the same tree shape as the jointreeJTi. Moreover, letq be a vertex of the jointreeJTi, andh be an edge ofH such thath0(h) is the edge ofH0 associated to the vertex
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q of JTi. We label the corresponding vertex�q in Tpi as follows:�(�q) = fhg [ H,
and�(�q) = h [ var(H).
It is easy to see that the hypertreeHD is a hypertree decomposition ofH, and its
width isk + 1. It follows thatHYPERCUTSET � HYPERTREE. 2
8 Binary CSPs

In this section, we focus on binary constraints satisfaction problems, i.e., on CSPs
where the constraints relations have arity at most two.

On binary constraint networks, the differences among the decomposition strate-
gies, highlighted in Section 7, become less evident. Indeed, bounding the arities
of the constraint relations, the k-tractable classes of some decomposition strategies
collapse, while some generalizations are no longer strong generalizations.

Hinge Decomposition

Biconnected Components

Cycle HypercutsetTree Clustering�binw� �bin treewidth

Hypertree Decomposition

Cycle Cutset

�binHinge+Tree Clustering

Figure 25. Tractability Hierarchy for Binary CSPs

Let ��bin;�bin, �bin, and�bin the relations on the decompositions strategies in-
duced by��;�, �, and�, respectively, when only binary CSPs are considered.

In Figure 25, full arcs (and paths containing full arcs) represent��bin relationships,
while a dashed arc from a methodD1 to a methodD2 means thatD1 �bin D2 andD2 6�bin D1, but at the same timeD1 6��bin D2. From the latter relationship, it
follows that every classC that is tractable according toD1 is also tractable accord-
ing toD2, i.e., theD2 width of every graph belonging to the classC is bounded
by some constantk > 0. However,D2 6�bin D1 entails thatD2 decompositions
are more “efficient,” in the sense that solving aD1-tractable class byD2-solution
methods is feasible by augmenting the worst-case complexity by at most an additive
constant in the exponent, while this is not possible in the other direction.
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Theorem 37 For each pairD1 andD2 of decompositions methods represented in
Figure 25, the following holds:� There is a directed path fromD1 toD2 if and only ifD1 �bin D2.� There is a directed path containing at least one full arrow fromD1 toD2 if and

only ifD1 ��bin D2.� D1 andD2 are not linked by any directed path if and only if they are incompara-
ble with respect to the�bin relationship, i.e., if bothD1 6�bin D2 andD2 6�bin D1
hold.

The following lemmas provide the proof of this theorem.

Lemma 38 HINGE ��bin TCLUSTER.

PROOF. First note thatTCLUSTER�bin HINGE follows from the proof showing thatTCLUSTER � HINGE. Indeed, for anyn > 2, the graphCircle(n; 1) has degree of
cyclicity n, while it hasTCLUSTER width 3.

To prove thatHINGE �bin TCLUSTER, we show that for any graphG = (V;E)
HINGE-width(G) �TCLUSTER-width(G). If G is an acyclic graph, then its degree
of cyclicity is 2 and itsTCLUSTER width is 1, by definition. Now, assumeG is a
cyclic graph and letT be a hinge decomposition ofG. From the definition of hinge
decomposition, it follows thatT represents a join tree of an acyclic hypergraph.

We recall from [19] that, given a hingeH of G,H 0 � H is a hinge ofG if and only
if H 0 is a hinge of the graph(var(H); H). It follows that any minimal hinge ofG
must be a connected set of edges. Moreover, it is easy to see that if H is a minimal
hinge and(var(H); H) is acyclic, thenjHj = 2.

LetT 0 be a new join tree initially set equal toT . As long as there exists some vertex
of T 0 corresponding to a 2-edges hinge ofG, modify T 0 as follows: (1) select a
vertexp of T 0 containing two edges ofG e1 ande2; (2) add toT 0 two verticesp1
andp2 containing edgese1 ande2, respectively; (3) add an edge connectingp1 andp0 for any vertexp0 of T 0 connected top and sharinge1 with p; (4) add an edge
connectingp2 andp0 for any vertexp0 of T 0 connected top and sharinge2 with p;
(5) removep and all its incident edges fromT 0. It is easy to verify that the final
treeT 0 obtained when the procedure above terminates satisfies the connectedness
condition of join trees. In fact, it represents an acyclic hypergraph, sayH0.
Let G0 be the primal graph ofH0. The graphG0 is clearly chordal andE � E 0,
thus it can be obtained by some suitable triangulation ofG. Let k be the number of
variables occurring in the largest cliqueC of G0. SinceG is a cyclic graph,k > 2.
By construction ofG0, the cliqueC corresponds to some minimal hingeH of G
such that the graph(var(H); H) is both connected and cyclic. This entails thatjHj � var(H) = k.
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It follows thatk �HINGE-width(G), becauseHINGE-width(G) is equal to the cardi-
nality of the largest minimal hinge ofG. Thus the lemma holds, becauseTCLUSTER-
width(G) � k, asG0 witnesses that there exists a graph obtained by some triangu-
lation ofG whose maximal clique has cardinalityk. 2
Lemma 39 The following relationships hold betweenHYPERTREE andTCLUSTER:� TCLUSTER �bin HYPERTREE;� HYPERTREE 6�binTCLUSTER; and� HYPERTREE 6�bin TCLUSTER.

PROOF. (TCLUSTER �bin HYPERTREE.) Easily follows from the same construction
described in Lemma 33 to prove thatHINGETCLUSTER � HYPERTREE.

(HYPERTREE 6 �bin TCLUSTER.) Follows from the fact that, for any graphG,
TCLUSTER-width(G) � 2�HYPERTREE-width(G). Let HD be anyk-width hy-
pertree decomposition of a graphG. The hypergraph corresponding to the acyclic
instance built according toHD has a primal graphG0 whose largest clique contains2 � k variables at most. Indeed, at mostk edges can be associated to any vertexp of
the hypertree decomposition and hencevar(p) � 2 � k.

(HYPERTREE 6�bin TCLUSTER.) Observe that, for everyn > 3, the complete graphKn hasHYPERTREE width dn=2e, while it hasTCLUSTER width n. Thus,Kn 2C(HYPERTREE; n0), for eachn0 � dn=2e, whileKn 62 C(TCLUSTER; n00), for eachn00 < n. It follows that there is no fixedÆ such that, for everyk > 0,C(HYPERTREE; k) �C(TCLUSTER; k + Æ). 2
Lemma 40 The following relationships hold betweenHYPERCUTSET andCUTSET:� CUTSET �bin HYPERCUTSET;� HYPERCUTSET 6�binCUTSET; and� HYPERCUTSET 6�bin CUTSET.

PROOF. The proofs of the first two points above are straightforward.We next
show thatHYPERCUTSET 6�bin CUTSET. Consider the graphtriangles(n) for somen > 0. It is easy to see that theHYPERCUTSET width of triangles(n) is dn=3e,
while itsCUTSET width isdn=2e. Thus,triangles(n) 2 C(HYPERCUTSET; n0), for
eachn0 � dn=3e, while triangles(n) 62 C(CUTSET; n00), for eachn00 < dn=2e. It
follows that there is no fixedÆ such that, for everyk > 0, C(HYPERCUTSET; k) �C(CUTSET; k + Æ). 2
All the other relationships follow from transitivity, or from the corresponding proofs
given in the general case of hypergraphs, which carry over tothe binary case.
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9 Solving nonbinary CSPs by dualization

Many structural decomposition methods have been designed to identify “easy”
graph structures, rather than “easy” hypergraph structures. In Section 4, we de-
scribed binary decomposition methods (i.e., decomposition methods designed for
graphs, but not for hypergraphs) acting on the primal graph of the hypergraph asso-
ciated to the given CSP instance. As we showed in the previoussection, for binary
CSPs some methods become closer to the hypertree-decomposition method.

An alternative approach to the solution of nonbinary CSPs isto exploit binary meth-
ods on the dual graph of a hypergraph. (See, e.g., [7].) Givena CSP instanceI, the
dual graph[7,9,22] of the hypergraphHI is a graphGdI = (V;E) defined as fol-
lows: the set of verticesV coincides with the set of (hyper)edges ofHI , and the setE contains an edgefh; h0g for each pair of verticesh; h0 2 V such thath \ h0 6= ;.
That is, there is an edge between any pair of vertices corresponding to hyperedges
of HI sharing some variable.

The dual graph often looks very intricate even for simple CSPs. For instance, in
general, acyclic CSPs do not have acyclic dual graphs. However, it is well known
that the dual graphGdI can be suitably simplified in order to obtain a “better” graphG0 which can still be used to solve the given CSP instanceI. In particular, ifI is
an acyclic CSP,GdI can be reduced to an acyclic graph that represents a jointreeofHI . In this case, the reduction is feasible in polynomial (actually, linear) time. (See,
e.g., [22].)

Definition 41 LetG = (V;E) be the dual graph of some hypergraphH. For any
pair of verticesh; h0 2 V , let `(fh; h0g) = h \ h0. A reductG0 of G is a graph(V 0; E 0) satisfying the following conditions:

(i) V 0 = V ;
(ii) E 0 � E; and

(iii) for each edgeq = fh; h0g belonging to(E � E 0), there exists inG0 a pathP
from h to h0, such that the variables iǹ(q) are included iǹ (q0) for each edgeq0 occurring in the pathP . That is, if all the variables shared by two vertices
occur in some other path between these vertices, the edge connecting them can
be safely deleted from the dual graph.

We denote byred(G) the set of all theminimal reductsof a graphG, i.e., the set
containing every graphG0 which is a reduct ofG and whose set of edges is minimal
(with respect to set inclusion) over all the reducts ofG. Clearly, computing a graph
belonging tored(G) is feasible in polynomial time, because one can just repeatedly
delete an edge as long as possible.

It is thus natural to try to solve a nonbinary CSPI using any decomposition method
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DM on its dual graph:

(1) compute fromGdI a suitable reductG 2 red(GdI);
(2) compute aDM decomposition of the graphG;
(3) solve the instanceI using this decomposition.

For instance,BICOMP can easily be modified to be used on the dual graph of a given
hypergraph [11]. Call this dual versionBICOMPd. The relationship betweenBICOMPd
andHINGE has already been discussed in [18]: it was proved thatHINGE is more
general thanBICOMPd. However, Gyssens et al. observed that a fine comparison
between the two methods is quite difficult because the performance ofBICOMPd
strongly depends on the simplification applied toGdI , i.e., depends on the particular
graph inred(GdI) selected to solve the given CSP instanceI. They also argued that
there is no obvious way to find a suitable simplification good enough to keep small
the biconnected width of the reduct to be used for solving theproblem.

SinceHYPERTREE strongly generalizesHINGE, it follows thatHYPERTREE strongly
generalizesBICOMPd. However, as suggested by Dechter (personal communica-
tion), it would be interesting to compareHYPERTREE with the dual version ofTCLUSTER
(short: TCLUSTERd), defined as follows. LetH be a hypergraph, andG its dual
graph. An acyclic hypergraphH� is aTCLUSTERd decomposition ofH of widthw
if H� is aTCLUSTER decomposition ofG0 of widthw, for some reductG0 2 red(G).
Thedual tree-clustering width(short:TCLUSTERd width) of H is equal to the mini-
mum width over theTCLUSTERd decompositions ofH.

We next show thatHYPERTREE strongly generalizes theTCLUSTERd method, too. To
this end, we introduce a new class of hypergraphs. For anyn > 1 let D-Clique(n)
be the hypergraph havingn+ 2 edgesfha; hb; h1; h2; : : : ; hng defined as follows:� ha = fXaij j 1 � i < j � ng;� hb = fXbij j 1 � i < j � ng;� for 1 � i � n, hi = fXa1i; Xa2i; : : : ; Xai�1i; Xaii+1; : : :Xaing[fXb1i; Xb2i; : : : ; Xbi�1i; Xbii+1; : : :Xbing:
We denote byGd(n) the dual graph ofD-Clique(n).
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Figure 26. The dual graph ofD-Clique(4)
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Example 42 Consider the hypergraphD-Clique(4). Its edges areh1 = fXa12; Xb12; Xa13; Xb13; Xa14; Xb14g;h2 = fXa12; Xb12; Xa23; Xb23; Xa24; Xb24g;h3 = fXa13; Xb13; Xa23; Xb23; Xa34; Xb34g;h4 = fXa14; Xb14; Xa24; Xb24; Xa34; Xb34g;ha = fXaij j 1 � i < j � 4g;hb = fXbij j 1 � i < j � 4g.

Figure 26 shows the dual graphGd(4). Note that this graph cannot be reduced, and
hencered(Gd(4)) = fGd(4)g. For instance, consider the verticesh1 andh4. Their
shared variables areXa14 andXb14. For anyt 62 f1; 4; a; bg, ht \ h1 = fXa1t; Xb1tg,
which clearly does not includefXa14; Xb14g. Moreover,Xb14 62 h1 \ ha andXa14 62h1\hb. Thus, we cannot delete the edgefh1; h4g, and in fact no edge can be deleted
fromGd(4).
Apply TCLUSTER to Gd(4). It is already a chordal graph, therefore we can directly
identify the maximal cliques, that form the edges of theTCLUSTER decomposition
of Gd(4). The resulting acyclic hypergraph has the two edgesfha; h1; h2; h3; h4g,
andfhb; h1; h2; h3; h4g. Thus, theTCLUSTERd width of D-Clique(4) is 5.

TheHYPERTREE width of D-Clique(4) is 2. Figure 27 shows a complete hypertree
decomposition(T; �; �) of D-Clique(4) having width 2. Observe that, exploiting
the two edgesh1 andh2, even the root ofT alone covers all the variables occurring
in D-Clique(4), and is in fact a hypertree decomposition of this hypergraph. To
obtain the complete hypertree decomposition shown in Figure 27, the remaining
edges are simply “attached” as singletons to the root.fXaij ;Xbij j 1 � i < j � ng fha;hbg

fXa12;Xb12;Xa13;Xb13;Xa14;Xb14g fh1g fXa14;Xb14;Xa24;Xb24;Xa34;Xb34g fh4gfXa13;Xb13;Xa23;Xb23;Xa34;Xb34g fh3gfXa12;Xb12;Xa23;Xb23;Xa24;Xb24g fh2g
Figure 27. A hypertree decomposition ofD-Clique(4)

Theorem 43 TCLUSTERd �� HYPERTREE.

PROOF. (HYPERTREE� TCLUSTERd.) Consider the hypergraph classfD-Clique(n) jn > 1g. Generalizing the above example, it is easily seen that, foranyn � 3, the
setred(Gd(n)) is a singleton containing only the dual graphGd(n) of D-Clique(n).
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This graph is chordal, its maximal cliques arefha; h1; : : : ; hng andfhb; h1; : : : ; hng,
and hence theTCLUSTERd width of D-Clique(n) is n + 1. Thus, for anyk > 0,Sn>0fD-Clique(n)g 6� C(TCLUSTERd; k), whereas the hypertree width of all these
hypergraphs is2, i.e.,

Sn>0fD-Clique(n)g � C(hypertree; 2). Indeed, a tree with
a single vertexr with �(r) = fha; hbg and�(r) = ha [ hb is a hypertree decom-
position ofD-Clique(n), though not complete. Figure 27 shows what a complete
hypertree decomposition for such hypergraphs looks like.

(TCLUSTERd � HYPERTREE.) LetH0 be aTCLUSTERd decomposition of a hyper-
graphH of width k. Then,H0 is an acyclic hypergraph whose edges are sets con-
taining at mostk edges fromH. Any join treeJT of H0 can be mapped straightfor-
wardly to a hypertree decomposition(T; �; �) ofH with the same tree-shape asJT.
Every vertexp in T corresponds to a vertexp0 in JT. The vertexp0 of the join tree ofH0 corresponds to a maximal clique of (some reduct of) the dual graph ofH, and
hence contains a setS of edges occurring inH. Then, the vertexp in the hypertree
decomposition is labeled by�(p) = S and�(p) = var(S). Clearly the hyper-
tree decomposition(T; �; �) has the same width as theTCLUSTERd decompositionH0. 2
Note that theTCLUSTERd width of H does not depend on the choice of the reduct
of the dual graph. The width is in fact computed using an optimal reduct ofG,
i.e., a reduct leading to a lowest-widthTCLUSTER decomposition ofH. However,
as observed in [18], it is not clear how to choose the right reduct in order to obtain
theTCLUSTERd decomposition having the smallest width. In fact, it is currently not
known whether, for a fixedk, deciding whether theTCLUSTERd width of a hyper-
graph is at mostk is feasible in polynomial time. Thus, compared toTCLUSTERd,HYPERTREE is strongly more general andk-bounded hypertree decompositions are
efficiently computable.

Clearly, the above result holds forTREEWIDTH andw�, too, given the equivalence
of these methods (see Section 4).

10 Conclusion

In this paper we have established a framework for systematically comparing struc-
tural CSP decomposition methods with regard to their power of identifying large
tractable classes of constraints. We have compared the maindecomposition meth-
ods published in the AI literature. Moreover, we have adapted the method of hyper-
tree decompositions, previously defined in the database context, to the CSP setting.
We compared all methods both for CSPs of arbitrary arity and for binary CSPs. In
both cases it turned out that the hypertree decomposition method is more general
than the others; in the case of general CSPs this holds even ina very strong sense.
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We have also shown that the method of hypertree decompositions is more general
than any dualization method which applies a standard decomposition method to the
dual graph of the constraint hypergraph of a CSP. We have derived the upper time
boundO(kIkk+1 log kIk) for the solution of a CSP instanceI having ak-width
hypertree decomposition. Note that this bound is not worse than the bound for any
other considered method of CSP decompositions. Thus, it appears that the method
of hypertree decompositions is currently the most powerfulCSP decomposition
method.

The comparison results and complexity bounds presented in this paper are valid for
general CSP instances whose domain size is unrestricted. Further work is needed
both on suitable extensions or modifications of decomposition methods and on the
comparison of the various methods for some relevant specialcases, in particular,
for CSPs with afixed domain size. Moreover, as already remarked, both theHINGE
and theBICOMP width of a hypergraph can be computed in polynomial time even
if no fixed bound is given. Thus, these methods may be useful for providing in
polynomial time a “measure of the cyclicity” of any arbitrary CSP instance. For
some practical applications where the given CSP instances have large hypertree
width,HINGE andBICOMP decompositions may be used for the fast identification of
“easy” and “hard” modules (or clusters) of the constraint hypergraph. Moreover, the
algorithm for computing hypertree decompositions itself may suitably be modified
to identify and output clusters of low hypertree-width in case the entire hypergraph
has a high width.

We believe that our comparison results provide insight intothe relationship of vari-
ous standard methods of constraint decomposition. Constraint satisfaction is a very
lively field and several new methods and techniques for decomposing and solving
CSPs are expected to be proposed in the years to come. We hope that the results of
this paper, our comparison framework, and our proof techniques will be useful to
other authors for assessing the relative strength of their methods, and for comparing
them to existing methods.
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