A Comparison of Structural CSP Decomposition
Methods *

Georg Gottlob

Institut fur Informationssysteme, Technische Univétsiien, A-1040 Vienna, Austria.
E-mail: got t | ob@lbai . t uwi en. ac. at

Nicola Leone

Department of Mathematics, University of Calabria, I-88@ende (CS), Italy.
E-mail:| eone@ni cal . at

Francesco Scarcello

Dipartimento di Elettronica, Informatica e Sistemisti¢aniversity of Calabria, I-87036
Rende (CS), Italy. E-maikcar cel | o@lei s. unical .it

Abstract

We compare tractable classes of constraint satisfactioblgmns (CSPs). We first give a
uniform presentation of the major structural CSP decontipmsimethods. We then intro-
duce a new class of tractable CSPs based on the concéppeftree decompositiore-
cently developed in Database Theory, and analyze the cestwihg CSPs having bounded
hypertree-width. We provide a framework for comparing paettic decomposition-based
methods according to tractability criteria and comparetlost relevant methods. We show
that the method of hypertree decomposition dominates therstin the case of general
CSPs (i.e., CSPs of unbounded arity). We also make compariew the restricted case
of binary CSPs. Finally, we consider the application of adeposition methods to the dual
graph of a hypergraph. In fact, this technique is often useexploit binary decomposi-
tion methods for nonbinary CSPs. However, even in this ¢hsdhypertree-decomposition
method turns out to be the most general method.

Key words: Constraint satisfaction, decomposition methods, hypg@its, tractable cases,
degree of cyclicity, treewidth, hypertree width, treestiring, cycle cutsets, biconnected
components.

* Part of this work has been published in preliminary form ie groceedings of the
Sixteenth International Joint Conference on Artificiaklligence (IJCAI'99), Stockholm,
1999.

Please, address correspondence to Francesco Scarcello.

Preprint submitted to Elsevier Preprint 26th October 2000

1 Introduction and Summary of Results

The efficient solution ofConstraint Satisfaction Problems (CSH&s been for
many years an important goal of Al research. Constrainsfeatiion is a central
issue ofproblem solvingand has an impressive spectrum of applications [23]. A
constraint(S;, R;) consists of aconstraint scope5;, i.e., a list of variables and
an associatedonstraint relationr; containing the legal combinations of values.
A CSP consists of a s¢(Sy, 1), (S2,72), - .., (Sg, rq) } Of constraints whose vari-
ables may overlap (for a precise definition, see Section Xol@tion to a CSP
consists a of an assignment of values to all variables sw@attathconstraints are si-
multaneously satisfied. Byolvinga CSP we mean detemining whether the problem
has a solution at all (i.e., checking foonstraint satisfiability, and, if so, compute
one solution.

Constraint satisfiability is equivalent to various dataaoblems [4,18,7,21], e.g.,
to the problem of conjunctive query containment [21], orlie problem of eval-
uating Boolean conjunctive queriesver a relational database [22] (for a discus-
sion of this and other equivalent problems, see [15]). Abtuevaluating Boolean
conjunctive queries, and deciding constraint satisfactian be also recast as the
same fundamental algebraic problem of deciding whethgengiwo finite rela-
tional structuresi and B, there exists a homomorphisfit A — B [21].

Constraint satisfiability in its general form is well-knowm be NP-hard. Much
effort has been spent by both the Al and database commutatidsntify tractable
classesof CSPs. Both communities have obtained deep and usefutgesuhis
direction. The various successful approaches to obtaitetoée CSP classes can be
divided into two main groups [23]:

Tractability due to restricted structure. Thisincludes all tractable classes of CSPs
that are identified solely on the base of the structure of thestraint scopes
{Si,...S,}, independently of the actual constraint relations . ., .

Tractability due to restricted constraint relations. This includes all classes that
are tractable due to particular properties of the condtralationsr, . . ., r,.

This paper deals with tractability due to restricted suuet There are several
papers proposing polynomially tractable classes of caimsr based on different
structural properties of the constraint scopes. UsudiBsé properties can be for-
malized as graph-theoretic properties of thhastraint graphn case of binary con-
straints, or of theconstraint hypergraphn the general case. The constraint hy-
pergraph of a CSP is the hypergraph whose vertices are trables of the CSP
and whose hyperedges are the sets of all those variablek wbotir together in a
constraint scope.

It is well known that CSPs witlacyclic constraint hypergraphs are polynomially
solvable [7]. The known structural properties that leadactible CSP classes are

all (explicitly or implicitly) based on some generalizatiof acyclicity. In partic-
ular, each method defines some concepivafth which can be interpreted as a
measure of cyclicity of the underlying constraint (hypeajzh such that, for each
fixed width &, all CSPs of width bounded by are solvable in polynomial time.
There is a plethora of proposed methods based on variowsahff measures of
cyclicity, but little was known so far on the relative strémgf the different meth-
ods. A comparison of the main methods is called for.

In this paper we establish a framework for uniformly definamgl comparing struc-
tural CSP decomposition methods. Within this framework wmpare the main
methods that have been published so far. In particular, \aewii¢éh the following
methods (which are reviewed in detail in Section 4): Cyclés€r7], Tree Cluster-
ing [9], Treewidth [24], Hinge Decomposition [18,19], Hadecomposition with
Tree Clustering [18], Cycle Hypercutset, and Hypertreeddguosition [16].

We first point out that every considered CSP-decompositiethod D gives rise
to an infinite hierarchy of CSP classes:

C(D,1) c C(D,2)cC --- C C(Dyi), =-----

such that the CSPs of each cl&3&D, k) are solvable in time bounded by a poly-
nomial. In particular, for each CSP belonging to clasg’(D, k) there exists a
decompositiorof width < £, i.e., a data structure witnessing tliatcan be trans-
formed in polynomial time into an equivalent acyclic CSP.

For each CSP-decomposition methbd the clasC'(D, k) is a tractable class of
CSPs because the following important tasks are tractable:

(1) Checking membership of a C$Pin C(D, k), and computing a correspond-
ing CSP decomposition far'.

(2) Solving the CSR. In turn, this task usually consists of the following two
subtasks:
¢ Transforming C in polynomial time into an equivalent acg€iSPC’, and
e solvingC" in polynomial time by using well-known algorithms.

In this paper we compare only those methods that are tracialthe above sense.
In fact, there are methods for solving CSPs, reported intia@ture, for which only
one of the two tasks (1) and (2) above is tractable, while theraone is NP-hard.
For instance, task (1) is NP-complete for the methodafinded query decom-
positionsdefined by Chekuri and Rajaraman [6] (see [16] for an NP-cetepkss
proof), while task (2) is intractable for an early methodpgmeed by Freuder [10,11]
(see Section 4 for an NP-completeness proof).

For a pair of decomposition methodly and D,, we define the following compar-
ison criteria:

Generalization. D, generalized), if there exists a constaitsuch that, for each
level k, C(D1,k) C C(Ds, k + 6) holds. In practical terms, this means that
whenever a class of constraints is tractable according to methoq it is also
tractable according t®,. Moreover, the worst case runtime upper bound guar-
anteed by method, is polynomially bounded by the worst case upper bound
guaranteed by methaoB;; more precisely, the overhead bk, with respect to
D, is at mostn?, wheren is the size of the input CSP. Note that for all pairs
of methods compared in this papéris at mostl. This means thathere is no
significant loss of efficiencyhen replacing method; with the more general
methodD,.

Beating. D, beatsD; if there exists an integer such thatC'(Ds, k) is not con-
tained in clas€’ (D, m) for anym. Intuitively, this means that some classes of
problems are tractable according/g but not according t@;. For such classes,
using Ds is thus better than using;.

Strong generalization. D, strongly generalize®),; if D, generalized); and D,
beatsD,. This means thab, is really the more powerful method, given that,
wheneverD, guarantees polynomial runtime for constraint solvingntaksoD,
guarantees tractable constraint solving, but there assetaof constraints that
can be solved in polynomial time by usiig, but are not tractable according to
D;.

Equivalence. D, and D, areequivalentf D, generalized), and D, generalizes
D;. Intuitively, this means that the methods are polynomialt@nsame classes
of CSPs and do not differ significantly from each other.

In this paper we completely classify all above-mentionecbdeposition methods
according to these criteria. The result of the classificaisaiven in Figure 1. This
figure, in addition mentions another methad) which is known to be equivalent
to the tree-clustering method [9].

An arrow from a method,; to a method), in Figure 1 indicates thdb, is strongly
more general tha®,. Since this relationship is transitive, also a directedh foegt-
tween two methods indicates the same relationship. Thargicscompletan the
sense that there is a directed path from metbpdo methodD, if and only if D,
strongly generalize®,. On the other hand, whenever two methods are not related
by a directed path, then they areeomparablewith respect to the generalization
relation, and, moreover, each of the two methods beats hee. ot

Figure 1 shows that the method of Hypertree Decompositionsigates all other
methods, as it is strongly more general than the other degsitign methods. This
method was originally introduced in the database field fentdying a large class
of tractable conjunctive queries [16]. In this paper we adhis notion to the set-
ting of constraints and we show that constraints of boundgxktiree-width are
polynomially solvable, providing a precise complexity Bse. In particular, we
show that CSPs of hypertree widtttan be solved in tim@ (n**! x logn).

Hypertree Decomposition

_

Hinge Decomposition

+
Tree Clustering

N

Tree Clustering=s

Hinge Decomposition

w* = treewidth

E Biconnected Component% Cycle Cutset|

Figure 1. Constraint Tractability Hierarchy

Hypertree width is a measure of cyclicity specifically desid forhypergraphsit
is interesting to see how the situation changes in the dp=asa ofgraphs i.e., of
binary CSPsTo answer this question, we have compared all considerd¢aohén
the binary case (in Section 8; see Figure 25). Again, it toutghat the method of
Hypertree Decomposition dominates the others, but thie tma slightly weaker
sense to be explained in Section 8.

It was recently asketd whether the method of Hypertree Decompositions can be
explained in terms of simpler and well-known graph cydiciteasures. To every
hypergrapt# one defines thdual graphof H by taking as vertices the hyperedges
of H and by connecting two vertices by an edge if their correspanldyperedges
intersect. The question arose whether the hypertree widthypergraph coincides
with the treewidth or TCLUSTER width of the dual graph Hf (See Section 9

for definitions). We study this interesting question in 88t and give a nega-
tive answer. More generally, we show that the method of Hypedecompositions
strongly generalizeall relevant binary methods based on the dual graph of a given
hypergraph.

This paper is organized as follows. Section 2 containspielries on CSPs. In
Section 3 we discuss tractability of CSPs due to restridredtsire. In Section 4 we
review well-known CSP decomposition methods. In Sectiorefiescribe the new
method ofhypertree decompositiorad analyze the cost of solving CSPs having
bounded hypertree-width. In Section 6 we explain our comparcriteria and in
Section 7 we present the comparison results for general d3¥Rscase of binary
CSPs is briefly discussed in Section 8. In Section 9 we con#iiéeapplication of
“binary” methods to the dual graph of a hypergraph. Finatlgection 10, we draw
our conclusions.

I Rina Dechter, personal communication at IJCAI’99.

2 Constraint Satisfaction Problems

An instance of aconstraint satisfaction problem (CSRjIsoconstraint network

is a triplel = (Var,U,C), where Var is a finite set of variabled/ is a finite
domain of values, and = {C,C,,...,C,} is a finite set of constraints. Each
constraintC; is a pair(S;, r;), wheresS; is a list of variables of lengti; called the
constraint scopeandr; is anm;-ary relation ovet/, called theconstraint relation
(The tuples of-; indicate the allowed combinations of simultaneous valoeste
variablessS;). A solutionto a CSP instance is a substitution Var — U, such
that for each < i < ¢, S;© € r;. The problem of deciding whether a CSP instance
has any solution is calledonstraint satisfiability (CS)(This definition is taken
almost verbatim from [20].)

Many well-known problems in Computer Science and Mathersatan be formu-
lated as CSPs.

Example 1 The famousgraph three-colorability (3COL)problem, i.e., deciding
whether the vertices of a gragh = (Vertices, Edges) can be colored by three
colors (say: red, green, blue) such that no edge links twiicesrhaving the same
color, is formulated as follows as a CSP. TheBet contains a variabl&’, for each
vertexv € Vertices. For each edge = {v,w} € Edges, wherev < w according
to some ordering oifertices the setC contains a constrairt, = (S, r.), where
Se = (X,, X,) andr, is the relationr. consisting of all pairs of different col-
ors, i.e.,rx = {(red, green), (red, blue), (green, red), (green, blue), (blue, red),
(blue, green)}.

For instance, the set of constraints for the gr&phin Figure 2 is the following
C={((4, B),r2), (A, D),r2), (A, G),m2), (B, C)y12), - (G, H),m2) }-

a b c

LB

Figure 2. The grapld’y

Example 2 Figure 3 shows a combinatorial crossword puzzle, which igpeal
CSP [7,23]. A set of legal words is associated to each how@an vertical array
of white boxes delimited by black boxes. A solution to thezlas an assignment
of a letter to each white box such that to each white arraysgyaed a word from
its set of legal words.

This problem is represented as follows. There is a varidhl®r each white box,

and a constraint’ for each arrayD of white boxes. (For simplicity, we just write

the index: for variable X;.) The scope of” is the list of variables corresponding

to the white boxes of the sequente the relation ofC' contains the legal words

for D. For the example in Figure 3, we hatgy = ((1,2,3,4,5),715), Csyg =

((8, 9,].0), TgH), CllH = ((]_]_,]_2,]_3), ’I“UH), CQOH = ((20, 2]_, 22, 23, 24, 25, 26), TQOH),

ClV = ((]_, 7,]_]_,]_6, 20), 7“1\/), CSV = ((5, 8,]_4,]_8, 24), 7“5\/), CGV = ((6,]_0,]_5,]_9, 26), T6v),
Cizy = ((13,17,22), r13y). Subscriptdd andV stand for “Horizontal” and “Verti-

cal,” respectively, resembling the usual naming of defimisiin the crossword puz-

zles. A possible instance for the relation; is {(h, 0, u, s, €), (¢, 0,1,n, s), (b, 1,0, ¢, k) }.

Figure 3. A crossword puzzle

It is well-known and easy to see that Constraint Satisfighié an NP-complete
problem. Membership in NP is obvious. NP-hardness follavg,, immediately
from the NP hardness of 3COL [13].

3 Tractable classes of CSPs

Much effort has been spent by both the Al and database contiesito indentify
tractable classesf CSPs. Both communities have obtained deep and usefitgesu
in this direction. The various successful approaches taiottactable CSP classes
can be divided into two main groups [23]:

1. Tractability due to restricted structure. This includes all tractable classes of
CSPs that are identified solely on the base of the structutteeatonstraint scopes
{Si,...S,}, independently of the actual constraint relations . . , .

2. Tractability due to restricted constraints. This includes all classes that are
tractable due to particular properties of the constraiati@nsr, . .., r,.

The present paper deals with tractability due to restristeatture.

The structureof a CSP is best represented by its associatgeergraphand by

the correspondingrimal graph defined as follows. To any CSP instante=
(Var,U,C), we associate a hypergrapty = (V, H), whereV = Var, andH =
{var(S) | C = (S,r) € C}, wherevar(S) denotes the set of variables in the
scopeS of the constraint'. Figure 4 shows the hypergragty., associated to the
crossword puzzle of Example 2.

Figure 4. Hypergrapf# ., of the crossword puzzle in Example 2

Since in this paper we always deal with hypergraphs corredipg to CSPs in-
stances, the vertices of any hypergraphk= (V, H) can be viewed as the variables
of some constraint satisfaction problem. Thus, we will oftse the ternvariable
as a synonym for vertex, when referring to elements oMoreover, for the hyper-
graph# = (V, H), var(H) andedges() denote the sets andH, respectively.

Let #; = (V, H) be the constraint hypergraph of a CSP instahc&he primal
graphof I is a graph& = (V, '), having the same set of variables (vertices}as
and an edge connecting any pair of variable§” € V" such that{ X, Y’} C h for
someh € H.

Note that if all constraints of a CSP are binary, then its eséed hypergraph is
identical to its primal graph.

The most basic and most fundamental structural propertgidered in the context
of CSPs (and conjunctive database queriea¢yzlicity. It was recognized indepen-
dently in Al and in database theory thaatyclicCSPs are polynomially solvable. A
CSPI is acyclic if its primal graphZ is chordal (i.e., any cycle of length greater
than 3 has a chord) and the set of its maximal cliques coireitheedges(#;) [2].

A join tree JT'(H) for a hypergraph is a tree whose vertices are the edgeg{of
such that, whenever the same varialilec V' occurs in two edged; and A, of H,
thenA; and A, are connected idl'(#), andX occurs in each vertex on the unique
path linking A; and A, in JI'(H). In other words, the set of vertices in which
occurs induces a (connected) subtree/Bf#). We will refer to this condition as

the Connectedness Conditiaf join trees.

Acyclic hypergraphs can be characterized in terms of jaegr A hypergrapf{
is acycliciff it has a join tree [3,2,22]. There exist various equivdleharacteriza-
tions of acyclic hypergraphs [2,14,22]. Checking the §atidity of acyclic CSPs
(or, equivalently, evaluating acyclic conjunctive qusjiés not only tractable but
also highly parallelizable. In fact, as shown in [15], thielpem is complete for
the complexity class LOGCFL, a very low class contained & pharallel classes
AC,; and NG.

Many CSPs arising in practice are not acyclic but are in soemses or another
closeto acyclic CSPs. In fact, the hypergraphs associated withynmaturally
arising CSPs contain either few cycles or small cycles, orlmatransformed to
acyclic CSPs by simple operations (such as, e.g., lumpipether small groups of
vertices). Consequently, CSP research in Al and in datathesey concentrated
on identifying, defining, and studying suitable classesedrly acyclicCSPs, or,
equivalently, decomposition methods, i.e., techniquedégsomposingyclic CSPs
into acyclic CSPs [23,7].

4 Decomposition Methods

In order to study and compare various decomposition methveeléind it useful to
introduce a general formal framework for this notion.

Let H be a hypergraph. For any set of edgés C edges(H), let var(H') =
Uner h. Without loss of generality, we assume that (H) = var(H), i.e., every
variable invar(#) occurs in at least one edge #f, and hence, any hypergraph
can be simply represented by the set of its edges. Moreowegssume without
loss of generality that all hypergraphs under considenaie bothconnectedi.e.,
their primal graph consists of a single connected compom@aireducedi.e., no
hyperedge is contained in any other hyperedge. All our defive and results easily
extend to general hypergraphs.

Let S be the set of all (reduced and connected) hypergraptdeddmposition
method(short: DM) D associates to any hypergragh € HS a parameteiD-
width(#), called theD width of .

The decomposition methadd ensures that, for fixekl, every CSP instancewhose
hypergraph#{; has D-width < £ is polynomially solvable, i.e., it is solvable in
p(II])) = O(|[7]|°V) time, where||I]| denotes the size df. For any CSP instance
I, the size of is defined in the standard way, i.e., as the number of bitsetefmt
encoding! by listing, for each constraint i, its constraint scope and all tuples
occurring in its constraint relation.

For anyk > 0, thek-tractable clasg” (D, k) of D is defined by

C(D, k) = {# | D-width(#) < k}.

Thus,C'(D, k) collects the set of CSP instances which, for fikgdre polynomially
solvable by using the stratedy. Typically, the polynomialp(|| ||) depends on
the parametek. In particular, for eachD, there exists a functioyi such that, for
eachk, each instancé ¢ C(D, k) can be transformed in tim@(||7||°/*))) into
an equivalentcyclic CSP instance. (It follows that all problems WD, k) are
polynomially solvable.)

Every DM D is complete with respect &S, i.e.,HS = U;>, C(D, k). Note that,
by our definitions, it holds thab-width(#) = min{k | H € C(D, k)}.

All tractable classes based on restricted structure thdtawve studied in the litera-
ture fit into this framework. We next describe how the notibwmlth is defined in
the decomposition methods we shall compare in this papeailBé descriptions
of these methods can be found in the corresponding refefseeebelow) and in
many surveys on this subject, e.g., [23,7].

4.1 Biconnected Components (shd@t:COVP) [11]

Let G = (V, F) be a graph. A vertexy € V is aseparating vertexor G if, by
removingp from G, the number of connected components:ahcreases. A bicon-
nected component @f is a maximal set of verticeS C V such that the subgraph

of G induced byC' is connected and remains connected after any one-vertex re-
moval, i.e., has no separating vertices.

It is well known that, from any grapltir, we can compute in linear time a vertex-
labeled tre€T, x), where the labeling functiog is a bijective function that asso-
ciates to each vertex of the trééa set of verticesS of G, such thatS is either

a biconnected component 6f, or a singleton containing a separating vertex for
G. There is an edgép, ¢} in the treeT, if x(p) is a biconnected component 6f
andy(q) contains a separating vertex fGrbelonging to the componertp), i.e.,
x(q) € x(p), holds. We say tha{l’, x) is theBICOMP decomposition of.

For a hypergrapf{, theBICOMP decomposition of{ is theBICOMP decompaosition
of its primal graph, and thieiconnected widtlf 7, denoted by8ICOMP-width(#),
is the maximum number of vertices over the biconnected compis of the primal
graph ofH.

Example 3 Figure 5.a shows a hypergrapi and Figure 5.b its primal graph. The
verticesG, C, D, and E are the separating vertices of this primal graph. Note that

10

the maximum number of vertices over its biconnected compisns 3, and thus
BICOMP-width(#) = 3. Figure 6 shows thBICOMP decomposition o,

-

<

@

\
A\VAVAVAVA

Tn

B C
P
‘ E — ‘
A
D \ Q
O
N
(b)
Figure 5. (a) The hypergrapt,;, and (b) its primal graph
{G,H, 1} {G} {G, L, M}
{C,G, F}
{A, B, C} {C} {C,D, E} {E}
{D} {E.P, Q}
{D, N, O}

Figure 6. TheBICOMP decomposition of the hypergragty, in Example 3

4.2 Tree Clustering (shorf CLUSTER) [9]

Thetree clusteringnethod is based on a triangulation algorithm which tramsor
the primal graphG = (V, E)) of any CSP instancé into a chordal grapl:’. The
acyclic hypergraplt (G’) having the same set of vertices@sand the maximal
cligues of G’ as its hyperedges is BCLUSTER decomposition ofH;. Intuitively,
the hyperedges of{(G’) are used to build the constraints of an acyclic CSP
equivalent tal. The width of theTCLUSTER decompositiort (G') is the maximum
cardinality of its hyperedges. Thee-clustering widtl{short:TCLUSTER width) of
‘Hyis1if Hyis an acyclic hypergraph; otherwise, it is equal to the mummwidth
over theTCLUSTER decompositions ok;.

Example 4 Consider the hypergraph,. shown in Figure 7.a. Figure 7.b shows its
primal graph.

11

X2 X5

X3 XG
(b)
Figure 7. (a) The hypergrapH;., and (b) its primal graph

This graph can be triangulated as shown in Figure 8.a. If weaate a hyperedge
to each maximal clique of this triangulated graph, we getatylic hypergraph
shown in Figure 8.b. This acyclic hypergraph i8G@.USTER decomposition of{;.
of width 3. Moreover, it is easy to see that there iSTOQ.USTER decomposition for
‘H,. having a smaller width, and hence theLUSTER width of #,. is 3.

-8

(@) (b)

Figure 8. (a) A triangulation of the primal graph®#f., and (b) e&CLUSTER decomposition
of Htc

4.3 Treewidth TREEW DTH) [24]

A tree decompositionf a graphG = (V, E) is a pair(T, x), whereT = (N, F) is
atree, and is a labeling function associating to each ventex N a set of vertices
x(p) C V, such that the following conditions are satisfied:

(1) for each vertex of GG, there existp € N such thab € x(p);

(2) foreach edgéb,d} € E, there existp € N such that{b, d} C x(p);

(3) for each vertex of G, the set{p € N | b € x(p)} induces a (connected)
subtree off".

The width of the tree decompositioff’, x) iS max,cn |x(p) — 1|. Thetreewidth
of GG is the minimum width over all its tree decompositions. THREEW DTH of
a hypergrapt is 1 if H is an acyclic hypergraph; otherwise, it is equal to the
treewidth of its primal graph. As pointed out beloWREEW DTHand TCLUSTER

12

are two equivalent methods.

Example 5 Consider again the hypergraph. in Example 4. Figure 9 show a tree
decomposition ofH;. having width2. It follows that the treewidth of{;. is 2 as
only hypergraphs having acyclic primal graphs have tredgwid

{X17X37X6}

{X1, X2, X3} {X1, X4, X6}

{X47X57X6}

Figure 9. A tree decomposition of hypergrafly. in Example 4

4.4 Hinge Decompositions (shoki NGE) [18,19]

Let # be a hypergraphil C edges(H), andF C edges(H) — H. ThenF is called
connected with respect to iff for any two edgesg, f € F, there exists a sequence
ey, ...,e, Of edges inF' such that(i) e; = e; (i) fori = 1,...,n — 1, ¢; Nej1q

is not contained inJ, . h; and (iii) e, = f. The maximal connected subsets of
edges(H) — H with respect toH are called theonnected components &f with
respect toH. It is easy to see that the connected components wfith respect to
H form a partition ofedges(H) — H.

Let H € HS and letH be eitheredges(H) or a proper subset ofdges(#) con-
taining at least two edges. Lét,, ..., C), be the connected componentsiwith
respect toH. Then,H is ahingeif, for i = 1,...,m, there exists an edge € H
such thatvar(edges(C;)) N wvar(H)) < h;. A hinge isminimalif it does not
contain any other hinge.

A hinge decompositioaf H is a tre€l’ such that all the following conditions hold:
(1) the vertices ofl" are minimal hinges ot{; (2) each edge irdges(#) is con-
tained in at least one vertex @f, (3) two adjacent verticed and B of T share
precisely one edgé € edges(#); moreover,L consists exactly of the variables
shared byA and B (i.e., L = var(A) N var(B)); (4) the variables o# shared by
two vertices ofl" are entirely contained within each vertex on their conmeggpiath
inT.

It was shown in [19] that, for any CSP instantethe cardinality of the largest
vertex of any hinge decomposition &f; is an invariant oft;, and is equal to the
cardinality of the largest minimal hinge &f;. This number is called th@egree of
cyclicity of ;. We will also refer to it as thBINGE width of ;.

13

{s5,56}

{s2,53,54,55} {s5,s7}

{s5,s8}

(b)

Figure 10. (a) Hypergrapk,, and (b) a hinge-tree decomposition7éf,

Example 6 Consider a CSP instandg, having the following constraint scopes:

s1(X71, X0, X11); s2(X1, Xo, X3); 53(X1, Xa); 54(X5, Xo); 55(Xs, X5, Xe);
36(X4, X?); 87(X5, Xs); 38(X6> X9); 39(X2, X3, Xy, X11)-

Figure 10 shows the corresponding hypergraflj, which is clearly cyclic. The
minimal hinges ofH,,, are H, = {s, s2, 59}, Ho = {2, 53, 54, 5}, Hs = {s5, 56},
H, = {85, 87}, Hy = {85, 88}, Hg = {83, 86}, andH7 = {84, 88}, WhereSZ’ denotes
the set of variables occurring in the scopgfor 1 < ¢ < 9.

Since the cardinality of the largest minimal hingettf, (hingeH.) is 4, it follows
that theHINGE width of #,,, is 4. Figure 10.b shows HINGE decomposition of
Hhg-

4.5 Hinge Decomposition + Tree Clustering (shdtit: NGETUSTER) [18]

It has been observed [18] that the minimal hinges of a hypetgican be fur-
ther decomposed by means of the triangulation techniqueeoébove-described
tree-clustering method. This leads to a new decompositiethaod, that we call
HI NGETLUSTER \which combine# INGE andTCLUSTER and can be formally defined
as follows. LetT" = (IV, E) be a hinge tree of a hypergrap. For any hinge
H € N, letw(H) be the minimum of the cardinality df and theTCLUSTER width
of the hypergraplivar(H), H). The Hl NGE™WS™ width of # with respect tdl’
ismaxgeny{w(H)}. A H NGE™WST™ER decomposition of{ with respect tdl" is an
acyclic hypergrapt’ having the same set of verticesisand whose set of edges
is obtained fron¥” andH as follows. For each hingH € N, if w(H) = |H|, then
‘H' contains an edgear(H); otherwise,H' contains the edges of armgLUSTER
decomposition of the (sub)hypergraphur(H), H) having widthw(H).

The HI NGE™LVSTER width of H is the minimumHl NGETLUSTER width over all its
HI NGETCLUSTER decompositions.

14

Figure 11. AHI NGE™USTER decomposition of hypergraph},, in Example 6

Example 7 Consider again the constraint scopes of Example 6 and tlyeftiee
decomposition for the hypergragty,, shown in Figure 10.b. From this hinge-tree
decomposition, we constructé NGE™%™* decompositior#{, , of H,.

Consider the sub-hypergraghar(H,), H;) corresponding to the minimal hinge
H; occurring in this hinge-tree decomposition. The primapgraf the hypergraph
(var(H,y), Hy) is a clique containing the vertices;, X,, X3, X;,, and Xy, thus

it is easy to see that thECLUSTER width of this hypergraph i$. However, the
hinge H, contains three edges, hence we gét/;) = 3, and theHl NGETC-USTER
decompositior#{;,, contains the edgfX, Xy, X3, Xio, X1} with all the variables
occurring inH;.

A different situation concerns the sub-hypergrdphr(H,), H,) corresponding
to the minimal hingeH,. This hypergraph is identical to hypergraph. in Ex-
ample 4. We observed th&{,. has TCLUSTER width 3, which is smaller than
|H,| = 4, and hencev(H,) = 3 holds. This means that, in this case, it is con-
venient to further decomposear(H-), Hs) using theTCLUSTER decomposition
method, and thell NGE''"™* decompositior#{;,, contains all the edges belong-
ing to theTCLUSTER decomposition of{,. = (var(Hs), Hy) shown in Figure 7.

Similarly, for i € {4,5,6}, the sub-hypergraphar(H;), H;) corresponding to
the other hinges occurring in the hinge-tree decomposétdrand are acyclic hy-
pergraphs. Thereforey(H;) = 1 holds, because tHECLUSTER width of acyclic
hypergraphs ig.

The resultingHl NGE™"S™* decompositior#,, of #,, is the acyclic hypergraph
shown in Figure 11. The thickest edges in this figure come ftlo@TCLUSTER
decomposition ofvar(H,), H2). Recall that bothv(H,) andw(H,) are3, which
is the maximum value over the hinges occurring in the giH&NGE decompo-

15

sition of H,,. Thus, the width ofH} is 3, and it is easy to verify that there is
no otherHl NGE™LUSTER decomposition having smaller width. It follows that the
HI NGETUSTR width of 7, is 3.

4.6 Cycle Cutset (shorCUTSET) [7]

A cycle cutsebf a hypergrapl is a setS C var(#) such that the subgraph of the
primal graph ofH (vertex-)induced byar(#H) — S is acyclic. That s, after deleting
the vertices inS, the primal graph o#{ becomes acyclic. TheUTSET width of

is 1 if H is acyclic; otherwise, it is the minimum cardinality ovel ié possible
cycle cutsets.

Example 8 The hypergrapl#, shown in Figure 5.a ha®TSET width 4. Indeed,
{G,C, D, E} is a cycle cutset of this hypergraph, and any smaller set wices
does not allow to break all the cycles in its primal graph (Sgere 5.b). As another
example, consider the hypergrafl. shown in Figure 7. TheUTSET width of H,,.

is 2, because there is no cycle cutset of cardindljtwhile there are cycle cutsets
of cardinality2, e.g., the sef X, X,}.

4.7 Cycle Hypercutset (shoitlYPERCUTSET)

This is a simple modification of theUTSET method where the cutset is composed
of (hyper)edges rather than vertices of the given hypehgragycle hypercutseif

a hypergraph{ is a setfl C edges(H) such that the subhypergraph&finduced

by var(H) — var(H) is acyclic. TheHYPERCUTSET width of # is 1 if A is acyclic;
otherwise, it is the minimum cardinality over all its podsibycle hypercutsets.

Example 9 The hypergrapfi, shown in Figure 5.a ha&PERCUTSET width 2. In-
deed, the set containing the two eddgé5G, C'} and{C, D, E'} is a hypercutset of
this hypergraph, as deleting these edges it becomes adyldieover, by deleting
any single edge, we cannot achieve acyclicity. Insteadhypergrapt#;, shown
in Figure 10 ha®lYPERCUTSET width 1. Indeed, e.qg., by just deleting frofd,, the
edge{ X4, X5, X5} we get an acyclic hypergraph.

4.8 Solving CSPs using decomposition methods

For each of the above decomposition methdgds was shown (or it is easy to see)
that, for any fixedk, given a CSP instanck deciding whether a hypergrag;,
has D-width(#;) at mostk is feasible in polynomial time and that solving CSPs

16

whose associated hypergraph is of width at nkostn be done in polynomial time.
In particular,D consists of two phases. Given a CSP instahce

(1) the ¢-bounded)D width w of #; along with a corresponding decomposition
is computed,;

(2) exploiting this decompositiord, is then solved in tim& (n“*'logn), where
n is the size ofl plus the size of the given decomposition (for most methods
this phase consists of the solution of an acyclic CSP instagaivalent td).

Actually, for these methods it is always possible to give deeompositions in
suitable forms without redundancies. Thus, the cost abesteces ta) (|| I']|“+"
log ||1]]), i.e., it depends only on the CSP instance, and does not depethe size
of the decomposition. For a detailed analysis, see SectiovhBre we study the
complexity of evaluating bounded-width CSPs according @& decomposition
method, based on hypertree decompositions [16].

The cost of the first phase is independent on the constrdatiames of 7; in fact,

itis O(||Hy||*¥+e2), where||H;|| is the size of the hypergrapgh;, andcy, ¢, are
two constants relative to the methad(0 < ¢y, c; < 3 for the methods above). As
usual, the size of hypergraghy is defined as the number of bits needed for encod-
ing all the edges of{; as lists of variables. Clearly, the size#f is always smaller
than than|/||, because the encoding bincludes the encoding of its constraint re-
lations, too. Observe also that computing thevidth w of a hypergraph in general
(i.e., without the constant bound < k) is NP-hard for most methods, while it is
feasible in polynomial time foHINGE, and even in linear time f&ICOMP.

Remark 10 The above complexity bounds, given as functions of the v of

the CSP instance, are appropriate for all considered deasitign methods for
generalCSP instances. Of course, if one considers some restriatsgce.g., CSP
instances with a fixed constant domain size, some finer aratysy be useful. In
fact, by exploiting additional information, more accuratamplexity bounds may
be found in order to choose a method that is better tailoredifoh a special case.

4.9 Freuder width and adaptive width

Further interesting methods, that do not explicitly geheeaacyclic hypergraphs,
are based on a different notion of width, that we ¢aduder width[10,11]. If C

is a total ordering of the vertices of a graph= (V, F), then theC-width of G

is defined byw-(G) = max,ey [{ {v,w} € F s.t. w C v}|. The Freuder width

of GG is the minimum of all_-widths over all possible total orderingsof V. For
each fixed constarit, it can be determined in polynomial time whether a graph is
of Freuder widthk. The graphG; shown in Figure 2 has Freuder width 3. This
width can be obtained taking the ordering- d C e C a C g C h C ¢ C f.
Freuder observed that many naturally arising CSPs haveydoaxemwidth [10]. He

17

showed that a CSP of widthwhose relations enjoy the property/dfconsistency
wherek’ > k, can be solved in a backtrack-free manner, and thus in potiaio
time [10,11]. Clearly, since the consistency condition be tonstraint relations
must be satisfied, we cannot define a purely structural decsitign method based
on Freuder width. In fact, the following theorem pinpoirttatithe structural prop-
erty of bounded Freuder width does not make the CSP problgraasier.

Theorem 11 Constraint solvability remains NP-complete even if resél to CSPs
whose primal graph has Freuder width bounded by 4.

PROOF. 3COL remains NP-complete even for graphs of degree 4 (cf).[$8ch
graphs, however, have width at mdsBy the encoding of 3COL as a CSP, as given
in Section 2, the theorem follows.O

One can try to enforce a suitable level of consistency on tmstcaint relations
of a given CSP instance. However, the algorithms used teaser the level of
consistency in the data also increase the Freuder widtheointance [25,8]. Of
course, one can think of devising a more powerful procedufat an equivalent
CSP instance whose Freuder width stays below a fixed boundev#w, from the
above theorem, if B2 NP, such a procedure cannot run in polynomial time.

Dechter and Pearl subsequently introduced the notiomaiiced widthw* [8],
which is — roughly — the smallest Freuder widtlof any graph’ obtained by tri-
angulation methods from the primal gra@hof a CSP such tha®’ ensures: + 1-
consistency. Graphs having induced width at nmiosan be also characterized as
partial k-trees[12] or, equivalently, as graphs having treewidth at mio$t]. It
follows that, for fixedk, checking whethew* < £ is feasible in linear time [5]. If
w* is bounded by a constant, a CSP is solvable in polynomial. tirhe approach
to CSPs based an* is referred to as the*-Tractability method [7]. Note that this
method is implicitly based on hypergraph acyclicity, gitbat the used triangula-
tion methods enforce chordality of the resulting gragtand thus acyclicity of the
corresponding hypergraph. It was noted [9,7] that, for ayglic CSP instance,
TCLUSTERwidth(#;) = w*(Hy) + 1.

5 Hypertree Decompositions of CSPs

A new class of tractable conjunctive database queries,wgeneralizes the class
of acyclic queries, has recently been identified [16]. Thishie class of queries
having a bounded-width hypertree decomposition [16]. Bieg whether a given
query has this property is feasible in polynomial time andrekiighly paralleliz-
able. In this section we first adapt the notion of hypertremdeosition, previously

18

defined in the database context, to the general frameworlymérgraphs. Then,
we show how to employ this notion in order to define a new CSPm@@osition
method we will refer to aBYPERTREE.

A hypertree for a hypergrap is a triple(T, x, \), whereT = (N, E) is a rooted
tree, andy and)\ are labeling functions which associate to each veptexN two
setsx(p) C var(H) and\(p) C edges(H). If T" = (N', E') is a subtree of’, we
definex(7") = U,en x(v). We denote the set of verticéé of T by vertices(T),
and the root ofl" by root(T"). Moreover, for any € N, T, denotes the subtree of
T rooted atp.

Definition 12 A hypertree decompositiarf a hypergraph is a hypertreéiD =
(T, x, \) for H which satisfies all the following conditions:

(1) foreach edgé € edges(H), there exist® € vertices(T) such thavar(h) C
x(p) (we say thap coversh);

(2) for each variablé@” € var(H), the se{p € vertices(T) | Y € x(p)} induces
a (connected) subtree f

(3) for eachp € wvertices(T), x(p) C var(A(p));

(4) for eachp € vertices(T), var(A(p)) N x(T,) < x(p).

Note that the inclusion in Condition 4 is actually an eqyahkiecause Condition 3
implies the reverse inclusion.

An edgeh € edges(H) is strongly coveredn HD if there existg € vertices(T')
such thawar(h) C x(p) andh € A(p). In this case, we say thatstrongly covers
h.

A hypertree decompositioHD of hypergraph#{ is acomplete decompositiaof
‘H if every edge of# is strongly covered itHD.

The width of a hypertree decompositiofY’, x, \) is maz,cyertices(r)| A(p)|. The
HYPERTREE width hw(H) of H is the minimum width over all its hypertree de-
compositions. Ac-width hypertree decomposition &f is optimalif ¢ = hw(H).

The acyclic hypergraphs are precisely those hypergraphiadaypertree width
one. Indeed, any join tree of an acyclic hypergrgptirivially corresponds to a
hypertree decomposition 6{ of width one. Furthermore, if a hypergragti has

a hypertree decomposition of width one, then, from this dgmosition, we can
easily compute a join tree 6{’, which is therefore acyclic [16].

Remark 13 From any hypertree decompositidfD of 7{, we can easily compute
a complete hypertree decomposition#fhaving the same width. For any “miss-
ing” edgeh, choose a vertex of T' such thawar(h) C x(¢) (such a vertex must
exist by Condition 1), and create a new verteas a child ofy with \(p) = h and
x(p) = var(h). Assuming the use of suitable data structures, this cortipaotean

19

be done inO(||#|| - ||HD||) time, where|| HD|| denotes the size of a hypertree de-
composition, i.e., the number of bits needed for encodiny(that is, for encoding
the rooted tree oD and, for each vertex of this tree, the labelinggs and \ for

v, encoded as a list of variables and a list of edge identifiespectively).

Intuitively, if 7 is a cyclic hypergraph, thg labeling selects the set of variables
to be fixed in order to split the cycles and achieve acyclicityp) “covers” the
variables ofy(p) by a set of edges.

Example 14 Figure 12 shows a hypertree decomposition of width 2 of theehy
graph?*, of the crossword puzzle in Example 2 (see Figure 4). Eachhoxhis
figure represents a verte»of the hypertree decomposition#f,,. The two sets de-
picted in the box are the labelingg(v) andA(v). The hypergraph,, is clearly
cyclic, thereforehw(H,.,) > 1 (as only acyclic hypergraphs have hypertree width
1). Thus, it follows that th&YPERTREE width of 4, is 2.

{1,2,3,4,5,20,21, 22,23, 24,25, 26} {1H, 20H}

‘{1, 7,11, 16, 20, 22} {lV,ZOHi ‘{5,8, 14, 18, 24, 26} {5V,20Hi

‘{11,12,13,17,22} {11H,13V}‘ ‘{8,9,10,6,15,19,26} {sH,G%}

Figure 12. A hypertree decomposition of width 2 of hypertyrafy,, in Example 2

{7, X, v, X", Y'} {i}

{X,X',Y,Y',5,C,C",F,F'} {a,b}

{X,Y,0,C",Z} {j,c} {X".Y',F,F',Z'}y {jf}

x2 @) o @] iz wl| Jorzy m

Figure 13. A 2-width hypertree decomposition7of
Example 15 Consider the following constraint scopes:
JLX, Y, X Y) a(S, X, X!, C,F);b(S, YY" C' F');
c(C,C", Z);d(X, Z);e(Y, Z); f(F,F', Z"); g(X', Z"); h(Y', Z").
Let 7, be their corresponding hypergraph. Siri¢eis cyclic, hw(#;) > 1 holds.

Figure 13 shows a (complete) hypertree decompositiGtydfaving width 2, hence
hw(?—tl) = 2.

20

i, XY, X" Y")

a(S,X, X', C,F), b(S,Y,Y',C', F)

(- X,Y, 0, c(C,Cz)| |i(h-u XY, f(F,F',Z)

‘ d(X,Z) ‘ e(Y, Z) ‘ 9(X',Z") rY',Z")

Figure 14. Hyperedge representation of hypertree decatigos$iD;

In order to help the intuition of what a hypertree decomposits, we also present
an alternative representation, callegberedge representatio(Also, “atom repre-
sentation,” in the conjunctive-queries framework.) Fgy@# shows the hyperedge
representation of the hypertree decomposifitiny of ;. Each node in the tree
is labeled by a set of hyperedges represeniifig; x(p) is the set of all variables,
distinct from *’, appearing in these hyperedges. Thus, the anonymousiafia
replaces the variables irur(A(p)) — x(p).

Using this representation, we can easily observe an impioféature of hyper-
tree decompositions. Once an hyperedge has been coveredanay\vertex of the
decomposition tree, any subset of its variables can be uselyin order to decom-
pose the remaining cycles in the hypergraph. For instaheeydriables in the hy-
peredge corresponding to constrgimh 7£; are jointly included only in the root of
the decomposition. If we were forced to take all the varialmheevery vertex where
j occurs, it would not be possible to find a decomposition oftiwvizl Indeed, in this
case, any choice of two hyperedges per vertex yields a hngeesthich violates the
connectedness condition for variables (i.e., Conditioh Refinition 12).

Let £ be a fixed positive integer. We say that a CSP instahbas k-bounded
HYPERTREE width if hw(H;) < k, whereH; is the hypergraph associated o
From the results in [16], it follows thadt-bounded hypertree width is efficiently
decidable, and that a hypertree decomposition of widdan be efficiently com-
puted (if any).

Example 16 Consider again the CSP instankg in Example 6. Figure 15 shows
the hyperedge representation of a width 2 hypertree decsitigoo of its hyper-
graph?#,. It follows that hw(H,,) = 2, becauseH,, is cyclic. Thus,I,, has
2-boundeddYPERTREE width and, more generally;-boundedHYPERTREE width
for any integerk > 1.

Let 4 be a hypergraph, and 1& C wvar(?) be a set of variables anl, Y €
var(H). ThenX is [V]-adjacent toY” if there exists an edgk € edges(H) such
that{X,Y} C h—V.A[V]-path7 from X toY is a sequenc& = X,..., X, =
Y of variables such thak; is [V']-adjacent toX,,, for eachi € [0...¢-1]. A set

21

s2(X1, Xa, X3), s4(X3, Xg)

s1(X1, X190, X11), s9(X2, X3, X109, X11) ‘ s3(X1, X4), s5(Xy4, X5, Xg) ‘

‘ s6(Xg, X7) ‘ ‘ s7(X5, X3g) ‘ sg(Xg, Xg)

Figure 15. A hypertree decomposition of hypergrapf), in Example 6

W C var(H) of variables is']-connected if, for allX, Y € W, there is al’]-path
from X to Y. A [V]-componenis a maximal J']-connected non-empty set of
variablesW C wvar(H) — V. For any [/]-componentC, let edges(C) = {h €
edges(H) | hn C # (0},

Let HD = (T, x, \) be a hypertree fok. For any vertex of T', we will often use

v as a synonym of(v). In particular, p]-component denotes | (v)]-component;
the term p]-path is a synonym ofy(v)]-path; and so on. We introduce a normal
form for hypertree decompositions.

Definition 17 ([16]) A hypertree decompositioHD = (T, x, A) of a hypergraph
H is in normal form(NF) if, for each vertex: € vertices(T), and for each child
of r, all the following conditions hold:

1. there is (exactly) one]-component C, such thaty(Ts) = C,U(x(s)Nx(r));
2. x(s) N C, # 0, whereC, is the [r]-component satisfying Condition 1;

3. var(A(s)) Nx(r) € x(s).

Intuitively, each subtree rooted at a child nadef some node- of a normal form
decomposition tree serves to decompose preciselyrgn@pponent.

Proposition 18 ([16]) For eachk-width hypertree decomposition of a hypergraph
‘H there exists &-width hypertree decomposition &f in normal form.

This normal form theorem immediately entails that, for eaptimal hypertree
decomposition of a hypergragi, there exists an optimal hypertree decomposition
of # in normal form.

The fact that no redundancies occur in hypertree decomgasiin normal form
allows us to give a precise bound on the number of verticeadh sypertree de-
compositions.

Lemma 19 Let HD = (T, x, \) be a hypertree decomposition in normal form of a
hypergraph?{. Moreover, let, be the number of vertices of the decomposition tree
T, andm the number of strongly covered edgesoin HD. Then,n < m holds.

PROOF. Let s be some vertex iff’. We say that a variabl& € y(s) (respectively,
an edgef C x(s))) is “first covered” ins if X & x(vertices(T) — vertices(T,))

22

(resp.,.H Z x(vertices(T) — vertices(T,))); otherwise, X (resp.,H) is said to
be “previously covered.” By Condition 2 of Definition 17 ang @ondition 2 of
Def. 12, it follows that, for any vertex of T, there exists at least a variahle

in var(H) which is “first covered” inp. SinceX € x(p), from Condition 3 of
Definition 12, it follows that there is an eddé of H such thatY € H andH €

A(p). Moreover, from Condition 4 of Definition 12, it follows thatery variable
belonging tod and not covered in some vertexiertices(T) — vertices(T,) must
be first covered ip, and belongs tq(p).

Moreover, sincefl D is in normal form, it satisfies Condition 3 of Definition 17.
(i.e., var(A(s)) N x(r) € x(s)). It follows that, in fact, any previously-covered
variableY” belonging toH must belong to((p). Indeed, since the variabl€ was
not previously covered, the eddé cannot be previously covered, and thus there
exists some vertex' in the subtre€l}, such thatd C x(p'), in order to fulfill
Condition 1 of Definition 12. Assume that the variablec H does not belong to
x(p). SinceH is strongly covered by', Y € x(p'). Moreover, by the choice df,

this variable is previously covered with respecptdt follows thatY” violates the
connectedness condition, a contradiction.

Thus, all the variables i/ belong tox(p). Recall thatd € A(p), too. It follows
that at least one edge &f is first covered in vertex and strongly covered by,
and, in general, that each vertexiirfirst and strongly covers some edgetofThis
entails that the cardinality of the set of vertices in theaheposition tred” of HD

is less than or equal to the numberof the strongly covered edges in the normal
form hypertree decompositiadD of 7. O

A polynomial time algorithnopt - k- deconp which, for a fixedk, decides whether
a hypergraph has-bounded hypertree width and, in this case, computes an opti
mal hypertree decomposition in normal form is described }.[As for many other
decomposition methods, the running time of this algoritbrfirid the hypergraph
decomposition is exponential in the paramétdviore preciselyppt - k- deconp
runs inO(m?*v?) time, wherem andv are the number of edges and the number of
vertices of#{, respectively.

We next show that any CSP instantés efficiently solvable, given &-bounded
complete hypertree-decompositiéflD of ;. To this end, we define an acyclic
CSP instance which is equivalentf@and whose size is polynomially bounded by
the size of].

For each vertex of the decompositiorHD, we define a new constraint scope
whose associated constraint relation is the projectiog (@ of the join of the re-
lations in A(p). This way, we obtain a join-tredl’ of an acyclic hypergrapf’*.
‘H* corresponds to a new CSP instard¢eover a set of constraint relations of size
O(n*), wheren is the input size (i.e.p =||]]) andk is the width of the hyper-

23

tree decompositio®?D. By construction[* is an acyclic CSP, and we can easily
show that it is equivalent to the input CSP instarc&hus, all the efficient tech-
niques available for acyclic CSP instances [9,7], or for problem equivalent to
CSP [26,21,15], can be employed for the evaluatiofi*pfind hence of.

Remark 20 According to our definition, any hypertree is a labeledtedtree.
The rooting is necessary for technical reasons concerhimgétion of hypertree
decomposition only, but has no impact on the actual evalnaif the given CSP
instance. In fact, the above discussion describes how tgutarirom a hypertree
decomposition and a CSP instarica join treeJI" of an acyclic instancé* that is
equivalent tal. This construction does not use the fact that the hypersresoied.
Moreover, note that the acyclic instanfecan be evaluated rooting the join tree
JI' at any vertex.

The following theorem provides a detailed analysis of thmplexity of evaluating
a CSP given a hypertree decomposition for it.

Theorem 21 Given a CSH and ak-width hypertree decompositidiD’ of H; in
normal form,I is solvable inO(||Z||*+* log ||]|) time.

PROOF. Let I be a CSP instance andD’ = (7", x',\') a k-width hypertree
decomposition of{; in normal form. We proceed as follows.

Step 1 We compute frofD' a complete hypertree decompositid® = (T, x, \)
of Hr.

Step 2 We compute fromi/D and I an acyclic instancd™* equivalent tol, as
described above.

Step 3 We evaluate the acyclic instan¢eemploying any efficient technique for
solving acyclic CSPs.

Let m be the number of edges &f;. The following statements hold:

Claim 1. The decomposition tree of the complete hypertree decotipoAiD has
at mostm vertices.This immediately follows from the construction &fD and
from Lemma 19, since in Step 1 above we just add to the decadtigposee T
those edges of{; that are not strongly covered fiD’.

Claim 2. Step 1 is feasible i) (||#/]|?). As observed in Remark 13, this computa-
tion takesO(||HD'|| - |[H|]) time. From Lemma 19, it easily follows thgt/D'||
is O(k ||Hs||) = O(||H]]), because the number of verticesTihis at most the
number of edges of{;, and the number of edge-labels of each verte{ ois
bounded by the constaht

Claim 3. ||I*]|= O(||I]|*), and computing* from I takes timeO(]|]|¥). Consider
aconstraintC = (S.,) in the acyclic instancé*. As described above, the rela-
tion r. is obtained as the natural join of at méstelations occurring in the input
instancel. One of these input relations, say — in fact, its constraint scopfg —

24

is covered by some vertexin the decomposition tree d¢fD which corresponds
to C' in the acyclic instancé*. (In particular, its scopé; corresponds to some
edgeh; € edges(H;) such thath; € A(p), andh; C x(p).) Letr,... be the con-
straint relation having the maximum sigs,,...|| over all the constraint relations
occurring in the input instance Then,||7.||< (||7maz||*~" - ||7i]|). Recall that
the instance* has at mosin constraints. Considering all the constraints/jn
we get the following upper bound for the size of the whole GSP

I ([rmaal* - el - -+ [rmaal* " - [Irmll)
and hence
I < lrmaall =" - (lrall + -+) <lrmaell*=" - 1]

It follows that|| 7* ||<|| T ||*. Moreover, the effectiveomputationof 7* from T
takes timeO(||I||*). Indeed, computing the natural join of two relationsand

ro takes timeO(||ry]| - ||r2||), which is exactly the same bound that we have for
the size of the result of this join operation. Thus, by apudyihe same line of
reasoning as used for the space bound, we get that the camoputéthe acyclic
instancel* is feasible inO(||1]|*) time.

From claims 1-3 and from the well-know(m- ||I*]| -log ||I*||) complexity of
evaluating the acyclic CSP* (see. e.g., [7,9]), it follows that the overall cost of
this evaluation procedure (|| I - || I||* -log [|T]|*) + O(||H||*) = O(||T]|F*
-log ||I||), becausé: is fixed, || H,||<||/||, andk > 1. O

It is worthwhile noting that the crucial difference betwebaHYPERTREE method
and theTCLUSTER method is the objective function to be minimized in order to
obtain the most convenient acyclic decomposition of a gi€&#® instance. The
HYPERTREE method minimizes the number of hyperedgegipfassociated to any
vertex of the acyclic equivalent instance, thus exploithmgyfact that one hyperedge
“covers” many variables at once. TARELUSTER method minimizes the number
of variables occurring in any vertex of the equivalent aicyicistance, as evidenced
by the following example.

Example 22 For anym > 0, letT'(m) be the hypergraph having the + 3 hyper-
edges{hy, ha, hs,e1,€s, ..., e, } defined as follows:

h1:{Xl,...,Xm,Yi,...,Ym,A};
hgz{}q,...,Ym,Zl,...,Zm,B};
hs = {Z1s s Zons X1y ooy Xy O

The TCLUSTER width of T'(m) is 3m, because its primal graph is chordal and its
maximal cliqueC' = {X,..., X,,,Y1,..., Y, Z1, ..., Z, } has cardinalitgm. In

25

fact, according to th@ CLUSTER method, we have to solve a subproblem involving
every hyperedge; (1 <i < m).

On the other hand, for any: > 0, the HYPERTREE width of T'(m) is 2. It is
worthwhile noting that the number of variables occurringhe largest vertex of
this decomposition i$m + 2. Hence, the equivalent acyclic instance we obtain
according taHYPERTREE is not “optimal” according to th&@CLUSTER method, be-
cause its associated primal graph has a clique of cardirsatit+ 2. Nevertheless,
the constraint relation associated to this vertex is coaigatvery easily as the join
of the constraint relations andr, corresponding té, andh,, respectively.

A simple way to get decomposition methods which in some wajagtxthe power
of hyperedges is using the dual graph associated to a CSHv@/a detailed anal-
ysis of these approaches and of their relationships witliY®8RTREE method in
Section 9. It turns out that even such methods do not expleifull power of hy-
peredges, and are less general tHEPERTREE, according to a strong notion of
generalization, formally defined in the next section.

6 Comparison Criteria

For comparing decomposition methods we introduce theioglst<, >, and <<
defined as follows:

D; < D, (in words, D, generalizesD,) if there exists) > 0 such that, for every
k> 0,C (D1, k) C C(Dy, k +0). Thus,D; < D, implies that every class of CSP
instances which is tractable accordingl?pis also tractable according 10,.

Note that the constant above allows us to get rid of small differences among
tractability classes that should be irrelevant in the camspa. E.g., it is known
(see discussion in Section 4.9) tM&LUSTER andTREEWIDTH are equivalent meth-
ods and one would expeTCLUSTER to generalizeTREEWIDTH (as well as vice
versa). However, for any > 1, C'(TREEWIDTH, k) ¢ C(TCLUSTER, k), because
the treewidth is defined through the cardinality of the wettbeling minus one.
Rather,C'(TREEWIDTH, k) C C/(TCLUSTER, k + 1) holds. Thus, by taking = 1, we
easily gefTREEWIDTH < TCLUSTER.

D, > D, (D, beatsD,) if there exists an integérsuch that, for everyn, C(Dy, k) ¢
C(D4y, m). To prove thatD, > D,, it is sufficient to exhibit a class of hypergraphs
contained in somé'(Dy, k) butin noC(Ds, j) for every;j > 0.

Intuitively, D, > D, means that, at least on some class of CSP instantesut-

performsD, with respect to tractability, because these instancesracéable ac-
cording to D,, but not according td,. For such classes, usirg; is thus better

26

than usingDs.

D; < D, if D; < Dy andD,>D;. Inthis case we say thal, strongly generalizes
D;.

This means thatD, is really the more powerful method, given that, whenever
D, guarantees polynomial runtime for constraint solvingntakso D, guarantees
tractable constraint solving, but there are classes oftainss that can be solved
in polynomial time by using), but are not tractable according iy .

Mathematically,< is apreorder, i.e., it is reflexive, transitive, but not antisymmet-
ric. We say thatD, is <-equivalent taD,, denotedD; = D,, if both D; < D, and
D, < D; hold. Note that, on the other hanek is transitive and antisymmetric,
but not reflexive.

The decomposition methodg, and D, arestrongly incomparabld both D, > D,
and D, > D,. Note that, if D; and D, are strongly incomparable, then they are
incomparable with respect to the relatioRsand <<, too.

7 Comparison Results

In this section we present a complete comparison of the dposition methods
described in Section 4, according to the above criteriaurféid. (reproduced here
as Figure 16 with the acronyms of decomposition methods®reéader’s conve-
nience) shows a representation of the hierarchy of decoitmposnethods deter-
mined by the<< relation. Each element of the hierarchy represents onentieco
sition method, apart from that containifigee Clusteringw*, andTreewidthwhich
are grouped together because they-arequivalent as easily follows from the ob-
servations in Section 4.

Theorem 23 For each pairD; and D, of decompositions methods represented in
Figure 16, the following holds:

e There is a directed path fro®, to D, if and only if D; << D, i.e., if and only
if Dy strongly generalize®;.

e D; and D, are not linked by any directed path if and only if they are stly
incomparable.

Hence, Fig. 16 gives a complete picture of the relationshigdding among the
different methods.

The following lemmas, together with the transitivity of tre¢ations defined in Sec-
tion 6, prove Theorem 23.

27

HYPERTREE

HI NGETCLUSTER

TCLUSTER =
w* = TREEWIDTH

HYPERCUTSET

CUTSET

BICOMP
Figure 16. Constraint Tractability Hierarchy

For anyn > 2 andm > 0, let Circle(n, m) be the hypergraph having edges
{h4, ..., h,} defined as follows:

[] I’LZ:{le,...,X?,le_l_l,...,XzT_l}V]_SZSTL—]_;
o hp={XL .. Xm XL . xm.

" go’ . c'

h,

Figure 17. The hypergrap@ircle(n, 2)

Figure 17 shows the hypergra@ircle(n, 2), for somen > 8. Form = 1, Circle(n, 1)

is a graph consisting of a simple cycle withedges (like a circle). Note that, for
anyn > 2 andm > 0, Circle(n, m) has hypertree width 2. A width 2 hypertree
decomposition oircle(n, m) is shown in Figure 18. It follows that the (infinite)
class of hypergraphg,,.. ,,~,{Circle(n,m)} is included in the tractability class
C (HYPERTREE, 2).

For anyn > 0, lettriangles(n) be the graphV, E) defined as follows. The set of
verticesV’ contain®2n-+1 verticespy, . . ., p2,+1. FOr each evenindex2 < i < 2n,
{pispi-1}s {pi, Pix1}, and{p; 1, p;+1} are edges iky. No other edge belongs 0.
Figure 19 shows the graghiangles(n). TheHYPERTREE width of triangles(n)

is 2. Indeed, a hypertréd’, x, \), whereT is a simple chain of, verticesvy, . . ., v,
and, for eachy; (1 < i < n), x(v;) = {p2i_1, P2, Pois1} andA(v;) contains the
two edges{psi_1, p2; } and{ps;, p2i11}, is @ width 2HYPERTREE decomposition of
triangles(n).

28

{x},..., XX, X7 X .., X™} {hi,h,}

{X3,. -, X3 X3, XP X, .., X"} {ha,h,}
{X}L_2,...,X:L"_2,Xi_1,...,XT_l,Xi,...,X:ﬂL} {hnfz’hn}
{X} g X, X0, XY {haoa}

Figure 18. 2-width hypertree decompositionQifcle(n, m)
p2 yZ! P2n

Y41 p3 b5 Pon—1 Pon+1
Figure 19. The graphriangles(n)

For anyn > 0, letbookn) be a graph havingn + 2 vertices andn + 1 edges that
form n squares (pages of the book) having exactly one common£lg¥ }. It is
easy to see that tHdYPERTREE width of bookn) is 2. Figure 20 shows the graph
book(4).

Figure 20. The graphook(4)
Lemma 24 CUTSET << HYPERCUTSET.

PROOF. HYPERCUTSET clearly generalizeSUTSET. MoreoverHYPERCUTSET >
CUTSET. Indeed,U,,~2,,~0 {Circle(n,m)} € C(CUTSET, k) holds for anyk > 0;
while, U~ m~o{Circle(n,m)} C C(HYPERCUTSET, 1), as deleting any edge of
Circle(n, m) yields an acyclic hypergraph.O

Lemma 25 BICOMP > HYPERCUTSET.

29

PROOF. Consider the graphriangles(n) for somen > 0. It is easy to see that
the HYPERCUT SET width of triangles(n) is [n/3], while its Bl COVP width is
3. Hence,U,,» {triangles(n)} C C(BICOMP,3), while, U, {triangles(n)} &
C'(HYPERCUTSET, k) holds for everyt > 0. O

Lemma 26 BICOMP andCUTSET are strongly incomparable.

PROOF. (BICOMP > CUTSET.) Follows from Lemma 25 and Lemma 24.

(CUTSET > BICOMP.) Consider the grapbookn) for somen > 0. The whole graph
bookn) is biconnected. Thus, iBI COVP width is2n + 2. On the other hand, the
set{X,Y} is a cycle cutset obookn). Thus,U,~{book(n)} C C(CUTSET,2)
holds. O

Lemma 27 BICOMP << HINGE.

PROOF. In [18], it was shown thaBl COMP< HI NGE. Thus, it suffices to prove
thatHINGE > BICOMP: Consider the graphookn) defined above, for some > 0.

As observed above, thigt COVP width of book(n) is 2n+2, while itsHI NGE width

is 4. Indeed, the minimal hinges bbokn) correspond to the pages of the book,
and each of them has cardinality 40

Lemma 28 BICOMP << TCLUSTER.

PROOF. In [7], it was observed thaBl COVP< TCLUSTER. (In fact, Bl COVP
was compared with*, which is<-equivalent tof CLUSTER.) FurthermoreTCLUSTER >
BICOMP follows from CUTSET > BICOMP and from the fact, observed in [7], that
TCLUSTER generalize€SUTSET, i.e.,CUTSET < TCLUSTER. O

Lemma 29 CUTSET << TCLUSTER.

PROOF. As mentioned above&UTSET < TCLUSTER [7]. Moreover,TCLUSTER >
CUTSET follows from BICOMP > CUTSET andBICOMP < TCLUSTER. O

Lemma 30 CUTSET > HINGE.

PROOF. Every graph inJ,-.{Circle(n, 1)} hasCUTSET width 1, because delet-
ing any vertex of the graph we get an acyclic graph. Howewerahyn > 2, the

degree of cyclicity oCircle(n, 1) isn [18]. O

Lemma 31 HI NGE and TCLUSTER are strongly incomparable.

30

PROOF. (HINGE > TCLUSTER). Let S = {Circle(3,m) | m > 1}. For anym >

1, the primal graphG of Circle(3,m) is a clique of3m variables. Thus(Z does
not need any triangulation, because it is a chordal grapd TThUSTER width of
Circle(3, m) is clearly3m; while its H NGE width is 3, because every hypergraph
in S has only three (hyper)edges.

(TCLUSTER > HINGE). Follows fromCUTSET>HINGE andCUTSET < TCLUSTER. O

Lemma 32 HI NGE<< HI NGETCLUSTER and TCLUSTER<< HI NGETCLUSTER

PROOF. It is easy to see that botHl NGE< HI NGE™LUST™ER and TCLUSTER=

HI NGETCLUSTER hold. Furthermore-dl NGETCLUSTER [HINGE follows from TCLUSTER=
HI NGETCLUSTER and TCLUSTER > HINGE; andHI NGETLUSTER [TCLUSTER follows
from Hl NGE< HI NGETCLUSTER andHINGE > TCLUSTER. O

Lemma 33 HI NGE™MSTER < HYPERTREE.

PROOF. Let H be a hypergraph, arl’ be aHI NGE™US™E® decomposition of{
of width k. We show that there exists a hypertree decompositiorHfaf width
k. We will use as a running example the hypergrapfy in Example 6. Figure 11
shows the width 34l NGE™"%™* decompositior¥{;,, of #,,, described in Exam-
ple 7.

Recall that, by construction, thdt NGE™US™® decompositiort{’ is an acyclic hy-
pergraph. Note that, in general, is not a reduced hypergraph. For instarikg,
is not reduced, as the edgé’;, X5, X3}, coming from theTCLUSTER decomposi-
tion of the hingeH,, is a subset of X;, X,, X3, X1, X11}, which comes from the
hingeH;.

Let 4" be the reduced and acyclic hypergraph obtained ftfrdeleting each edge
that is a subset of some other edge of the hypergraph. Theyefg. #},, contains
all the edges ot4},,, but the edgd X, Xy, X3}.

We partition the edges ¢{"” into three sets\E, HE, andTE defined as follows.

The setdE contains all edges ¢f” that come from th&CLUSTER decomposition
of some hingef; of # such that the subgraplvar(H;), H;) is acyclic. In the
running example, this property holds for hingés, Hs, and Hs. Recall that, in
this casew(H;) = 1 holds, and the decomposition of this hinge is just the acycli
hypergraphvar(H;), H;). E.g., forH}, , AE contains the edges corresponding to
the constraint scopes, sg, s7, andss, i.e.,{ Xy, X5, X¢}, { X4, X7}, { X5, X3},
and{ Xg, Xy}, respectively.

The setTE contains all edges indges(H") — AE that come from th&@CLUSTER
decomposition of some hingH; of H such that the subgraptvar(H,), H;)

31

is cyclic. Since the&CLUSTER decomposition of this hypergraph is bounded by
k, it follows that each edge iiiE contains at most variables. In our running
example,TE contains two edge$ X, X3, Xs} and{X;, X4, X5} that we call
te, andtes, respectively.

The setHE contains all those edgesérges(H")— AE —TFE that come from some
hinge ofH. Thus, any edgé in HE is the union of at most edges belonging to
some hingef; of #. We denote the hing#l; corresponding té by hinge(h).

In our running exampleHE contains one edgéX;, X, X3, X0, X11} that
we call he; and comes from the hingH; = {sy, 3,59} of Hj,. Therefore,

hinge(he1) = {s1, s2, o}

Let JT be ajointree of the acyclic hypergrapt. Recall that each vertex of the tree
JT'is an edge o#{" and vice versa, and that the connectedness condition helds,
the subgraph ofI" induced by any variable df’ is connected. Figure 21 shows a
jointree of Hj .

‘ tea(X 1, Xy, Xg) ‘

‘ teq (X1, X3, Xg) ‘ ‘ s5(Xyq, X5, Xg) ‘

‘ sg(Xyg, X7) ‘ ‘ s7(X5, Xg) ‘ sg(Xg, Xg)

Figure 21. A jointree of the hypergraﬁhgg

‘ hei (X1, X2, X3, X10, X11)

From JI', we define a hypertree decompositiiv = (T, x, \), where the tred"
has the same shape &5, and the labelingg and)\ are defined through the fol-
lowing procedure. For each vertéof JT', denote by, the corresponding vertex
in the treeT” of H.

(1) for each edgé of AF, label the corresponding vertex as follows:x(p,) =
h andA(p,) = {h}.
(2) for each edgé of HE, label the corresponding vertgx as follows:x(p,) =
h and\(py) = hinge(h).
(3) for each edgé of TE, label the corresponding vertgx as follows:x(p,) =
h and A(p,) = (. For the running example, Figure 22 shows the hypertree
obtained after these three steps.

‘ {X1,X4, X6} {} ‘

‘ {X1,X3,Xe} {} ‘ ‘ {X4,X5,Xe} {s5} ‘

‘{X1,X2,X3,X10,X11} {s1.s2.s9}

‘{X4-X7} {56}‘ ‘{Xs.Xg} {s-r}H {Xe, Xo} {58}‘

Figure 22. The hypertree for the running example in the poddfemma 33 after steps 1,
2,and 3

32

(4) for each edgé of the hypergraph such that there is no vertexin T with
h € X\(q), choose a vertek of JI" such thats C h andh € TE, and addh to
the\ labeling of the corresponding vertexin T (i.e., A(py) := A(py) U{h}).
In our running example, we add the edgewhose variables ar&; and X,
to the \ labeling of the hypertree’s root, and the edgewhose variables are
X4 andXg, to the) labeling of the left child of the root, as shown in Figure 23.

‘ {X1,X4,Xg} {s3} ‘

‘ {X1,X3,Xg} {sa} ‘ ‘ {X4,X5,Xp} {s5} ‘

‘{X1,X2,X3,X10,X11} {s1.s2.s9}

‘{X4-X7} {56}‘ ‘{Xs-xs} {s-r}H {X6, Xo} {58}‘

Figure 23. The hypertree for the running example in the pobdfemma 33 after Step 4

(5) While there is a vertexin T such thaty(p) contains a variabl& not covered

by A(p) (i.e., X € x(p) — var(A(p))), proceed as follows.

(A) Find a pathr in T linking p to a vertexg such that ()X € var(A(q))
and, (i) X & var(\(s)) for every vertexs in 7 — {q}.

(B) Choose an edgk € A(q) such thatX € h.

(C) Addh to both)(s) andx(s), for every vertexs € m — {q} (i.e., x(s) :=
X(s) U h, andA(s) := A(s) U {h}).

In the running example, the root contains the variabethat is not covered

by the edges; (see Figure 23). Then, we choose the path connecting the root

and its right child, becaus¥; occurs in some edge belonging toitiabeling,

namely in the edges. Thus, we adds to the \ labeling of the root, and the

covering of X is done. Similarly, the variabl&; occurring in the left child of

the root is covered by adding to itslabeling the edge,, which occurs in its

child. Figure 24 shows the final hypertree obtained for tmming example.

‘ {X1, X4, X} {s3.s5} ‘

‘ {X1,X3,Xe} {sa,s1} ‘ ‘ {X4,X5,Xe} {s5} ‘

‘{X1,X2,X3,X10,X11} {s1,s2,s9}

‘{X4vX7} {56}‘ ‘{stxs} {57}‘ {X6, X9} {s8}

Figure 24. The final hypertree for the running example in tfewpof Lemma 33

Note that, after steps 1, 2, and 3, the connectedness aamdlite., Condition 2 of
Definition 12) clearly holds ifHD because it holds in the jointre®’. However, for
any vertexp,, of T' corresponding to a vertex € TE of JI', Step 3 only provides
the y labeling forp,. Thus, in Step 4, we select the edgestbthat cover these
variables in the vertey;, of the decompositioZD, i.e., we define the labeling
for py,.

Since the connectedness condition is preserved in Stepv&aibcs easy to verify
that, at the end of the proceduféD is a hypertree decomposition &f. Moreover,

33

its HYPERTREE width is at mostkt. Indeed, by the above construction, it follows
that for each vertexs € HE, |\(py)| = |hinge(h)| < k, and, for each vertex
W e TE, | Apn)| < |h| <k. O

Lemma 34 HI NGE™STER < HYPERTREE.

PROOF. From Lemma 33HI NGE''USTER< HYPERTREE holds. We next show
that HYPERTREE > HI NGE™S™R Consider the cyclic hypergragbircle(n, m),
foranyn > 2, m > 0. This hypergraph has a unique hinge containing all its edges
and therefore It8INGE width is n. Moreover, its primal graph contains maximal
cliques of cardinality at leastm, and thus itsSTCLUSTER width is at leastm. It
follows thatU, -~ {Circle(n,m)} ¢ C'(H NGE™S™®) holds for anyk >

0. However, forHYPERTREE, U, ~5 ,~o{Circle(n,m)} C C(HYPERTREE, 2) holds.
(See Figure 18 for a hypertree decompositio€otle(n, m) of width2.) O

Lemma 35 HI NGE™LUSTER gnd HYPERCUTSET are strongly incomparable.

PROOF. HI NGEICLUSTER I, HYPERCUTSET follows from BICOMP > HYPERCUTSET
andBICOMP < HI NGETCLUSTER

HYPERCUTSET>HI NGE™ ™ Indeed)~ 0 {Circle(n, m)} € C'(HI NGE'S™ k)
holds for anyk > 0; while, U~ ,,0{Circle(n,m)} C C(HYPERCUTSET, 1). O

Lemma 36 HYPERCUTSET << HYPERTREE.

PROOF. We have thaHlYPERTREE > HYPERCUTSET because, from Lemma 25,
BICOMP > HYPERCUTSET, andBICOMP < HYPERTREE.

We next prove thallYPERCUTSET < HYPERTREE. LetH be a hypergraph and C
edges(H) a cycle hypercutset ofl. Let k& be the cardinality off. Let ' be the
subhypergraph of{ induced byvar(H) — var(H), i.e., the hypergraph having an
edgeh’(h) = h —var(H) for each edgé € edges(H) such thaty — var(H) # (.
Note that, in generaf{’ is not connected. By definition of cycle hypercutgét,is
acyclic. Thus, there exists a join forest f@f, i.e., a set of jointreedT, ..., JI;
corresponding to the connected components &f .

We show that there exists a hypertree decompos#itn= (T’ x, A) of having
width £ + 1. The rootr of T is labeled by the cycle hypercutsét i.e., \(r) = H,
andx(r) = var(H). The rootr has/ children{p,, ..., p,} corresponding to thé
jointrees/I1, ..., JI;. In particular, each subtrdg, rooted at a chilgh; (1 < i < ?)
has the same tree shape as the joinfileeMoreover, lety be a vertex of the jointree
JT;, andh be an edge of{ such that)'(h) is the edge of{’ associated to the vertex

34

q of JI;. We label the corresponding vertexn 7, as follows:\(g) = {h} U H,
andx(q) = hUwvar(H).

It is easy to see that the hypertr&@® is a hypertree decomposition &f, and its
width isk + 1. It follows thatHYPERCUTSET < HYPERTREE. O

8 Binary CSPs

In this section, we focus on binary constraints satisfagtimblems, i.e., on CSPs
where the constraints relations have arity at most two.

On binary constraint networks, the differences among themigosition strate-
gies, highlighted in Section 7, become less evident. Indbednding the arities
of the constraint relations, the k-tractable classes ofesdetomposition strategies
collapse, while some generalizations are no longer strengmglizations.

’ Hypertree Decomposition

Hinge+Tree Clustering =,

Tree Clustering=;,,
w* =p,;,, treewidth

7 .

Hinge Decomposition

Cycle Cutset

E Biconnected Component%

Figure 25. Tractability Hierarchy for Binary CSPs

Let <<pin, <pin, >pin, aNd=;,, the relations on the decompositions strategies in-
duced by=<, <, >, and=, respectively, when only binary CSPs are considered.

In Figure 25, full arcs (and paths containing full arcs) esgnt<<;;, relationships,
while a dashed arc from a methdy to a methodD, means thaD; <,;, D, and
Dy ZAwin Dq, but at the same tim®; A<, D.. From the latter relationship, it
follows that every clas€’ that is tractable according t0, is also tractable accord-
ing to Ds, i.e., theD, width of every graph belonging to the claSsis bounded
by some constant > 0. However,D, A, D; entails thatD, decompositions
are more “efficient,” in the sense that solvingJa-tractable class by),-solution
methods is feasible by augmenting the worst-case complexiat most an additive
constant in the exponent, while this is not possible in tireodirection.

35

Theorem 37 For each pairD, and D, of decompositions methods represented in
Figure 25, the following holds:

e There is a directed path from; to D, if and only if D; <, D-.

e There is a directed path containing at least one full arroanfrD; to D if and
OnIy if Dy ~<pin Do.

e D; and D, are not linked by any directed path if and only if they are imp@ara-
ble with respect to the&,,;,, relationship, i.e., if bottD; £, D> and Dy Ay Dy
hold.

The following lemmas provide the proof of this theorem.

Lemma 38 HINGE —<,;,, TCLUSTER.

PROOF. First note thaTCLUSTER >, HINGE follows from the proof showing that
TCLUSTER > HINGE. Indeed, for any» > 2, the graphCircle(n, 1) has degree of
cyclicity n, while it hasTCLUSTER width 3.

To prove thatHINGE <;;, TCLUSTER, we show that for any graptv = (V, E)

HI NGE-width(G) >TCLUSTER-width(G). If G is an acyclic graph, then its degree
of cyclicity is 2 and itsTCLUSTER width is 1, by definition. Now, assumé&' is a
cyclic graph and lef” be a hinge decomposition 6f. From the definition of hinge
decomposition, it follows thdf’ represents a join tree of an acyclic hypergraph.

We recall from [19] that, given a hing€ of G, H' C H is a hinge ofG if and only
if H'is a hinge of the graptwar(H), H). It follows that any minimal hinge of?
must be a connected set of edges. Moreover, it is easy toaeé this a minimal
hinge andvar(H), H) is acyclic, thenH| = 2.

Let 7’ be a new join tree initially set equal 7a As long as there exists some vertex
of T" corresponding to a 2-edges hinge®f modify 7" as follows: (1) select a
vertexp of 7" containing two edges af e¢; ande,; (2) add to7” two verticesp,
andp, containing edges; andes,, respectively; (3) add an edge connectingnd

p' for any vertexp’ of T connected tgp and sharing:; with p; (4) add an edge
connectingp, andp’ for any vertexp’ of 7" connected t@ and sharing:, with p;

(5) removep and all its incident edges from'. It is easy to verify that the final
tree’T” obtained when the procedure above terminates satisfieothectedness
condition of join trees. In fact, it represents an acyclipéngraph, sag('.

Let G' be the primal graph oH'. The graphG’ is clearly chordal and? C F’,
thus it can be obtained by some suitable triangulatioi dfet £ be the number of
variables occurring in the largest cliq@eof G'. SinceG is a cyclic graphk > 2.

By construction ofG’, the cliqueC' corresponds to some minimal hingg of G
such that the grapkwar(H), H) is both connected and cyclic. This entails that
|H| > var(H) = k.

36

It follows thatk <HINGE-width(G), becaus@INGE-width(G) is equal to the cardi-
nality of the largest minimal hinge @¢f. Thus the lemma holds, becauSel. USTER-
width(G) < k, asG’ witnesses that there exists a graph obtained by some trangu
lation of G whose maximal clique has cardinalty O

Lemma 39 The following relationships hold betwe#BWPERTREE and TCLUSTER.:

e TCLUSTER <j;,, HYPERTREE;
e HYPERTREE }%,;, TCLUSTER; and
e HYPERTREE Ay, TCLUSTER.

PROOF. (TCLUSTER =,;, HYPERTREE.) Easily follows from the same construction
described in Lemma 33 to prove thdit NGE™US™" < HYPERTREE.

(HYPERTREE />;;, TCLUSTER.) Follows from the fact that, for any grapf,
TCLUSTER-width(G) < 2-HYPERTREE-width(G). Let HD be anyk-width hy-
pertree decomposition of a graph The hypergraph corresponding to the acyclic
instance built according t& D has a primal grapty’ whose largest clique contains
2 - k variables at most. Indeed, at méstdges can be associated to any veptex
the hypertree decomposition and henee(p) < 2 - k.

(HYPERTREE A, TCLUSTER.) Observe that, for every > 3, the complete graph
K, hasHYPERTREE width [n/2], while it hasTCLUSTER width n. Thus, K, €
C'(HYPERTREE, n’), for eachn’ > [n/2], while K,, ¢ C'(TCLUSTER, n"), for each
n" < n.Itfollows that there is no fixed such that, for every > 0, C(HYPERTREE, k) C
C(TCLUSTER, k +6). O

Lemma 40 The following relationships hold betwe#WPERCUTSET and CUTSET:

e CUTSET <, HYPERCUTSET;
e HYPERCUTSET [%,,CUTSET; and
e HYPERCUTSET #p;, CUTSET.

PROOF. The proofs of the first two points above are straightforwake. next
show thatiYPERCUTSET A, CUTSET. Consider the graptriangles(n) for some
n > 0. Itis easy to see that tHdYPERCUTSET width of ¢riangles(n) is [n/3],
while its CUTSET width is [n/2]. Thus,triangles(n) € C (HYPERCUTSET, '), for
eachn’ > [n/3], while triangles(n) ¢ C(CUTSET, n"), for eachn” < [n/2]. It
follows that there is no fixed such that, for every: > 0, C'(HYPERCUTSET, k) C
C(CUTSET, k +9). O

All the other relationships follow from transitivity, ordm the corresponding proofs
given in the general case of hypergraphs, which carry ovédradinary case.

37

9 Solving nonbinary CSPs by dualization

Many structural decomposition methods have been desigmédentify “easy”
graph structures, rather than “easy” hypergraph strustdreSection 4, we de-
scribed binary decomposition methods (i.e., decompasitiethods designed for
graphs, but not for hypergraphs) acting on the primal grdpheohypergraph asso-
ciated to the given CSP instance. As we showed in the pregiectson, for binary
CSPs some methods become closer to the hypertree-decdimpasethod.

An alternative approach to the solution of nonbinary CSRséxploit binary meth-
ods on the dual graph of a hypergraph. (See, e.qg., [7].) GVWeS8P instancé, the
dual graph[7,9,22] of the hypergrapf{; is a graphG? = (V, E) defined as fol-
lows: the set of vertice® coincides with the set of (hyper)edges?of, and the set
F contains an edggh, h'} for each pair of vertices, i’ € V such that. N 1’ # ().
That is, there is an edge between any pair of vertices carnepg to hyperedges
of ‘H; sharing some variable.

The dual graph often looks very intricate even for simple £3r instance, in
general, acyclic CSPs do not have acyclic dual graphs. Hemvivs well known
that the dual graphv¢ can be suitably simplified in order to obtain a “better” graph
G' which can still be used to solve the given CSP instahde particular, if/ is

an acyclic CSR7¢ can be reduced to an acyclic graph that represents a joinftree
‘H . In this case, the reduction is feasible in polynomial (altyllinear) time. (See,

e.g., [22].)

Definition 41 LetG = (V, E) be the dual graph of some hypergraph For any
pair of verticesh,h’ € V, let{({h,h'}) = h N A'. AreductG’ of G is a graph
(V') E') satisfying the following conditions:

M V=7,

(i) ' C E;and

(iii) for each edgey = {h,h'} belonging to(E — E'), there exists irG' a path P
from h to /', such that the variables if{q) are included in/(¢") for each edge
¢' occurring in the pathP. That is, if all the variables shared by two vertices
occur in some other path between these vertices, the edgeciimg them can
be safely deleted from the dual graph.

We denote byred (G) the set of all theminimal reductsof a graphG, i.e., the set
containing every grap&’ which is a reduct ofy and whose set of edges is minimal
(with respect to set inclusion) over all the reductg:0ifClearly, computing a graph
belonging tored (G) is feasible in polynomial time, because one can just repate
delete an edge as long as possible.

It is thus natural to try to solve a nonbinary CEBsing any decomposition method

38

DM on its dual graph:

(1) compute fronG¢ a suitable redudf € red(G9%);
(2) compute aDM decomposition of the grap;
(3) solve the instancé using this decomposition.

For instanceBICOMP can easily be modified to be used on the dual graph of a given
hypergraph [11]. Call this dual versi®acoMp?. The relationship betwee1coMp?
andHINGE has already been discussed in [18]: it was proved HBBGE is more
general tharBICOMP?. However, Gyssens et al. observed that a fine comparison
between the two methods is quite difficult because the pedace ofBICOMPY
strongly depends on the simplification appliedi$ i.e., depends on the particular
graph inred (G%) selected to solve the given CSP instaficghey also argued that
there is no obvious way to find a suitable simplification goodugh to keep small

the biconnected width of the reduct to be used for solvingtioblem.

SINCeHYPERTREE strongly generalizeBINGE, it follows thatHYPERTREE strongly
generalizesBICOMP?. However, as suggested by Dechter (personal communica-
tion), itwould be interesting to compaliPERTREE with the dual version 0fCLUSTER
(short: TCLUSTER?), defined as follows. Le¥ be a hypergraph, an@ its dual
graph. An acyclic hypergrapH* is aTCLUSTER? decomposition of{ of width w

if 74* is aTCLUSTER decomposition ofs’ of width w, for some reduct’ € red (G).
Thedual tree-clustering widtlgshort: TCLUSTER? width) of A is equal to the mini-
mum width over th&CLUSTER? decompositions oH.

We next show thaltYPERTREE strongly generalizes tHBCLUSTER? method, too. To
this end, we introduce a new class of hypergraphs. Fomanyl let D-Clique(n)
be the hypergraph having+ 2 edges{ h,, hs, b1, hs, . . ., h, } defined as follows:

o hy={X}|1<i<j<n}
o hy={X}|1<i<j<n}
o forl <i<m, h={X{ X%, ..., X" ;, X&,q,... X5

(X0, Xb, . XD XL XY

i—19)

We denote by7¢(n) the dual graph ob-Clique(n).

Figure 26. The dual graph @i-Clique(4)

39

Example 42 Consider the hypergragh-Clique(4). Its edges are

hi = {XTy, X{o, X5, X5, X1, X015
he = {X?Q,X{)Q,X%,X%,X&,X&};
hs = {X?31X{)37X2aSan3an4aX§4 ;
hy = {X%41X{)47X2a47Xg4an4aX§4};
he = {X8 | 1<i<j<4};
hy ={X} |1<i<j<4}.

Figure 26 shows the dual graplf(4). Note that this graph cannot be reduced, and
hencered(G%(4)) = {G%(4)}. For instance, consider the vertidesandh,. Their
shared variables ar&®, and X?,. For anyt ¢ {1,4,a,b}, hy N hy = {X&, X1,
which clearly does not includgxy,, X?,}. Moreover,X?, ¢ h; N h, and X, ¢
hyNhy. Thus, we cannot delete the edge, h4}, and in fact no edge can be deleted
from G(4).

Apply TCLUSTER to G¢(4). It is already a chordal graph, therefore we can directly
identify the maximal cliques, that form the edges of TIGRUSTER decomposition

of G%(4). The resulting acyclic hypergraph has the two edges 1, hy, hs, by},
and{hy, h, ha, h3, hs}. Thus, theTCLUSTER? width of D-Clique(4) is 5.

TheHYPERTREE width of D-Clique(4) is 2. Figure 27 shows a complete hypertree
decompositionT’, x, A) of D-Clique(4) having width 2. Observe that, exploiting
the two edge#, andh,, even the root of" alone covers all the variables occurring
in D-Clique(4), and is in fact a hypertree decomposition of this hypergrdjph
obtain the complete hypertree decomposition shown in Ei@T, the remaining
edges are simply “attached” as singletons to the root.

\ {X5, X0 11<i<j<n} {ha,hy} \

a a a a b a b a b
‘ {X127XfZ’X13’Xf3’X14’Xf4} {hl} ‘{X14’X147X24’X24’X34’X34} {h4}

a yb a b @ yb
‘{sz,sz,X§3,X§3,X§4’X§4} {h2} ‘ {X1s: X135, X33, X535, X34, X3, } {hS}‘

Figure 27. A hypertree decomposition@fClique(4)
Theorem 43 TCLUSTER? << HYPERTREE.

PROOF. (HYPERTREE!> TCLUSTER‘.) Consider the hypergraph cla3-Clique(n) |
n > 1}. Generalizing the above example, it is easily seen thatrigmn > 3, the
setred (G%(n)) is a singleton containing only the dual gra@t(n) of D-Clique(n).

40

This graph is chordal, its maximal cliques dfe,, hy, .. ., h,} and{hy, hy, ..., hy},

and hence th&CLUSTER? width of D-Clique(n) is n + 1. Thus, for anyk > 0,
U,~0{D-Clique(n)} ¢ C(TCLUSTERY, k), whereas the hypertree width of all these
hypergraphs i8, i.e.,U,-o{D-Clique(n)} C C(hypertree,2). Indeed, a tree with

a single vertex with A(r) = {h,, hy} andx(r) = h, U hy, is a hypertree decom-
position of D-Clique(n), though not complete. Figure 27 shows what a complete
hypertree decomposition for such hypergraphs looks like.

(TCLUSTER? < HYPERTREE.) Let #' be aTCLUSTER? decomposition of a hyper-
graph? of width k. Then,H' is an acyclic hypergraph whose edges are sets con-
taining at mosk edges frontH. Any join treeJT of #' can be mapped straightfor-
wardly to a hypertree decompositi@h, x, A) of # with the same tree-shape &5
Every vertexp in T' corresponds to a vertekin JT. The vertex’ of the join tree of

‘H' corresponds to a maximal clique of (some reduct of) the dreglgof#, and
hence contains a sétof edges occurring ift{. Then, the vertey in the hypertree
decomposition is labeled by(p) = S and x(p) = wvar(S). Clearly the hyper-
tree decompositiofil’, x, \) has the same width as tleLUSTER? decomposition

H. O

Note that theTrCLUSTER? width of % does not depend on the choice of the reduct
of the dual graph. The width is in fact computed using an ogkireduct ofG,

i.e., a reduct leading to a lowest-widIiBLUSTER decomposition of{. However,

as observed in [18], it is not clear how to choose the righticeédh order to obtain
the TCLUSTER decomposition having the smallest width. In fact, it is eatty not
known whether, for a fixed, deciding whether th@CLUSTER? width of a hyper-
graph is at most is feasible in polynomial time. Thus, comparedT@LUSTER?,
HYPERTREE is strongly more general aridbounded hypertree decompositions are
efficiently computable.

Clearly, the above result holds fSREEWIDTH andw*, too, given the equivalence
of these methods (see Section 4).

10 Conclusion

In this paper we have established a framework for systeaiticomparing struc-
tural CSP decomposition methods with regard to their povédentifying large

tractable classes of constraints. We have compared thedeaomposition meth-
ods published in the Al literature. Moreover, we have adafte method of hyper-
tree decompositions, previously defined in the databasexpio the CSP setting.
We compared all methods both for CSPs of arbitrary arity andbiinary CSPs. In
both cases it turned out that the hypertree decompositidhades more general
than the others; in the case of general CSPs this holds erery strong sense.

41

We have also shown that the method of hypertree decompasigsanore general
than any dualization method which applies a standard decsitign method to the
dual graph of the constraint hypergraph of a CSP. We haveeatkthe upper time
boundO(|| I||¥+! log ||I||) for the solution of a CSP instandehaving ak-width
hypertree decomposition. Note that this bound is not wdrae the bound for any
other considered method of CSP decompositions. Thus, éapphat the method
of hypertree decompositions is currently the most powe@i8P decomposition
method.

The comparison results and complexity bounds presentdsipaper are valid for
general CSP instances whose domain size is unrestrictetheFuvork is needed
both on suitable extensions or modifications of decompwsitiethods and on the
comparison of the various methods for some relevant speasds, in particular,
for CSPs with dixed domain sizeMoreover, as already remarked, both HINGE

and theBICOMP width of a hypergraph can be computed in polynomial time even
if no fixed bound is given. Thus, these methods may be usefybpriaviding in
polynomial time a “measure of the cyclicity” of any arbitya€CSP instance. For
some practical applications where the given CSP instanaes karge hypertree
width, HINGE andBICOMP decompositions may be used for the fast identification of
“easy” and “hard” modules (or clusters) of the constraimdrgraph. Moreover, the
algorithm for computing hypertree decompositions itsedfyrsuitably be modified

to identify and output clusters of low hypertree-width irsedhe entire hypergraph
has a high width.

We believe that our comparison results provide insightineorelationship of vari-

ous standard methods of constraint decomposition. Conssatisfaction is a very
lively field and several new methods and techniques for dposimg and solving

CSPs are expected to be proposed in the years to come. Wehabpled results of

this paper, our comparison framework, and our proof teakesqgvill be useful to

other authors for assessing the relative strength of thetinads, and for comparing
them to existing methods.

Acknowledgements

We thank the anonymous referees for their useful commeitsaggestions.

Research supported IBWF (Austrian Science Fundahder the project Z29-INF.
Part of the work of Francesco Scarcello has been carried bué wisiting the
Technische Universitat Wien. Part of the work of Nicola hechas been carried
out while he was with the Technische Universitat Wien.

42

References

[1] S. Arnborg, J. Lagergren, and D. Seese. Problems eastefsxdecomposable graphs.
Journal of Algorithms12:308-340, 1991.

[2] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On theimddxlity of acyclic
database schememkurnal of the ACM30(3):479-513, July, 1983.

[3] P.A. Bernstein, and N. Goodman. The power of natural g@nd. SIAM Journal on
Computing 10(4):751-771, 1981.

[4] W. Bibel. Constraint Satisfaction from a Deductive Viggint. Artificial Intelligence
35,401-413, 1988.

[5] H.L. Bodlaender. Treewidth: Algorithmic TechniquesdaResults. IlProceedings of
MFCS'97, Bratislava. LNCS 1295, Springer, pp. 19-36, 1997.

[6] Ch. Chekuri and A. Rajaraman. Conjunctive Query ComsEnt Revisited.
Theoretical Computer Scienc239(2):211-229, 2000.

[7] R. Dechter. Constraint Networks. EBncyclopedia of Artificial Intelligengesecond
edition, Wiley and Sons, pp. 276-285, 1992.

[8] R. Dechter and J. Pearl. Network based heuristics fostraimt satisfaction problems.
Artificial Intelligence 34(1):1-38, 1988.

[9] R. Dechter and J. Pearl. Tree clustering for constragtvorks.Artificial Intelligence
38:353-366, 1989.

[10] E.C. Freuder. A sufficient condition for backtrackdrsearchJournal of the ACM
29(1):24-32, 1982.

[11] E.C. Freuder. A sufficient condition for backtrack-ipoed searchJournal of the
ACM, 32(4):755-761, 1985.

[12] E.C. Freuder. Complexity of K-Tree Structured CornistréSatisfaction Problems.
Proceedings of AAAI'901990.

[13] M.R. Garey and D.S. Johnsd@omputers and Intractability. A Guide to the Theory of
NP-completenesd-reeman and Comp., NY, USA, 1979.

[14] N. Goodman, and O. Shmueli. Syntactic characteriratibtree database schemas.
Journal of the ACM30(4):767—-786.

[15] G. Gottlob, N. Leone, and F. Scarcello. The ComplexifyAzyclic Conjunctive
Queries, in Proceedings of FOCS'98 pp.706—-715, Palo Alto, CA, 1998.
Full version: Technical Report DBAI-TR-98/17, availablen othe web as:
http://ww. dbai.tuw en. ac.at/staff/gottl ob/acyclic.ps, or
by email from the authors.

[16] G. Gottlob, N. Leone, and F. Scarcello. “Hypertree Dapositions and Tractable
Queries,” inProceedings of PODS'9®hiladelphia, May, 1999. Full version to appear
in Journal of Computer and System Sciendepreprint of the full version is currently
stored inThe Computer Research Repositdritp://xxx.lanl.gov/archive/cs.

43

[17] G. Gottlob, N. Leone, and F. Scarcello. “On Tractablee@es and Constraints,”
in Proceedings of the Conference on Database and Expert Syst@plications
(DEXA'99 Florence, 1999, LNCS 1677, pp. 1-15, Springer.

[18] M. Gyssens, P.G. Jeavons, and D.A. Cohen. Decomposingtraint satisfaction
problems using database techniquésificial Intelligence 66:57-89, 1994.

[19] M. Gyssens and J. Paredaens. A Decomposition Methggdlor Cyclic Databases.
In Advances in Database Theomolume 2, pp. 85-122. Plenum Press New York, NY,
1984.

[20] P. Jeavons, D. Cohen, and M. Gyssens. Closure PrapeiftiéonstraintsJournal of
the ACM 44(4), 1997.

[21] Ph. G. Kolaitis and M. Y. Vardi. Conjunctive-Query Cairiment and Constraint
Satisfaction. IProc. of Symp. on Principles of Database Systems (POD38 05—
213, Seattle, Washington, 1998. Full version to appealoirnal of Computer and
System Sciences

[22] D. Maier, The theory of relational databaseSomputer Science Press, Rockville, MD,
1986.

[23] J. Pearson and P.G. Jeavons. A Survey of Tractable @imsSatisfaction Problems,
CSD-TR-97-15, Royal Holloway, Univ. of London, 1997.

[24] N. Robertson and P.D. Seymour. Graph Minors II. Aldariic aspects of tree width.
Journal of Algorithms7:309-322, 1986.

[25] R. Seidel. A new method for solving constraint satiitat problems. IrProceedings
of IJCAI'81, 1981.

[26] M. Yannakakis. Algorithms for Acyclic Database Scheamin Proc. of Int. Conf.
on Very Large Data Bases (VLDB’81pp. 82—94, C. Zaniolo and C. Delobel Eds.,
Cannes, France, 1981.

44

	4. Decomposition Methods
	5. Hypertree Decompositions of CSPs
	7. Comparison Results

