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Abstract. Temporal events are regarded here as intervals on a time line, This paper deals with

problems m reasoning about such intervals when the prccisc topological relationship between

them is unknown or only partially specified, This work unifies notions of interval algebras in
artificial intelligence with those of interval orders and mterwd gr~phs m combmatorlcs.

The satqfahihty, znuumal Iabeltng, all solutLons. and all rcakatlons problems we considered for

temporal (internal ) datti. Several versions are investigated by restricting the possible interval

relationships yielding different complexity results, We show that even when the temporal data

comprises of subsets of relatlons based on mtersectlon and precedence only, the satisfiabdlty
question IS NP-complete. On the positive side, we give efficient algorithms for several restrictions
of the problem. In the process, the irzterLa/ ,qrap/z satzdwzc/z problem is introduced, and is shown to
be NP-complete This problem IS also important in molecular hlology, where it arlscs In physical
mapping of DNA material.

Categories and Subject Descriptors. F. 13 [Computation by Abstract Devices]: Cornplex]ty Classes
—K?duciblhtv and cowzp/eteness: G.2 1 [Discrete Mathematics]: Combinatorics: G,2.2 [Discrete

Mathematics]: Graph Theory: 1.2.3 [Artificial Intelligence]: Deduction and Theorem Proving.

General Terms: Algorithms, Thers~

Additional Key Words and Phrases: Algorithmic analyws, complexity, DNA mappmg, interval

graphs, interval orders, sandwich problems, satisflalxllty, temporal reasoning

1. Introduction

Reasoning about time is essential for applications in artificial intelligence and

in many other disciplines. Given certain explicit relationships between a set of

events, we would like to have the ability to infer additional relationships that
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are implicit in those given. For example, the transitivity of “before” and

“contains” may allow us to infer information regarding the sequence of events.

Such inferences are essential in story understanding, planning, and causal

reasoning. There are a great number of practical problems in which one is

interested in constructing a time line where each particular event or phe-

nomenon corresponds to an interval representing its duration. These include

seriation in archeology [25, 26], behavioral psychology [12], temporal reasoning

[2], operations research [33], medical diagnosis [31], circuit design [43] and
combinatorics [34]. Indeed, it was the intersection data of time intervals that

lead Hajos [23] to define and ask for a characterization of interval graphs, and

which provides the clues for solving the “Berge mystery story” [21, p. 20]. Other

applications arise in non-temporal contexts: For example, in molecular biology,

arrangement of DNA segments along a linear chain involves similar problems

[7].

Motivated by the proposed use of Allen’s interval algebra [2] in order to

maintain knowledge about time dependent events, several researchers have

investigated variants of this algebra and the trade-off between expressivity,

completeness, and computational complexity in reasoning with them [41, 42].

This approach leaves unspecified the exact temporal relationship between

events. In [4], combinatorial structures have been introduced for representing

temporal data associated with interval (precedence) orders and interval (inter-

section) graphs. In that approach, the temporal relations are specified as

“precedes”, “follows”, or “intersects”, but the exact ordering of the endpoints

of the intervals is left unspecified.

In this paper, we relate the two notions of interval algebra from the temporal

reasoning community and interval graphs from the combinatorics community,

obtaining new algorithmic complexity results of interest to both disciplines. In

Section 2, we present the background on constraint satisfiability problems as

they relate to the study of interval algebras, and introduce the notions of macro

relations and restricted domains. Macro relations allow coarse partitions of the

primitive interval relations that are suitable to certain applications and provide

the most general theorems. Restricted domains forbid specified combinations

of primitive relations, thereby giving polynomial time solutions, in many useful

cases, to otherwise intractable problems. General results on the relative

complexity of the problems of interval satisfiability, minimal labeling and

finding all consistent solutions are presented in Section 3. Several new NP-

completeness results are proved in Section 4, specifically the interval satisfiabil-

ity problem for the 3-valued interval algebra and the interval graph sandwich

problem. Section 5 deals with polynomial time solutions to restricted domain

problems. Our conclusions are given in Section 6. Of the 31 possible restric-

tions, we have classified 21 as polynomial, 6 as NP-complete, and pose a

conjecture to settle the 4 remaining open.

2. Background

2.1. CONSTRAINT SATISFIABILITY PROBLEMS. A constraint satisjiability prob-

lem (CSP) consists of a set of L]ariables V = {u,,..., u,,}, their associated

domains D1,.. ., D,, and a set of constraints on these variables. The domain of a

variable is a group of values to which the variable may be instantiated. A value

of a variable is also called its label. Constraint satisfiability problems are also
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intelligence literature as co~zsistent labelin,q problems [32].

A solution to the CSP co~sists of an instantiation (or label~ng) of all the

variables that does not violate any of the constraints, that is, a consistent

labeling of each variable with a value from its domain.

The constraint satisfiability problem itself is to determine if there exists a

solution; this is essentially equivalent to the so-called consisteizt si~~gleton

labeling problem, which is to jind one solution. The minimal labeling problem

(MLP) is to determine the “strongest possible assertions about the domains,
which do not change the set of solutions” that is, to determine the minimal sets

of values D; c D, such that the set of solutions for the resulting CSP will be

identical to that of the original problem. (In particular, this implies that the

remaining labels are exactly those which participate in some solution that is

consistent with the input data.) In computer vision, temporal reasoning, and

other application areas, it is sometimes regarded as an approximation strategy

for first cutting down the solution search space before other (possibly exhaus-

tive) solution finding techniques are employed. The all solutions problem (ASP),

is to construct a polynonziul representation structure Z requiring 0( p( n )) space

and from which k distinct solutions can be produced on O(q(~z, k)) time, where

n is the number of variables, p and q are polynomial functions, and k is any

number less than or equal to the number of solutions. The structure 2 thus

represents all possible solutions.

Example 2.1. The matrix M in Figure 1 illustrates the cross product of the

domains for a problem on two variables where 1 indicates a solution and O a

nonsolution, as determined by the constraints that are only implicit here. The
satisfiability problem is to determine if M has a 1 in it, and consistent singleton

labeling must find the coordinates of one. The minimal labeling problem is to

determine the submatrix M’ of M obtained by eliminating all rows and columns

having only O entries. The all consistent solutions problem must construct a

representation structure, such as the graph S of closest neighbors in Figure 1,

which allows generating all solutions.
In the context of this paper, the variables will correspond to pairs of

temporal events (i.e., intervals) and will take on values that represent the

qualitative relationship between them (i.e., intersect, overlap, contain, less

than, etc.) The constraints will be those implicitly imposed upon the events by

their being intervals on a line.
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TABLE 1. THE 13-VALUEDINTERVALA~GE~~A .W13.

Relation Notation Interpretation

z before y

y after z

z meets y t {

y met-by z m~l 1

x overlaps y t I

y overlapped-by z o~l 1 1

z starts y s I I

y started-by z S-l i

z during y d I i

y includes z d-’ i f

z finishes y f
t i

y finished-by z j-l ~

I i

z equals y =
1 {

NOTE-Single line: x interval, Double line: y interval.

2.2. INTERVAL ALGEBRAS AND MACRO RELATIONS. Allen [2] has defined a

model for temporal logic whose elements are time intervals (corresponding to

events that happen during a certain period of time) and uses the following 13

primitive relations

{< ,> ,m, m-’, o,o-’, s,, f, ffl,d,dd, d-’,-}

to express the relative position of two intervals (Table I). We will call this the

13-udued interual algebra .til~. Nokel [31] has observed that these relations can

be partially ordered to form a lattice (see Figure 2(a)) which may be used for

studying convexity problems.

There are two lines of specialization that we study in this paper, macro

relations and restricted domains. Macro relations refers to partitioning the 13

primitive relations into more coarse relations by regarding a subset of primitive

relations as a macro relation. Restricted domains refers to designating explic-

itly the allowable subsets of relations that may serve as domains, which we will

discuss in Section 5.

2.2.1. Macro relations. We let

n={m, m-l, o,o-l, s,s-l, f, f-l, d, d-l,-}

a= {m, o}, ~-1 = {Vi-l, o-’}

C= {s, f, d}, C-t = {s-’, f-’,l}l}
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From these we define the 3-valued and 7-valued interval algebras .~j and .WT

whose elements are called its [itcwzic relations. respectively,

.%?7:{< ,>, a,a–’, c,c –’,=}

These macro-algebras are illustrated in Figure 2(b) as overlays on the Nokel

lattice. The choice of which of these algebras ..% to use depends on the nature

of the application, data, constraints and on the type of complexity result being

proved.

Remark 2.2. Frequently an assumption is made in combinatorics that all

interval end-points are distinct. (This is sometimes accomplished by perturbing

the endpoints “by an epsilon” while preserving intersection and disjointness. )

This simplification eliminates the seven relations m, m l,s. s -1, ~, ~- 1, -

leaving one with the 6-valued algebra

.&,:{< , ~ ,0, o-’. d,}-’}.

Although this assumption may be inappropriate or too strong in some applica-
tions of temporal reasoning, it has proved useful in others. We choose here to

allow common endpoints, since it permits a more general analysis, even in the

case of .CZS.

Remark 2.3. Abusing the terminology slightly, we call each .&, an algebra,

for the following reason: The set of possible relations in each .wj forms a class

closed under sum (set-theoretic union), product (set-theoretic intersection).

and converse. Each class contains the empty relation (empty set of relations)

and the universal relation (union of all possible relations). Hence, it forms a

Boolean algebra. Moreover, an additional operation of composition of rela-

tions can be naturally defined (see [2, 29]). If the class also contains the identity
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relation with respect to composition then it qualifies as a relation algebra, in the

sense defined by Tarski [38]. For example, Ladkin and Maddux have shown

that .CKlSis a relation algebra [29].

2.3. TEMPORAL REASONING AS A CONSTRAINT SATISFIABILITY PROBLEM. We

now define our temporal reasoning problems in the context of constraint

satisfiability. For each pair of events .x and y, let D(x, y) be a set of atomic

relations in the algebra .%. The semantics here is that we do not know precisely

the relationship between -x and y, but it must be one of those in the set

D(.x, y). (In the language of constraint satisfiability, there is a variable ~’(x, y)

representing the relation between x and y, and its value must be taken from

those in the set D( x, y) corresponding to its domain.) For example, we read

D(x, y) = { <, C} as x is either before or contained in y. We also call a set of

atomic relations a relation set. Occasionally we shall use the notation xD( x, y)y

for short. For example, D(.x, y) = {~ , d-l, =} and x{< , d-’, -}y both mean

“either x ends before y starts, or y is during x, or the two are equal”. We omit

braces when there is no ambiguity, for example, x + y or x n y.

An instance (or input) for all the problems studied in this paper consists of n

events, and a relation set D(x, y) for every pair of distinct events, x, y. Without

loss of generality, we assume that for each pair of events x and y, the relation

sets D( x, y) and D( y, x) given as input are consistent, that is, for each atomic

relation R, R ● M x, y) - R-l E D( y, x). Otherwise, it is a simple matter to

restrict the relation sets further so that they satisfy these properties or are

shown to be unsatisfiable. Hence, we can assume that the input contains for

each pair of events x, y only one relation set, say ,D(x, y), and that the other

relation set D(y, x) is given implicitly by the above rule.

Remark 2.4. The size of an instance is the number s of nontrivial relation

sets in it, and is linearly equivalent to the binary input length for each .%. We

assume that relation sets which are trivial (i. e., contain all the atomic relations)

are not listed explicitly as part of a problem input, and that each event is

involved in at least one non-trivial relation set. Hence, the input size s of a

problem with n events satisfies s = 0(n2) and s = O(n).

An intend realization for the instance {D(x, y)} is an assignment of intervals

on the real line to events, so that for each pair of events, one of the atomic

relations in their relation set holds. Since all the algebras discussed here are

concerned with topological properties only, a realization can be viewed also as

a complete weak order of the interval endpoints, thereby identifying all

realizations which differ in metric only. Two realizations are distinct if the

orders of the endpoints in them differ. The input data {D(x, y)} is Corzsklzf

(or satisfiable) if it admits at least one realization.

An instantiation is an assignment of one atomic relation from D(x, y) to

each pair of events x, y, and it is consistent if the resulting instance is

consistent. A consistent instantiation is also called a solution. Clearly, to every

interval realization there corresponds a unique instantiation. However, for

algebras in which macro relations are defined, more than one interval realiza-
tion may correspond to the same solution.

The inten’al satisfiability problem (ISAT), called consistent singleton labeling

in [41], is determining the existence of (and finding) one instantiation that is

consistent with the input data {D( x, y)}. Occasionally, we shall make an
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FIG. 3. Two interval reahzatlons for Example 2 (a) .I y, y ~ z, ZSX.(b) x ~ y, v ~ Z, zjt.

additional distinction between the decision L>ersion of ISAT, whose output is

only a yes/no answer, and the constnwtile t emion, whose output is the answer
“no” if the input is inconsistent and a solution if it is consistent.

The minimal labeling problem (MLP) (as mentioned above) is to determine

the minimal sets D’(x, y) c D(,x, y) such that the set of solutions is un-

changed, and every remaining atomic relation participates in some solution.

Example 2.5. x{ ~ , m, o}y, y{ < , = , >}z, z{f, S}X.

Here xoy, y > z, ZSX, and x ~ y, y > z, zf.y are both consistent with the

input, as shown in Figure 3. On the other hand. y < z and z = y are

impossible. The minimal labeling for this problem is x{< , m, o}y, y ~

z, Z{f, S}x.

The all solutions problem (ASP) is that of determining a polynomial represen-

tation structure X for all consistent instantiations. Our contention is that the

all solutions problem is a more faithful closure problem for interval algebras

than the minimal labeling problem, since not all tuples of the cross product of

a minimal labeling are solutions. Consider the following simple example:

Example 2.6. a{< , >} b, b{< , >}c, n{< , >}c.

This is a minimal labeling, and yet only 6 of the possible 8 instantiations are

consistent.

The closely related all realizatio?zs problem (ARP), is that of enumerating all

the distinct interval realizations for a given instance. For .@lj, ASP and ARP

are equivalent, but in the smaller algebras there may be several (or many)

distinct endpoint sequences which realize the same instantiation.

An application in archaeolo~. The seriation problem in archaeology at-

tempts to place a set of artifact types in their proper chronological order. This

problem was formulated by Flinders Petrie, a well-known archaeologist at the

turn of the century, while studying 800 types of potte~ found in 900 Egyptian

graves. To each artifact type there corresponds a time interval (unknown to us)

during which it was in use. To each grave there is a point in time (also
unknown) when its contents were interred. Each grave provides the intersec-

tion data for the intervals corresponding to its contents.

3. The Relatiue Complexity of the Four Consistency Problems

In this section, we show that the polynomiality of the interval satisfiability

problem (even in the weaker decision version) implies the polynomiality of

MLP and the existence of a polynomial representation structure for ASP. The

scope of these results is in fact broader than our representation suggests. They

are valid for general constraint satisfiability problems, provided that the

maximum number of labels in a domain is bounded by a constant. Another
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result which is more specific to the interval context is that the polynomiality of

ISAT implies also the existence of a polynomial representation structure for

ARP. We present here the results for the algebras .~, i = 3,6,7,13, and they

apply also to any restricted domain in these algebras.

PROPOSITION 3.1. The minimal labeling problem and the inten’al satisfiability

problem (in the decision atld the constructible Lersions) are po~nomially equil’alent

for each of the algebras .%, i = 3,6,7,13.

PROOF. Clearly an answer to the MLP gives an answer to the ISAT decision

problem. For the converse, one can use an oracle for ISAT (in either version)

to solve MLP as follows: Replace one relation set by one of the atomic

relations it contains, and keep the rest of the problem input unchanged. ISAT

is satisfiable for the resulting problem if and only if that atomic relation is part

of a minimal labeling of the original problem. Hence, MLP can be solved by

0( n~ ) calls to an ISAT oracle.

To complete the equivalence we shall show that given an oracle for MLP and

a consistent input 1, one can construct in polynomial time a instantiation

consistent with the input and thereby solve the constructive version of ISAT:

Apply the MLP oracle to input 1. Since each atomic relation in the resulting

output .I is realized in some solution, replacing one nonsingleton relation set

by a single atom in it creates a new instance Y’ that is consistent, and whose

solution set is contained in that of 1. Now rename J’ as I and repeat the

process until all relation sets are atoms. The final set is the desired instantia-

tion. Hence, the constructive version of ISAT can be solved by O(n z) calls to

an MLP oracle. ❑

PROPOSITION 3.2. ItL any of the algebras .%, i = 3,6,7, 13, if the interL’al

satisfiability problem is polynomially, then there exists a polynomial representation

structure for the corresponding all solutions problem.

PROOF. By Proposition 3.1, the polynomiality of ISAT implies the polyno-

miality of MLP. Denote the answer to the MLP by D = (D1, Dz, ..., Dk),

where each D’ = {R’(l), ..., R’(n, )} is a relation set in the minimal labeling,

and the atomic relations it consists of are R’(j). Clearly, the size of D is

polynomial in the size of the instance problem. The orders of the relation sets

and of the atoms in each set may be arbitrag.

The algorithm for solving ASP is an enumeration based on the structure D:

It repeatedly replaces relation sets by atomic relations until a feasible instance

in which all relations are atomic is produced. The algorithm proceeds in levels,

according to the number of relation sets that have already been replaced by

atomic relations. In each step, it replaces one D’ by an atomic relation

R’(j) G D’ and solves ISAT on the resulting problem. If the new problem is

satisfiable, then the algorithm moves one level forward in the enumeration:

D’ +‘ is also replaced by an atomic relation. If the new problem is not

satisfiable, then the next atomic relation from D’ replaces R;. (Call this step a

sideward moLe.) If all atomic relations in D’ have already been exhausted, then

the algorithm moves one level backward in the enumeration, the next atomic
relation in D’ – 1 is fixed, and the original D’ is restored. A realization is

determined whenever the algorithm reaches level k + 1. The algorithm termi-

nates when level 1 has been exhausted. (Viewed differently, the algorithm

performs an exhaustive depth first search of the solution space, with a consis-
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tency check on the partially restricted solution before each move down the

tree. By pruning branches off the tree if ISAT at their root is false, most futile

searches are avoided. This pruning is the reason for the polynomiality of the

algorithm.)

A formal presentation of the algorithm follows. An auxiliary vector, a =

(a’> ..., ak ) records the atomic relation to be explored next in each relation set.

A constrained instance D(a) = (~i,..., ~~ ) is defined by:

{

~, = D’ if /3 [=0

R’(a’) if a’ > 0,

where i records the current level in the algorithm.

algorithm ASP
begin

0. /* [nifiakc */a + (1,0,...,0); L + 1
1. Solve ISAT (D(u)). if FALSE then go to 2
else 1.1 if i < k then/* nzo~cfonvani ‘~la’+’ ~ 1; [ + ~ + 1; GO to 1

1.2 else (ISAT( D(a)) = TRUE, i = k) output D(,Lz)and continue
2. / * modifi D(a) jl,r tlze ~ze,t-t i,zsta,lce to be checked * /

2.1 if u’ < n, then / Y WZOL’1’sdcwards ~ ia’ * u’ + 1; GO to I
~,~ else (a’ = }~,) if z = 1 then STOp

else (a’ = n,, ~ > 1) /* rtzo~w backwards */al + 0; ~ + z — 1: go to2.1
end

The correctness of the algorithm is clear. To prove its complexity, note that

the algorithm does not move forward to level j + 1 unless at least one of the

atomic relations in D’ participates in some solution. Hence, the algorithm

performs at most k” (? calls to an ISAT oracle for every consistent instantia-

tion it produces, where ~ is the maximum number of possible atomic relations

in any level ( ~ = i in .%). ❑

We conclude this section by stating an analogous result showing that ARP is

polynomial whenever ISAT is:

PROPOSITION 3.3. lH ally of the algebras ~, i = 3,6,7, 13, if ISAT is polyno-

mial, then there exists u polynomial representation structure jor the all realizations

problem.

The proof is deferred to Section 5.5, since it will use some of the tools

developed in Section 5.

Remark 3.4. The propositions above are included here to point out a

theoretical result, and the specific relative complexity bounds are less impor-

tant. For example, one can replace in the enumeration scheme above the ISAT
subroutine by an MLP subroutine. In certain cases, as we shall see, MLP is not

harder than ISAT, and the MLP solution restricts the enumeration more

efficiently. We shall also see in the following sections some cases where the

approach above for MLP and ASP translates into concrete, more efficient

algorithms, and others that can be solved more efficiently by different tech-

niques.

4. NP-Completeness of the Co~nplete Algebras

Vilian and Kautz [42] have shown that the interval satisfiability problem is

NP-complete for J#j. Their proof relies on relations in which endpoints are
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equal, such as in the meets relation. We prove here a stronger theorem that

ISAT is NP-complete for J/g, and obtain as a corollary that all four problems

ISAT, MLP, ASP, and ARP are intractable for all four interval algebras .<,

i = 3, 6, 7, 13.

To prove that ISAT is NP-complete for ti~, we introduce a new combinato-

rial problem, called the intenjal graph sandwich problem, which we prove

NP-complete and show to be a special case of ISAT. We first give some

necessary background on interval graphs.

Let {1( u)}. ~ ~ be a set of intervals on the real line. We can define a strict
partial order + on V where for any L), w in V we have L’ < w if and only if

interval 1( ~’) is strictly to the left of interval 1(w). The partial order implied

from this definition is the interual order and {1( Z)},, ~” is called an internal

representation. An undirected graph G = (V, E) is called an intenal graph if its

vertices L’ can be represented by intervals 1( ~’) on the real line such that two

vertices are adjacent if and only if the corresponding intervals intersect. Thus,

an interval graph is the incomparability graph of an interval order. (For further

references on interval orders and interval graphs, the reader should see [14],

[15], and [19-21].

For a given interval representation {1(u) },, ~ ~,, we define its endpoint-

sequence to be a sequence of endpoints as we scan left to right along the real

line. We denote by 11, the left-endpoint (startpoint) of interval 1( ~) and by r,,

the right-endpoint ( finishpoint ) of the same interval, that is, N L’ ) = [1,,, r,, 1.

Generally, there may be several topologically different interval representations

for a given interval order or interval graph, and in the worst case exponentially

many. This lack of specificity is inherent in much of temporal reasoning and

indicates partial knowledge about the actual occurrences of the temporal

events.

Let E* and E 2 be two disjoint sets of edges defined on the same vertex-set

V. A graph G(V, E) with E’ c E c E’ u E2 is called a sandwich graph for

(E1, E2). The interval graph sandwich (IGS) problem is the following:

Interval Graph Sandwich problem:

INPUT: Two graphs G* = (V, E1) and G2 = (V, Ez) with the same set of
vertices, and disjoint edge-sets E 1 and E~.

QUESTION: 1S there a sandwich graph for ( E‘, Ez) that is an interval
graph?

Define F = {E1 U Ez} (i.e., F is the set of nonedges in the graph (V, El U

Eg ).) When El = 0 or F = 0, the answer is trivially yes. When Ez = 0, the

problem is polynomial by the algorithm of Booth and Lueker [81. We shall
show that, in the general case, the problem is NP-complete.

An application in molecular biology. Interval sandwich problems arise in

various practical contexts. One example is in physical mapping of DNA in

molecular biology [11]. In this problem, information on intersection or nonin-

tersection of pairs of segments originating from a certain DNA chain is known

from experiments, without knowledge of the nucleotide sequences of the
segments or the chain. The goal is to find out how the segments can be

arranged as intervals along a linear line (the DNA chain), so that their pairwise

intersections in that arrangement match the experimental data. (This question,

raised by the famous biologist Seymour Benzer [7], was one of the original
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FIG. 4. (a) variable subgraph. (b) clause subgraph. (Solid edges are E’ -edges, clotted edges are
E2-edges. Non-edges are in F.)

motivations for the study of interval graphs. In fact, Benzer raised the decision

L’ersion of this question, since, at the time, the linearity of the DNA was only a

hypothesis. ) In the graph presentation, vertices correspond to segments and

two vertices are connected by an E 1-edge if their segments are known to

intersect. If complete information is available, then, for each pair of segments,

it is known whether they intersect or not. In that case, E? = D, so the decision

question is efficiently solvable. However, information on the intersections of

segments is often known only in part, because of the lack of experimental data

or inconclusive experimental results. That ambiguity introduces Ez-edges into

the graph. In that case, the decision problem is equivalent to the IGS problem.

We need two more concepts before we can prove the main result of this

section. First, three vertices x, y, z in the graph G = (V, E) are called an

asteriodol triplet if no two of them are connected by an edge, and for each two

of the three, there is a path connecting them that does not pass through any

vertex adjacent to the third. Lekkerkerker and Boland [30] observed that an

interval graph cannot contain an asteriodal triplet. Second, the Not-All-Equal

3-Satisfiability (NAE-3SAT) problem is a restriction of the 3-Satisfiability

problem in which one asks for a truth assignment such that each clause

contains at least one true literal and at least one false literal. Schaefer [35] has

shown that NAE-3SAT is NP-complete. Note that in this problem we can

assume without loss of generality that no clause contains a variable and its

negation.

THEOREM 4.1. The intercal graph sandwich problem is NP-Conlplete.

PROOF. The problem is clearly in NP since a given interval representation

can be verified to fit the input in polynomial time. We describe a reduction

from NAE-3SAT: Let CD be a CNF-formula with variables Xl, . . . . X,l and

clauses C,, ..., Cm. We construct an instance (V, E’, Ez ) of the IGS problem

as follows:

(1) Define a vertex p. For each variable Af,, i = 1,...,n, define four vertices
x,, -i,, xl, Z:. The vertices x:, .i?~are called the p~it’ate L’ertices of variable Xl.

The vertices x,, ~, are called the literal vertices of X,. Connect the four

vertices to each other and to p to form a variable subgraph, as shown in

Figure 4(a).
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(2) For each clause C, = [Xl, V X,, V X,j], i = 1,..., m, define three vertices

LI}, [’,2, ZI,3, which will be called the pril)ate vertices of clause C,. Denote the

literal vertices corresponding to the three literals of that clause by xi,, X,z,

and X,3. Connect these six vertices to form a clause subgraph, as shown in

Figure 4(b).

(3) The set F consists exactly of those edges between vertices from the same
clause or variable subgraph, which are neither in E* nor in E2 in that

subgraph. All the edges between two distinct subgraphs that were not

determined by (1) or (2) are E 2-edges. Specifically, all the following are

Ez-edges:

(3.1)Fori= l,..., n, connect each of the vertices x,, i?,, .x; , i: to each

x~,.i?,,x~,.?~, j # i.

(3.2) Fori= l,..., m, connect each private vertex of clause C, to each

private vertex of clause Cl, i #j.

(3.3) Fori= l,..., m, connect each private vertex of clause C, to p and to

each literal vertex except those of the two other literals in clause C,.

(3.4) Fori= l,..., n, connect each private vertex of variable X, to each

private vertex of clause C,, j = 1,. ... m.

Clearly this construction requires polynomial time. Let us now prove its

validity: Suppose first that there exists an interval graph sandwich G’ for the

problem. Fix a realization of G’, and denote the interval corresponding to

vertex 1’ in the realization by l(~). Denote the endpoints of interval 1(p) by pi

and p?. By the construction of the variable subgraph (part 1), for each variable

X,, i= l,..., n the intervals Z(X, ) and l(.ll ) are disjoint, and either pl = 1(x, )

and pz ● l(.i, ), or pz c 1(x, ) and pl = 1(.7,). Assign truth values to the

variables as follows: ~1(X,) = TRUE if and only if p, e 1(.1,). By the above

argument, exactly one literal for each variable is true.

Consider now the clause C, = [X,l v X,z V X,j]. The intervals

I(x, ~), 1(x,2), 1(X,3) cannot be pairwise disjoint, since each of them contains
either pl or pz. By the construction of the clause subgraph (2), the three

intervals cannot have a nonempty intersection, since then in the subgraph

corresponding to that clause, L’:, LI,2, LI,3 will form an asteriodal triplet, which is

impossible since the graph is interval. Hence, either one or two of the intervals

contains p,, and so one or two of the literals in each clause are true, as

required in NAE-3SAT.

Next, suppose [’ is a NAE truth assignment that satisfies the formula Q. We

shall prove that there exists an interval graph sandwich for ( E 1, E z) by creating

a realization for it:

(a) Choose an interval I(p) = [p,, pz ] arbitrarily, and fix some point p~ inside
it, that is, p, <pt <pz. Define intervals Al = [t~,t~]and l?, = [~~,~~] by

choosing points t{,f?,f ~, f ~ satisfying

t;<pl<t; <p3<f; <p2<f,2.

For i= 2,..., n, define inductively intervals A,, B, by choosing points

f;> f:, i’>i ~ such that

Al= [t), t~], where, t: <t~_, <PI <t~<t~-l,

An example of the construction of these intervals is given in Figure 5.
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PI I(P) R R

FIG. 5. Construction of the ,4 and B intervals

PI I(P) j), n

FIG. 6. Example of an interval realization for the formula F = [X, V X2 V ~j][~) V .%’2 V

~3][x) V ~z V ~Y~] with not-all-equal truth assignment ~(X, ) = C(XZ) = ~,(.Y3) = TRUE, FOI

simphcity, private-intervals of variables are omitted.

(b) If u(X, ) = TRUE, then set l(x) = /l, and l(zI) = B,. Othemise, set
1(x, ) = B, and 1(~,) = ~l. This guarantees that 1(x, ) and l(.i, ) are disjoint,

and that one of them contains p ~ and the other contains pz, as prescribed

by (l). The intervals of the private vertices of each variable can now easily

be placed so as to satisfy (1).

(c) The arrangement of the literal intervals in part (a) above guarantees that
for every two such intervals which have nonempty intersection, no interval

is contained in the other. Since t is a not-all-equal truth assignment, for

every clause at most two literals are true and at most two are false. Hence,

the intervals of the private vertices of each clause can be placed so as to

satis~ (2) (see the example in Figure 6).

The conditions in (3) are automatically satisfied by the above realization,

since they pose no additional restrictions. ❑

THEOREM 4.2. ISA T is NP-con~plete for .~j.

PROOF. For a given instance of the interval graph sandwich problem, we

construct an equivalent formulation as an ISAT problem for .w~ as follows:

For each edge (x, y) e E], let D(x, y) = {n}.

For each edge (x, y) ● Ez, let D(,Y, y) = {< , f’ , ~}.

For each pair (.Y, y) @ E’ u E; let D(x, y) = {+ , ~}.
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It is clear that this ISAT’ problem has a solution if and only if there is an

interval graph sandwich. ❑

COROLLARY 4.3. ISAT, MLP, ASP, and ARP are NP-hard for dj, .~,, .Q7T,

and .@lq.

PROOF. This follows from the observation that the algebra .d~ is contained

in each .% and that for any i = 3, 6, 7, 13, each of the four problems has a

nonempty solution if and only if any of them has one. ❑

5. Restricted Domain Problems

Because of the intractability of the general versions of the consistency prob-

lems, attention has been focused on the work of several authors who have

studied polynomial time approximation algorithms for MLP on .U?13[2, 40, 41].

Previous to the work of Belfer and Golumbic [4, 5, 6], we do not know of any

study which has investigated the ARP. Solutions to several restricted cases of

the interval satisfiability problem have been known for a long time. These will

be extended by the new results presented in this section.

By suitably restricting the input domain of an NP-complete problem, one can

often obtain a special class that admits a polynomial-time algorithm. In the

general case for an interval algebra .%, each relation set D(x, y) may take any

of 2’ – 1 possible values (the power set formed by the atoms of ~, excluding

the empty subset of relations). In this section, we restrict this by designating A

to denote a particular family of relation sets in .% and requiring that each set

D( x, y) be a member of A. To simplify notation we shall represent each

relation set in .ti~ by a concatenation of its atomic relations, omitting braces.

Hence, < n represents { <, n }, + represents { +}, etc. The seven possible

relation sets in w’s in this notation are:

< ,>,n,+n,n>,<>,<n >.

ISAT( A) will denote the ISAT problem where all the relation sets are re-

stricted to the set A. The proof of Theorem 4.2 shows that even when all

relation sets are restricted to be from A,l = { n, <> , < n > } (meaning

intersect, disjoint, or don’t care), ISAT remains NP-complete. This is restated in

the following corollary:

COROLLARY 5.1. ISA T( A ~) is NP-conzplete.

A number of well-known recognition problems in graph theory and partially

ordered sets may be viewed as restricted interval satisfiability problems. Five of

these, all of which have polynomial time solutions, are given in Table II along

with their appropriate A (see [14], [21], and [34]).

The results of [4], [5], and [6] demonstrate polynomial time solutions for the

ARP in MS restricted to (i) A = { <, >, n } (interval orders) using the so

called H structure and its associated construction algorithms, and (ii) A =
{ <>, n } (interval graphs) using the endpoint-tree structure and its construc-

tion algorithms.
The interest in restricted domains is both practical and theoretical. Some

practical applications in which restricted domains naturally arise are medical

databases, medical diagnosis and natural language processing (see [39, p. 328]

and the references thereof), circuit design [43, p. 184], and physical mapping in
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TABLE II. FIVE CASES OF INTERVAL SATISFIABILITY PROBLEMS IN GRAPH THEORY

THAT ADMIT POLYNOMIAL TIME SOLUTIONS

class Restricted Domain Reference

Interval orders A={+, >,n} [16]
Interval graphs A={<>, n] [8, 17,19. 27]
Circle (or overlap) graphs A = {{a, a- ‘,=}, {<, >> C, C-’}} [9, 18]
Interval containment graphs A={{c, c-l], {<, ~,a, a-l,=}} [22]
Posets of dimension 2 A={{c}, {c-l}, {<, ~,a, a-’,=)} [3, 13, 22]

molecular biology (see the discussion in the preceding section). Also, the

numerous applications of interval graphs and interval orders [15, 20, 34] can all

be viewed as applications of restricted domains. As we shall discuss in Section

6, knowing which restricted domains are polynomial can also speed up the

enumeration in NP-hard domains.

In this section we shall study the complexity of ISAT on four additional

restricted domains in ti~. Using these results, we shall obtain a complexity

classification of all but four of the restricted domains in MS.

5,1. ALGORITHMS FOR THE DOMAIN ti~ – <>. In this section, we deal

with problems in the domain:

Al={<, >,n, <n, n>, <n >}.

That is, As – <>. We shall give efficient algorithms for ISAT, MLP, and

ARP on this domain, and they will apply immediately to any subdomain of Al.

Hence, by excluding just a single relation set from d~ the problems become

tractable.

5.1.1. A Linear Time Algorithm for ISA T( A, ). The polynomial algorithm for

MAT( A *) utilizes a directed graph, which will be described later, with vertices

corresponding to the endpoints of event intervals and arcs representing the

relative order of endpoints. The key observation here is that every relation in

A ~ is equivalent to a certain order requirement between a pair (or two pairs) of

such endpoints. This observation is proved below:

LEMMA 5.2. Let i and j be the elent intenals [1[, r, ] and [lj, r] ], respectively. In

each of the following cases, the intenjals satisjji the set of relations if and only if

their endpoints satisfi the corresponding ineql~alities:

i<j~r, <ll iFj*rl <l, (1)

i<nj~l, <r, i~>j-ll<rl (2)

inj=[lt <r, and 1, < r,] (3)

If i < n > j, no constraint is imposed.

PROOF. (1) is immediate. The conditions in (2) are the negation of those in

(l). (3) is equivalent to the intersection of the two conditions in (2). ❑

The graph is now constructed as follows: For an instance J of ISAT(AI ) with

n events, form a directed graph G(J) = G( V, E) with vertex set V =

{r,,..., r,l,ll,..., l.}. The arc set E consists of two disjoint subsets, EO and El.
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The former will represent weak inequality and the latter will represent strict

inequality between pairs of endpoints. The arcs are defined as follows:

(l,, rt) ● -E(, i=l ,.. .,fl (4)

(r,,l, ) GEl Vi, j such that i <j (5)

(it, rJ) ●I!zo Vi, jsuch that i < n j (6)

(n, rj) ● E,l and (n, r,) ●E() Vi, j such that i n j (7)

For pairs i, j with the relation i < n > j, no arc is introduced. Define now

E = ,?30U El. We call the arcs in E. (respectively, El) the weak arcs (respec-

tively, strict arcs ). Note that the graph G is bipartite. Denote the two parts of

the vertex set by R = {rl,. . . . Y,,} and L = {1,,..., 1,,}, and call an arc an

RL-arcs (respectively, LR-arc) if it is directed from R to L (respectively, from

L to R).

Remark 5.3. In the graph G all the RL-arcs are strict and all the LR-arcs

are weak. Hence, we need not record explicitly the type of each arc since it is

implied by its direction.

LEMMA 5.4. Elwy cycle in G cotltaim a strict arc.

PROOF. Since G is bipartite, a cycle must contain vertices both from R and

from L. In particular, it must contain an RL-arc, so the claim follows by

Remark 5.3. ❑

An algorithm for solving ISAT( A, ) is described below:

algorithm Al-CONSISTENCY;
begin

1. construct G(J) according to rules (4)-(7).
2. if G(J) contains a cycle, J is not satisfiable. Otherwise, it is.

end

LEMMA 5.5. Suppose G(J) = (V, E) is acyclic. Then a linear order on V is

consistent with the partial order G( J ] if and only if it is a realization of J.

PROOF. Take any linear order P which extends the partial order G. P is an

ordering of all the endpoints, which by Lemma 5.2 satisfies all the relations in

the input, so P gives a realization for J. On the other hand, every realization of

J gives a linear order of the endpoints, in which each of the input relations

must be satisfied, by Lemma 5.2. Hence, the linear order must be consistent

with the partial order G(J). ❑

THEOREM 5.6. Algorithm A, -CONSISTENCY correctly recognizes if an in-

stance of ISA T( A ~) is satisfiable in linear time.

PROOF

Validity: By Lemma 5.2, each arc reflects the order relation of a pair of

interval endpoints as prescribed by the input relations. If G contains a cycle,

then by Lemma 5.4 that cycle contains a strict arc. Hence, that cycle must
satisfy r, < l] S . . . < r,, which implies that the input relations cannot be

satisfied. In case G is acyclic, Lemma 5.5 implies that J is satisfiable.

Complexity: Constructing G(J) requires 0(s) steps, where s is the number

of input relation sets, since the effort is constant per relation. Checking if G is
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~cyclic can be done, for example, by depth-first search, in time linear in 1~1, the

number of arcs [37]. Since IEl s 2s + n, using Remark 2.4, we conclude that

the algorithm is linear. ❑

Renlark 5.7. Skrien [36] studied the question of chronologically ordering an

interval graph, and defined a similar graph in his analysis. He assumes that the

underlying graph is known to be interval, and is concerned with the question of

whether a partial orientation of the endpoints can be extended to a transitive

one. However, since he works on the complete graph and not only on the

bipartite subgraph, and does not assume (4), his approach leads to a signifi-

cantly more complicated characterization and proof, and his algorithm has

higher complexity.

Rcnlark 5.8. Ladkin and Maddux [29] and van Beek [39] independently

studied a restricted domain of .wl~ called “pointisable relations” in [29], or

“SIA” in [39]. Viewed as a subset of .&lj, A, is contained in this domain. On

that domain, ISAT is solvable in O(nz) steps using the algorithm for the “point

algebra”; in which all intervals are assumed to be single points [40]. Nokel [31]

has also studied a subset of that domain.

Remark 5.9. Since all the constraints defining an instance of ISAT(A, ) are

linear inequalities, the satisfiability problem can be reformulated as a feasibil-

ity question for a system of linear inequalities. This can be solved by linear

programming algorithms, and in fact, by specialized algorithms using the fact

that only two variables appear in each inequality [24]. Although this is less

efficient than the method described above, it allows the natural introduction of

additional linear constraints, outside the scope of .d~ or even .W1~, like lengths

of intervals, fixing endpoints to specific time values, etc.

5.1.2. Tile Minimal Labeling Problenl. Once G(J) has been constructed and

shown to be acyclic, the MLP can be solved by forming the transitive closure of

G( J), deducing from it additional (weak and strict) orders of endpoints, and

then using the equivalence established in Lemma 5.2 between these orders and

interval relations to create the minimal labeling. The algorithm is formally

given below:

algorithm MIN-LABEL(.J);

begin

1 Compute G* = ( P’, E*), the transitive closure of G(J).

2. for each pair t, j do:

2.1. if(rl, l,) ● E* then set L <j: if(r,, l,) E E’k then set t ~j

else ((r,, /,) @ E*, (r,, l,) @ E*)
~,~, if(~,, r,) 6 E* and (l,, rl) E E* then Set z ~ n~;

if(l,, r,) G E* and (I,, z-,) c E* then set i n ~ j

2.3. if (n, r,) G E* and (Z,, r,) = E’k then set i nJ

2.4. else ((l,, rr) @ E* and (l,, r,) @ E’E) set i < n ~ ~

end

Let us call the new instance resulting from the procedure above J*. Note

that in general the transitive closure is not bipartite, but the algorithm uses

only the RL-arcs and the LR-arcs of the transitive closure. These arcs are

sufficient to solve the MLP.

LEMMA 5.10. For el’eq RL-m-c (r, 1) in E* there exists a path j?orn r to 1 in G

that contains a strict arc.



Complexity and Algorithms for Reasoning about Time 1125

PROOF. If (r, 1) E E* then there exists a path from r to 1 in the original

graph G. Since that path must contain at least one RL-arc in E, the claim

follows by Remark 5.3. ❑

For the statement of the next theorem, let T(rz, m) be the complexity of

computing the transitive closure of an acyclic directed graph with n-vertices

and m arcs. Recall that the transitive closure can be computed in time O(rzrn),

by using, for example, Warshall’s algorithm. For dense graphs, the algorithms

using fast Boolean matrix multiplication are asymptotically faster (see [1]). As

before, s is the number of nontrivial relation sets in the input.

THEOREM 5.11. Algorith~?l MIN-LABEL computes a minimal labeling of an

instance in A, in T( n,s) steps.

PROOF

Validity: We have to show that J* is a minimal labeling of 1, that is, (A) J

and J* have the same set of solutions and (B) every atomic relation in I*

holds in some solution:

By Lemma 5.10, all the RL-arcs of G* correspond to strict order of the

corresponding endpoints. We shall assume that all its LR-arcs correspond to

weak inequalities. Hence, the bipartite subgraph G; = (V, E;) where E; =

E* n {{R x L} u {L x R}} has exactly the same structure of the original graph

G, that is, it satisfies Remark 5.3. In particular, the results of the previous

section can be used to infer the interval relations from the endpoint inequali-

ties. Moreover, G; and the corresponding instance J* satisfy Lemma 5.5.

(A) Since all the constraints of J are satisfied in .1”, every solution of J“ is

also a solution of ~. By Lemma 5.5, every solution of ~ corresponds to a linear

order P that is consistent with the partial order G. By transitivity the linear

order P is also consistent with G*. Using Lemma 5.5 and Lemma 5.2, we

conclude that P is a corresponding solution of .l*.

(B) If the relation of i and j in Y* has been determined in Steps 2.1 or 2.3 of

the algorithm, then i, j are related by exactly one atomic relation, and that

relation must be satisfied in every solution of .J. Suppose the relation of i, j

was determined in step 2.2, and (11, r,) E E* and (1,, r,) 6! E*. To show that

linear orders with 1, s r, and 1 > r, are both possible, it suffices to show that 1,

4 We already know that (l,, r,) E E*. Since theare r, are incomparable in G .

relation was not determined in Step 2.1, (r,, 1,) @ E*, the result follows. The

proof for the other cases is similar.

Complexity: Step 1 requires T(n, s) operations. Step 2 requires constant time

per pair, for a total of O(nz ) operations. Since T(n, s) = ~(nz ), the result

follows. ❑

Remark 5.12. The transitive closure operation in algorithm MIN-LABEL

contains additional information which we do not need to solve the MLP. For

example, we may obtain relations of the type 1, <1,, 1, < r}, or r, < rj. While

this kind of information is outside the scope of MS, it may be useful for other

purposes.

5.1.3. The All Realizations Problem. We finish this section by sketching a

simple procedure to solve ARP( A ~): The graph G* generated in the previous

section corresponds to a partially ordered set. The question thus reduces to

constructing all the linear orders consistent with a partial order. This can be
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clone by placing a minimal element in all possible positions with respect to

previously ordered elements and repeating recursively. This requires at most

O(n) steps per order produced. The distinction between strict and weak

inequalities (following from the original distinction between strict and weak

arcs) can also be maintained in such a procedure.

5.2. THE RESTRICTED DOMAIN { + , > , n, < >}. Graph theoretic tech-

niques provide a proof of the next new result. The following classical theorem

characterizing interval graphs will be needed.

TI-IEOREM 5.13 (Gilmore and Hoffman [19]). G is an intenal grap)z if and

otdy if G is a chordal graph atld its cotnplement ~ is transitileb orietltahle.

An undirected graph is chordal if for every cycle of length greater than or

equal to 4 there is an edge (chord) connecting two vertices that are not

consecutive in the cycle. Chordal graphs are also called triangulated graphs.

The complement G of G is the undirected graph whose edges are the

nonedges of G; a graph is transitively orientable (TRO) if each undirected edge

can be assigned a direction so that the resulting orientation satisfies the usual

transitivity property. Transitively orientable graphs are also called comparabil-

ity graphs (see [21]).

THEOREM 5.14. ISA T is sokable in O(H 3) time for A ~

PROOF. By our assumption that in the input satisfies

G D(y, x), we may assume that for each pair of elements

of the following holds:

(i) x n y,
(ii) x < ~y,

(iii) x ~ ~,

(iv) x > y.

={<,>,n,<>}

R= D(x, y) *R-’

.~ and y exactly one

We construct two complementary graphs G and H whose vertices correspond

to the events as follows: The graph G = (V, E) is undirected where

{.~,y}~Es.rn~.

The graph H = (V, E’) has both directed and undirected edges where

{x. y}= E’*x<>y,

(x, y) ● E’ =X < v.

(An undirected edge between x and y is denoted here by {x, y}, and a directed
edge from x to y by (x, ~’). ) It is an easy consequence of Theorem 5.13, that

lSAT has a solution if and only if G is chordal and H has a transitive

orientation.

Testing whether G is chordal can be done in O(IVI + IEI) time [S], and

obtaining a transitive orientation for H can be achieved in O(IVII El) time by

the following variant of the TRO algorithm [21, p. 124] for undirected graphs.

Beginning with the undirected graph G, we must find a transitive orientation

F which is consistent with the directed edges in H. The following definitions

are needed: Let G = (V, ~). An oriented edge (x, y) directly forces every edge

{w, y} ~ ~ such that {x, w} @ ~ to the orientation (w, y), and every edge
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{x, z} = ~ such that {y, z} @ ~ to the orientation (x, z). By applying this

operation further, (x, y) indirectly forces edges that are directly forced by those

already forced. The implication class B of a directed edge (.x, y) consists of all

orientations of edges that are forced—directly or indirectly—by the orienta-

tion (x, y). For a discussion and more details, see [21, p. 105-109].

begin
Initialize: F + 0
1.Arbitrarily choose a directed edge (x, y~from H – F. If none exists, go to step 4.
2. Enumerate the implication class B of G containing (x, y). If B contains any oriented
edge that is opposite to its direction in H, then H has no transitive orientation; STOP,
with failure. Otherwise, continue.
3. Let F + F u B. Delete all undirected edges from ~ that were oriented in B. Go to
Step 1.
4. Continue with the usual TRO algorithm for undirected graphs, which is repeated here
as steps 5–7 for completeness.
5. Arbitrarily choose an orientation (x, y) for an arbitrary edge remaining in ~. If none
exists, then all edges are oriented and F is the desired transitive orientation; STOP, with
success. Otherwise, continue.
6. Enumerate the implication class B of ~ containing (x, y ). If B contains any edge that
is oriented in both directions, then there is no transitive orientation: STOP, with failure.
Otherwise, continue.
7. Let F ~ F U B. Delete all undirected edges from ~ that were oriented in B. Go to
Step 5.

end

The proof of correctness and polynomial complexity of this variation is al-

most identical with that of the original TRO algorithm, and is therefore

omitted. ❑

For a different approach to the same problem, see [28].

THEOREM 5.15. ISAT is sokable in linear time for AJ = { <, + , + n + ,

< >}.

PROOF. Form a directed graph G(V, ~) with vertices corresponding to

events, and (14, L]) G E if u < L’. If G contains a cycle, then the instance is

clearly not satisfiable. If G is acyclic, then one can create an interval realiza-

tion of G in which (1) all intervals are disjoint, and (2) ( z1,L)) 6 E if LL + z’.

This can be done by taking any linear extension of G and ordering the

intervals so that they are disjoint and ordered according to that order. In the

resulting realization, (1) and (2) are satisfied. (2) guarantees that all < and >

relations in the input are satisfied, and (1) guarantees that all other relations
( ~ > and + n>) are satisfied. The linear complexity follows by the same

argument as for Theorem 5.6. ❑

LEMMA 5.16. Let i, x, y, j be e[ents satisfying i + n j, j ~ n x ~ n i, j < n
y < n i, and x <> y. Then in el)ery realization of these relations i n j.

PROOF. Suppose i < j in some realization. Denote by g an interval in that

realization satisfying i < g + j. Since i < j, in order to satisfy j < n x < n i,

one must have x n i and x n j. This in turn implies that g c x. Since
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j < n y < n i, the same argument implies that g c y. Hence, .x n y, a contra-

diction. ❑

THEOREM 5.17. ISAT is NP-complete for Ad = {x n, n ~ , ~ ~ , ~ n ~}

PROOF. Clearly ISAT(Aq) is in NP. Let As = {< n. n >, <>, x n >,
n}. Since lSAT(Af)) is NP-complete by Theorem 4.1, and since A,] c Aj,

ISAT( As) is also NP-complete. We shall give a polynomial reduction from an

instance 1 of ISAT(A~) to an instance 1’ of ISAT(A~):

If in instance 1 events i and j are related by any one of the relations

i < n j, i n > j, i ~ ~ j, or i < n > j, the same relation is transferred to 1’.

For every relation i n j, define auxiliary events .x,j and y,j, and introduce the

following relations in 1’:

(I)i<nj, j<nx,, <ni, j+nyl, <ni, and x,, <>yl,.

(2)k<n>.~ and k+n>y,j for every event k # i, j, x,,, y,, (including

other auxil?ary events).

Clearly this reduction is polynomial.

Suppose 1’ is satisfiable. Then all those relations that were transferred from

1 without change are satisfied in an interval realization of 1’. In addition, for

every pair i, j in 1 with relation i n j, all relations of the types ( l)–(2) are

satisfied. From (1) and Lemma 5.16, i n j is satisfied as required. Hence, the

intervals in 1’ that correspond to the original events form a realization of 1.

Suppose now I is satisfiable. Then there is an interval realization in which all

endpoints are distinct. (Every realization can be perturbed into one in which all

endpoints are distinct without changing any relation in .d~: Each set of

identical endpoints can be strictly ordered arbitrarily as long as all the

startpoints in the set precede all the finishpoints in it.) Take such a distinct-

endpoints interval realization of 1 and extend it to form an interval realization

of 1’ by forming the auxilia~ intervals as follows: For each relation i n j in the

realization, by the distinct-endpoints property, the intersection of the intervals

of i and j is an interval (and not only a single point). Hence, the intervals of

events X,j and y,, can be placed so that they are disjoint and contained in the

intersection of the intervals of i and j (see Figure 7). This guarantees that all

relations of type (1) are satisfied. Type (2) relations are trivially satisfied by any

interval realization. •l

5.5. PROOF OF PROPOSITION 3.3. We shall show that given a solution, (in
which all relation sets are singletons of the algebra,) one can generate all the

interval realizations corresponding to it using a polynomial representation
structure 2’. By Proposition 3.2, polynomiality of ISAT implies the existence of

a polynomial representation structure 2 for ASP, for each of the algebras.

Hence, one can use 2 to generate the next solution J, in polynomial time, and

then, given .7,, use S{ to generate all the interval realizations corresponding to

1, in polynomial time per realization. The composition of 2 and the X:-s will

satisfy the requirements of the theorem. For convenience, we shall discuss here

generating only those realizations in which the intervals have positive length.

For .&lj, to each solution corresponds a unique endpoint sequence, since

every atomic relation uniquely determines the equalities and inequalities

among the endpoints of the two intervals involved. Hence, ASP and ARP are
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I
j

i
FIG. 7. An example.

*M

equivalent for til~. The same is true for .tib, since for problems in .@b all

endpoints are required to be distinct. For .ti~, a solution is just an instance in
the restricted domain { < , n , >}, and therefore the H structure of [4] pro-

vides a polynomial representation structure. (In [4], all endpoints are assumed

to be distinct, but the same structure can be modified to handle equalities as

well).

It remains to prove the assertion for .&,. Analogously to the proofs in Section

5.1, we describe each atomic relation in .W’Tby one or more inequalities on the

endpoints:

i<j=r, <ll (1)

iaj - (1, < 1] and 1] s r, and r, < r~) (2)

i=j=(lj =ltandr, =r, ) (3)

icj~(ll<l, andr, <rl but not both 1, = 1, and r, = rj ) (4)

The converse relations are defined analogously. Also, for every event i,

1, <r,. (5)

By identifying every pair of intervals i, j satisfying i = j, we can get an

instance in the restricted domain { + , a, c , > , a– ], c - l}. Similarly to the

construction in Theorem 5.6, form a directed graph with vertices corresponding

to interval endpoints, and an arc labeled < (respectively, <) from x to y if

the relation between the two endpoints implied by the input using ( 1)–(5) is

x < y (respectively, x s y). Shrink every cycle of arcs labelled < , identifying

the corresponding endpoints. An argument analogous to that in Lemma 5.5

shows that the resulting graph G’ is acyclic, and that to every interval

realization of the input corresponds a linear extension of G’. Also, to every

linear extension corresponds an interval realization consistent with the input,

provided that the linear extension contains no new equivalent intervals, violat-

ing condition (4). Hence, one can generate all linear extensions in the manner

indicated in Section 5.1.3. To avoid realizations containing new equivalent

intervals, one can keep pointers in both directions between arcs corresponding

to 1, s 1, and to r, s rj (generated by condition (4)), and use these pointers to

make sure during the enumeration that whenever one weak inequality is set to

equality, the other equality is disallowed. ❑

Remark 5.18. A problem related to ASP and ARP is that of determining

the number of realizations (or solutions) for a given input. Belfer and Golumbic
have given a closed-form formula to compute the number of distinct-endpoint

realizations for inputs in the restricted domain { + , > , n }, (interval orders)

[4]. For the restricted domain { <>, n }, (interval graphs), they describe a

polynomial algorithm to compute the number of distinct-endpoint realizations.

On the other hand, the consistent instances for the restricted domain problem
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on A = { < , > , <> } are precisely the partial orders, and BrightWell and

Winkler have recently shown that computing the number of linear extensions

of a partial order is #P-complete [10]. This implies that computing the number

of solutions (and the number of realizations) is #P-complete for A =
{ <, >, < >}, and thus also for d, and the larger algebras. On the other

hand, Pruesse and Rusky [33a] have given an algorithm that generates all linear

extensions of a partial order in amortized constant time per extension.

6. Conclusion

In this paper, we have dealt with the consistency of assertions about the

relations of intervals. We have investigated four basic problems in temporal

reasoning: determining satisfiability of assertion on time intervals (ISAT),

maximum strengthening of a satisfiable assertion (MLP), and producing all the

consistent instantiations (ASP) or all interval realizations (ARP) via a polyno-

mial representation structure. The three latter problems were shown to be

tractable whenever ISAT is.

We have shown that even a major simplification of Allen’s interval

algebra—from thirteen atomic relations to three only—leaves the satisfiability

problem intractable. On the positive side, we have shown that in this simplified

algebra, MS, many restricted domain problems, (i.e., problems for which the

input is restricted to a prespecified subset of the relation sets) are efficiently

solvable. Polynomiality was shown in some cases by pointing out the equiva-

lence to well known polynomial graph theoretic problems, and in others by

techniques developed here. Table 111 summarizes the current complexity status

on all restricted domains in .Wq. In the ttible, ~ represents both + and ~ ,

and + n represents both ~ n and n > , (Note that although there are seven

nonempty relation sets in .Yj. we need to consider only the power set of the

five relations + , n , + n , < > , < n > , since if a relation appears in the

input, its converse also appears implicitly. Hence, > appears in the input

whenever + does, and n > appears whenever ~ n does.) Each restricted

domain is the union of its coordinates in the table. The top line for each entry

in the table indicates the complexity of that domain, and the bottom indicates

the source of the result. ‘Poly’ denotes a polynomially solvable problem, and

‘NPC’ an NP-complete one. ‘T’ denotes a case which is trivially satisfied by

setting all intervals disjoint or identical. Parentheses indicate that this result is

a corollary of a stronger result.

We conjecture that ISAT is NP-complete on Aj = { ~ n, n >, + >}. A

proof to this conjecture will resolve the remaining four cases. Note that the
large number of polynomial restrictions can be used to speed Up the solution of

a non-polynomial one, by reducing the required enumeration size: For a given

instance, one can easily find which polynomial restriction is “closest” to it, in

the sense that a minimum number of relation sets in the instance fall outside

the restriction. By fixing the possible relations in those (hopefully few) relation

sets, the resulting problem can be solved polynomially.

We have used the framework and the terminology of Allen’s interval calculus

for temporal reasoning, but the results apply in any context where the consis-

tency of assertions about relations of intervals must be verified. The tools we

have used were mainly from graph theory and combinatorics. We have hoped

to demonstrate that the interconnection between these two disciplines is quite
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TABLE III. COMPLEXITY OF lSAT ON ALL RESTRICTED SUBDOMAINS OF.W3

n <+ <+, n

T T Poly interval graph

< Poly Poly Poly Poly

linear order interval order acyclic graph Al

<n T T open open

<n> T T T NPC

A,), interval sandwich

< ,<n Poly Poly open open

(A, ) (A, )

< ,<n~ Poly Poly Poly NPC

(A, ) (A, ) A, (A(, )

<n,<n> T T NPC NPC

(A[,)

< ,<n, +n* PoIy Poly NPC NPC

(A, ) A, (A, ) (A,, )

rich, and its investigation may benefit both fields. Many open questions arise as

a result of this joint viewpoint: Further classification of the restricted domains

in each of the the algebra .%, i = 3, 6, 7, 13, in terms of complexity, obtaining

more efficient algorithms for MLP, ASP, and ARP on specific domains, and

many more.
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