
Data Structures for Generalised Arc Consistency for Extensional Constraints∗

Ian P. Gent,1 Chris Jefferson,2 Ian Miguel,1 and Peter Nightingale1

1School of Computer Science, University of St Andrews, Fife, KY16 9SX, United Kingdom
{ipg, ianm, pn}@cs.st-and.ac.uk

2Oxford University Computing Laboratory, University of Oxford, Oxford OX1 3QD, United Kingdom
chris.jefferson@comlab.ox.ac.uk

Abstract

Extensional (table) constraints are an important tool for at-
tacking combinatorial problems with constraint program-
ming. Recently there has been renewed interest in fast prop-
agation algorithms for these constraints. We describe the
use of two alternative data structures for maintaining gener-
alised arc consistency on extensional constraints. The first,
the Next-Difference list, is novel and has been developed with
this application in mind. The second, the trie, is well known
but its use in this context is novel. Empirical analyses demon-
strate the efficiency of the resulting approaches, both in GAC-
schema, and in the watched-literal table constraint in Minion.

Introduction
Constraint programming is a successful technology for solv-
ing a wide variety of combinatorial problems from industry
and academia. Examples include scheduling, industrial de-
sign, and combinatorial mathematics, to name but a few ex-
amples (Wallace 1996). A backtracking search process is
used to find solutions. Typically, this process interleaves
the choice of an instantiation of a decision variable with
the propagation of the constraints to determine the conse-
quences of the choice made. Various constraint solving
systems are available, e.g. ILOG Solver, Eclipse http://
eclipse-clp.org, Gecode http://gecode.org, and
Minion http://minion.sourceforge.net. All offer a
library of constraints with which to model problems.

The extensional or ‘table’ constraint is an important part
of a constraint library. It allows us to simply list the allowed
combinations of values to a particular subset of the variables.
It can be used to express any relation straightforwardly when
it might be cumbersome to do so using the other primitives
available in the library. To illustrate, consider modelling the
constraint x ‘likes’ y on two decision variables x and y,

∗Supported in part by EPSRC Network grant GR/S86037.
Ian Miguel is supported by a UK Royal Academy of Engineer-
ing/EPSRC Research Fellowship. Peter Nightingale is supported
by an EPSRC doctoral training grant. Chris Jefferson is supported
by EPSRC Grant EP/D032636. We thank Christophe Lecoutre,
Radoslaw Szymonek and AAAI reviewers. We thank the School
of Computer Science at St Andrews for donation of machine time.
Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

both of which have domains {bill, bert, tom}. It is a sim-
ple matter to write down the extension of this constraint (the
set of satisfying assignment pairs), e.g. {〈Bill, Bert〉, 〈Bill,
Tom〉, 〈Bert, Tom〉}, This represents that Bill likes Bert and
Tom, Bert likes Tom, and Tom likes noone. Expressing the
same facts using combinations of other constraints, such as
inequalities and implications, can be an awkward task.

The ability to establish generalised arc consistency (GAC)
on table constraints can be a powerful tool, allowing great
reductions in search over other formulations. It is essential
to be able to propagate this type of constraint as efficiently
as possible. While there has been extensive research into
algorithms of GAC, a very recent trend has been to inves-
tigate data structures which enable satisfying tuples to be
found quickly. There is great potential in this area. The
naive approach, which is simply to traverse the list of satis-
fying tuples in search of ‘support’ for a given assignment, is
potentially expensive. Recently, Lhomme and Régin (2005)
introduced the Hologram data structure for tuples to improve
this process, and Lecoutre and Szymanek (2006) have used
binary search. In this paper, we continue to tap this potential
by introducing two new ways of improving the propagation
of the extensional constraint via two efficient data structures.
We show their effectiveness on both random and structured
problems in two implementations: our own of GAC-schema,
and when integrated into the constraint solver Minion.

Background
The finite-domain constraint satisfaction problem (CSP)
consists of: a finite set of variables, X ; for each variable
x ∈ X , a finite set D(x) of values (its domain); and a fi-
nite set C of constraints on the variables, where each con-
straint c ∈ C is defined over a subset of {xi, . . . , xj} of X
(its scope, denoted scope(c)) by a subset of the Cartesian
productD(xi)×· · ·×D(xj) giving the set of allowed com-
binations of values. A solution is a partial assignment that
includes all elements of X and satisfies all constraints.

An extensional or table constraint is simply the relational
view of a constraint described above. It lists explicitly the
subset of the Cartesian product allowed, as in the example
given in the introduction. This is as opposed to an inten-
sional constraint, where the allowed assignments are com-
puted via some algorithm. Typically, to propagate an ex-
tensional constraint we wish to enforce a property known

as generalised arc consistency (Mackworth 1977). A con-
straint c is generalised arc consistent (GAC) if and only if
for every variable xi in scope(c) and every value v in Di,
there is at least one assignment to scope(c) that assigns v to
xi and satisfies c. Values for variables other than xi partici-
pating in such assignments are known as the support for the
assignment of v to xi.

The GAC-schema algorithm is commonly used to enforce
GAC on an extensionally-represented constraint. The algo-
rithm was introduced by Bessière and Régin (1997) and we
use the version from Lhomme and Régin (2005). Unfor-
tunately we omit pseudocode for space reasons. The fo-
cus of this paper is on the implementation of the procedure
SeekValidSupport, which finds a new valid tuple supporting
(y, b) when the current support for y = b is no longer valid.

Lhomme and Régin (2005) argued that SeekValidSupport
should search only allowed tuples, while only considering
tuples containing values which are valid (in the current do-
main of their variable.) No way is known to achieve this
goal perfectly. Lhomme and Régin’s provided one way of
approximating this: we now introduce two new methods.

Next Difference Lists
The naive implementation of SeekValidSupport (as pro-
posed in the original paper on GAC-schema) involves divid-
ing the set of tuples into lists of supporting tuples for each
variable x and value a, denoted tupleLists(x, a).1 Seek-
ValidSupportSimple searches linearly through the list for a
valid tuple. The index of the valid tuple is stored (CS(x, a)

x

tuple

NextDifferent
 array

<0 0 0>

y z

3 23

<0 0 1>
3 33

<1 1 0>
◊ 4◊

<1 1 1>
◊ ◊◊

1

2

3

4

tuple
index

Figure 1: Next-Difference list example

where CS is Current Support), and search is resumed from
that point the next time SeekValidSupportSimple is called.
This index is not backtracked, so it must be possible to
restart in case the valid tuple(s) are before the stored in-
dex in the list.2 The Next-Difference list is a simple im-

1An alternative naive method is to generate possible tuples from
variables’ current domains, until one is found that is allowed by the
constraint.

2Alternatively, we can store the pointers and restore them on
backtracking, avoiding the restart. In our experiments we have not

provement to the simple approach. Each item in the list
is a record containing the tuple t, and a precomputed ar-
ray of list indices called ND. ND(x) is the index of the
next tuple which contains a different value for variable x.
Therefore, if the current tuple contains value a for variable
x, then ND(x) has the index of the next tuple to contain
b 6= a. If value a has been pruned, it is sound to skip to the
next tuple not containing a. To illustrate, consider Figure
1, which shows the Next-Difference list corresponding to a
ternary constraint with scope 〈x, y, z〉, and allowed tuples:
{〈0, 0, 0〉, 〈0, 0, 1〉, 〈1, 1, 0〉, 〈1, 1, 1〉}. If value 0 is pruned
from variable x, when searching for a support for (z, 0), it is
possible to jump from tuple 1 to tuple 3 in one step.

The procedure for searching this data structure is given in
algorithm 1. The new algorithm can be used with one list
containing all tuples, or with lists containing supporting tu-
ples for each variable and value (x, a). The flag OneList,
used on line 2 of algorithm 1 determines if one list is used.
The lists are sorted in lexicographic order, with the leftmost
value in the tuple as the most significant. Therefore it is
likely that finding the leftmost invalid value would allow to
jump forward the furthest, so we iterate from the left when
checking the validity of the tuple. Towards the end of the
list, ND(j) is likely to contain � indicating that there is no
subsequent tuple with a different value for t(j). � is consid-
ered greater than length(l). Algorithm 1 behaves identically
to the naive algorithm if OneList is false and lines 12 and 22
(where it jumps forward) are replaced with i ← i + 1. The
only extra overhead is retrieving the new value of i from the
ND array, and in the degenerate case where the first tuple ex-
amined is valid there is no extra overhead. Therefore there is
no reason it should ever perform significantly worse than the
naive algorithm, and it has potential to perform much better.

procedure SeekValidSupportNextDifference(x: variable, a: value): Tuple
i← CS(x, a) { current support}
if OneList: l is the global tuple list
else: l← tupleLists(x, a)

while i ≤length(l):
j ← 1 { Index into tuples from left}
while j ≤ r and l(i).t(j) ∈ Dj and var(j) = x⇒ l(i).t(j) = a:

j ← j + 1

if j = r + 1:
CS(x, a)← i

return l(i)

else:
i← l(i).ND(j) { Jump to the next tuple with jth value different }

i← 1 { Restart}
while i < CS(x, a):

j ← 1 { Index into tuples from left}
while j ≤ r and l(i).t(j) ∈ Dj and var(j) = x⇒ l(i).t(j) = a:

j ← j + 1

if j = r + 1:
CS(x, a)← i

return l(i)

else:
i← l(i).ND(j) { Jump to the next tuple with jth value different }

return nil

Algorithm 1: SeekValidSupportNextDifference

seen results differing by more than 25% when doing this.

Tries
A trie is a tree data structure introduced by Fredkin (1960)
as an efficient means of storing and retrieving strings. The
key idea is that strings with a common prefix share nodes
and edges in the tree. Each node can have at most k chil-
dren, where k is one more than the size of the alphabet, and
each edge is labelled either with a character from the alpha-
bet or a special terminating character. The root node has a
child for each distinct first character, α, in the set of strings,
and the edge connecting the two is labelled with α. Each
internal node n has a child for each string that has a prefix
corresponding to the characters on the edges in the path from
the root to n, read in order. Searching for a string in a trie
(the main operation useful for supporting a table constraint),
is O(d) if d is the length of the string.

We can view the tuples in the extensional representation
of a constraint as strings and insert them into a trie. The
branches of the trie will have a uniform length, and each
level of the trie will correspond to a particular variable in
the scope of the constraint represented. Testing whether a
particular tuple satisfies the constraint is then cheap. For en-
forcing GAC, however, we wish to test whether a particular
variable, value pair has support. If the variable is the first in
the constraint’s scope, this remains cheap.

To illustrate, consider Figure 2, which shows the trie cor-
responding to a ternary constraint with scope 〈x, y, z〉, and
allowed tuples: {〈0, 0, 0〉, 〈0, 0, 1〉, 〈1, 1, 0〉, 〈1, 1, 1〉}. To
establish support for x = 0 we follow the arc correspond-
ing to 0 from the root and find a path to a leaf node where
the value labelling each edge remains in the domain of the
corresponding variable. This is a search process for which
we present an algorithm later in this section. If, say, the
value 0 has been removed from the domain of z, the support
established for x = 0 is as shown in the figure (〈0, 0, 1〉).

If, however, the variable is the last in the scope, search for
support can be very expensive. In this case, we might need
to explore a large proportion of the leaves of the trie. There-
fore, we trade space for time and use one trie per element e
of the scope. In each trie we arrange the levels so that e is
represented at the first level. The two further Tries for this
example are given in Figure 3.

0 1

0

0

1

0 1

◊

1

◊◊ ◊

x

y

z

Figure 2: Trie containing tuples

Tries can also be used to re-establish support efficiently
when it is lost. Assume that, having, established support for
a value v in the domain of some variable x, that propagation
has removed one or more values from the domains of the
other variables in the scope. From the leaf corresponding

0 1

0

0

1

0 1

◊

1

◊◊ ◊

y

x

z

10z

0 01 1x

y 0 01 1

◊◊◊ ◊

Figure 3: Tries for the two other relevant orderings of x, y, z

to the tuple supporting x = v, we ascend to find the high-
est level in the trie whose corresponding variable has lost a
value in this tuple. From the parent node of this edge, we be-
gin a search for new support from the next child to the right
of the edge whose value was lost.

procedure SeekValidSupportTrie(x: variable, a: value): Tuple
i← CS(x, a)

trie← tries(x) { Select the appropriate trie }
hl← r + 1 {highest level with invalid value}
for l in r . . . 1: {l: trie level}

if trie[l][i].value /∈ D(xl):
hl← l and hi← i

i←trie[l][i].parent
if hl = r + 1: return reconstructTuple(i) {support still valid}
i← hi

l← hl

searchUpTo←false
∀l :minLevel[l]← +∞
while true: {search for new support}

if searchUpTo and [l = 0 or i >minLevel[l] or i =length(trie[l])]:
return nil

if l = 0 or i =length(trie[l]):
searchUpTo←true and l← 1

i← lowest index corresponding to value a

if ¬searchUpTo and minLevel[l]> i:
minLevel[l]← i

{navigate the tree}
if trie[l][i]=delim:

i←trie[l][i− 1].parent+1
l← l− 1

else if trie[i][l].value ∈ D(xl):
if l = r:

CS(x, a)← i

return reconstructTuple(i)
i←trie[l][i].child {the first child}
l← l + 1

else:

i← i + 1

Algorithm 2: seekValidSupportTrie

The Tries are implemented as two-dimensional arrays, in-
dexed firstly by trie level (1 . . . r from root to leaves). In the
other dimension, each entry corresponds to one node in the
trie. Blocks of nodes with the same parent are separated by
a special delim value. Each node has a value (accessed by
.value), an index to its leftmost child (.child) and an index
to its parent (.parent). The procedure to search the trie is
given in algorithm 2. It searches the appropriate trie from the
point it left off in the previous call, starting at a leaf. That

is, CS(x, a) points to a leaf node representing current sup-
port. When it reaches an end condition, it restarts and sets
the searchUpTo flag to true. Then it searches up to the in-
dices stored in the minLevel array. There is one index stored
for each level of the trie, and the algorithm stops if it reaches
the minLevel whatever level of the trie it is on. If the algo-
rithm reaches an end condition again, then there are no valid
tuples to support x, a so nil is returned.

The algorithm starts from a leaf, where it finished the pre-
vious time it was invoked. It ascends the trie to find the high-
est node where the value is invalid. (If this does not exist,
the previous support is still valid.) From this point, search is
started. The search loop is divided into two parts. The first
part checks for end conditions, such as reaching the top level
of the trie, or reaching the right end of one level of the trie.
These might stop the search, or restart it. Also, the minLevel
array is populated here, if the current index is smaller than
the one stored in the array. The second part of the search
loop navigates the trie. This is divided into three parts, one
of which is executed. The first moves to the parent nodes’
successor if we have reached the end of the current block.
The second part checks if the value of the current node is
valid. If it is, then we can move down one level. (If we are
on the bottom level, we have found a valid tuple, so return
it.) If neither condition holds, we move to the next node on
the current level.

We report below that Next-Difference lists can perform
poorly because of memory problems. Where t is the num-
ber of tuples, the space complexity of Hologram is O(tr)
(specifically 4tr machine words). For Next-Difference lists
with one list, it is O(tr) (specifically 2tr words). For
Next-Difference lists with one list per variable, it is O(tr2)
(specifically tr + tr2) which causes problems on some of
the larger instances. Tries are also O(tr2) but because the
tuples are compressed together at the top of the trie, typical
memory usage is much less than the worst case.

Experiments with GAC-schema
The algorithms described above were implemented in Java
1.5 and embedded in GAC-schema. This is called from a
simple queue embedded in a search procedure with static
variable and value orderings. We used static orderings for
simplicity, but we see no reason why similar results would
not be obtained with dynamic variable ordering: speedups
come from improving propagation time, not any change in
the search tree. To obtain the timings, a microsecond timer
was used for each call to SeekValidSupport. The machine
used was a Pentium 4 3GHz with hyperthreading switched
off, and 2GB of RAM.

Random CSP instances were generated with a variety of
parameters. We used three values of looseness (the propor-
tion of satisfying tuples): 0.2, 0.5, and 0.8 and in each case
the tuples are chosen with uniform probability. We used
constraints of arity 5, 7, 9, and 11. We also varied domain
sizes, with a range of 2. . . 5 for arity 5, decreasing to only
domain size 2 for arity 11. To keep search manageable, we
used no more than 25 variables for domain size 2, decreas-
ing this with increasing domain size. For each combination,
we used a range of integer values for the number of edges

e, covering the phase transition (from 100% satisfiable to at
least 75% unsatisfiable.) For each constraint, its variables
are chosen with uniform distribution from the variables in
the problem. The constraint hypergraph is not necessarily
connected (again for simplicity of implementation.) For
each combination of parameters, a suite of instances were
generated (50 if the looseness is 0.2, and 20 otherwise).

 0.1

 1

 10

 100

R
at

io
 f

or
 S

ee
kV

al
id

Su
pp

or
t

Time for SeekValidSupport

Looseness 0.8
Looseness 0.5
Looseness 0.2

 1e-04 0.001 0.01 0.1 1 10 100
 0.1

 1

 10

R
at

io
 f

or
 s

ol
ut

io
n

tim
e

Time for Solving

Figure 4: Comparison of performance of using Tries with use of
the Simple algorithm. See text for explanation of this figure and
similar ones to follow

We compare results using Tries and Simple in Figure 4.
The format of the figure needs some explanation. Two scat-
terplots are shown in this figure. The upper plot is labelled
to the left and above the graph, while the lower plot is la-
belled to the right and beneath the plot. Note that all scales
are logarithmic, and that the scale of the x-axis is the same
in both plots. We first discuss the upper (larger) plot. On the
x-axis we show the run time (in seconds) used in SeekValid-
SupportSimple. Each point represents the mean of the times
in a suite of instances. On the y-axis, we show the ratio of
this time to the time used for SeekValidSupportTries. The
lower plot is similar, but time measured is now the mean run
time for solving the suite, thus including all overheads.

Figure 4 shows that the use of Tries can improve time in
SeekValidSupport by more than 10 times, and overall run
time by more than 5 times. There are still data points where
Simple beats Tries, but in all cases the difference is marginal.
While many data points show very similar performance us-
ing the two techniques, on the ensemble of data as a whole,
Tries are well worthwhile since they can lead to very dra-
matic improvements on large run times.

We found that Next-Difference lists (using multiple lists)
can be highly successful, but memory usage cause this tech-
nique to be untenable overall. Memory problems often cause
slowdown or even failure to complete. The use of a single
list instead of multiple lists solves memory problems. We
see (in Figure 5) that we achieve very similar performance to
Tries with this algorithm. Tries never take more than 147%,

 0.1

 1

 10

 100

R
at

io
 f

or
 S

ee
kV

al
id

Su
pp

or
t

Time for SeekValidSupport

Looseness 0.8
Looseness 0.5
Looseness 0.2

 1e-04 0.001 0.01 0.1 1 10 100
 0.1

 1

 10

R
at

io
 f

or
 s

ol
ut

io
n

tim
e

Time for Solving

Figure 5: Comparison of using Next-Difference Lists (with one
List) with use of the Simple algorithm.

or less than 75%, of the time that Next-Difference lists take
in SeekValidSupport. The figures are usually very close.

Next we report results using Lhomme and Régin’s Holo-
gram data structure. Significant factor improvements in run
time are obtained on many instances over Simple, but there
is a consistent slight slowdown on the looseness 0.8 in-
stances. Figure 6 shows a a direct comparison between this
data structure and Tries. This shows clearly that Tries are
always faster in both SeekValidSupport and overall runtime,
clustering in the range from 1.5 to 2.5 times as fast in Seek-
ValidSupport. As run time increases, Tries seem to become
increasingly more effective. The speedup is much more con-

 1

 10

R
at

io
 f

or
 S

ee
kV

al
id

Su
pp

or
t

Time for SeekValidSupport

Looseness 0.8
Looseness 0.5
Looseness 0.2

 1e-04 0.001 0.01 0.1 1 10 100
 1

 10

R
at

io
 f

or
 s

ol
ut

io
n

tim
e

Time for Solving

Figure 6: Comparison of using Tries and Hologram. We plot time
using Hologram on the x-axis, and ratio of that technique to using
Tries on the y-axis.

sistent than in the previous plots, suggesting that similar fac-
tors allow both techniques to run faster than Simple, but that
Tries are able to do so more effectively. Speedup in overall
time is slight, but consistent.

The results above show that Tries is the best performing
of the techniques we have studied on this data set.3 We have
examined Tries’ behaviour in more detail, but omit plots for
reasons of space. At all densities, we found two interest-
ing trends. First, if we fix the arity and increase domain
size, then Tries become increasingly good relative to Sim-
ple. Second, if we fix the domain size and increase the arity,
then again Tries become increasingly good. This behaviour
can be summarised by saying that as the size of the tables
increases, the benefits of using Tries increases too.

GAC using Watched Literals

 0.2

 0.5

 1

 2

 5

 10

 20

 50

 100

 200

 500

 1000

 0.01 0.1 1 10 100 1000

Random
Structured

Figure 7: Comparison of performance in Minion of using Tries
with the Simple data structure on all random and structured in-
stances. The x-axis shows the run time using the comparison tech-
nique in secs, while the y axis shows the speedup factor in nodes
in the search tree searched per second using Tries. We report
nodes per sec because some non-random instances timed out af-
ter 1200secs.

The constraint solver Minion (Gent, Jefferson, & Miguel
2006b) allows the use of “watched literals” as another
means of constraint propagation (Gent, Jefferson, & Miguel
2006a). Gent et al provide a variant of GAC-2001 (Bessière
et al. 2005) adapted for watched literals, and report on
its integration into Minion. Implementing GAC for table
constraints with watched literals has some potential advan-
tages. For example, implementation is comparatively sim-
pler than GAC-schema, but is still a ‘fine-grained’ algo-
rithm, i.e. propagation only happens when particular values
lose support (Gent, Jefferson, & Miguel 2006a). The algo-
rithm requires SeekValidSupport, just as GAC-schema does,
so we can use the existing and new data structures.

3Unfortunately we have not implemented Lecoutre & Szy-
manek’s technique for GAC-Schema.

We have implemented the data structures in Minion, in-
tegrating each in turn with table constraints using watched
literals. Minion is open source so available for researchers
to modify in this way. As well as the methods from the
previous section, we implemented Lecoutre and Szymanek’s
method. We used a set of identically specified iMacs, with
Intel Core Duo 2GHz processors and 2GB RAM under
OS X 10.4.7. We built our variants using gcc 4.0.1 using
flags -fomit-frame-pointer -O3 -march=pentium-m -mdynamic-
no-pic. We used the same set of random instances described
above (excluding some where input files reached 20MB).
We also tested non-random, structured, instances which use
table constraints from the problem classes graceful graphs,
semigroup construction, BIBD’s, the prime queens prob-
lem, and Golomb rulers. We experimented on 38 non-
random instances. While this compares unfavourably with
the thousands of random instances, structured instances are
much harder to come by. Even 38 instances is many more
than the structured instances reported in comparable studies
(Lecoutre & Szymanek 2006; Lhomme & Regin 2005).

Figure 7 shows performance using Tries against the Sim-
ple method on our benchmark set. Speed is almost always
improved, and very often by a factor of 10, especially on
more difficult instances. The largest win is a speedup of
more than 500-fold. Figure 8 shows results against each
individual non-random class. No clear pattern emerges.
Very dramatic improvements are obtained, while on some
instances we see a marginal slowdown. The fact that we
have not found instances where significant slowdowns oc-
cur is important.

We found that the best performance was using Tries.
Lhomme and Régin’s Hologram could be more than 20
times slower than Tries, although outperforming Tries by
up to 2 times on some of the simpler instances taking up
to 5 seconds. This is seen in Figure 9. Hologram was
usually faster than Simple, although some instances could
be 10 times slower using Hologram than Simple. Lecoutre
and Szymanek’s method is also effective and much faster
than Simple, but is almost always slower than Tries. This is
shown in Figure 10. However, it is never 5 times slower than
Tries. For Next-Difference lists, performance was better
with just one list. Next-Difference lists (with one list) often
outperformed Tries, by up to 5 times, but not on instances
requiring more than 10 seconds. On harder instances, Tries
could in turn outperform Next-Difference lists by 5 times.
We regard Tries as more successful, since speedups are more
important as run times become longer. Lhomme and Régin’s
Hologram could be more than 20 times slower than Tries,
although outperforming Tries by up to 2 times on some of
the simpler instances taking up to 5 seconds. Hologram was
usually faster than Simple, although some instances could
be 10 times slower using Hologram than Simple.

The Simple method is no straw man: the implementation
we compare with is in Minion, one of the fastest constraint
solvers, using the implementation of GAC suggested by
Minion’s authors as being particularly attuned to its design
(Gent, Jefferson, & Miguel 2006a). Note that all the com-
parisons, including 500-fold speedups, are achieved while
searching the same tree, since all methods establish GAC

 0.2

 0.5

 1

 2

 5

 10

 20

 50

 100

 200

 500

 1000

 0.01 0.1 1 10 100 1000

BIBD
Graceful Graphs
Prime Queens
Golumb Ruler
Semigroup

Figure 8: Comparison of performance in Minion of using Tries
with the Simple data structure on structured instances divided into
classes. Axes are as in Figure 7.

 0.2

 0.5

 1

 2

 5

 10

 20

 50

 0.01 0.1 1 10 100 1000

Random
Structured

Figure 9: Comparison of performance in Minion of using Tries
with the Hologram data structure. Axes are as in Figure 7.

 0.2

 0.5

 1

 2

 5

 0.01 0.1 1 10 100 1000

Random
Structured

Figure 10: Comparison of performance in Minion of using Tries
with Lecoutre & Szymanek’s method. Axes are as in Figure 7.

at each node. Also, since we did not measure time taken
in SeekValidSupport, times incorporate all aspects of the
solver, and not just GAC for table constraints.

Related work
Lhomme and Régin (2005) use the Hologram data structure
to store tuples as one list. For each tuple, for each value,
there is a pointer to the next tuple to contain the same value.
For each tuple, there is a redundant second tuple alongside it
with the equivalent set of pointers forward. The values of the
redundant tuple are incremented modulo d from the previous
redundant tuple. Therefore in d steps one can find a pointer
to the next tuple to contain any value in any position. While
this enables significant efficiency gains, the complexity of
the search algorithm may be a problem.

Lecoutre and Szymanek (2006) give an algorithm
seekSupport-valid+allowed, which uses binary search rather
than simple iteration. Lists for each literal are constructed as
in the basic algorithm. All lists are sorted in lexicographic
order (lex, ≺lex). The algorithm first constructs the lex least
valid tuple t, then performs a binary search for t in the list,
finding t′ which is the lex least tuple in the list s.t. t ≺lex t′.
If t′ is valid, we are done. Otherwise, the lex least tuple t′′

is constructed s.t. t′ ≺lex t′′ and t′′ is valid. The algorithm
then repeats the binary search and proceeds from there. De-
spite the expense of the binary search, this technique per-
forms very well in our experiments.

Carlsson (2006) uses a directed acyclic graph (DAG) to
represent the constraint, and gives an algorithm for propa-
gation. Compared to Tries, the DAG is potentially much
smaller. Also, ranges of values are represented in the DAG,
and support for a range of values can be found in one step.
Each time the propagator is called, support for all values
is found by searching the DAG once. If the user provides
a small DAG, the Carlsson algorithm should be very effi-
cient. However, we presumably do not get a small DAG
from arbitrary set of tuples. If the DAG is large, two prob-
lems are apparent: a backtracking bit is used for each node
of the DAG, so a large amount of backtracking memory is
required; and our optimization of using a trie for each vari-
able is not present so it may be inefficient to find support for
rightmost variables. It would be interesting to explore the
use of DAGs constructed from arbitrary sets of tuples.

Cheng and Yap (2006) use ROBDDs to store and manip-
ulate a constraint as a set of tuples, reducing the ROBDD as
variables become assigned during search. The major limita-
tion of this work is that it works only on binary variables.

We are not aware that tries have been used for GAC be-
fore. Zhang and Stickel (2000) used tries for the closely re-
lated problem of storing clause sets efficiently for unit prop-
agation. Indeed this partly inspired our use of tries here.

Conclusions
This paper has explored the use of data structures for tuple
search in table constraints, with a large experimental analy-
sis. The Tries data structure has been successfully applied
to this problem. Tries work well with both the watched-
literal GAC algorithm and GAC-Schema. The novel Next-

Difference lists are a simple idea and effective, though less
successful than Tries in the watched-literal GAC algorithm.
Next-Difference with one list has a lower space complexity
than Tries, so remains of significant interest.

We have performed by far the most extensive set of exper-
iments to date on the emerging new data structures for tuple
search. We have confirmed the good experimental results of
Lecoutre and Szymanek (2006), and our experiments place
their algorithm between Tries and Next-Difference lists in
terms of performance, with Tries performing best of the
three. We have also confirmed the benefit of Lhomme and
Régin’s algorithm compared to the simple approach. Some
of our detailed conclusions may be subject to revision if op-
timisations for particular techniques are found. But we can
certainly conclude that the use of these data structures can
speed up propagating table constraints considerably.

Finally, table constraints are widely applicable, and very
significant improvements can be made over the simple algo-
rithm, so we believe this area of research to be fruitful. We
have only scratched the surface of the space of data struc-
tures. Further novel data structures could make significant
improvements over Tries.

References
Bessiere, C., and Regin, J.-C. 1997. Arc consistency for
general constraint networks: Preliminary results. In Proc.
IJCAI-97, 398–404.
Bessière, C.; Régin, J.-C.; Yap, R. H. C.; and Zhang, Y.
2005. An optimal coarse-grained arc consistency algo-
rithm. Artif. Intell. 165(2):165–185.
Carlsson, M. 2006. Filtering for the case constraint. Talk
given at Advanced School on Global Constraints, Samos,
Greece.
Cheng, K. C. K., and Yap, R. H. C. 2006. Maintaining
generalized arc consistency on ad-hoc n-ary boolean con-
straints. In ECAI-06, 78–82.
Fredkin, E. 1960. Trie memory. Comms. ACM 3(9):490–
499.
Gent, I. P.; Jefferson, C.; and Miguel, I. 2006a. Watched
literals for constraint propagation in Minion. In Proc. CP-
2006, 182–197. Springer.
Gent, I.; Jefferson, C.; and Miguel, I. 2006b. Minion: A
fast, scalable constraint solver. In Proc. ECAI-06, 98–102.
Lecoutre, C., and Szymanek, R. 2006. Generalized arc
consistency for positive table constraints. In Proc. CP-
2006, 284–298.
Lhomme, O., and Regin, J.-C. 2005. A fast arc consistency
algorithm for n-ary constraints. In Proc. AAAI-05, 405–
410.
Mackworth, A. 1977. On reading sketch maps. In Proc.
IJCAI-77, 598–606.
Wallace, M. 1996. Practical applications of constraint pro-
gramming. Constraints 1(1/2):139–168.
Zhang, H. and Stickel, M.E. 2000. Implementing the
Davis-Putnam Method. J. Autom. Reasoning, 24:277–296.

